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Abstract: In the context of Industry 4.0, Artificial Intelligence (AI) methods are used to maximize
the efficiency and flexibility of production processes. The adaptive management of such semantic
processes can optimize energy and resource efficiency while providing high reliability, but it depends
on the representation type of these models. This paper provides a literature review of current Process
Modeling Languages (PMLs). Based on a suitable PML, the flexibility of production processes
can be increased. Currently, a common understanding of this process flexibility in the context of
adaptive workflow management is missing. Therefore, requirements derived from the business
environment are presented for process flexibility. To enable the identification of suitable PLMs,
requirements regarding this are also raised. Based on these, the PMLs identified in the literature
review are evaluated. Thereby, based on a preselection, a detailed examination of the seven most
promising languages is performed, including an example from a real smart factory. As a result, a
recommendation is made for the use of BPMN, for which it is presented how it can be enriched with
separate semantic information that is suitable for the use of AI planning and, thus, enables flexible
control.

Keywords: Industry 4.0; business process management; adaptive workflow management; imperative
process modeling languages; flexible control processes

1. Introduction

In the context of Industry 4.0 (I4.0) [1], Artificial Intelligence (AI) methods, data analysis
techniques, the Internet of Things (IoT), and distributed systems are integrated into indus-
trial processes. The analysis and control of such processes is addressed in the research area
of Business Process Management (BPM) [2–4]. Current research investigates how these can
be planned and executed dynamically [5], considering criteria such as energy and resource
efficiency [6]. A particular focus is on Adaptive Workflow Management (AWM) [7–9], which
adapts to changing conditions in real time through fast data processing and, thus, offers a
high level of failure resilience. This enables scalable utilization of production and informa-
tion technology resources so that capacities can be increased or reduced as required. For
example, application of AWM for increasing the flexibility in production processes offers
the potential to optimize the use of facilities as well as resources and to react quickly to
problems in the supply chain or increasing demand. To make these processes that flexible,
the use of suitable technologies such as AI Planning [10,11] is necessary. This enables
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analysis and planning processes to be created and optimized in such a way that resources
are used efficiently and costs are reduced. This is carried out both initially, before the
processes are executed, and during the execution in real time, in response to failures or
other changing environmental conditions. To increase the performance of these methods,
they can be combined with other AI techniques like Case-Based Reasoning (CBR) [12,13].
However, the use of such technologies requires a flexible, efficient, and resilient design on
which the processes are implemented.

There are various models for representing manufacturing processes called Process
Modeling Language (PML) (or also process representation language), such as Business Pro-
cess Model and Notation (BPMN) [14]. Literature reviews on these are already conducted
in previous research (e.g., [15–17]). However, none of these focused on PMLs for rep-
resentation of industrial manufacturing processes and their suitability for AWM aiming
at process flexibility. This process flexibility describes the ability to react automatically
and dynamically to environmental changes [9] (pp. 215–217). The term flexible control,
meaning AWM for increasing the flexibility in production processes, is defined in various
ways in the literature [18], but has not yet been specified in a way that it can be measured
in industrial practice. As a result, there is also a lack of practical requirements for the type
of representation of such processes, based on which a suitable PML can be derived.

We address these problems by providing a current literature overview of suitable PMLs
for the representation of production processes. To specify the definition of industrial control
process flexibility on which this paper is based, we collect corresponding requirements
from the industry. Analogous requirements for the representation formats are elicited,
which we evaluate for the identified PMLs. On this basis, we present a preferred PML
combined with an approach for semantic integration that enables the usage of AI methods
for flexible production.

The paper is structured as follows: First, an overview of the necessary foundations and
related work is given in Section 2. Then, in Section 3, the approach and the results of the
literature research on PMLs for production are presented. In Section 4, the requirements for
both the flexibility of processes and the PMLs are introduced. Based on the requirements,
the suitability of the PMLs in Section 5 is assessed. Section 6 presents necessary extensions
so that this modeling language fulfills the desired requirements. Finally, the paper is
summarized in Section 7, and an outlook on future work is given.

2. Foundations and Related Work

In this section, the necessary background from the field of BPM is introduced in
Section 2.1. Based on this, Section 2.2 presents the research field of AWM and the appro-
priate AI planning methodology. Section 2.3 introduced PMLs in the BPM context. In
Section 2.4, related work on surveys of PMLs is presented.

