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Abstract: Connecting participants in heterogenous environments and allowing for seamless interaction is a challenging
task that requires profound knowledge of the system envolved and data exchanged. The knowledge on how
to integrate and use certain systems is usually given in the form of manuals, code documentation or needs to
be derived by the developer by understanding and interpreting source code or data sets. With this work, we
propose an approach to provide this knowledge about data via so called semantic support points, making use
of Semantic Web technologies and appropriate ontologies, in a resource efficient fashion by creating semantic
representations only when and where needed. Instead of just providing semantic meta data to describe actors
in the environment, we make it possible to embed actual data values from data sources like databases and
payloads exchanged between systems into a virtual semantic cloud, allowing for interactions purely on the
semantic data representations and propagating computation results back to the system layer automatically.

1 INTRODUCTION

Every day our world is becoming more and more
complex, systems are growing in size, data is pro-
duced in unprecedented amounts and exchanged in
increasingly smart environments, from smart homes
equipped with devices ready for the internet of things
(Khanna and Kaur, 2020; Nižetić et al., 2020; Lee
and Lee, 2015) to smart cities (Wang et al., 2020; Ja-
fari et al., 2023; Khan et al., 2020) to the vision of
national or even international data spaces. (Halevy
et al., 2006; Franklin et al., 2005; Curry, 2020; Sol-
maz et al., 2022; Zillner et al., 2021)

Maintaining these systems, consisting of often
very heterogenous devices, services and data sources,
some of them decades old from times long be-
fore concepts like interoperability or the Semantic
Web(Lassila et al., 2001) were are thing, poses an
enormous challenge, making it necessary to under-
stand data, transform data to be understood by the re-
cipient and making data discoverable and available in
general.
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This is especially true for complex intelligent sys-
tems, which consist of a range of actors working to-
gether autonomously. For instance, in a smart home,
sensors and control units collaborate to maintain the
resident’s preferred room temperature and lighting.
Similarly, an entire shop floor with machines form-
ing an intricate production line operates in a coor-
dinated manner. However, every participant in even
the most complex system was designed by someone
with a certain intention about the task the participant
is expected to perform, under which conditions, with
certain prerequisites and expected outcomes. Usu-
ally this knowledge is ”encoded” in manuals, software
documentation, code comments or what we would
consider ”common knowledge”, for example the fact
that a thermometer is supposed to measure tempera-
ture.

We aim to bring this implict knowledge contained
by design within the actors themselves to the environ-
ment itself, allowing the participants to emanate this
”knowledge” when and where needed as requested
and to weave somewhat of a volatile, connected fab-
ric of semantics above the actual system layer, as sug-
gested by (Spieldenner, 2023), expressing and encod-
ing expert knowledge concerning the available sys-
tems, the intended interpretation of data values, ca-
pabilities of actors and the possible connection be-



Figure 1: Our vision of semantic support points, spanning a layer of semantics abstracting from the world below.

tween participants with the help of ontologies (Breit-
man et al., 2007) and principles of the Semantic Web.
(Lassila et al., 2001)

With such a representation at hand, we would al-
low any system to benefit from concepts like semantic
communication (Lan et al., 2021; Qin et al., 2021), se-
mantic interoperability (Heiler, 1995) as well as rea-
soning and semantic queries.

In this paper we present a method to bridge the gap
between a world consisting of legacy data sources,
devices and services without any semantic informa-
tion attached and the aforementioned semantic data
fabric, using semantic support points: federated, light
weight, runtime configurable and non-intrusive micro
services tailored to each individual participant.

Each of these micro services have access to indi-
vidual distributed data transformation definition files,
creating a semantic representation of individual or ag-
gregated data values at runtime on request as well
as data selection and transformation on the seman-
tic level for transformation back to non-semantic data
representations like JSON.

Pairs of support points allow for bidirectional
communication between what we consider the system
layer, i.e. the collection of participants without any
semantic information attached, and arbitrary actors
on the semantic layer, interacting directly and only
with knowledge graphs provided by the semantic sup-
port points. The knowledge graphs will be derived
from non-semantic data emitted from non-semantic
interfaces or data sources, and enriched with hu-
man written expert knowledge by providing transform
rules between non-semantic data formats to RDF, and
selection and transform rules to extract data from
knowledge graphs and create precisely defined JSON
objects accordingly.

