
ArgueMapper Assistant: Interactive Argument
Mining Using Generative Language Models

Mirko Lenz1,2[0000−0002−7720−0436] and Ralph Bergmann1,2[0000−0002−5515−7158]

1 Trier University, Universitätsring 15, 54296 Trier, Germany
info@mirko-lenz.de, bergmann@uni-trier.de

2 German Research Center for Artificial Intelligence (DFKI)
Branch Trier University, Behringstraße 21, 54296 Trier, Germany

{mirko.lenz,ralph.bergmann}@dfki.de

Abstract. Structured arguments are a valuable resource for analyzing
and understanding complex topics. However, manual annotation is time-
consuming and often not feasible for large datasets, and automated ap-
proaches are less accurate. To address this issue, we propose an inter-
active argument mining system that takes advantage of generative lan-
guage models to support humans in the creation of argument graphs. We
present the open source ArgueMapper Assistant featuring two prompt-
ing strategies and evaluate it on a real-world news dataset. The resulting
corpus containing 88 argument graphs is publicly available as well. With
generative models, the annotation time is reduced by about 20% while
the number of errors is slightly increased (mostly due to missing argu-
mentative units and wrong relation types). A survey provides insights
into the usefulness and reliability of the assistant features and shows
that participants prefer to use the assistant in the future.

Keywords: Argument Mining · Argument Graphs · Large Language
Models · Interactive Systems · Data Annotation.

1 Introduction

Argumentation is available in many forms and plays a crucial role in various
domains such as law, politics, and science. A common way to represent it is
using natural language texts—for instance, in the form of news articles or sci-
entific papers. Although these texts contain valuable information that can be
understood by humans, they are not directly usable by machines. To bridge
this gap, Argument Mining (AM) [16] aims to extract structured argumentative
elements from natural language text. This may be done manually by trained
annotators—leading to high-quality structures—or automatically—which is of-
ten less accurate. Consequently, a major challenge in AM is the time-consuming
nature of manual annotation, leading to the lack of high-quality datasets for
many topics/domains. Research in this field typically focuses on improving au-
tomated approaches or interfaces for manual annotation, but to the best of our
knowledge, no work has been done to bring together both worlds.



Fig. 1: Screenshot of the interactive mining system with a graph excerpt from
the News Articles dataset [8]. The assistant button (lightning bolt) contains the
actions and the inspector (right sidebar) the explanations.

In this paper, our aim is to bridge this gap through an interactive argu-
ment mining system that assists human annotators in the process of converting
plain text arguments to a structured graph-based representation. With recent
advances in Natural Language Processing (NLP) [2], AM has seen a shift toward
the use of transformer-based language models—either in the form of end-to-end
models [15] or as part of a pipeline [18]. Although these supervised approaches
reach State of the Art (SOTA) performance, large amounts of labeled data is
needed for training—which is scarce for certain domains—and their predictions
cannot be adjusted on the fly. In contrast, Large Language Models (LLMs) work
in an unsupervised manner and can easily be adjusted to the user’s needs through
prompting. We leverage this capability to create an interactive system that allows
human annotators to hand over parts of the annotation process to the model, re-
ducing the manual effort. Consequently, we seek to answer the following research
question: How to decrease the manual annotation time of argument graphs while
maintaining the output quality through LLM-based assistance? We make the fol-
lowing contributions to answer this question: (i) Two prompting strategies to
convert plain text arguments to graphs via LLMs, (ii) a ready-to-use and open–
source application enabling interactive argument mining (see Figure 1), (iii) a
qualitative evaluation of the system on a real-world news dataset, and (iv) a
publicly available corpus containing 88 argument graphs for future research.

2 Foundations

In the following section, we first provide an overview of Computational Argu-
mentation (CA) with a focus on AM, followed by a brief introduction to LLMs.