2.1. Business Process Management

BPM [9] is a methodical approach to the continuous improvement in ways of efficiency,
flexibility, and quality of business processes. It comprises the six phases of identification,
discovery, redesign, implementation, monitoring, and controlling of the BPM lifecycle [9]
(pp. 15–26), illustrated in Figure 1. At the beginning, the relevant business processes
to be selected for analysis and improvement in the context of BPM are identified and
prioritized. In the discovery step (also called Design), the identified business processes are
examined in detail and documented to gain a clear understanding of how they currently
work. This documentation involves the representation of processes in formal models,
which can be visual or textual. This requires an accurate capture of the process logic, the
interactions between process participants, and the data and resource flows. The selection
of a suitable PML is crucial for the discovery step in BPM, as it ensures the precision
and comprehensibility of the process models, enables interoperability with other systems,
and forms the basis for automation and analysis. Based on the information gathered,
the business processes are redesigned or optimized to achieve efficiency gains or other
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improvements (e.g., sustainability criteria as energy or resource optimization [19]). These
adapted business processes are then put into practice by implementation. Continuous
monitoring of the implemented processes measures their performance and ensures that
they are working as expected. Finally, the monitored processes are checked in controlling
and adjusted if necessary to correct deviations and ensure continuous improvements.

Identification

Discovery

Analysis

RedesignImplementation

Monitoring and
Controlling

(also called Design)

Figure 1. The BPM Lifecycle According to Dumas et al. [9] (p. 21).

2.2. Adaptive Workflow Management and AI Planning

The steps of process implementation and controlling can be addressed using AWM [7–9].
This is a field of research that concerns the flexible adaptation of workflows to changing
environmental conditions. For example, a problem may be that the execution of a pro-
duction workflow cannot be carried out as planned and therefore the production stops.
This requires a flexible adaptation of the workflow to these external changes. An essential
concept in this context is flexibility, which describes the ability to react to such changes [9]
(pp. 215–217). In AWM, this reaction should be automatic and dynamic. There are various
definitions of this term in the literature [18], but none from industrial practice.

One approach for addressing these flexible reactions in AWM is AI planning (also called
automated planning) [20]. This technique aims to solve state transformation problems by
identifying a sequence of steps to transition a discrete world model from an initial state to a
desired goal state [10,11]. For example, in a production context, AI planning could be used
to plan the production of certain products. The world model would thereby consist of the
production capabilities (e.g., available machines and services, such as drilling or welding),
while the initial state would model the availability of resources; the goal state would consist
of the finished products. This method is already used in BPM to enhance automation and
provide support [5]. It should be possible to take various metrics into account that, e.g.,
relate to the resilience or energy efficiency of the processes but also to its flexibility [21]. To
plan control processes as well as other process types like analysis processes (e.g., for use
in predictive maintenance [22,23] or the identification of data quality issues [24,25]), it is
necessary for the information on which the planning is based to be available in a suitable
form to be transferred to a planning problem [26]. This information must be returned
appropriately to make these processes directly executable. As solving complex planning
problems can be very computationally intensive, other AI methods can be used to reduce
complexity. For example, CBR is used to reduce computational complexity and increase
flexibility by reusing already solved problems [13,27].
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2.3. Process Modeling Languages

A process is a partially ordered set of tasks or steps aimed at reaching a specific
goal [28]. In the context of BPM, this goal is specified by the corresponding business and
the process embedded in its structure, defining roles and relationships [29]. The modeling of
such a business process serves to describe, analyze, or enact a process [28]. There are various
PMLs that focus on one of these aspects, usually harming the others [30]. Depending on
the user, such modeling can be viewed differently. Curtis [28] identifies the functional,
dynamic, informational, and organizational view of such processes. In the context of
industrial manufacturing processes, the first three of these views are usually relevant.

PMLs can be divided into declarative and imperative languages [31]. A declarative
PML models the underlying logic of a process and specifies how a result should look. No
concrete production steps are specified. Instead, the focus is on the rules and conditions
that must be fulfilled, leaving flexibility for execution. In contrast, an imperative PML
describes how a sequential process is executed. Thereby, the exact steps and procedures
required to carry out a process are presented. These languages specify the sequence of
activities and the conditions under which they can be carried out.