This approach enables concepts like semantic in-
teroperability, semantic queries and reasoning on
knowledge graphs in any environment, even if it was
intially designed without any attempt to provide se-
mantic capabilities.

As a proof of concept, we demonstrate the pro-
posed approach by applying it to a real life exam-
ple of an automotive production line, using semantic
support points to extract information from heteroge-
nous data sources, transforming it to semantic data

and feeding it to a multi agent system, using the se-
mantic nature of the mapped data values for deriving
optimized production plans by using a reasoning en-
gine. The results of the agent frameworks’ plan opti-
mization are then propagated back to a range of sys-
tems via non-semantic input tailored specifically to
each participant’s interface and data model.

The paper is structured as follows:
An overview over the relevant background and

related approaches aiming to realize a concept of a
semantic data integration is given in section 2. In
section 3, we introduce our own concept of seman-
tic support points, minimal service implementations
allowing to access transform rules based on seman-
tic concepts about systems and data sources to gen-
erate knowledge graphs including knowledge about
the system interfaces themselves as well as the data
exchanged. Section 4 demonstrates how to put the
concept into practical use by using semantic support
points to enhance a system representing an automo-
tive production line by adding a semantic multi agent
system, using the semantic representation of actors on
the system level and the data they provide to optimize
production plans with the help of semantic reasoning.
The results of the exemplary realization and their rele-
vance as proof of concept are summarized in 5 before
we finally conclude in section 6, discuss open ques-
tions and provide an outlook on possible future work.

2 RELATED WORK

The idea of creating a semantic abstraction layer on
top of an existing architecture involves a wide range
of research domains and technologies. We will make
use of semantic web concepts to describe data values
and system interfaces, take some inspiration from am-
bient intelligent systems and employ multi agent sys-
tems to interact autonomously with the environment.

In the following, we provide background informa-
tion to these topics and conclude with a brief overview
over existing semantic layer approaches.



@prefix ex : <h t t p : / / www. example . o rg /> .
@prefix r d f s : <h t t p : / / www. w3 . org

/ 2 0 0 0 / 0 1 / r d f −schema#> .

<ex : p l a c e h o l d e r > a < r d f s : Resource >;
< r d f s : l a b e l > ” Example ” .

Figure 2: Example for a very simple RDF graph in turtle
syntax.

2.1 RDF, OWL and the Semantic Web

In order to include expert knowledge directly into
our semantic layer, we will make use of semantic
web (Lassila et al., 2001) technologies, namely RDF
graphs (Manola et al., 2004) as data format, mak-
ing use of OWL ontologies (Breitman et al., 2007;
McGuinness et al., 2004) to define the concepts and
relations relevant in a given environment, both well
established W3C standards.

RDF allows us to make statements about things
in the world in terms of triples, consisting of a sub-
ject, predicate and object. The place of the subject
position in such a triple is taken by a resource with a
unique resource identifier (URI). This resource does
not only represent an entity in the abstract, digital
world, but can directly relate to a physical thing in
the real world, providing an address where to access
information about this entity via the URI.

A RDF triple on its own does not necessarily ex-
press any knowledge yet and can be not much more
than arbitrary strings, providing no additional valu-
able information aside from existing links between
resources. Using appropriate ontologies by including
their respective namespaces and asserting resources
in our RDF graph to be members of classes defined
there, we can include these semantics, modelled by
domain experts, into our knowledge graph, and with
that to interfaces and data values of a participant in
our system. In order to define these ontologies, we
make use of the Web Ontology Language (OWL), al-
lowing us to define concepts like sub class relation-
ships, class unions, exclusions, properties and so on.

2.2 Applications of the Semantic Web
Idea

Thinking about systems consisting of actors with each
actor provided with the capability to express knowl-
edge about itself, making it in some sense intelligent,
brings the idea of Ambient intelligence to mind, as
Weber et al described it as ”the vision of a future
filled with smart and interacting everyday objects of-
fers a whole range of fascinating possibilities” (We-
ber et al., 2005; Chung et al., 2020), or Dunne et al.

put it in a recent survey concerning the current state
of ambient intelligence research: ”AmI can be syn-
onymous with terms such as smart homes, smart en-
vironments, and intelligent environments. It is an um-
brella term for a set of technologies that are embed-
ded into the physical surroundings — seamlessly — to
create an invisible user interface augmented with AI”
(Dunne et al., 2021).