Computational Argumentation A structured argument typically consists of one
claim and a set of premises that either support or attack the claim [22]. Being the
smallest units of argumentation, they are also commonly called Argumentative
Discourse Units (ADUs) [20]. Claims may also be used as premises in other argu-
ments, enabling the creation of complex argumentative structures. Such chains
of arguments often have one central conclusion, the major claim. A common way
to represent these structures is to use a directed graph G = (V,E) with the set
of nodes V and the set of edges E. The Argument Interchange Format (AIF) [7]
defines two types of nodes: (i) Information or atom nodes being the ADUs, and
(ii) scheme nodes being the relationships between the ADUs. An example of this
format is shown in the screenshot of our annotation tool in Figure 1. Multiple ar-
gumentation microstructures have been proposed to represent the relationships
between ADUs in a graph, such as serial, linked, and convergent arguments [23].
This distinction has been subject to discussion in the literature—for instance,
Goddu [14] argues that there “is no good reason to bother making the distinction”
between linked and convergent arguments. Consequently, we focus on linked ar-
guments in our work—that is, a scheme node may only have one premise and one
conclusion. AM is concerned with extracting these argumentative elements from
natural language text. The term AM comprises a variety of tasks, including (but
not limited to) ADU extraction, claim/premise classification, and relation pre-
diction [5]. They may be combined to form a pipeline, allowing the extraction of
complete argumentative structures, including argument graphs [19, 18]. We refer
the interested reader to the study conducted by Lawrence and Reed [16] for a
complete overview of the available approaches.

Large Language Models Arguments are expressed mainly in natural language,
which means that there is a strong connection between AM and NLP. Provid-
ing a proper introduction to the topic is beyond the scope of this paper, but
we briefly introduce the concept of LLMs. They are based on the transformer
architecture and its attention mechanism, allowing the model to consider the en-
tire input sequence at once [24]. OpenAI’s Generative Pre-trained Transformer
(GPT) family of LLMs popularized by ChatGPT uses a decoder-only variant
that predicts the next token given only the previous sequence as input. Instead
of fine-tuning the model for a specific task, prompting can be used to guide the
model towards the desired output via few-shot learning (i.e., giving examples
of user input and the desired model output) or even zero-shot learning (i.e.,
providing only user input without output samples) [4].

3 Related Work

To the best of our knowledge, there is no prior work combining manual and
automated approaches to AM. In Section 5, we analyze several existing software
tools to manually create argument graphs, while in this section we focus on the
use of LLMs in text annotation and AM tasks.



Text Annotation with LLMs ChatGPT has been used in various annotation tasks
in the field of NLP. For stance and topic detection, it has been found to outper-
form humans by 25% while being about 30 times cheaper than crowd-sourced
labor [13]. In another study, the model has been used to reproduce human labels
for sentiment analysis and stance detection tasks, achieving an average accuracy
of 0.6 [26]. In addition, ChatGPT has been proposed as an annotation metric for
Natural Language Generation (NLG) tasks, showing competitive performance
with human ratings [25].

Argument Mining with LLMs AM tasks have also been investigated with LLMs.
When applied for common tasks such as claim detection and summarization,
ChatGPT achieved average accuracy values of 0.6 for binary classification and 0.5
for multi-class classification with performance varying depending on the number
of shots used for prompting [6]. Another study investigated two prompt settings
for AM tasks with GPT-4, achieving F metrics of up to 0.7 for ADU detection
and 0.5 for relation detection [10]. Compared to a specialized model, GPT-4 was
found to be competitive in predicting discourse markers in argumentative texts,
even exceeding the specialized model in one metric [21]. Unlike these results,
small domain-specific models have been found to outperform GPT-4 for ADU
classification in the legal domain—possibly due to its structural complexity [1].
AM has also been treated as an end-to-end text generation task where ADUs
and their relations are generated in a single step [9, 15].

4 Mining Argument Graphs using Prompts

Through our literature review in the previous section, we know that LLMs like
ChatGPT are capable of performing AM tasks with a certain degree of accuracy,
sometimes even outperforming specialized models. Anticipating the use of our
strategy in an interactive setting, we developed (i) an end-to-end approach and
(ii) a pipeline-based one. While the former makes the annotation rather straight-
forward by returning a complete graph, the latter allows the annotator to fix
wrong predictions and/or add missing elements. The pipeline has the additional
advantage of letting the annotator decide which subtasks to perform—for in-
stance, they may choose to identify ADUs manually and let the model predict
the relations afterwards. In both scenarios, the model is asked for its reasoning
in the form of a textual explanation, allowing the annotator to better understand
the model’s decision when reviewing the results. To ensure reproducibility, we
provide the prompt template along with each task.