2.4. Literature Reviews on Process Modeling Languages

Previous researchers have already published literature reviews on PMLs and asso-
ciated requirements. In 1999, Conradi and Jaccheri [32] set out various requirements
regarding PMLs, such as the modeling of process elements and the addressing of the BPM
lifecycle, and compare ten languages against this background. The focus of this work is
on software processes that involve the development and maintenance of software. In the
same year, Lou and Alex Tung [33] design a framework for evaluating PMLs that focuses
on the BPM modeling objectives. This is demonstrated by an example comparing two lan-
guages. In 2002, Söderström et al. [34] present a more general metamodel, which they use
to compare three PMLs. Several application areas from the BPM field are mentioned, such
as workflow management or process reengineering. Two years later, Aguilar-Savén [35]
propose a cross-application classification of PMLs also containing the users perspective
and compare nine languages based on it. In 2005, Nysetvold and Krogstie [36] present a
generic framework for assessing the quality of PMLs specialized to the needs of a company.
They compare three different languages based on the use case of an insurance company.
A year later, List and Korherr [37] provide another generic framework for comparing
business PMLs. They use it to evaluate seven different languages. In 2008, Korherr [38]
presents a domain-independent evaluation framework for business PMLs and compares
six languages in detail. One year later, Recker et al. [39] consider twelve different PMLs
in a general comparison. Moreover, in 2009, Fahland et al. [31] examine the theoretical
differences between declarative and imperative PMLs regarding their understandability.
Nine examples of PMLs are given to show that imperative or declarative property is not an
absolute but a spectrum. In 2010, Mili et al. [30] create an overview of BPM languages and
introduced a categorization for them. They present 17 different PMLs, including examples.
In the same year, zur Muehlen and Indulska [40] compare the Bunge-Wand-Weber (BWW)
format with four other PMLs, focusing on ontological completeness and overlap. In 2012,
Scanavachi Moreira Campos and Teixeira de Almeida [41] propose a framework for select-
ing a PML based on modeling objectivex and demonstrate it based on an example. Two
years later, García-Borgoñón et al. [42] conduct a systematic literature study to investigate
which PMLs are defined to that date, as well as how they are related to and dependent
on each other. In the publication, they present 46 languages and examine their areas of
application. In 2015, Goedertier et al. [43] provide an overview only focusing on declara-
tive PMLs and evaluate these. Two years later, Kožíšek and Vrana [16] consider Unified
Modeling Language (UML), BPMN, and Event-Driven Process Chains (EPC) as PMLs and
compare them based on various properties motivated by the application in the agri-food
industry. In the same year, Hu et al. [15] introduce an evaluation framework that identifies
the main requirements for supporting context-adaptive processes. Based on this frame-
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work, Couloured Petri Nets (CPN), BPMN, Yet Another Event-Driven Process Chain (YAWL),
and Unified Modeling Language Activity Diagram (UML-AD) are evaluated using various
real-life scenarios. Brouns et al. [17] 2018 analyze the state of the art for the modeling of
IoT-aware business processes. PMLs are considered as well as IoT extensions for these. In
2024, Farshidi et al. [44] present a decision model to identify a suitable PML and consider
23 languages.

3. Process Modeling Languages for Manufacturing

As described in Section 2.4, literature reviews on PMLs already exist. However, none
of these surveys focuses on languages that are suitable for representing flexible control
processes in the context of AWM in industrial manufacturing. Therefore, by a systematic
literature review [45], formats for the representation of sequences and concatenations have
been examined, based on which a format for the representation of production processes is
to be selected. In addition to the literature study, an online search has also been carried out
to provide further results. The languages gathered have been examined in detail, whereby
these were categorized into declarative and imperative languages. In the context of this
publication, only imperative PMLs that make it possible to map an industrial process,
e.g., a manufacturing control process, are considered (see Section 2.3). This means that
control-flow elements, i.e., a connection of the tasks in the process, must be supported.
Therefore, declarative PMLs such as ADEPTflex [46], Business Process Constraint Network
(BPCN) [47], ConDec [48], Process Entailment from the Elicitation of Obligations and Permissions
(PENELOPE) [49], or Planning Domain Definition Language (PDDL) [50] (also applicable in
this context) are filtered out. In addition, hybrid languages are not considered, such as the
hierarchical PMs considered by Slaats et al. [51], which also use imperative or declarative
languages at the local level, or BXtendDSL [52], which combines languages of both types.
Overall, 27 imperative PMLs are identified that basically support the representation of
manufacturing processes. In Table 1, an overview of these is provided.

To evaluate which of the languages is most suited for representing flexible busi-
ness processes, requirements need to be identified. For this purpose, we conducted a
requirement analysis regarding the flexible control of processes and the underlying process
representation. The results of this analysis are presented in the following section.

Table 1. Identified Imperative Languages for Process Modeling with Acronyms and the Respective
References.

Language Name Acronym Reference

Architectural Modeling Box for Enterprise Redesign AMBER [53]
Business Process Execution Language BPEL [54]
Business Process Definition Metamodel BPDM [55]
Business Process Model and Notation BPMN [56]
Case Management Model and Notation CMMN [57]
Coloured Petri Nets CPN [58]
ConDec ConDec [48]
COSBI LAB Language L [59]
Data Flow Diagrams DFD [60]
Data Petri Nets DPN [61]
extended/enhanced Event-Driven Process Chains eEPC [62]
Event-Driven Process Chains EPC [63]
Flow Charts FC [64]
NEST Graphs NEST [65]
Industry 4.0 Process Modeling Language I4PML [66]
Integrated Definition/ICAM Definition IDEF3 [67]
Linear-Time Temporal Logik LTL [68]
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Table 1. Cont.

