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Abstract—The emergence of artificial intelligence (AI), par-
ticularly Deep Learning (DL), has marked a new era in the
realm of ophthalmology, offering transformative potential for the
diagnosis and treatment of posterior segment eye diseases. This
review explores the cutting-edge applications of DL across a range
of ocular conditions, including diabetic retinopathy, glaucoma,
age-related macular degeneration, and retinal vessel segmen-
tation. We provide a comprehensive overview of foundational
machine learning techniques and advanced DL architectures,
such as convolutional neural networks, attention mechanisms,
and transformer-based models, highlighting the evolving role
of AI in enhancing diagnostic accuracy, optimizing treatment
strategies, and improving overall patient care. Additionally, we
present key challenges in integrating AI solutions into clinical
practice, including ensuring data diversity, improving algorithm
transparency, and effectively leveraging multimodal data. This
review emphasizes AI’s potential to improve disease diagnosis
and enhance patient care while stressing the importance of
collaborative efforts to overcome these barriers and fully harness
AI’s impact in advancing eye care.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) encompasses algorithms
and tools that replicate human intelligence digitally,

drawing from disciplines such as logic, computer science,
and psychology [1], [2]. Its applications range from voice
recognition to intelligent robotics [3], with significant potential
in healthcare [4], [5]. AI utilizes Machine Learning (ML) [6]
and Deep Learning (DL) [7] techniques to accelerate automa-
tion. Recent advances in DL include models like Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Autoencoders (AEs), and Transformers. CNNs, a
cornerstone in supervised DL [8]–[10], are primarily used
for image classification, object detection, and segmentation,
comprising convolutional, pooling, and fully connected layers
[11]. RNNs [12], [13], crucial for sequential data like speech
and text, use cyclic hidden units for recurrent computations,
with variants such as Long Short Term Memory (LSTM) [14]
and Gated Recurrent Units (GRUs) [15]. AEs focus on efficient
data coding [16], mapping input data to itself for feature
reduction and network initialization. Transformers, based on
self-attention mechanisms, capture long-term dependencies in
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Fig. 1. Overall schematic diagram describing four main problems in common
ophthalmic imaging modalities presented in our survey.

sequences [17], excelling in Natural Language Processing
(NLP) [18] and vision tasks like the Vision Transformer
(ViT) [19]. However, the attention mechanism in Transformers
requires substantial GPU memory.

The integration of advanced artificial intelligence (AI),
particularly Deep Learning (DL), marks a transformative shift
in the field of medical diagnostics and treatment. By enabling
unprecedented levels of precision, scalability, and efficiency,
AI technologies are poised to reshape traditional healthcare
paradigms, ultimately improving patient outcomes and opera-
tional workflows. Ophthalmology, with its heavy reliance on
visual data for disease detection and monitoring, stands out as
a key beneficiary of these advancements. The ability of DL
algorithms to process and interpret complex medical imaging
data, such as fundus photographs, optical coherence tomogra-
phy (OCT), and slit-lamp images, offers tremendous potential
for enhancing the diagnosis and management of ocular dis-
eases. Research has already demonstrated DL’s capability to
surpass human-level performance in tasks such as detecting
diabetic retinopathy, age-related macular degeneration, and
glaucoma [20], [21]. This efficiency stems from its ability to
rapidly and accurately analyze high-dimensional image data
while identifying subtle patterns often imperceptible to the
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human eye.
The strengths of DL are not only as a diagnostic tool but

also as a means of improving treatment planning, including the
personalization of patient care. Current developed predictive
models can forecast disease progression and response to treat-
ment, thereby assisting ophthalmologists in tailoring treatment
plans to individual patient needs [22]. For instance, DL algo-
rithms have demonstrated high efficacy in analyzing complex
datasets from imaging techniques such as fundus photogra-
phy and optical coherence tomography, improving diagnostic
accuracy for conditions like diabetic retinopathy, glaucoma,
and age-related macular degeneration [23]. Moreover, AI-
driven predictive models are being developed to anticipate
the progression of diseases such as glaucoma by analyzing
longitudinal patient data, which enables early intervention
and personalized treatment planning [24]. This capability not
only enhances patient outcomes but also optimizes healthcare
resources by focusing on preventive care.

However, applying deep learning in ophthalmology presents
several significant challenges, particularly in areas such as
human interaction, explainable AI, multi-modal approaches,
and data privacy. Clinicians and patients may be hesitant
to trust AI systems, and seamlessly integrating these tools
into existing workflows without causing disruption is complex
[23]. Moreover, the “black box” nature of DL models raises
concerns about transparency and the ability to explain AI
decisions, which are critical for regulatory compliance and
ethical standards [25], [26]. Multi-modal approaches, which
aim to combine data from various sources, face technical
difficulties in data integration, risk overfitting, and require
substantial computational resources [27], [28]. Compounding
these issues is the paramount need to ensure data privacy,
as AI systems often handle sensitive patient information. To
maintain trust and safeguard this data, it is essential to imple-
ment robust security measures and establish comprehensive
regulatory frameworks that prioritize patient confidentiality
and data protection [29]–[31].

Our objective is to present a comprehensive review of
cutting-edge AI techniques in ophthalmology, focusing on
key applications such as diabetic retinopathy, glaucoma, age-
related macular degeneration (AMD), and vessel segmentation.
This review delves into methodologies, traditional approaches,
neural network architectures, performance metrics, and sup-
porting datasets. The paper is organized as follows: (i) an
overview of ophthalmology, problem formulation, and related
literature in Section II; (ii) an in-depth analysis of techniques
across various ophthalmology applications, including method-
ologies and performance evaluations with existing datasets in
Section III; (iii) a discussion on fundamental challenges and
future opportunities for AI in ophthalmology in Section IV;
and (iv) concluding remarks in Section V.

In comparison to other surveys [23], [32]–[40], our work
offers a broader scope, covering a diverse range of deep
learning applications in ophthalmology. Additionally, we pro-
vide focused discussions on the latest advancements, such
as Transformer models and multimodal learning approaches.
We also include a comprehensive summary figure illustrating
publication trends over the past twelve years (Figure 2).
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Fig. 2. Rapid growth in publications leveraging machine learning and deep
learning for ophthalmology from 2012 to 2023.