Furthermore, encoding actual expert knowledge
within the ambient intelligent environment by putting
into effect principles of the semantic web is a widely
regarded as worthwhile approach (Santofimia et al.,
2011; Razzak et al., 2013; Ngankam et al., 2022;
Padilla-Cuevas et al., 2021).

This gives rise to the need for flexibly maintain-
able, quick to set up and extend, systems, allowing
for a seamless integration of both knowledge as such
as well as actors to work on that knowledge.

While the semantic, ontology side of view is ex-
amined in detail, providing rather a theoretical con-
cept of knowledge encoding, the practical application
of these concepts to existing systems is often lacking.

Concepts like the Semantic Web of Things (Ruta
et al., 2012) aim to bridge the gap between semanti-
cally annotated data on the one hand and a real system
world on the other hand by introducing the idea of in-
cluding knowledge about every participant via per de-
vice knowledge base generation, united in what Rute
et al. refer to as ”ubiquitous knowledge base”. The
most practical approach we are aware of to actually
putting the idea of the semantic web of things into ac-
tion was proposed by Antoniazzi et al. (Antoniazzi
and Viola, 2019)

Building on the W3C vision1 of the Web of Things
(Zeng et al., 2011), Charpenay investigated methods
to semantically describe web things (Charpenay et al.,
2016) and actual semantic data integration. (Charpe-
nay et al., 2018). Semantic data integration is realized
by an automatic transform step to JSON-LD, based on
the keys of the original JSON object and the ontology
to be used for annotation.

While this again shows the interest in and the need
for semantic annotation not only on a device interface
meta data level, but actual semantic data integration,
for our vision this approach is still too limited in two
regards: first, the focus on W3C WoT poses a restric-
tion when it comes to system representation as the as-
sumption that participants can be expressed in terms
of sensors, actions and so on does not necessarily hold
in every case. Furthermore, the key based JSON to
JSON-LD approach does not provide the level of free-
dom we would like to realize when it comes to includ-
ing actual human expert knowledge into the semantic

1https://www.w3.org/WoT/



representation generated.
Vdovjak et al presented their vision of a seman-

tic layer in (Vdovjak and Houben, 2002), however in
our vision of enriching a system with semantic infor-
mation, we aim for giving the user, in our case sys-
tem maintainers and developers, more control over
expressing their intentions, making the construction
of the layer as such a more interactive process.

Lu and Ashgar suggested a semantic communi-
cation layer for cyber physical systems (Lu and As-
ghar, 2020), proposing an architecture consisting of
a ”physical layer” representing the actual physical
things, a ”cyber layer” sensing the environment of a
thing and planning future behavior, propagating mes-
sages through a semantic layer to enrich it wiht se-
mantic information and finally transmit it through a
communication layer to other cyber physical systems.
While this work emphasizes the importance of con-
sidering semantic data layers in future applications,
the approach focusses more on a centralized commu-
nication platform design and secure recommendation,
rather than providing an actual permanently present
knowledge based representation of a world possibly
consisting of more than just cyber physical systems.

Entirely abstracting from any specific data for-
mats, ontologies, middlewares or other implementa-
tions, Spieldenner described the idea of a semantic
medium, a virtual, semantic reflection of a collection
of systems, enhancing the options of multi agent sys-
tems to act within the system by exploiting the seman-
tic information available, and making actual changes
in the ”real world” by directly linking outcomes in
the semantic world to actual actions in the real world.
(Spieldenner, 2023)

However, to the best of our knowledge, until to-
day there still is a lack of actual implementations al-
lowing actors to interact on the semantic level, exploit
knowledge derivation and reasoning capabilities or al-
low for actual data exchange down to the system level
or dynamic embedding of actual data values into the
ubiquitous knowledge graph.

3 THE SEMANTIC SUPPORT
POINT CONCEPT

We want the semantic support points to enable seman-
tic integration and data exchange with the following
properties:

Distributed. Rather than one monolithic middleware
handling all data transform and transmission on
one platform, we aim to provide semantic support
points on top of the system layer, acting like a

source of semantic data to be discover- and queri-
able for participants acting on the semantic level.