Language Name Acronym Reference

Process Modeling Language PML [69]
Petri Nets PN [70]
Role Activity Diagrams RAD [71]
Resource Event Agent REA [72]
Software Process Engineering Metamodel Specification SPEM [73]
Temporal Logic of Actions TLA [74]
Unified Modeling Language Activity Diagram UML AD [75]
Unified Modeling Language Sequence Diagrams UML SD [76]
Business Process Executable Language for Web Services WS-BPEL [77]
Yet Another Event-Driven Process Chain YAWL [78]

4. Requirements for Flexible Control and the Representation of Corresponding Processes

In the context of this publication, two different sets of requirements are necessary:
First, it is essential to define what constitutes the industrial requirements for process
flexibility for manufacturing control. Secondly, the PMLs presented in Section 2 must
be evaluated for their suitability for such flexible control processes. These requirements
can also be used to derive necessary extensions for the existing languages. Initially, a
literature research identifies established requirements. As only very general requirements
could be derived in this way, further requirements were collected based on a focus group
interview [79]. This is a qualitative study that is characterized by its interactive group
nature. For this reason, the focus group interview involves selected participants dis-
cussing a specific topic, using group dynamics to produce more in-depth insights than
individual interviews. We conducted this method of elicitation with the consortium of the
EASY project (https://easy-edge-cloud.de/), which focuses on the analysis and control
of dynamic production processes [6]. This group included various representatives of in-
dustrial companies, namely ArtiMinds Robotics GmbH (https://www.artiminds.com/),
coboworx GmbH (https://www.coboworx.com/), Empolis Information Management
GmbH (https://www.empolis.com/) and Robert Bosch GmbH (https://www.bosch.com/)
as well as industry-related research collaborators such as SmartFactoryKL (https://www.
smartfactory.de/), SmartFactoryOWL (https://smartfactory-owl.de/) and IoT Lab Trier
(https://iot.uni-trier.de/). Their representatives were able to contribute their respective ex-
pert knowledge from production. In the interview, the participants discussed their answers,
but overall agreed on the desired requirements. Following the focus group interview, the
requirements were elaborated and sent to the involved participants to ensure agreement
with the results. The therefore derived requirements for process flexibility are presented in
Section 4.1 and for process representation in Section 4.2.

4.1. Requirements for Process Flexibility

The flexibility of a business process (see Section 2.2) describes the extent to which
it can adapt to a redesign measure, thus the ability to react to changes [9] (pp. 215–217).
This definition must be specified in particular for the application area of flexible process
control. Therefore, the requirements identified for Process Flexibility (PF) are presented in
the following.

Req. 1 (PF): Supported Process Types. The flexible process control should support pro-
duction processes with different levels of automation, e.g., from human workstations to
completely automated processes. The information should be able to be transferred to the
central planning system in a standardized form, e.g., via HTTPS, regardless of the degree
of automation, to be considered in the flexible control. This communication should be
possible both synchronously and asynchronously. Single-stage, linear, as well as modular
production scenarios, such as matrix production, should be able to be represented in the

https://easy-edge-cloud.de/
https://www.artiminds.com/
https://www.coboworx.com/
https://www.empolis.com/
https://www.bosch.com/
https://www.smartfactory.de/
https://www.smartfactory.de/
https://smartfactory-owl.de/
https://iot.uni-trier.de/
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process flexibility. Supporting processes, such as a transport process, are also integrated,
but no external processes are considered due to safety precautions.

Req. 2 (PF): Robustness of the Processes. The flexible manufacturing processes should
explicitly support redundant components and production paths to achieve process stability
and a high level of robustness. This promises a high level of resilience to potential errors,
as alternative paths are available in the event of failures, allowing the production processes
to continue.

Req. 3 (PF): Variable Scalability of the Processes. The process flexibility should have
variable scalability in its components. The batch size of the products to be manufactured
should be freely variable, as should the number of process stations. Additionally, the
stations should allow for flexible reconfiguration.

Req. 4 (PF): Process Data. Four sub-requirements are defined for the data generated as
part of the flexible manufacturing processes. These are presented in the following.

Req. 4a (PF): Data Capture. In the context of process flexibility, it should be possible
to prioritize certain parts of the available data during the collection and processing
to allow for lower latency by ignoring irrelevant data. Additionally, the volume of
data to be captured and processed should also be variable. For example, it should
be allowed to increase the volume captured above the normal level during a failure
analysis to better understand the nature of the failure.
Req. 4b (PF): Near-Real-Time Data Processing. The data from flexible manufac-
turing processes should be provided with minimal latency to enable near real-time
monitoring and dynamic integration. This allows for quick reactions and interven-
tions to rectify failures or events that impair performance. Automated checking and
logging of data should be variable, allowing users to select process-specific data and
choose a logging level.
Req. 4c (PF): Data Representation. The data generated during the flexible manu-
facturing processes is transferred to a data model. This model should be based on
established standards such as the Asset Administration Shell (AAS) [80] or the Open
Platform Communications Unified Architecture (OPC-UA) [81]. So, the data can be pro-
cessed automatically by as wide a range of systems as possible, or existing converters
can be used. The model for data representation should support different types of data
sources, such as process descriptions of individual tasks, shifts of different employees,
lists of parts, machine status, images for quality inspection, measurement curves, or
manually recorded data.
Req. 4d (PF): Data Access. It should be possible to grant access to data on different
levels of abstraction. For example, sometimes it is beneficial to be able to access
unprocessed data instead of the already processed abstracted data. The availability
and origin of the data should be transparently traceable, with clear and transparent
access authorizations ensuring data sovereignty. Data lifetimes should be planned
according to user requirements, ranging from a few days to permanently.