II. BACKGROUNDS

Motivation:
Given the rising prevalence of Posterior-Segment Eye Dis-

ease (PSED) such as glaucoma, macular degeneration, and
diabetic retinopathy [41], and aligned with WHO’s 2030
targets [42], our focus is on current AI applications in PSED
and advancing automatic retinal vessel segmentation methods.
While existing reviews evaluate AI progress in ophthalmology,
our review is distinct. Previous works [36]–[38] focus solely
on fundus images, ignoring other image types. Studies like
[43], [44] discuss deep learning trends but focus on retinal ves-
sel segmentation. The closest work [45] covers both posterior-
and anterior-segment eye diseases but has limited emphasis
on explainable AI (XAI). Other works [39], [40] specifically
address diabetic retinopathy.

Methodology:
Thanks to public scientific databases like PubMed1,

IEEE2, ScienceDirect3, Nature4, Springer5, and others we
can get access to relevant studies. These platforms offer
public search engines that allow filtering by keywords and
time range. In Figure 2, we present a statistic showing the
number of publications changing per year from 2012 to
2023, indicating a prevalence of research studies on the
application of machine learning- or deep learning-based
methods in the diagnosis of ophthalmic diseases. In this
study, we focus on the successful application of methods
from January 2019 to December 2023, concentrating
on publications from top-tier venues and prestigious
publishers in the fields of computer science and medicine.
The selection criteria include papers related to keywords
such as retinopathy, diabetes, diabetic
retinopathy, glaucoma, Age-related Macular
Degeneration (AMD), diabetic macular
edema, color fundus photography, optical

1https://pubmed.ncbi.nlm.nih.gov
2https://ieeexplore.ieee.org
3https://www.sciencedirect.com
4https://www.nature.com
5https://link.springer.com
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coherence tomography, diabetic retinopathy
diagnosis, eye-related disorders, and
retinal disease.

A. Problem Formulation and Taxonomy
Ophthalmic imaging modalities face several challenges in

diagnosing and managing eye diseases effectively. This section
presents a comprehensive overview of four main problems: (i)
Diabetic Retinopathy, (ii) Glaucoma, (iii) Age-related Macular
Degeneration, and (iv) Retinal Vessel Segmentation, as shown
in Figure 1. Each subsection explores the severity, prevalence,
impact, and evolving diagnostic and therapeutic approaches
for these conditions.

1) Diabetic Retinopathy
The global incidence of diabetes has tripled in 20 years,

leading to microvascular damage and retinal dysfunction from
high blood sugar. Diabetic retinopathy (DR) affects about
34.6% of diabetics, making it a primary cause of vision impair-
ment among adults aged 20 to 74 [46]. It remains a prevalent,
preventable cause of blindness in this population. Current
treatments, including timely laser therapy and intraocular in-
jections, show promise [47]. Screening is crucial, and advances
in scanning confocal ophthalmology, teleophthalmology, and
AI are improving strategies, cost-effectiveness, and broader
roles beyond preventing sight-threatening disease [48].

2) Glaucoma
The primary cause of irreversible blindness on a global

scale, manifests as a varied set of diseases characterized by
optic nerve head cupping and visual-field damage, with a
prevalence of approximately 3.5% in individuals aged 40 or
above [49]. Early detection through ophthalmological exami-
nation is vital, and risk factors differ among various glaucoma
types, emphasizing the significance of tailored diagnostic
and treatment approaches [50]. The worldwide prevalence of
glaucoma is anticipated to notably increase to 111.8 million
by 2040, disproportionately affecting populations in Asia and
Africa. These projections highlight the essential requirement
for strategic planning in glaucoma screening, treatment, and
public health initiatives [51].

3) Age-related Macular Degeneration
Age-related macular degeneration (AMD) encompasses var-

ious stages from early manifestations, featuring medium-sized
drusen and retinal pigmentary changes, to late-stage condi-
tions, including neovascular and atrophic aspects. The multi-
faceted nature of AMD involves dysregulation in complement,
lipid, angiogenic, inflammatory, and extracellular matrix path-
ways, contributing to its pathogenesis [52]. Globally, AMD
constitutes 8.7% of blindness cases and stands as a primary
cause of blindness in developed nations, particularly affecting
individuals aged 60 and above [53].

4) Retinal Vessel Segmentation
Retinal vessel segmentation is crucial for extracting detailed

information on the shape, thickness, and curvature of retinal
blood vessels, offering valuable insights into various diseases.
This technique is particularly significant in identifying con-
ditions such as diabetic retinopathy, macular degeneration,
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Fig. 3. Overview of our survey, highlighting application categories and key
methods are used.

and aiding in the early diagnosis of glaucoma by analyzing
the blood vessel structure [54]–[56]. Examination of critical
features such as shape, orientation, width, curvature, branching
patterns, and abnormal region volumes makes the blood vessel
structure a pivotal source of essential information for disease
analysis.

B. Related Work
Several studies have explored recent advancements in AI

methods for diagnosing eye diseases. These papers highlight
the potential of modern approaches in ophthalmology, ac-
knowledge existing challenges, and propose future research
directions.

Litao et al. [36] review 143 papers, providing a structured
framework for deep learning in ophthalmology, particularly for
fundus images, and highlighting 33 publicly available datasets
for early disease screening. Similarly, [40] explores automated
detection of Diabetic Macular Edema (DME) using traditional
and deep learning methods with retinal fundus and OCT
images, detailing public datasets and the evolution of detection
techniques. Ilesanmi et al. [38] focus on convolutional neural
networks (CNNs) for retinal fundus image segmentation and
classification, analyzing 62 studies and showcasing CNNs’
ability to enhance precision and achieve high accuracies with
reduced reliance on human experts. Collectively, these works
highlight the transformative role of deep learning, especially
CNNs, in advancing retinal image analysis.

The review by [45] in another direction focuses on both
posterior- and anterior-segment diseases. It highlights critical
issues like real-world performance, generalizability, and inter-
pretability, which require further attention. Additionally, [43]
focuses on retinal blood vessel segmentation using deep learn-
ing, exploring network architectures, trends, and challenges,
while Xu et al. [44] analyze enhancement techniques in deep
learning for segmentation, drawing insights from 110 papers
(2016-2021) to guide future improvements in accuracy and
generalization.
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Fig. 4. Proposed AI-human hybrid workflow: AI-screened fundus images
labeled as MTMDR-positive or AI-ungradable are overread by a human expert
in teleophthalmology. Patients with a MTMDR-negative outcome undergo
AI rescreening in 12 months, while those with a MTMDR-positive result
or ungradable images are referred for in-person examination [61].