Prompting Strategy A critical aspect in designing the prompts is the balance
between zero-shot and few-shot learning. The creation of argument graphs is
a rather subjective task where multiple different solutions may be equally cor-
rect [12], so few-shot learning may lead to a situation where the model leans
towards a different annotation style than the human. To mitigate the issue of
unpredictable output when using zero-shot learning, we use function calling as



offered by OpenAI’s recent ChatGPT models. The core idea is to express a func-
tion and its parameters as a JSON-Schema object, pass this information to a
model specifically trained, and execute some function locally using the gener-
ated arguments. JSON-Schema allows the definition of complex structures: for
each parameter, it may include additional information such as a description,
expected data types, and constraints. As its name suggests, this feature was
originally built to call functions, but we found it to work equally well to extract
structured data such as ADUs from a free-form text.

Implementation In addition to the interactive system, we provide a Python
implementation3 of the pipeline-based approach to allow batch processing of
large datasets. It contains a server component to easily integrate the LLM-based
mining to existing systems and an example client to demonstrate its usage.

4.1 Pipeline-Based Graph Generation

Our approach is loosely based on the pipeline described by Lenz et al. [18], con-
sisting of four main steps: (i) Argument extraction, (ii) relation type classifica-
tion, (iii) major claim detection, and (iv) graph construction. When developing
our interactive system, we found steps (ii) and (iv) to be closely related and
therefore merged them into a single step to simplify the process. Step (iii) could
also be merged into this step (i.e., by inferring the most important claim from
the predicted relations), but we decided to keep it separate to allow for more
flexibility and control. The three remaining steps are described below.

ADU Detection Given the original text of the resource to be annotated, the
model is prompted to extract all ADUs to be used as atom nodes. We do not
differentiate between claims and premises here since a claim may also play a
double role as a premise in another argument in graphs. The LLM is instructed
to extract only ADUs and not modify the text in the process—otherwise, it
will not be possible to locate ADUs in the original text. For the time being,
we ignore any kind of reconstruction—for instance, replacing pronouns with the
correct entities—and leave this to the annotator.

Prompt: The user will provide a long text that contains a set of arguments. Your task is to
identify all argumentative discourse units (ADUs) in the text. They will subsequently be
used to construct a graph. The user will have the chance to correct the graph, so DO NOT
change any text during this step. You shall only EXTRACT the ADUs from the text.

Major Claim Identification Given the ADUs extracted from the original text
and their IDs, the model is prompted to identify the major claim among them.
In case a non-existent ID is returned by the LLM, the response is discarded, and
the annotator will either need to retry or manually select the major claim. In
this step, we assume that the major claim is part of the ADUs sent to the model.
If it is not part of the original text—and thus not automatically extracted—the
annotator may choose to add it manually before executing this step.
3 https://github.com/recap-utr/arg-services-llm



Prompt: The user will provide a list of argumentative discourse units (ADUs). Your task
is to identify the major claim / conclusion of the argument. This node will subsequently
be used as the root node of an argument graph. Please provide the ID of the ADU that
you consider to be the major claim.

Relation Prediction Given the extracted ADUs and the major claim, the model
is prompted to predict relations and their type (i.e., support or attack) between
them. Each relation is used as a scheme node in the graph with edges connecting
it to the source and target ADUs. As in the previous step, the LLM shall return
the IDs of the source and target ADUs. If one of them is not part of the ADU set,
the predicted relation is discarded. To simplify the graph construction process,
we treat the major claim as the root node of the graph—an assumption that has
been made in previous work as well [18].

Prompt: The user will provide a list of argumentative discourse units (ADUs) and the ID
of the major claim. Your task is to predict sensible relations in the form of support/attack
between them. You shall produce a valid argument graph with the major claim being the
root node. You shall create a hierarchical graph with the major claim being the root node
(i.e., it should have no outgoing relations, only incoming ones). Flat graphs (i.e., all ADUs
directly connected to the major claim directly) are discouraged. There should be no cycles
in the graph and no orphaned ADUs.

4.2 End-to-End Graph Generation

The overall goal of this strategy is to perform all three tasks in a single step
and thus better utilize the large context window of recent LLMs such as GPT-4
Turbo. Bundling them together should make the generation faster due to the
reduced number of requests—we only need one request instead of three. At the
same time, the costs should also be lower, since we do not need to feed the output
of the model back into the system multiple times. As with the pipeline-based
approach, here is the procedure: Given the original text of the resource to be
annotated, the model is prompted to perform all three tasks simultaneously and
return the complete argument graph.