Req. 5 (PF): Optimization Criteria Support for Intelligent Process Planning. When plan-
ning flexible manufacturing processes, it should be possible to consider various optimiza-
tion criteria, both at a global and a local level. At the global level, e.g., this could be the shop
floor, for which the production times are optimized, or at the local level, e.g., a machine,
or product for which the costs incurred are to be minimized. It should also be possible to
define more abstract target values for the optimization, such as a high error tolerance for
the production process or sustainability criteria, such as minimizing the CO2 footprint.

4.2. Requirements for Process Discovery

Process Discovery (PD) is a phase in the BPM lifecycle (see Section 2.1) investigating
how the existing processes are to be documented in the form of PMLs [9] (p. 22). The
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requirements identified regarding this and addressing process flexibility for control as
defined in Section 4.1 are presented in the following.

Req. 1 (PD): Representation of the Entire Control Flow. The PML must enable a rep-
resentation of the control flow as it is present in business processes. This can only be
an imperative language (see Section 2.3). However, the PML should further enables the
representation of possible branches running in parallel and the associated gates within
the control flows to be able to simulate real production processes. The data required for
execution of the process must also be presentable.

Req. 2 (PD): Compatibility with ERP and MES Systems. The PML should be compat-
ible with established Enterprise Resource Planning (ERP) and Manufacturing Execution
System (MES) systems to minimize the hurdles for industrial use. This is achieved through
generic connectors so that only minimal adaptations are necessary for the respective system.
In addition, standardized data spaces should be used to further simplify the connection,
e.g., by using established information models such as the AAS [80] or the Gaia-X Feder-
ation Services (GXFS) [82]. This should enable execution in distributed cloud-based data
infrastructure ecosystems, for example, with an edge-cloud continuum [6].

Req. 3 (PD): Interfaces to Other Process Modeling Languages. Flexible process control
requires suitable forms of representation of manufacturing processes that can be interpreted
by computers and used as input for AI-based planning approaches. The aim is to achieve a
broad compatibility, e.g., with processes that are already formally represented, but also with
unstructured forms, such as natural language. Therefore, the systems implemented based
on the PML should contain interfaces that are as generic as possible so that converters or
adapters for other PMLs can be connected to them. To make this possible, the PML should
be as established and as well documented as possible.

Req. 4 (PD): Included Data. In addition to the data that describes the actual processes (see
Req. 1 (PD)), manufacturing companies also have a wide range of other information that
can be useful for controlling processes. The PML used for the flexible control of production
processes should, therefore, further include information about the process environment in
addition to information about the actual production process. This information can include,
e.g., information about employee shifts or the shop floor of the workshop.

Req. 5 (PD): Semantic Information. To enable the processes using AI-planning proce-
dures, it is necessary that the processes are described semantically. The PML should allow
the semantic modeling of the individual work steps. It must be possible to query the current
status of the running process at any time. An established standard for this is the OWL-S
standard [83], in which services contain the following descriptions:

(a) Inputs: information passed to the service,
(b) Outputs: information returned after execution,
(c) Preconditions: conditions that need to be met in order for the service to be exe-

cutable,
(d) Effects: changes to the world state after the service has been executed.

These attributes or a suitable equivalent must be supported by the PML. The need for
semantic enrichment of the process representation is already identified in the research area
of Semantic Business Process Management [84].

5. Analysis of Process Modeling Languages

In this section, the PMLs collected in Section 3 are compared based on the requirements
from Section 4.2. Due to the scope of the 27 languages, a pre-selection is first made based
on the requirements, which is presented in Section 5.1. The remaining seven PMLs are then
examined in detail in Section 5.2.
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5.1. Pre-Selection

In a preliminary step, the 27 identified imperative PMLs are filtered. The aim is to
be able to subsequently examine possible suitable languages in greater detail. The PMLs
are therefore evaluated based on their popularity. Req. 2 (PD) specifies that the selected
PML should be compatible with common ERP and MES systems. This depends on the
popularity of the PML, as there tend to be more systems that support popular languages
or converters that convert them into another popular and common language. Req. 3 (PD)
also includes the last point for the interfaces to other PMLs. If there are no freely available
converters, there is at least a high probability that published approaches exist for converting
one language into another. The popularity of the PMLs can therefore be used as a further
criterion for the preselection.