Toward major eye disease prediction, Balla Goutam et
al. [37] provide a comprehensive review of deep learning
strategies designed for diabetic retinopathy, glaucoma, age-
related macular degeneration, cataract, and retinopathy of pre-
maturity. They examine the implementation pipeline, datasets,
evaluation metrics, and deep learning models, and highlight
eight key research directions for future progress in retinal
disease diagnosis. Similarly, [39] compare the efficacy of deep
learning to traditional machine learning methods for diabetic
retinopathy diagnosis, emphasizing the need for collaboration
with experts and further research to address remaining gaps in
clinical settings.

Overall, these studies highlight significant advancements in
AI-based methods for ophthalmic disease diagnosis. Building
on this progress, we extend these efforts by exploring mul-
tiple ophthalmology-related applications, including diabetic
retinopathy, glaucoma detection, retinal vessel segmentation,
and age-related macular degeneration. Additionally, we focus
on cutting-edge deep learning architectures, such as trans-
formers and multi-modal learning, to further enhance the
capabilities of AI in ophthalmology (Figure 3).

III. AI APPLICATION IN OPHTHALMOLOGY

A. Diabetic Retinopathy
In this section, we explore recent advancements in AI

applications for Diabetic Retinopathy (DR) diagnosis, with a
particular emphasis on improving interpretability. A summary
of these algorithms is provided in Table I, with results derived
from various datasets discussed in the respective papers.

1) Machine Learning Algorithms
The work [57] focuses on using explainable artificial in-

telligence (XAI) to diagnose and treat diabetic retinopathy
(DR) in type 2 diabetes patients. Machine learning models
were created using clinical, biochemical, and metabolomic
biomarkers to classify DR subclasses. Various ML techniques
such as eXtreme Gradient Boosting (XGBoost) [58], natural
gradient boosting [59] for probabilistic prediction (NGBoost),
and explainable boosting machine (EBM) [60] were compared
for their performance.

The study conducts feasibility analysis to pinpoint essential
risk elements associated with the onset of diabetic retinopathy

(DR) in individuals with type 2 diabetes [62]. Employing a
Random Forest (RF) model, the research achieves a robust
prediction of DR prevalence, boasting an accuracy of 94.9%.
Model interpretation is facilitated through SHapley Addi-
tive exPlanations (SHAP) tools [63]. Another approach [61],
shown in Figure 4, proposes a method for diabetic retinopathy
(DR) detection that compares AI performance with human-
based teleophthalmology. The study highlights the importance
of making vision-preserving healthcare more accessible out-
side specialized eye care settings. To achieve this, the authors
introduce an innovative AI-human hybrid workflow, where an
AI algorithm conducts the initial assessment, which is then
followed by overreading by retina specialists, significantly
enhancing specificity while maintaining high sensitivity.

2) Convolutional Neural Networks
In the study by Alghamdi et al. [64], an approach for

explaining and validating model decisions in Convolutional
Neural Networks (CNNs)-based architectures is introduced
using three deep learning models (VGG-16 [65], ResNet-18
[66], DenseNet-121 [67]) for diabetic retinopathy detection.
The paper highlights the use of Grad-CAM [68] visualizations
to assess model interpretability, revealing the superiority of
the VGG-16 model. Similarly, Boreiko et al. [69] explore
DL model interpretability for diabetic retinopathy detection,
presenting an ensemble approach that combines plain and
adversarially robust models. This ensemble not only improves
accuracy but also enhances visual explanations with meaning-
ful Visual Counterfactual Explanations (VCEs).

Che et al. [70] propose a framework for joint grading of
diabetic retinopathy and diabetic macular edema, using dy-
namic difficulty-aware weighted loss (DAW) and a dual-stream
disentangled learning architecture (DETACH). DAW adapts
the difficulty-aware parameter to help the model manage
challenging cases, while DETACH improves interpretability
and performance by independently focusing on specific aspects
of each pathology. Similarly, DRG-Net [71] addresses both
disease grading and multi-lesion segmentation, automatically
selecting the most relevant lesion information while offering
explainable properties.

Hesse et al. [72] introduce INSightR-Net, an interpretable
CNN designed for diabetic retinopathy grading. This model
incorporates a prototype layer to visualize image areas sim-
ilar to learned prototypes, framing the final prediction as
a weighted average of prototype labels based on similarity.
INSightR-Net achieves competitive performance compared to
a ResNet baseline, demonstrating that interpretability can be
attained without sacrificing accuracy. Building on this, Jiang
et al. [73] focus on improving early diabetic retinopathy
detection by combining eye-tracking technology with deep
learning models. Their multi-modal approach integrates gaze
maps, captured during fundus image examinations, into a
deep learning architecture using attention mechanisms. This
gaze map attention-guide model enhances both accuracy and
interpretability, offering a robust and generalizable solution for
DR detection.

In the work by Son et al. [74] as shown in Figure 5, a
deep learning-based Computer-Aided Diagnosis (CAD) sys-
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tem is introduced for comprehensive retinal analysis, identify-
ing 15 abnormal retinal findings and diagnosing eight major
ophthalmic diseases. The system emphasizes interpretability
through the Counterfactual Attribution Ratio (CAR), providing
a transparent diagnostic reasoning process.

Universal Encoder

Finding
Predictions

15 Finding Features

Concatenate
Diagnostic
Predictions

Fundus image

Fig. 5. Overall architecture of deep learning-based Computer-Aided Diagnosis
for diabetic retinopathy (DR) detection [74].