Decoupled. Two separate semantic support points
should always be decoupled from each other, in
the sense that losing access to one support point
does not influence the sanity of the other. Each
support point should always be able to perform
on its own, containing all necessary data to add
its specific semantic information to the abstraction
layer.

Non-Invasive. Adding semantic information to an
existing system via an abstraction layer should be
seen as an optional data offer for actors aiming for
exploiting available semantic information, e.g. for
reasoning to generate new knowledge, achieving
interoperability by working on semantic interface
abstractions or to have access of semantic data
querying capabilities. To this end, semantic ac-
cess points should be realized in such a way that
they provide interfaces that existing systems are
able to use (e.g. HTTP endpoints, event streams,
message queues etc ...)

Non-Persisting. No state and no data should be
stored in a specific support point. All data trans-
formation and access should happen on demand,
while necessary data transform rules are provided
as necessary via transform rule injection routes
into each semantic support point.

Domain Independent. The semantic support point
implementation itself should be minimal and in-
dependent. All (semantic) information needed
to describe the abstracted interface or data point
should be provided via external sources. Domain
independence along with the non-invasive, non-
persisting and non-invasive properties ensure that
the concept of semantic support points can be ap-
plied to any environment, in any domain, to an
arbitrary extent, without the necessity of host-
ing or configuring a pre-implemented middleware
beyond providing appropriate semantic transform
rules to the semantic support points.

Any semantic support point implementation
should be kept as minimal as possible, providing only
the most basic, same features per support point. First
of all, connection components that allow for data flow
into the component as well as out of it. This dataflow
is routed through a transform processing step, with
transform rules provided via an external injection
point. Receiving transform rules from outside sources
ensures distributed and non-persisting properties of
the support point, as no data is stored within any sup-
port point at any time and can be routed as needed.
Further, it ensures the domain independence, as the



Figure 3: High level overview of the semantic support point concept.

domain solely depends on the transformation route,
not on the support point implementation.

The connection point can implement any commu-
nication protocol necessary to connect the systems on
the system layer it provides semantic support for as
needed, be it HTTP, event driven systems, message
buses or whatever else might exist out there.

This is true for both transformation directions. In
case of a support point generating RDF from non-
RDF sources, the outgoing connection component
must provide interfaces for any actors that want to in-
teract with it on a semantic manner. The semantic
layer as such is non-persisting and provides data only
as needed.

See figure 3 for a schematic overview of the se-
mantic support point concept. Data is emitted in se-
mantic format, interpretable as knowledge graph, to
be provided to an actor intending to process seman-
tically annotated data. This data processing may in-
clude operations like reasoning, combining informa-
tion from several knowledge graphs, or linking con-
cepts from a knowledge graph emitted by a seman-
tic support point to a larger ontology (red knowledge
graph in the diagram).

In order to propagate results of computations on
the semantic level back to the system layer, again a

transform rule is used that may contain additional in-
formation on how to query the dataset provided as
result of the actor’s processes. The sub knowledge
graph resulting from this querying step is then routed
back through a support point and transformed to a
data object according to the transformation rules pro-
vided via the injection route.

Notice that transformation rules, as they are writ-
ten in RDF, can be understood as part of the virtual
semantic layer and as such can provide additional in-
formation for actors acting on the semantic level, e.g.
for service discovery and composition by exploiting
information about the handling of certain data values
contained in the transform file knowledge graph.

This concept of semantic support points fulfills the
intended properties listed above: it is distributed in
the sense that the minimal support point implemen-
tations can be hosted independent from each other
where needed and where possible, decoupled in the
sense that one support point crashing does not affect
the runtime of any other support point, or any avail-
able transformation rules, non-invasive in the sense
that existing interfaces do not need to be changed
but can connect to support points to send and receive
data as-is, non-persisting as no knowledge graphs that
are results of semantic transformation are stored, and



as actors that interact with the semantic layer don’t
work on a persisted knowledge graph directly, but
via the connection components of semantic support
points and domain independent in the sense that do-
main is defined by the separately provided transfor-
mation rules, not by the support point implementa-
tions themselves.

4 USING SEMANTIC SUPPORT
POINTS: AN EXAMPLE

In order to demonstrate how to combine the capabili-
ties micro transformation service mapping data from
and to RDF to a full abstraction layer we give an ex-
ample making use of a semantic multi agent system.