Prompt: The user will provide a long text that contains a set of arguments. Your task
is to generate a complete argument graph containing all ADUs, the major claim, and
the relations between the ADUs. ADUs shall only be EXTRACTED from the text, not
changed. Relations can either be of type support or attack. You shall create a hierarchical
graph with the major claim being the root node (i.e., it should have no outgoing relations,
only incoming ones). Flat graphs (i.e., all ADUs directly connected to the major claim
directly) are discouraged. There should be no cycles in the graph and no orphaned ADUs.

5 Interactive Argument Mining System

With the prompting strategy for the AM tasks in place, we now discuss their in-
tegration into a user-friendly annotation interface. Instead of writing a new tool
from scratch, we decided to build on an existing tool to manually build argument
graphs from a plain text source. When investigating the available options, we
set the following three constraints: (i) The tool should be open-source so that
our extensions can be used by other researchers, (ii) its graph representation
should be compatible with AIF, and (iii) it should be well-maintained to avoid



building on abandoned software. Among options such as Online Visualization
of Arguments (OVA) [3] and MonkeyPuzzle [11], we settled on ArgueMap-
per [17] as the foundation for our AM system. While OVA has a larger user
base and is capable of dealing with dialogical arguments, ArgueMapper was
easier to extend due to its modern technology stack—for instance, it uses React
for state management and TypeScript for type safety. The Argument Buffers
(Arguebuf) [17] format used by ArgueMapper is also compatible with AIF,
allowing easy integration with existing tools and datasets.

The following modifications were made to ArgueMapper: (i) The Plus but-
ton to create new elements is replaced with an Assistant button allowing the
annotator to invoke the four prompts described in Section 4. Clicking on one of
them opens a dialog where the user can add custom instructions to the built-in
prompt (e.g., to specify the ADU segmentation level). (ii) A field for nodes con-
taining the textual explanation generated by the model. (iii) Settings to provide
an API key, select the model (GPT-3.5 Turbo or GPT-4 Turbo), and specify a
custom endpoint. (iv) In case an error occurs during the generation, a bottom
bar with details for the user (since the model output is probabilistic, the an-
notator is encouraged to try it again and/or modify the custom instructions).
All changes have been merged into the upstream project4 under the same MIT
license to ensure that the community can benefit from them.

Like the rest of ArgueMapper, our assistant features do not require running
a backend component on a server—instead, all requests to the LLM are sent
directly from the browser. By setting a custom API endpoint, the assistant
features can be used with any LLM that offers an OpenAI compatible API (e.g.,
using ollama.com). As such, our system is compatible not only with proprietary
ChatGPT, but also with open models such as Llama.

6 User Study

Having presented both our prompting strategy and its integration in ArgueMap-
per, in the following we evaluate the feasibility of LLM assisted AM through
a user study. Returning to our research question formulated in Section 1, there
are two main dimensions that we investigate by formulating two hypotheses:
speed (H1) and quality (H2). While the former can be evaluated using quanti-
tative measures, the latter one is more difficult to assess because of the inherent
subjectivity—two completely different graphs may be of equal quality. We there-
fore combine quantitative and qualitative measures to check H2.
H1 (Annotation Time): When given access to the ArgueMapper assistant,
annotators are faster than not having access to LLM-based generations.
H2 (Annotation Quality): The availability of an LLM assistant does not cause
a decrease in the quality of the resulting argument graphs.

4 https://github.com/recap-utr/arguemapper



6.1 Experimental Setup

The following section highlights the dataset, the annotation procedure, and the
evaluation metrics used in our study. We focus on the pipeline-based approach
described in Section 4.1, leaving the end-to-end approach for future work.

Dataset Selection We refrained from re-annotating an existing argument
graph corpus, since that could lead the annotators to look up the “reference”
solutions and thus biasing the results. Instead, we decided to annotate a new
one from scratch. We settled on the News Articles dataset compiled by [8] and
released under the public domain license CC0 1.0. It consists of 3,824 texts col-
lected between December 2016 and March 2017 from multiple media sources
without a specific focus on certain topics. Due to the broad coverage, annotators
were not required to have prior knowledge about the dataset. The articles dif-
fered greatly w.r.t. the overall length and the dataset exhibited encoding issues
with Chinese characters—we therefore removed all articles from “China Daily”.
To ensure a consistent annotation process covering arguments of comparable
length, we also filtered out articles with fewer than 1000 or more than 5000
characters, leaving us with a total of 2335 candidates for annotation.