3) Datasets
Below, we provide a summary of the most commonly used

datasets for training and evaluating deep learning models in
the context of diabetic retinopathy-related diseases with a
comparison presented in Table II.

a) DIARETDB0 and DIARETDB1
The DIARETDB0 [76] database includes 130 retinal images

captured with a digital fundus camera (50 degrees FOV),
comprising 20 healthy images and the rest exhibiting Diabetic
Retinopathy symptoms. DIARETDB1 [76], with 89 retinal
fundus images, predominantly contains mild Non-Proliferative
Diabetic Retinopathy (NPDR) signs (84 images), along with 5
healthy ones. Both databases share a resolution of 1500×1152
pixels.

b) Retinopathy Online Challenge
The Retinopathy Online Challenge (ROC) [77] microa-

neurysms database was created for an online competition
aimed at developing the most effective algorithm for iden-
tifying microaneurysms in retinal images. The images were
captured using Topcon NW 100, Topcon NW 200, or a Canon
CR5-45NM, saved in JPEG compression format.

c) Messidor
The Messidor [78] database, designed for evaluating seg-

mentation and indexing techniques in retinal ophthalmology,
comprises 1200 retinal fundus images captured using a 3CCD
video camera on a Topcon TRCNW6 nonmydriatic retinogra-
phy with a 45-degree field of view. The images come in three
resolutions: 1140×960, 2240×1488, and 2304×1536 pixels.

d) e-ophtha EX and e-ophtha MA
The database [79] contains 82 retinal images, consisting of

47 pathological and 35 nonpathological images. Captured at
varying resolutions from the OPHIDAT medicine center, the
images feature diverse sizes and shapes of exudates. A subset
of E-Ophtha, is designed for the study of microaneurysms,
featuring 381 images. Among them, 148 images exhibit small
or large microaneurysms, while 233 images are normal.

e) Messidor-2
The Messidor-2 [80] dataset focuses on Diabetic Retinopa-

thy (DR) examinations, presenting pairs of macula-centered

eye fundus images for each examination. The Messidor-
Original subset comprises 529 examinations (1058 images
in PNG format) from the original Messidor dataset. The
Messidor-Extension subset adds 345 examinations (690 im-
ages in JPG format). In total, Messidor-2 encompasses 874
examinations (1748 images) and is accompanied by a spread-
sheet detailing image pairing.

f) RC-RGB-MA
The RC-RGB-MA [81] dataset is part of the RetinaCheck

project led by Eindhoven University of Technology, the
Netherlands. It consists of 250 RGB retinal images captured
using a DRS non-mydriatic fundus camera.

g) IDRiD
IDRiD [82] is a retinal image dataset designed for eval-

uating algorithms in the automatic detection and grading of
Diabetic Retinopathy and Macular Edema. It includes 516
images with marked OD center and fovea, and 81 images with
segmented optic disc boundaries. Acquired using a Kowa VX-
10 alpha digital fundus camera, the images have a resolution
of 4288×2848 pixels and a 50-degree field of view.

h) DDR
The study [83] gathered 13,673 fundus images from 9,598

patients to assess various methods in clinical settings. Seven
graders categorized the images into six classes based on image
quality and DR level. Additionally, 757 images with DR were
chosen for annotation, focusing on four types of DR-related
lesions.

i) Kaggle DR
The Kaggle Diabetic Retinopathy (DR) [84] dataset is

the largest collection of fundus images with 88,702 samples
utilized for DR classification.

j) APTOS
The APTOS 2019 Blindness Detection (APTOS 2019 BD)

[85] dataset comprises 3,662 fundus photographs collected
from rural India by the Aravind Eye Hospital. Trained doctors
labeled images based on ICDRSS, resulting in five categories:
no DR, mild DR, moderate DR, severe DR, and proliferative
DR.

k) DeepDRiD
The “Diabetic Retinopathy (DR)-Grading and Image Qual-

ity Estimation Challenge” [86] conducted in collaboration
with ISBI 2020 encompassed three sub-challenges focused
on developing deep learning models for diabetic retinopathy
image assessment and grading.

B. Glaucoma
Modern methodologies have emerged as impactful tools in

automated glaucoma detection, progression prediction, and the
segmentation of critical anatomical structures. This section
delves into recent advancements in AI-driven approaches for
glaucoma analysis, showcasing innovative techniques and their
contributions to enhancing clinical accuracy, efficiency, and
outcomes. Table III provides a comprehensive comparison of
these methods, highlighting their core methodologies, reported
performance metrics, and the datasets utilized, offering valu-
able insights into the evolving landscape of AI applications in
glaucoma care.
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TABLE I
TYPICAL METHODS ON THE APPLICATION OF AI IN DIABETIC RETINOPATHY.

Year Study Methodology Task Performance
2021 Che Haoxuan et al. [70] Joint feature representation DR Grading AUC=0.797, F1=0.308, Acc=0.429, Rec=0.370, Pre=0.365

2022

Alghamdi Hanan Saleh [64] VGG-16, ResNet-18, DenseNet-121 DR Detection APTOS: Precision VGG16=0.87, ResNet18=0.67, DenseNet121=0.74

Boreiko Valentyn et al. [69] DNN DR Detection Acc=0.89

Obayya Marwa et al. [75] UNet, SqueezeNet DR Detection Acc= 0.96 - 0.98

Hesse Linde et al. [72] INSightR-Net DR Grading MAE=0.59

2023

Fatma Hilal Yagin et al. [57] XGBoost, NGBoost DR Detection XGBoost: Acc=0.913, Pre=0.893, Rec=0.912, F1=0.894, AUROC=0.97;
NGBoost: Acc=0.881, Pre=0.881, Rec=0.881, F1=0.881, AUROC=0.96

Jiang Hongyang et al. [73] Supervised mask guides DNN attention. DR Detection Sen=0.783, Spec=0.683, Acc = 0.733, F1 = 0.746

Lalithadevi Balakrishnan et al. [62] Random Forest DR Detection Acc=0.949

Eliot R. Dow et al. [61] - DR Detection Sen=0.95

Son Jaemin et al. [74] DNNs Multi-diseases
classification

AUROC=0.992

Tusfiqur, Hasan Md, et al. [71] Joint Learning of DR lesion and classification DR Grading, DR
Detection

Acc = 0.87 - 0.94

TABLE II
LIST OF DATASETS SUPPORTING DIABETIC RETINOPATHY.