Each agent maintains an individual view onto the
world in its own knowledge base. This has multiple
benefits compared to trying to render the knowledge
of the entire world continuously and storing it in one
central spot.

First of all it ensures encapsulation between mul-
tiple agents acting potentially simultaneously.

Second the we do not need to store a large amount
of data representing the entire world at once, which
would require not only a large data storage to do so,
but also long computation times to process the queries
to find relevant data. Instead, each agent can decide
when and which data it needs. Imagine it as asking
someone who has knowledge you need to explain it
to you, or as only looking at the pages of a documen-
tation that cover the points of interest for you.

4.1 Mapping Between Structured Data
an RDF

In the following we provide some inspiration on how
to realize the concept of a semantic support point in a
real world application.

For mapping non-semantic data into a RDF
knowledge graph, we entirely rely on freely available
3rd party libraries, while for the mapping back from a
semantic representation to a explicitly specified inter-
face, we propose our own solution.

4.1.1 From Non-Semantic Data Formats RDF

In order to generate RDF graphs from different data
formats, several approaches exist (Hildebrand et al.,
2019; Méndez et al., 2020; Sahoo et al., 2009), how-
ever due to its wide acceptance and the benefit of be-
ing able to manage mapping files in a non-central,
flexible distributed way, we aim for using RML (Di-
mou et al., 2014).

Mapping files written in RDF allow, in our opin-
ion, the best trade off between complexity and the
flexibility for system maintainers or service develop-
ers to freely express their intentions and their interpre-
tation of the role of their system in terms of the gen-
erated RDF graph. Moreover, the possibility to store
mapping files in a federated manner, making it easy
to add mappings for new concepts, updated existing
mappings to reflect changes in the environment and
remove knowledge that is not longer needed at run-
time support the idea of a seamless integration of new
concepts, weaving our linked data fabric quilt patch
by patch without having to interfere with the underly-
ing physical world.

In order to provide RML mapping functionality to
our system, we wrap CARML 2 into a micro service
offering either an HTTP endpoint for direct calls or
capabilities to connect to an event stream. Via what
we call an mapping file injection route mapping files
to be used for mapping the incoming data are received
from a configurable remote endpoint, the resulting
RDF graph can either be forwarded via HTTP to a
pre configured external endpoint or written to an event
based message bus.

4.1.2 From RDF to Explicitly Specified
Non-Semantic Data Formats

In order to access the semantic abstraction layer and
propagating knowledge from there back to specific
systems, we aim to use a similar approach as RML
provides, but in the opposite direction.

While JSON-LD (Sporny et al., 2020) as out of
the box available serialization format seems like an
obvious choice at first glance, it does not provide the
functionality we need. First of all, we are not inter-
ested in just generating a JSON representation from
an entire RDF graph, which would be the case if we
just take the JSON-LD representation of some given
RDF, but we want to be able to select the information
we are interested in. This requires at least enabling
SPARQL queries as a preprocessing step. Also, we
need more control over the structure of the generated
JSON object, the key labels, value types and possible
addition of literals not included in the RDF dataset.

Say we want to generate a simple JSON object like
given in 4 as an example with the goal to propagate a
measured room temperature to some fictional smart
thermostate in order to decide whether the heater
should switch off or continue heating. The measured
room temperature was published by the temperature
sensors to our semantic abstraction layer, however the
information that this value now should be forwarded

2https://github.com/carml/carml



{
"id": "wekbnfi35r",
"targetDevice": "thermostate",
"temperature": 21

}

Figure 4: JSON example including a ”type” not derivable
from the RDF dataset.

to a thermostate is knowledge of the recipient sys-
tem’s developer, not something a third party would
have published as semantic data.

This step of adding additional information in the
process of making the semantically available data use-
ful for the actual physical systems is something that
can not be accomplished by just serializing existing
RDF data to JSON-LD.

JSON schema (Pezoa et al., 2016) is not a feasible
approach as it is cumbersome to describe larger ob-
jects and it lacks proper integration of semantic data.
(Pezoa et al., 2016). Working on and with the seman-
tic abstraction layer is supposed to happen in terms
of expressing interpretations and intentions, instead
of being a purely technical task. Therefore, mapping
rules are provided and applied on a semantic level,
analogously to RML mapping files.