Therefore, we introduce a popularity score for relevant PMLs, which is composed of
the following three dimensions:

1. The Occurrence in Literature Reviews (see Section 2.4) provides information about the rele-
vance and acceptance of the language in the scientific community. Frequent occurrence
indicates high popularity, while rare or no occurrence indicates low acceptance.

2. The number of Citations of the Basic Paper that introduces the PML or scientifically
elaborates on it is used, whereby citations of basic papers are more meaningful than
those of elaborating publications. For some languages, it should be noted that no basic
paper is available or that this is not a scientifically established paper (e.g., for BPDM [55],
BPMN [56], SPEM [73], or UML [85]).

3. The number of Search Results on Google Scholar (https://scholar.google.de) provides
information on how frequently the PML is used and how established it is. Here, the
languages are searched for in written form and not as abbreviations.

The popularity score is made up of the three dimensions, whereby restrictions such as the
lack of availability of a basic paper are considered. The underlying queries were carried
out in January 2023. Based on the results, 20 PMLs can be classified as unsuitable using
the popularity score. The imperative languages that are considered in more detail are
BPMN [56], EPC [63], and Petri Nets (PN) [70], with the subtypes of CPN [58], Data Petri
Nets (DPN) [61], Resource Event Agent (REA) [72], and UML-AD [75].

5.2. Detailed Comparison

A simple example process is considered to examine the basic suitability of the PMLs
for modeling production processes, which is demanded by Req. 1 (PD). This describes
an exemplary process in the real-world print module located in the SmartFactoryKL. The
modeling of this example process in the individual PMLs can be used to determine whether
a language is suitable for modeling sequences of work steps with branches and data
elements. The process represented in the several PMLs is shown in the following, where
the languages are discussed.

To assess compatibility with existing ERP and MES systems (see Req. 2 (PD)), the data
from the popularity score analysis from Section 5.1 is also considered. When modeling
the example process, it is also investigated which tools are available for creating process
models in the respective language. The availability of tools for modeling process models in
the evaluated PMLs can also be used to assess the prevalence of the respective language.
To assess how the PML can be connected to industrial systems by simple interfaces (see
Req. 3 (PD)), it is investigated whether there is a standardized file format for which a parser
or converter can be implemented. In addition, the possibilities offered by the PMLs for
modeling data (see Req. 4 (PD)) and the semantics of the processes (see Req. 5 (PD)) are
considered.

BPMN is very well established (Req. 2 (PD)) due to numerous scientific publications
and widespread use in practice. In this language, control flows can be represented by
various events, gateways, and directed edges between these elements (Req. 1 (PD), see
Figure 2). It offers a standardized XML format for system exchange (Req. 3 (PD)), which
facilitates integration into other systems. However, BPMN has limited possibilities for data

https://scholar.google.de
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integration and process semantics (Req. 4 (PD) and Req. 5 (PD)), as annotations of data
have no influence on the control flow and effects of work steps cannot be represented.
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Figure 2. The Example Workflow Represented as BPMN.

EPCs are relatively well established (Req. 2 (PD)) with some scientific publications
but lack a standard format for exchange (Req. 3 (PD)), which makes integration more
difficult. In this language, control flows can be represented by events, functions, logical
link operators, and directed edges between these (Req. 1 (PD), see Figure 3). EPCs are
unsuitable for data integration and semantics (Req. 4 (PD) and Req. 5 (PD)), as data artifacts
remain unspecific and the semantics of links cannot be modeled.
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Figure 3. The Example Workflow Represented as EPC.

PNs are well established (Req. 2 (PD)) with the most scientific publications and
widespread use. A standard exchange format (Req. 3 (PD)), the Petri Net Markup Language
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(PNML) [86] (https://www.pnml.org/), is provided, which facilitates integration [87].
Control flows can be represented by places, transitions, and directed edges (Req. 1 (PD), see
Figure 4). However, PNs do not meet the requirements for data integration and semantics
(Req. 4 (PD) and Req. 5 (PD)), as only the control flow perspective can be modeled.
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Trolley

Workpiece has been
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Quality Check
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Workpiece
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Ship Order

Figure 4. The Example Workflow Represented as PN.

DPNs are less established than regular PNs (Req. 2 (PD)), but tools such as ProM
(https://promtools.org/) are available. As in PNs, control flows can be represented by
places, transitions, and directed edges, which are additionally connected to data that can be
used to represent further conditions and decision logics (Req. 1 (PD), see Figure 5). CPNs
can be exchanged in a de facto standard format (Req. 3 (PD)), which enables integration.
They are well suited for data integration (Req. 4 (PD)), as variables can be defined and
partially fulfill the semantics (Req. 5 (PD)), as preconditions can be modeled, but effects of
process steps cannot.
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Figure 5. The Example Workflow Represented as DPN.
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CPNs are relatively well established (Req. 2 (PD)) and allow the modeling of data on
tokens. However, there are few tools and no established exchange standard (Req. 3 (PD)).
As in PNs, control flows can be represented by places, transitions, and directed edges,
whereby these can be used to provide additional information and conditions (Req. 1 (PD),
see Figure 6). CPNs are well suited for data integration and semantics (Req. 4 (PD) and
Req. 5 (PD)). Data can be attached to tokens, and these can influence the control flow.
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Disregarded Ship Order

Figure 6. The Example Workflow Represented as CPN.