Year Dataset # Images Format Resolution

2007 DIARETDB0 [76] 130 JPEG/PNG 1500×1152

DIARETDB1 [76] 89 JPEG/PNG 1500×1152

2010 ROC [77] 100 JPEG various

2013
Messidor [78] 1200 JPEG various

e-ophtha EX [79] 82 - various

RC-RGB-MA [81] 250 JPEG 2595×1944

e-ophtha MA [79] 381 - various

2014 Messidor-2 [80] 1748 JPEG various

2015 Kaggle DR [84] 88,702 JPEG various

2018 IDRiD [82] 516 JPEG 4288×2848

2019 DDR [83] 13,673 - various

APTOS [85] 13,000 PNG -

2022 DeepDRiD [86] 2,000 - various

1) Machine Learning Algorithms
The study by [87] focuses on developing a machine learning

model for glaucoma diagnosis, highlighting the exceptional
performance of the XGBoost algorithm, which achieved an
accuracy of 0.947. This work enhances the explainable AI
(XAI) literature by demonstrating the efficacy of a hybrid
system for diagnosing glaucoma. Similarly, [88] presents a
glaucoma prediction model incorporating an embedded ex-
planation system to improve interpretability. Using compre-
hensive clinical data, including visual field tests, RNFL OCT
tests, general examinations, and fundus image tests, the authors
employed multiple algorithms — support vector machine [89],
[90], C5.0 [91], [92], random forest [93], and XGBoost [58]
— with XGBoost again proving most effective. To provide
insights into the decision-making process, the study utilized
interpretability tools such as gauge and radar charts alongside
shapley additive explanations analysis [63], offering a clear
view of individual predictions.

2) Convolutional Neural Networks
The reviewed studies collectively advance the application

of explainable AI and CNNs-based models for glaucoma

diagnosis and related tasks, offering diverse methodologies and
valuable insights. In [94], adversarial examples and GradCAM
are employed to interpret deep learning models trained on
retinal fundus images for glaucoma detection, with specialists
favoring adversarial examples for superior explainability. Sim-
ilarly, [87] introduces a hybrid CNN-based solution supported
by CAM visualizations, highlighting the integration of deep
learning and image processing for glaucoma diagnosis as
illustrated in Figure 6.

DR 4-Grade

Fundus image

G
lobal

Average
Pooling

Class Activation Map

Fig. 6. CAM: Class Activation Mapping for ensuring explainability in CNN
models [68], [87].

Building on these efforts, [95] presents a ResNet-based
framework for glaucoma detection and Vertical Cup-to-Disc
Ratio (VCDR) estimation, emphasizing the importance of op-
tic disc localization while achieving robust performance even
on challenging image datasets. Further, [96] proposes AFFD-
Net for retinal vessel segmentation, outperforming state-of-
the-art methods, and introduces a two-step glaucoma pre-
diction process combining Spike Neural Networks (SNNs)
and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), with
strong interpretability through XAI and IML techniques.
Meanwhile, [97] employs decision trees [98] as surrogate
models to enhance the interpretability of CNN predictions,
achieving consistent results across architectures.

Other studies investigate model-specific contributions. Akter
et al. [99] compare SqueezeNet [100], ResNet18 [66], and
VGG16 [65] for glaucoma detection from raw OCT scans,
with VGG16 delivering the most effective performance. Sim-
ilarly, Fan et al. [101] evaluate a ResNet-50 model trained
on fundus photographs from the OHTS dataset, achieving
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strong diagnostic precision. The study by Schottenhamml
et al. [102] also highlights the superiority of CNNs over
traditional vessel density biomarkers for glaucoma detection.
Their findings demonstrate the robustness of CNNs across
varying scan sizes, reinforcing their applicability in diverse
clinical settings. Meanwhile, M. Yan et al. [103] address the
critical challenge of domain gaps in glaucoma detection within
fundus images. By combining domain adaptation and domain
mixup techniques, their approach effectively mitigates discrep-
ancies between datasets, leading to enhanced generalization
performance. This novel strategy underscores the potential
of leveraging domain adaptation to improve model reliability
across heterogeneous datasets.

Recent advancements also extend beyond fundus imaging.
Braeu et al. [104] leverage geometric deep learning techniques
[105], [106], comparing DGCNN [107] and PointNet [108]
for glaucoma detection from 3D optic nerve head (ONH)
point clouds, effectively analyzing critical structural features.
Agboola et al. [109] explore Wavelet Scattering Networks
(WSNs) for feature extraction from fundus images, demon-
strating high accuracy for glaucoma detection without tradi-
tional preprocessing steps.

In progression analysis, Mariottoni et al. [110] propose a
deep network utilizing RNFL thickness measurements from
SD-OCT scans to predict glaucoma progression, outperform-
ing traditional trend-based analyses and altering post-test
probability estimates with interval likelihood ratios. Fei Li et
al. [111] present a DiagnoseNet network, which comprises
a segmentation module using U-Net [112] to extract four
anatomical structures (retinal vessels, macula, optic cup, and
optic disk), which are merged into a single channel to enhance
focus. This augmented image is then processed by the diagnos-
tic module, built on EfficientNet-B0 [113], with modifications
to fine-tune it for binary classification.

Innovative glaucoma-related segmentation approaches are
also highlighted by Meng et al. [114], Shyla et al. [115],
and Mangipudi et al. [116]. For instance, Meng et al. [114]
introduce a weakly supervised framework leveraging a modi-
fied Signed Distance Function (SDF) and Dual Consistency
Regularization for spatially aware optic disc and cup seg-
mentation, coupled with an end-to-end vertical cup-to-disc
ratio estimation method. Shyla et al. [115] combine level set
segmentation with AlexNet [10] classification, emphasizing
the importance of integrating deep learning with advanced
segmentation techniques. Mangipudi et al. [116] in other
direction develop a robust deep learning system for optic disc
and cup segmentation, employing probabilistic ground truth
masks and tailored loss functions to manage uncertainty and
enhance model performance.

These works, in general, jointly underscore the integration
of explainable and interpretable AI techniques across diverse
data modalities and tasks in glaucoma research, paving the
way for more effective and transparent clinical applications.

3) Recurrent Neural Networks
The research in [117] presents an innovative recurrent neural

network framework tailored for glaucoma diagnosis, specif-
ically designed to tackle challenges linked with multi-rater
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Fig. 7. Overall architecture of the proposed self-calibration segmentation
method for glaucoma-related disease. Green denotes ConM modules. Orange
denotes DivM modules [117].

annotations. The methodology is centered around a recurrent
model proficient in learning self-calibrated segmentation from
these annotations. In Figure 7, this intricate process incorpo-
rates both ConM (Calibration Module) and DivM (Division
Module) within an iterative optimization framework.

The study by Hussain et al. [121] introduces a multi-
modal deep learning model that combines a Long Short-
Term Memory (LSTM) network [123] with a Convolutional
Neural Network (CNN) for predicting glaucoma progression.
By integrating diverse data sources, including optical coher-
ence tomography (OCT) images, visual field (VF) values,
and demographic and clinical information, the model achieves
high accuracy in forecasting VF changes up to 12 months
in advance. A standout feature is the use of synthetic future
images generated by a Generative Adversarial Network (GAN)
[124], which significantly enhances prediction performance.