While approaches on how to derive non-semantic
data objects from RDF knowledge graphs are inves-
tigated (Allocca and Gougousis, 2015; Grassi et al.,
2023), for our intentions they lack the possibility to
enforce restrictions on the structure of the generated
JSON or the exact definition of key names to use.

For this reason, we developed POSER3 (Spielden-
ner, 2022) to provide data mapping from RDF graphs
into a JSON object, following the structure given by
transformation rules formulated in terms of a minimal
JSON ontology. Briefly summarized, the intended
outcome is described in terms of a nested hierarchy of
resources representing JSON objects and datatypes,
along with a datatype header defining queries and
subgraph matches to extract them from a given knowl-
edge graph and put them in relation to the JSON struc-
ture defined in terms of the JSON ontology.

These transformation rules can be injected into a
semantic support point, analogously to RML mapping
file in the inverse direction.

RDF data is pushed by or read from an actor on the
semantic level side by the incoming connector com-
ponent, filtered or queried according to the datatype
header, written into a JSON object constructed ac-
cording to the rules in the transformation file and then
provided to systems on the system layer level via the
outgoing connection component.

3https://github.com/spidan/poser

4.2 Integration of a Semantic MAS

As an application example to serve as proof of con-
cept, we show an integration of a semantic multi agent
system into an automotive production system, aggre-
gating data from heterogenous data sources, exploit-
ing the semantic representation by performing rea-
soning operations and deriving optimized production
plans that are again provided to different elements on
the system level.

Examples for agent systems capable of working
on semantic data are the semantic web-based MAS
platform SEAGENT (Dikenelli et al., 2005)intro-
duced in 2005, the system of Sabbatini et al. (Sab-
batini et al., 2022), in which OWL and RDF knowl-
edge graphs are used to train machine learning sys-
tems to realize learning agents in the Semantic Web or
(Ciortea et al., 2018) in which a web-based MAS for
manufacturing is introduced, interacting with Linked-
Data and Web-of-Things environments to develop
new behaviors from the semantic environment. How-
ever, as these systems are often designed with specific
applications in mind tailored for specific applications
and require adaptation to work fully exploit the ben-
efits of semantic data sources, such as deduction of
new facts via reasoning or logic operations on the se-
mantic data set, we decided to use our own semantic
Multi Agent System AJAN (Antakli et al., 2023) .

For additional information on (MAS) and its ca-
pabilities, we’d like to refer you to previous works
where it has been used in various Semantic Web and
non-Semantic Web based environments. For exam-
ple, in an smart living environment in which agents
use the W3C Web of Things (WoT) architecture (see
(Alberternst et al., 2021)), to optimize the production
of a virtual factory floor using an AJAN-based MAS
(see (Spieldenner and Antakli, 2022)), to coordinate
language courses (see (Antakli et al., 2023)), or to
control simulated human-robot collaboration scenar-
ios (see (Antakli et al., 2019)).

4.3 Application Scenario

The EU-funded AIToC4 project developed an assis-
tance system (see Figure 5) for on-site workers and
production planners in the automotive sector. A key
component is the Operation Reasoner (see Figure 6),
an agent-based planner using the MAS-framework
AJAN5 6 to generate assembly plans for visualization

4EU-Project AIToC: aitoc.eu/
5AJAN on GitHub: github.com/aantakli/AJAN-service
6Operation Reasoner AJAN-model (ZIP-

File) including RML and POSER map-
ping descriptions: github.com/aantakli/AJAN-



Figure 5: Assistance Pipeline.

Figure 6: Operation Reasoner.

and verification.
The Operation Reasoner is a Web Service combin-

ing general process rules and specific product annota-
tions to derive required assembly plans using the An-
swer Set Programming (ASP)(Vladimir, 2008) solver
clingo7. Therefore, the Operation Reasoner uses pre-
viously defined product descriptions as an input for
clingo and derives possible assembly plans from re-
sulting stable models. The product descriptions are
stored in the project data marketplace, the first point
of exchange for the various services of the differ-
ent project partners to exchange data with each other.
These descriptions including annotated 3D models of

packages/blob/main/packages/Operation Reasoner.ajan
7ASP Solver clingo: https://potassco.org/clingo/

assembly parts (originated from the Annotation ed-
itor) and process definitions and constraints (orig-
inated from the Knowledge editor), are defined in
JSON respectively AutomationML (XML), RDF and
ASP. For the use within the Operation Reasoner, prod-
uct descriptions are translated into RDF, the data for-
mat internally used by our MAS, using RML.