Annotation Procedure To perform the annotation, we relied on three male
computer science students who were familiar with CA and had prior experience
in annotating argument graphs using tools such as the aforementioned OVA and
ArgueMapper. They had a regular contract with our institution and received
a salary above the minimum wage. To get them on the same page about this
annotation task, we provided them with guidelines developed by Dumani et al.
[12] for a similar type of dataset. Each student annotated a total of 15 arti-
cles without the LLMs assistant and 15 with it, selected at random from the
preprocessed dataset. Each of them worked with the regular ArgueMapper
application for the first 15 articles and only was given access to the assistant
for the remaining 15. Two of the students were then asked to identify and fix
any errors in the graphs not created by themselves (the articles of the third stu-
dent were randomly split between the other two), meaning that for each article,
two graphs are available in the final corpus. Theoretically, one could compute
the Inter-Annotator Agreement (IAA) between the annotators, but the values
would be meaningless since the annotators fixed each other’s errors instead of
creating distinct graphs. Also, computing IAA values for graphs is challenging
due to potential differences in the graph structure and potential propagation of
errors—for example, if two annotators do not identify the same set of ADUs, the
set of relations that can be compared is different as well.

Evaluation Methodology To assess H1, we measure the time from the start
of the annotation—that is, loading the article into the tool—to the last edit
made to any element of the graph. Furthermore, each annotator recorded the
time needed for the annotations in an effort to verify the scores obtained from



0 2 4 6 8 10 12 14

Manual

Hybrid

(a) Time (min / 1000 characters).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Manual

Hybrid

(b) Errors (per 1000 characters).

ADUs

Major claim

Relations

End-to-end

Explanations

Instructions 1

2

2

2

1

2

3

1

1

1

2

Rating
Not useful
Somewhat useful
Very useful

(c) Usefulness (total votes).

ADUs

Major claim

Relations

End-to-end

Explanations

2

1

3

2

2

3

1

1

Rating
Not reliable
Somewhat reliable
Very reliable

(d) Reliability (total votes).

Fig. 2: Results of the user study, color scheme uses dark shades for favorable and
light shades for unfavorable results.

ArgueMapper. To verify H2, we compare the number of errors identified in
the second phase of the annotation. We already pointed to the subjective na-
ture of the task, so our initial assumption is that the number of errors does
not increase when using the assistant. To further investigate the quality of the
annotations, we conducted a survey to gather the annotators’ feedback on the
assistant features. Among other questions, they were asked to rate usefulness
and reliability of the assistant features on a three-point scale. While the former
tries to estimate whether the features were considered helpful in general, the
latter assesses the trustworthiness of the results—which, given the tendency of
LLMs to confabulate/hallucinate, is a critical aspect. In this context, an example
would be the model predicting ADUs that are not present in the original text.
They should also assess perceived impact of the assistant on speed/quality, the
observed response latency, and the preferred ChatGPT model. Lastly, they could
provide free-form feedback and choose whether they would prefer using the assis-
tant in the future or not. After completing the survey individually, we organized
a virtual meeting with all annotators to discuss their feedback together.

6.2 Results and Discussion

We now present the results obtained through our user study, starting with the
analysis of H1 and then moving on to the evaluation of H2. As part of the process,
the annotators identified two articles that did not contain any argumentative in-
formation and were therefore not annotated: a list of Grammy winners and a
list of Donald Trump’s most memorable lines. The corpus containing the re-
maining 88 argument graphs is publicly available5 under the attribution license
5 https://github.com/recap-utr/news-articles-corpus



CC BY 4.0 for future research. On average, the graphs created manually contain
9.61 atom nodes and 8.64 scheme nodes, while the assistant-based ones contain
9.93 and 8.93, respectively. Combined, the published corpus contains a total of
860 atom nodes and 773 scheme nodes. The annotator names have been redacted
from the published version and replaced with unique identifiers to ensure their
privacy. We also make available versions of the graphs with the errors identified
and corrected by the annotators in the second phase of the annotation.