In a related study, Kumar et al. [122] propose a glaucoma
detection framework that combines a Gated Recurrent Unit
(GRU)-based optimization [125] with the Unet++ architecture
[126] and ResNet. Their approach begins with pre-processing
retinal fundus images using histogram equalization, followed
by disc and cup segmentation using the U-shape network
[112], [126], optimizing the accuracy of glaucoma detection.

4) Transformers-based Algorithms
The research presented in [118] conducts a comparative

analysis of the diagnostic accuracy and interpretability of Vi-
sion Transformer models [19] and ResNet-50 in distinguishing
primary open-angle glaucoma from fundus photographs. The
study evaluates diagnostic performance through metrics such
as AUROC and sensitivity at fixed specificities, providing
a thorough assessment of each model’s ability to detect
glaucoma. The results highlight the advantages of Vision
Transformers, not only in enhancing generalization across
diverse datasets but also in improving the interpretability of
deep learning models for detecting eye diseases and other
medical conditions. These findings align with similar studies
[120], [127], which also emphasize the potential of Vision
Transformers in advancing both diagnostic performance and
model transparency.
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TABLE III
TYPICAL STUDIES ON THE APPLICATION OF AI IN GLAUCOMA.

Year Study Method Task Performance

2021

Ruben et al. [95] ResNet-50 Glaucoma Detection AUC=0.94

Sejong et al. [88] SVM, C50, Random Forest,
and XGBoost

Glaucoma Classification SVM:Acc=0.925, Sen=0.933, Spec=0.920, AUC=0.945; C50: Acc=0.903, Sen=0.874, Spec=0.92,
AUC=0.897; Random Forest: Acc=0.937, Sen=0.924, Spec=0.945, AUC=0.945; XGBoost:
Acc=0.947, Sen=0.941, Spec=0.950, AUC=0.945

Sarathi et al. [116] Salient Point Detection, CNNs Disc & Cup Segmentation DRISHTI: IoU disc=0.966, Dice disc=0.9529; IoU cup=0.944, Dice cup=0.933; RIM-ONE:
IoU disc=0.9842, Dice disc=0.9452; IoU cup=0.6592 , Dice cup=0.7863; DRIONS-DB:
IoU disc=0.9615, Dice disc=0.9547

Jooyoung et al. [94] DNNs Glaucoma Classification AUC=0.90, Sen=0.79

2022

Junde et al. [117] RNN for OD/OC segmentation
calibration

Disc & Cup Segmentation Optic Disc: Dice=0.963; Optic Cup: Dice=0.897

Rui et al. [101] ResNet-50 Glaucoma Detection AUROC=0.88

Sarwar et al. [96] Spike Network Glaucoma Detection Pre=0.96, Rec=0.95, ACC=0.96, F-score=0.97

Omer et al. [87] CNN Glaucoma Detection ACC=0.93, Rec=0.97, AUC=0.95, F1=0.95, Pre=0.93

Yanda et al. [114] Weakly/semi-supervised
framework

Disc & Cup Segmentation Optic Disc: Dice=0.871; Optic Cup: Dice=0.972

2023

Hyla et al. [115] AlexNet Glaucoma Classification Acc=0.98, Sen=0.97, Spec=0.97

Mariottoni et al.
[110]

CNN Glaucoma Progression AUC=0.938, Sen=0.873, Spec=0.864

Ming et al. [103] Domain adaptation Glaucoma Detection Acc=0.967, Sen=0.955, Spec=0.969, AUC=0.995

Hafeez et al. [109] Wavelet Scattering Network Glaucoma Detection Acc=0.98

Rui et al. [118] Transformers: DeiT Glaucoma Detection AUROC=0.91

You et al. [119] Transformers Glaucoma Classification Kappa = 0.85, F1 = 0.91 (private test set), ACU = 0.99 (private test set)

D. Leite et al. [120] Transformers: ViT-BRSET Glaucoma (optic nerve ex-
cavation) Detection

Acc = 0.94, F1 = 0.91, Recall = 0.94

Shaista et al. [121] LSTM & CNN Combination Glaucoma Progression AUC=0.83

Vutukuru et al. [122] Segmentation via Unet++ and
ResNet with GRU optimiza-
tion

Glaucoma Detection Acc=0.988, Sen=0.992, Spec=0.983

Jose et al. [97] VGG19, ResNet50,
InceptionV3, Xception,
and Decision Tree Classifier

Glaucoma Classification VGG19=0.901, ResNet50=0.899, InceptionV3=0.904, Xception=0.897

Fabian A et al. [104] Dynamic Graph Convolutional
Neural Network (DGCNN),
PointNet

Glaucoma Detection DGCNN: AUC=0.97, PointNet: AUC=0.95

Nahida et al. [99] SqueezeNet, ResNet18,
VGG16

Glaucoma Detection SqueezeNet: AUC=0.973, Acc=0.936, Sen=0.945, Spec=0.927, Pre=0.928, F1=0.936; ResNet-
18: AUC=0.978, Acc=0.94, Sen=0.936, Spec=0.945, Pre=0.944, F1=0.94; VGG16: AUC=0.988,
Acc=0.952, Sen=0.945, Spec=0.959, Pre=0.958, F1=0.95

Julia et al. [102] DenseNets Glaucoma Detection AUROC=0.89 (3x3 mm macular), AUROC=0.93 (6x6 mm macular), AUROC=0.89 (6x6 mm ONH
scans)

Ming et al. [103] ResNeST, Domain Adaptation Glaucoma Detection REFUGE: Sen=0.875, AUC=0.990; LAG: Acc=0.967, Sen=0.956, Spec=0.969, AUC=0.995; ORIGA:
Sen=0.698, Spec=0.852, AUC=0.891; RIM-ONE: Acc=0.954, Sen=0.920, Spec=0.980, AUC=0.993

In a related work, [119] introduces MM-RAF, a transformer-
based framework designed for multi-modal glaucoma recogni-
tion. MM-RAF effectively manages the cross-modality interac-
tions between Color Fundus Photography (CFP) and Optical
Coherence Tomography (OCT) by incorporating specialized
modules such as Bilateral Contrastive Alignment, Multiple
Instance Learning Representation, and Hierarchical Attention
Fusion. This innovative approach improves the integration
of diverse imaging modalities, facilitating more accurate and
robust glaucoma diagnosis.