The fact that the required aggregated and ho-
mogenized planning problem is contained in the
agent’s knowledge enables the AJAN-based ASP-
reasoning(Antakli et al., 2021) of instructions in the
next step. In order to make the generated assem-
bly plans available to other components and services
within the project architecture, they must be trans-
lated back into JSON, generally used by services from
the project service market place, and stored in the data
marketplace. The Operation Reasoner uses the ap-
proach presented in 4.1.2 to translate the RDF-based
data into the target data format. Based on the resulting
possible plans, other services such as a motion syn-
htesis based Simulation can intuitively display such
assembly plans in a 3D simulated factory or via the
Instruction Viewer to a real worker on site for assis-
tance.

As an example of picking up data from the system
layer, the processing of the semantic layer and the for-
warding of the results to the system layer, we delve
a bit deeper in showing the first step in the planning
process of an Operation Reasoner agent: the reading
of heterogeneous product description information.

In Figure 7a, the BT to fulfill this task of collect-
ing data from the real world of an Operation Reasoner
agent in charge of, is presented. First, the agent re-
ceives an instruction (purple colored BT node) to gen-
erate optimal assembly plans, by pointing it to mul-
tiple data points from the system layer, which con-
sists the needed information to perform the reason-
ing and planning task. The querying of this infor-
mation is done by the pink colored BT nodes, where
the transform rule injection routes, as defined in 4.1,
are given via the node property fields: Data Mapping,
Endpoint Mapping and Response Mapping. This is
done in form of endpoints to read the respective map-
ping data from, as shown in Figure 7b. Via a SPARQL
Construct query, the information relevant for an API
call on system level, is collected from the agent’s
knowledge base, transformed to a proper JSON ob-
ject matching the recipients API and performed as an
HTTP POST request.

In order to ensure the correct data is provided to
the JSON API, during the transformation step we pro-
vide a definition of datatypes we are interested in (see
figure 8). An example of the JSON object to be gen-
erated is given in figure 9. For the sake of brevity, we



(a) Behavior Tree executing collecting data for plan gener-
ation and data forwarding.

(b) Properties for the Behavior Tree given above.

Figure 7: Behavior tree and its execution properties.

did not include the full API transform definition used
by the transform engine. The response of this request
is again received by the agent and mapped back to
RDF via the RML service, allowing the actual assem-
bly planning task in the next step.

5 RESULTS

By realizing the concept of semantic support points,
we were able to efficiently abstract from data pro-
vided by heterogenous systems, providing a seman-
tic representation and relations inbetween data to be
consumed by and worked on a semantic multi agent
system. For example, worker instructions were gen-
erated by collecting data from different sources, like
properties of tools and parts from 3D models, pro-
cess descriptions in ASP and general properties of

: I n p u t D a t a T y p e C o n t e n t {
j s o n : E n t r y P o i n t a a r : Message ;

a r : a c t i o n a r : Ac t i o n ;
a r : p r o j e c t a r : P r o j e c t ;
a r : f i l e a r : F i l e ;
a r : e m a i l a r : EMail ;
a r : password a r : Password .

a r : A c t i o n a r : v a l u e i o t s : Number .
a r : P r o j e c t a r : v a l u e i o t s : Number .
a r : F i l e a r : v a l u e i o t s : Number .
a r : EMail a r : v a l u e i o t s : Number .
a r : Password a r : v a l u e i o t s : Number .

}

Figure 8: Data types to be used to determine the specific
values in a generated JSON object.

{
"action": "getFileAsJSON",
"project": 17,
"file": "context_information.lp",
"email": "X.X@example.com",
"password": "asfkalnknakfsnfjb55"

}

Figure 9: Example of JSON object to be generated.

the environment given in JSON, transformed to RDF,
aggregated, used in a planning and reasoning engine
and finally the results being returned to different sys-
tems like animation synthesis or plan generation UI in
JSON (see figure 10 for an UI example).