REA is unsuitable as it does not offer the basic functionality of process representation
(Req. 1 (PD)). Although it can model individual actions and their inputs and outputs, it
cannot represent chains of activities or gates. It was therefore not possible to model the
example process with this PML, which is why an illustration of the REA process is missing.
The other requirements (Req. 2 (PD)–Req. 5 (PD)) are not assessable due to the specifications
of the REA language.

UML-ADs are a specification of UML [88] that focuses on the representation of work-
flows. There, control flows are represented by activities, decision nodes, gates, and directed
control flow edges (Req. 1 (PD), see Figure 7). The AD extension is common (Req. 2 (PD))
due to the widespread use of UML, but unsuitable for exchanging data (Req. 3 (PD)) as
there are no known tools that support automated conversion to another format. It is also
unsuitable for data integration (Req. 4 (PD)) and process semantics (Req. 5 (PD)), as there
are no standard methods for modeling data and effects.

Table 2 shows an overview of the suitability of the PMLs. The comparison shows that
none of the PMLs considered for process modeling in their original form is suitable for
meeting all requirements. The best suitability for the requirements can be determined for
BPMN and CPN. Both allow the entire control flow to be represented (see Req. 1 (PD)).
BPMN stands out because it is a well-established standard (see Req. 2 (PD)) and has a high
level of compatibility for connecting to various systems (see Req. 3 (PD)). CPN, on the other
hand, enables the best integration of data into the process (see Req. 4 (PD)). In contrast to
BPMN, CPN offers some options for modeling the process semantically (see Req. 5 (PD)).
However, even with CPN, this is not sufficient to describe the processes according to the
desired scope in the requirement. This is therefore not enough to be able to carry out the
desired process control. Therefore, an extension of the CPN as well as the BPMN approach
or finding another solution for semantic modeling is necessary in any case. Thus, the
possibilities for semantic modeling provided by CPN do not represent an advantage over
BPMN. On this basis, BPMN can be chosen as the PML for the production processes, for
which a suitable extension must be developed additionally.
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Table 2. Comparison of the Addressed Requirements Regarding Process Discovery (PD) of the Seven
Pre-Filtered PMLs. (✓ = Suitable, ✗ = Unsuitable, (✓) = Integration Possible (Extension/Adaptation
Necessary), ⧸ = Not Assessable.)

PML Req. 1 Req. 2 Req. 3 Req. 4 Req. 5

BPMN ✓ ✓ ✓ (✓) ✗
EPC ✓ (✓) ✗ (✓) ✗
PN ✓ ✓ ✓ ✗ ✗

CPN ✓ (✓) (✓) ✓ (✓)
DPN ✓ ✗ (✓) ✓ (✓)
REA ✗ ⧸ ⧸ ⧸ ⧸

UML AD ✓ ✓ (✓) ✗ ✗

6. Integration of Semantics

As determined in Section 5, none of the existing PMLs completely fulfills the identified
requirements. BPMN is perceived as the most suitable language, in which the possibility of
adding the semantics required for flexible control can be integrated. Previous research [84]
also identifies BPMN as the most promising PML in BPM without the context of process
flexibility for control but also emphasized the need to integrate semantic information. In the
following, the possibility of a BPMN extension (see Section 6.1) as well as the outsourcing
of the semantics (see Section 6.2) are presented and discussed. Afterward, the preferred
solution is justified based on the discussion of the two approaches in Section 6.3.

6.1. Extension of BPMN

The possibility of extending BPMN modeling can be divided into two variants:

(a) Use of Existing Extensions: There are already some extensions of BPMN that enable a
semantic description of the processes [89–91]. Ardito et al. [92] as well as Braun and
Esswein [93] provide an overview of existing approaches that focus on semantics.

(b) Design of New Custom Extension: If the existing extension approaches turn out to be
unsuitable for flexible control, this variant would be an alternative. This would make
it possible to extend the BPMN standard with precisely those elements that process
planning requires.