5) Datasets
a) ONHSD

The ONHSD [128] (Optic Nerve Head Segmentation
Database) includes 99 fundus images with a resolution of
640×480 obtained from 50 patients selected randomly from
a diabetic retinopathy screening program. Among them, 90
images are allocated for evaluating segmentation algorithms,
and 96 images feature a visible optic nerve head (ONH). The
images were captured using a Canon CR6 45MNf fundus

camera with a 45-degree field angle lens.
b) Drions-DB

The Drions-DB [129] (Digital Retinal Images for Optic
Nerve Segmentation Database) consists of 110 fundus images
with a resolution of 600×400 pixels. Approximately 23%
of the patients had chronic glaucoma, and 77% had ocular
hypertension.

c) ORIGA
The ORIGA [130] (Online Retinal Fundus Image Database

for Glaucoma Analysis and Research) database comprises 650
images with optic disc (OD) and optic cup (OC) segmentation,
along with information on glaucoma severity grading. How-
ever, it is not publicly available.

d) RIM-ONE
The Retinal Image Database for Optic Nerve Evaluation

(RIM-ONE) comprises 169 images classified into different
categories: 118 as normal, 12 as early glaucoma, 14 as
moderate glaucoma, 14 as deep glaucoma, and 11 as ocular
hypertension.
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e) ACHIKO-K
The ACHIKO-K [131] database consists of 258 manu-

ally annotated retinal images taken from glaucoma patients.
The images include detailed information on glaucoma-related
pathological signs such as hemorrhage, optic nerve drusen,
and optic cup notching.

f) Drishti-GS
The Drishti-GS [132] database comprises 101 fundus im-

ages of the Indian population with a resolution of 2896×1944
pixels. The training subset includes 50 images with optic disc
(OD) and optic cup (OC) segmentation ground truths, along
with notching information.

g) RIGA
The Retinal fundus images for glaucoma analysis (RIGA)

[133] dataset includes 750 fundus images with optic disc (OD)
and optic cup (OC) segmentation ground truth.

h) LAG
The LAG [134] database comprises 5,824 fundus images,

including 2,392 positive and 3,432 negative glaucoma samples
obtained from Beijing Tongren Hospital.

i) REFUGE
The REFUGE [135] database comprises 1200 retinal images

obtained from subjects of Chinese ethnicity using two devices:
a Zeiss Visucam 500 fundus camera with a resolution of
2124×2056 pixels (400 images) and a Canon CR-2 device
with a resolution of 1634×1634 pixels (800 images).

j) Rotterdam EyePACS AIROGS
The Artificial Intelligence for Robust Glaucoma Screening

(AIROGS) [136] challenge aims to develop algorithms capable
of robust glaucoma screening. It features a substantial dataset
comprising approximately 113,000 images from over 60,000
patients across 500 screening centers.

k) EyePACS-AIROGS-light
The EyePACS-AIROGS-light [137] dataset is derived from

a balanced subset of standardized fundus images from the
Rotterdam EyePACS AIROGS [136] train set. It includes
separate folders for training, validation, and testing, each
containing a specific number of fundus images for referable
glaucoma (RG) and non-referable glaucoma (NRG) classes.

l) EyePACS-AIROGS-light-v2
EyePACS-AIROGS-light-v2, as described in [138], is simi-

larly sourced from a well-proportioned selection of standard-
ized fundus images found within the Rotterdam EyePACS
AIROGS dataset [136]. It consists of training, validation, and
test folders, with approximately 84%, 8%, and 8% of the
total 4800 images allocated to each, respectively. Each class,
referable glaucoma (RG) and non-referable glaucoma (NRG),
has its own folder within the training set.

m) Cháks. u
The Cháks.u [139] database is designed for assessing

computer-assisted glaucoma prescreening techniques, offering
1345 color fundus images captured with three different com-
mercially available fundus cameras. It stands out as the largest
Indian-ethnicity-specific fundus image database, featuring ex-
pert annotations.

n) GAMMA
The GAMMA dataset [140] is developed by the Sun Yat-sen

Ophthalmic Center at Sun Yat-sen University in Guangzhou,

TABLE IV
LIST OF DATASETS SUPPORTING GLAUCOMA

Year Dataset # Images Format Resolution
2004 ONHSD [128] 99 - 640×480

2008 Drions-DB [129] 110 - 600×400

2010 ORIGA [130] 650 - 3072×2048

2011 RIM-ONE [141] 169 - 2144×1424

2013 ACHIKO-K [131] 258 - -

2015 Drishti-GS [132] 101 - 2896×1944

2018 RIGA [133] 750 - various

2019 LAG [134] 5,824 - -

2020 REFUGE [135] 1,200 - various

2023

Rotterdam EyePACS AIROGS [136] 113,893 JPEG -

EyePACS-AIROGS-light [137] 3,270 JPEG 256×256

EyePACS-AIROGS-light-v2 [138] 4,770 JPEG 512×512

Cháks.u [139] 1,345 JPEG/PNG various

GAMMA [140] 100 2D and 3D various

China, represents the world’s first multi-modal dataset for
glaucoma grading. It includes both 2D fundus images and
3D optical coherence tomography (OCT) images from several
patients. Each sample is annotated with glaucoma grades
alongside macular fovea coordinates and optic disc/cup seg-
mentation masks for the fundus images. In the context of the
challenge, the authors provided 100 accessible labeled samples
and another 100 unlabeled cases as the benchmark.

C. Age-related Macular Degeneration
AI and deep learning present transformative opportunities

for improving the diagnosis, monitoring, and treatment of
Age-related Macular Degeneration (AMD). By leveraging
advanced imaging modalities like Optical Coherence Tomog-
raphy (OCT), these technologies can detect subtle biomarkers,
quantify pathological changes, and predict disease progression
with high accuracy. However, for widespread clinical adoption,
ensuring the interpretability and transparency of these AI
models is as crucial as their accuracy. Clinicians need to
trust and understand the decision-making process of these
systems to integrate them into patient care effectively. This
section delves into recent advancements in interpretable AI
methods for AMD diagnosis, focusing on techniques that not
only achieve robust diagnostic performance but also might
provide insights from OCT imaging data. We summarize
typical algorithms in Table V.