Annotation Time Using the created/edited timestamps of the graphs proved
to be unreliable: If an annotator paused the annotation and resumed it later,
the break would count towards the total time. We therefore used the manually
recorded times for our analysis. Since each annotator worked on a different set
of articles, we computed the required time per 1,000 characters to allow for
a fair comparison. Analyzing the average duration as shown in Figure 2a, we
find that the annotators were indeed faster when using the assistant: The mean
duration decreased from five to four minutes—a reduction of ∼ 20%. In case
of the assistant-based approach, there is one outlier that took more than 14
minutes per 1,000 characters, while the remaining cases took less than 8 minutes
per 1,000 characters. The annotator did not provide any additional information
about the outlier, but possible reasons include difficulties in understanding the
article and/or unwanted predictions by the LLM that needed to be corrected.

Given the ability to test both GPT-3.5 Turbo and GPT-4 Turbo, all three
students preferred the latter. Although the more advanced model was found
to be slower, the additional time was worth it due to the better results. The
two models also differ in terms of costs: GPT-4 Turbo is about 20 times more
expensive than GPT-3.5 Turbo. With most requests using GPT-4 Turbo, the
total cost for the 45 cases was ∼ 4.50 USD (or ∼ 0.10 USD per article).

In addition to the raw times, we also asked the annotators about the per-
ceived impact of the assistant on the annotation speed: All three reported feeling
faster when using the LLM functionality. They also unanimously replied that
the observed latency of the responses was fast enough for interactive use. Given
that both quantitative and qualitative results support H1, we conclude that the
assistant-based approach is indeed faster than the manual one.

Annotation Quality To assess H2, we need to verify that the availability
of the LLM features had no negative impact on the quality of the annotated
argument graphs. An indicator of quality is the number of errors identified by
the annotators in the second phase of the annotation—shown in Figure 2b. We
find that the average number of errors per 1,000 characters increased from 0.79
to 0.90 (about 14%). In both cases, we observe less than one error per 1,000
characters, which we consider to be a good result given the complexity of the
task. There are no outliers in both boxplots and the maximum number of errors
only increased slightly from 2.7 to 2.9. Closer investigation revealed that most
errors were related to missing ADUs and wrong relation types.



Additional insights can be gained from the user study shown in Figures 2c
and 2d. The ADU extraction was rated both as “useful” and as “reliable” by the
three annotators. The major claim identification and relation prediction were
rated at least “somewhat useful”, but differed in terms of reliability. The former
was found to be “somewhat reliable” by all participants, but the latter was rated
as “not reliable” by two of them. Since these features are successive steps in a
pipeline, we conclude that the more complex the task, the less reliable the results.
This interpretation is consistent with the feedback received for the end-to-end
graph generation: They found it to be at least “somewhat useful”, but one student
rated it as “not reliable” and the others as “somewhat reliable”. The explanations
generated by the LLM were found to be “useful” by most annotators, but were
considered “not/somewhat reliable”. Custom instructions were the only feature
not found to be “useful” by at least one participant, there was even a vote for
“not useful”. We did not measure its reliability of the feature as it changes the
behavior of the LLM and does not generate any output on its own.

Overall, the assistant features are mostly considered to be useful. Reliability
ratings are more mixed, with the relation prediction and end-to-end approach
being the most problematic. When asked about the assistant’s perceived impact
on the quality of the argument graphs, two annotators reported no change,
while one even found that the assistant had a positive impact. Although there
were some issues with the assistant, they found it to be a valuable tool for the
annotation of argument graphs, especially when dealing with long texts, and
would prefer to use it again in the future. Although the results of the user
study suggest that the assistant features do not negatively impact the quality
of the annotated argument graphs, the error analysis shows that the number of
errors increased slightly. We therefore reject H2, but note that the increase in
errors may be mitigated in the future with improvements in the LLM technology,
optimized prompts that better guide the model towards the desired result, and
special training of the annotators to better understand the model’s behavior.

Free-Form Feedback Besides answering multiple questions, the annotators
also provided free-form feedback. We summarize the main points in the following,
starting with general aspects. The participants reported multiple instances where
the LLM response could not be parsed properly by the application, meaning
that they had to try again and wait for a new response. Such errors may occur
if invalid JSON objects are generated by the LLM, meaning that OpenAI does
not strictly enforce the provided schema in all cases. The probabilistic nature
of the assistant was received with mixed feelings: It allowed the annotators to
obtain different results by running the same generation twice (as anticipated),
but these inconsistent results also led to some confusion as to which one to keep.
Finally, the annotators wanted to have a best-practice guide on how to use the
assistant features effectively.