Notice how the interplay between RML and JSON
mappings, along with the concept and importance of
the on-demand semantic layer, becomes especially
apparent here. We cannot rely on the information
gathered in the first step being available in one spe-
cific data format. Instead, it is provided by a plethora
of heterogeneous sources: some in JSON or XML for-
mat, some consisting of ASP rules, and others directly
providing RDF data. This diversity makes a certain
level of interoperability necessary.

This is, in this case, achieved by exploiting the
semantic interoperability capabilities of the semantic
layer, making the data available in an aligned format
as soon as the agent requests it.

Further more, in order to perform the reasoning
tasks for plan generation, we are required to have data
available in RDF format, with the results being pro-
vided in RDF again. This constitutes processes on a
purely semantic level with no direct relation to inter-
faces in the physical world, making a concise, config-
urable and query enriched transform step from RDF
to JSON necessary.



Figure 10: UI to model instructions for workers, pre-
configured by results of reasoning on agent level converted
back to JSON.

This demonstrates the idea behind and the power
of the semantic layer by moving beyond simple inter-
operable data exchange in an IoT environment, which
is already a complex task. By combining raw data
with expert knowledge about data interpretation (the
data transform step), we fully exploit the possibilities
of this approach. Additionally, we incorporate actual
intention.

6 CONCLUSION AND
DISCUSSION

We have introduced the concept of federated seman-
tic support points to abstract from interfaces in a het-
erogenous, non-semantic environment, allowing for a
unified view on the underlying system world. Min-
imal stateless semantic transformation services that
represent these support points are used to generate
a RDF graph from non-RDF data, using established
mapping technologies, and again propagating the re-
sults of actions performed on the data fabric back to
the system layer by querying and transforming data
according to semantic descriptions of both structure
and data types of the consuming interfaces.

The data fabric created by the semantic support
points is non-persistent, generated on demand by ac-
tors wishing to consuming the semantic data repre-
sentation on request. Data is encoded on the fly from
data emitted by the system layer and results are imme-
diately propagated back to the system layer to be con-
sumed by recipients. Transformation rules are stored
and managed seperately form actual semantic support
point implementations, making our approach highly

flexible and domain independent.
In contrast to semantic interoperability ap-

proaches common in the dataspace or semantic web
of things world, not only the participants and entire
data objects are semantically described in terms of
static meta data, but each data value itself can be em-
bedded into the semantic fabric at runtime.

As a proof of concept we demonstrated on-
demand data aggregation and using a multi agent sys-
tem capable of working on semantic linked data to de-
rive instruction suggestions for workers in an automo-
tive factory. Based on data like product descriptions,
3D models, pre-defined processes and constraints we
generated a unified semantic view enriched with ex-
pert knowledge to derive optimized production plans
that could not only be immediately consumed and vir-
tually be tested by a semantic multi agent system, but
also rendered to a human readable representation for
actual factory workers.

For this proof of concept, we decided to follow a
plug in like approach, extending the agent system it-
self with the capabilities to generate a semantic view
on the world and propagate changes made by the
agents back to the system layer. However, extracting
the actual support point functionality to fully cover
the concept presented in section 3 would only require
minor code changes and hosting of the support points
as separate services. In our case it was more efficient
to realize a plugin approach, as the MAS was the only
actor working on the semantic layer. We consider this
as another proof of flexibility of the approach when it
comes to actual implementation details.

We are highly interested in exploring the possibil-
ities provided by mapping files that are already writ-
ten in RDF and with that contain semantic informa-
tion and expert knowledge when it comes to service
discovery and composition. In addition with, possi-
bly distributed, service registries containing meta data
based information about available services, these se-
mantic instructions given in the mapping files, seem
like a promising way to generate another semantic
meta data layer on top of the actual linked data fab-
ric, allowing for knowledge based service discovery
and composition, strengthening the idea of an inten-
tion driven data exchange even more, moving towards
a system providing a certain level of pragmatic inter-
operability (Neiva et al., 2016)

Further work is necessary in terms of runtime be-
havior and resources needed for time or resource crit-
ical applications. To our anecdotal findings, the map-
ping instructions provided are the main impact on
resources needed in terms of triple stores while re-
sources needed to handle the semantic representations
generated at runtime are proportional to the size of the



non-semantic data payloads emitted and consumed on
system level. As this dynamic data is discarded as
soon as a certain process ends, the data fabric itself
only creates negligible overhead.

However, for our use cases these considerations
were not relevant at this point and will be subject to
future work.
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