Processes 2024, 12, 2714 14 of 20

The advantage of the BPMN extension option in both sub-variants is that the complete
description of the services is encapsulated in a single structure. This means that it is not
necessary to reference between different structures, such as BPMN and an AAS, to obtain
all the information for planning and executing processes. A significant disadvantage of this
approach, however, is the loss of compatibility that would result from deviations from the
established BPMN 2.0 standard. On the one hand, the workflow management systems that
are typically used to execute the processes generally do not support a specially designed
extension or even an existing extension. This will result in the systems either no longer
accepting the BPMN models and therefore throwing an error message or not being able to
process the additional information. Furthermore, established tools for modeling BPMN
will generally not support the extended models. In the case of a proprietary extension, it
is impossible that suitable tools exist. It would therefore be necessary to design custom
tools for modeling, which in turn means a significant amount of additional work. Another
disadvantage of this approach is the redundancies that would result from integrating the
semantics in the individual process instances. Many of the processes within an industrial
company share work steps, e.g., a drilling task in a manufacturing workflow. If the
semantics are integrated into the BPMN models, each of these processes would contain the
complete semantic description of this work step.

6.2. Outsourcing of Semantics

Alternatively, the semantics can be separated from the actual BPMN model, and
references to this external structure can be saved in the model instead of mapping the
semantics. For example, the semantics can be stored in a classic ontology so that only the
URIs (Uniform Resource Identifier) are referenced in the process model. Malburg et al. [94]
use such an approach, in which the processes are modeled in BPMN due to the necessary
compatibility with a workflow management system, and the semantics are modeled in
a separate ontology. The advantage of outsourcing the semantics to a separate structure
is that the design of this structure can be based on established standards, such as the
AAS [95] or an ontology [96]. This simplifies modeling and makes it easier to use the
semantic information for other purposes, as a structure based on established standards is
supported by many systems. Another advantage that simplifies modeling is the ability to
use existing ontologies or AAS submodels. For example, ontologies with building blocks
for process descriptions already exist (e.g., OWL-S [97]). The use of existing structures
reduces the effort required for modeling and at the same time has a positive influence on
the compatibility of the model, which is then not only limited to BPMN but also holds for
other representation languages. In addition, knowledge is outsourced to a single source
of truth (cf. [98]), so that all knowledge for a company is collected in one place and is
based on a shared semantic model. An obvious disadvantage of this approach is the need
for a separate structure to fully describe processes semantically. This requires referencing
between different structures to collect all the process information required for planning.
This approach therefore increases the complexity of information access.

6.3. Preferred Solution

As discussed, the semantic integration into the BPMN language has significant disad-
vantages. Separating the semantic information from the actual process model, on the other
hand, has clear benefits and only the drawback of increased complexity of information
access. For this reason, the possibility of outsourcing the semantics can be preferred. While
this should be based on established standards, existing structures such as ontologies or
AAS submodels are to be reused wherever possible.

7. Conclusions and Future Work

In this paper, the flexible control of industrial production processes in the context
of AWM and I4.0 is examined. Thereby, it is investigated what constitutes flexibility
considering industrial process control and what criteria are most important for facilitating
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the use of AWM in an industrial setting. For this purpose, experts from several companies
operating in industrial manufacturing, as well as practice-oriented and renowned research
institutes, were consulted to establish requirements for allowing the flexible control of
these processes. One of the findings is that semantic process models are needed for this
goal. Therefore, further requirements regarding the PML used to create those models are
established. A comprehensive literature review was conducted following the requirement
analysis to identify promising PMLs that have not yet been evaluated for AWM applications
and could enhance production process flexibility. The identified PMLs are systematically
evaluated and compared against the established requirements. As a result, both BPMN
and CPNs emerged as the most suitable candidates, despite their shared limitation in
semantic expressiveness for modeling AI planning outputs. Since the BPMN standard is
much more established through, it is already compatible with many ERP and MES systems
in use. Therefore, BPMN is chosen as the best suited PML. Multiple options are explored
that could be used to solve the problem of defining detailed semantics for BPMN process
models. Therefore, using already existing BPMN extensions or creating a new extension are
considered. However, due to this, resulting in losing most of the compatibility with existing
ERP and MES systems, the option of outsourcing the detailed semantic information to
another data structure and referencing it in the BPMN is investigated and preferred.

Future research will explore how these outsourced semantics can be organized, e.g.,
in an ontology, and referenced in BPMN models. Additionally, it might be examined how
generic semantic models for planning domain knowledge can be integrated with BPMN
models. A proof of concept that enables the automatic generation of planning domains
based on domain ontologies is already presented in previous research [26]. This concept
should be further investigated and combined with semantic BPMN models to facilitate
a full AI planning pipeline for flexible control of production facilities using generic mod-
els applicable to arbitrary domains. Further research can address how planning system
outputs can automatically generate BPMN models representing the production plan. The
time series data generated during plan execution shall be explored as input for analysis
and optimization of control processes [6,99]. Moreover, the modularity identified in the
context of process flexibility (see Req. 1 (PD)) requires further examination. For orches-
tration in a shared environment, such as an edge-cloud continuum [6], this modularity
enables distributed planning. This can be implemented, for example, through hierarchical
planning [100] by creating an abstract plan at the distributed level and concretizing it at the
individual executioners.
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