The discussion of individual features mainly confirmed the findings obtained
from Figures 2c and 2d. The ADU extraction was praised by all participants
and even helped one of them better understand the structure of the text. They



also reported that this step should rather extract too much than too little, as
it is easier to remove unwanted ADUs than adding missing ones. A problem
of this step was that the model sometimes rephrased ADUs—requiring the hu-
man to fix the text manually. The major claim identification was found to be
useful if the text actually contained a statement that could be considered the
main conclusion. As an improvement, they suggested adding a feature to auto-
matically synthesize a major claim from the original text—for instance, through
summarization. The relation prediction was found to be more effective in shorter
texts and less so in longer ones. The annotators reported multiple instances of
isolated subgraphs and/or circular relations. The generation of graphs using the
end-to-end approach was not extensively used, and instead the annotators pre-
ferred to fix issues between the individual steps manually. The explanations were
found to be consistent with the generated predictions; their usefulness, however,
was somewhat limited: ADU that were deemed non-argumentative by the an-
notator often provided contained a summary of its content instead of proper
reasoning—indicating that the model should not have extracted them in the
first place. Custom instructions were seldom used: In cases where the model
output was not satisfactory, it was faster for them to do it manually instead of
trying to fix the assistant’s behavior. Instead, participants wished to modify the
temperature of the model so that they could decide between more creative and
more conservative responses depending on the current article.

Limitations Using LLMs for the graph construction task may introduce biases
towards certain structures which the annotators may accept without question.
The assistant tends to generate more hierarchical graphs than annotators would
manually create in certain cases. In addition, predicting relations and/or com-
plete graphs may lead to semantically invalid results, which the annotator has to
fix manually (e.g., circular relations). LLMs are probabilistic models with results
that vary greatly in different runs even when using the same input—potentially
leading to confusion for the annotator. At the same time, this variation allows
us to incorporate the notion of subjectivity into our interactive use case: The an-
notator may choose to run the same generation twice to obtain different results
and decide which one to keep based on their own judgement.

Our qualitative results are based on feedback from three annotators and one
dataset, which may not be representative of real-world scenarios. The students
also likely knew what we were trying to show, which may have influenced their
votes on the usefulness and reliability of the assistant features. To determine
the speed improvement, we analyzed the annotation time for the entire graph
creation process without breaking it down into individual tasks. Consequently,
it may be the case that the speedup is caused by one of the tasks, whereas others
may actually be slower.



7 Conclusion and Future Work

In this paper, we have presented an interactive system for the annotation of ar-
gument graphs that integrates LLMs to support the annotators. Our prompting
strategy covers both an end-to-end technique and a pipeline-based one, allow-
ing annotators to choose the most suitable approach for the task at hand. Our
user study demonstrated that the modified version of ArgueMapper in fact
decreases the annotation time of the argument graphs, while only having a slight
impact on the resulting quality. In addition to making our ArgueMapper as-
sistant publicly available, we also release the argument graph corpus created as
part of our study. The speed improvements of the interactive system may con-
tribute to the availability of more argument graph corpora, which in turn could
positively affect the retrieval of arguments.

In future work, we plan to extend the functionality offered by the assistant—
for instance, by adding a way to synthesize a major claim from the original text.
Furthermore, we see the potential of using the LLM features to onboard new
annotators: In addition to written guidelines with a static selection of examples,
they could utilize LLM predictions to receive dynamic feedback for their task.

Acknowledgments. This work has been funded by German Academic Scholarship
Foundation (Studienstiftung des deutschen Volkes).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Al Zubaer, A., Granitzer, M., Mitrović, J.: Performance analysis of large language
models in the domain of legal argument mining. Frontiers in Artificial Intelligence
(2023)

2. Allen, J.F.: Natural language processing. In: Encyclopedia of Computer Science,
pp. 1218–1222. John Wiley and Sons Ltd. (2003)

3. Bex, F., Lawrence, J., Snaith, M., Reed, C.: Implementing the argument web.
Communications of the ACM pp. 66–73 (2013)

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language Models are Few-
Shot Learners. In: Advances in Neural Information Processing Systems. pp. 1877–
1901. Curran Associates, Inc. (2020)

5. Cabrio, E., Villata, S.: Five years of argument mining: A data-driven analysis. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence.
pp. 5427–5433. AAAI Press (2018)

6. Chen, G., Cheng, L., Tuan, L.A., Bing, L.: Exploring the Potential of Large Lan-
guage Models in Computational Argumentation (2023)

7. Chesñevar, C.I., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G.R.,
South, M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format.
The Knowledge Enigneering Review p. 293 (2006)

8. Dai, T.: News Articles (2017). https://doi.org/10.7910/DVN/GMFCTR



9. Das, N., Choudhary, V., Saradhi, V.V., Anand, A.: End-to-End Argument Mining
as Augmented Natural Language Generation (2024)

10. de Wynter, A., Yuan, T.: "I’d Like to Have an Argument, Please": Argumentative
Reasoning in Large Language Models (2024)

11. Douglas, J., Wells, S.: Monkeypuzzle - Towards Next Generation, Free & Open-
Source, Argument Analysis Tools. In: CMNA@ICAIL (2017)

12. Dumani, L., Biertz, M., Witry, A., Ludwig, A.K., Lenz, M., Ollinger, S., Bergmann,
R., Schenkel, R.: The ReCAP Corpus: A Corpus of Complex Argument Graphs
on German Education Politics. In: IEEE Proceedings of the 15th International
Conference on Semantic Computing (ICSC). pp. 248–255 (2021)

13. Gilardi, F., Alizadeh, M., Kubli, M.: ChatGPT outperforms crowd workers for text-
annotation tasks. Proceedings of the National Academy of Sciences p. e2305016120
(2023)

14. Goddu, G.C.: Against Making the Linked-Convergent Distinction. In: Pondering
on Problems of Argumentation: Twenty Essays on Theoretical Issues, pp. 181–189.
Springer Netherlands (2009)

15. Kawarada, M., Hirao, T., Uchida, W., Nagata, M.: Argument Mining as a Text-
to-Text Generation Task. In: Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers).
pp. 2002–2014. Association for Computational Linguistics (2024)

16. Lawrence, J., Reed, C.: Argument Mining: A Survey. Computational Linguistics
pp. 765–818 (2019)

17. Lenz, M., Bergmann, R.: User-Centric Argument Mining with ArgueMapper and
Arguebuf. In: Computational Models of Argument. pp. 367–368. IOS Press (2022)

18. Lenz, M., Sahitaj, P., Kallenberg, S., Coors, C., Dumani, L., Schenkel, R.,
Bergmann, R.: Towards an Argument Mining Pipeline Transforming Texts to Ar-
gument Graphs. In: Proceedings of the 8th International Conference on Computa-
tional Models of Argument. pp. 263–270. IOS Press (2020)

19. Nguyen, H.V., Litman, D.J.: Argument Mining for Improving the Automated Scor-
ing of Persuasive Essays. In: Thirty-Second AAAI Conference on Artificial Intelli-
gence (2018)

20. Peldszus, A., Stede, M.: From Argument Diagrams to Argumentation Mining in
Texts - A Survey. IJCINI pp. 1–31 (2013)

21. Rocha, G., Lopes Cardoso, H., Belouadi, J., Eger, S.: Cross-genre argument mining:
Can language models automatically fill in missing discourse markers? Argument &
Computation pp. 1–41 (2024)

22. Stab, C., Gurevych, I.: Identifying Argumentative Discourse Structures in Per-
suasive Essays. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). pp. 46–56. Association for Computational
Linguistics (2014)

23. Stab, C., Gurevych, I.: Parsing Argumentation Structures in Persuasive Essays.
Computational Linguistics pp. 619–659 (2017)

24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., ukasz
Kaiser, Ł., Polosukhin, I.: Attention is All you Need. In: Advances in Neural In-
formation Processing Systems. Curran Associates, Inc. (2017)

25. Wang, J., Liang, Y., Meng, F., Sun, Z., Shi, H., Li, Z., Xu, J., Qu, J., Zhou,
J.: Is ChatGPT a Good NLG Evaluator? A Preliminary Study. In: Proceedings
of the 4th New Frontiers in Summarization Workshop. pp. 1–11. Association for
Computational Linguistics (2023)

26. Zhu, Y., Zhang, P., Haq, E.U., Hui, P., Tyson, G.: Can ChatGPT Reproduce
Human-Generated Labels? A Study of Social Computing Tasks (2023)