1) Machine Learning Algorithms
The study by Baharlouei et al. [146] introduces a low-

complexity Computer-Aided Diagnosis (CAD) system de-
signed to classify retinal abnormalities in Optical Coherence
Tomography (OCT) images. Using a wavelet scattering net-
work for feature extraction and Principal Component Analysis
(PCA) [153] for classification, this system effectively detects
conditions such as AMD, central serous retinopathy, diabetic
retinopathy, and macular holes. By automating multiclass
classification, the proposed method can reduce the reliance
on manual inspection by ophthalmologists, highlighting its
practical value in clinical settings.
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TABLE V
TYPICAL STUDIES ON THE APPLICATION OF AI IN AGE-RELATED MACULAR DEGENERATION

Year Study Method Task Performance

2020 Jason et al. [142] Integrating models: OCT images, tissue maps AMD Classification Sen=0.8, Spec=0.55; Sen=0.34, Sen=0.90

Yan et al. [143] Modified CNN AMD Progression AUCROC=0.85

2021 Hyungwoo et al.
[144]

Unsupervised K-Means with PCA Clustering: 5 drusen types Significant differences in cluster parameters

Pfau et al. [145] NGBoost Predicting anti-VEGF injection frequency MAE Lasso=2.76, MAE PCA=2.74, and
MAE RF=2.6

2022

Zahra et al. [146] Wavelet scattering network and PCA Classifier AMD Classification Acc normal=0.974, Acc pathologies=0.825

Han et al. [147] VGG-16, VGG-19, ResNet AMD Classification Acc=0.874

Jin et al. [148] Unidirectional fusion network (UFNet) and the
bidirectional fusion network(BFNet)

Anomaly Detection Acc=0.955, AUC=0.979

Lourdes et al. [149] Artificial Hydrocarbon Networks AMD Detection Sen=0.989, Spec=0.989, Pre=0.987, F1=0.988

Zarauz-Moreno, An-
tonio, et al. [150]

Hierarchical Transformer AMD Classification F1 = 72.11, Acc = 73.7, AUC = 94.42

Junghwan Lee et al.
[151]

CNN-LSTM, CNN-Transformer AMD Progression Predict AUC = 0.879 vs 0.868 for 2 years, AUC = 0.879 vs
0.862 for 5 years

2023 Mini et al. [152] VGG16 AMD Detection Acc=0.992

Building on the theme of leveraging AI for AMD man-
agement, Pfau et al. [145] propose an automated pipeline for
predicting anti-vascular endothelial growth factor (anti-VEGF)
treatment frequency in patients with neovascular AMD. Using
volumetric spectral domain-OCT (SD-OCT) biomarkers and
machine learning models such as natural gradient boosting
(NGBoost) [59], this system forecasts treatment needs over a
12-month period, providing a personalized and probabilistic
approach to treatment planning in real-world settings.

Expanding the scope to nonexudative AMD subtypes, Lee
et al. [144] analyze structural parameters of Haller vessels and
choriocapillaris (CC) using OCT and OCT angiography. This
study quantifies vessel diameter, length, and intersections, as
well as the total area and size of CC flow voids, revealing
significant differences across AMD subtypes and pachydrusen.
Notably, unsupervised machine learning [154], [155] identified
four distinct clusters of eyes, highlighting variations in vas-
cular characteristics among these groups and offering deeper
insights into the pathophysiology of AMD.

2) Convolutional Neural Networks
The research presented in [142] explores the use of CNNs

to predict the progression of exudative age-related macular
degeneration (exAMD) in the second eye of patients already
diagnosed in one eye. By leveraging automatic tissue seg-
mentation, the research highlights the potential to detect early
anatomical changes preceding conversion and identify high-
risk subgroups, enabling proactive interventions. Similarly, Jin
et al. [148] investigate a deep learning model that integrates
optical coherence tomography (OCT) and optical coherence
tomography angiography (OCTA) data to assess choroidal
neovascularization (CNV) in neovascular AMD. The study
employs a novel feature-level fusion (FLF) method, combining
outputs from unidirectional (UFNet) and bidirectional (BFNet)
fusion networks. This dual-pathway approach, with OCT and
OCTA images processed as primary and auxiliary inputs
(illustrated in Figure 8), respectively, enhances the model’s
capability to analyze multimodal data effectively.

Qi Yan et al. [143] present another approach by integrating

genetic data with fundus images to predict the progression of
late-stage AMD. Using a modified deep CNN and a dataset
comprising 31,262 fundus images and 52 AMD-associated
genetic variants from the Age-Related Eye Disease Study,
the model achieved an impressive area-under-the-curve (AUC)
of 0.85, outperforming image-only predictions. This demon-
strates the added value of genetic data in refining disease risk
assessments over long periods.

Focusing on AMD subtype differentiation, Han et al. [147]
develop a CNN-based model to classify subtypes of neovas-
cular AMD (nAMD) using spectral domain optical coherence
tomography (SD-OCT) images. The model employs transfer
learning [156]–[158] and data augmentation [159] to enhance
robustness and diagnostic precision. To address explainability
in AMD diagnosis, Wang et al. [152] suggest constructing a
VGG16-based network with optimization and Explainable AI
(XAI) techniques [160], [161] for interpretable AMD detection
in medical IoT systems. Similarly, Martinez et al. [149]
introduce the eXplainable Artificial Hydrocarbon Networks
(XAHN) explainer, transforming the AHN model into a tree-
based structure to provide global and local interpretability.
The XAHN approach captures nonlinear feature interactions
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Fig. 8. The main architecture of a unidirectional fusion network (UFNet)
consists of feature pathways, assistant modules, and residual fusion. Attention
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provided for further fusion with the corresponding feature map generated by
the principal pathway [148].
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without relying on surrogate models, ensuring transparency
and usability for clinicians.

Overall, these works highlight the transformative role of
convolutional neural networks (CNNs) in advancing AI appli-
cations for AMD diagnosis and management. By leveraging
CNN architectures tailored for tasks like multimodal imaging
analysis, genetic data integration, and interpretable decision-
making, these approaches enable more accurate, transparent,
and patient-specific care strategies.

3) Transformer-based Algorithms
Besides CNNs, Transformer-based models have shown

promising results in predicting AMD-related diseases. One
notable approach is the use of Hierarchical Transformer Mod-
els [150] for classifying AMD from OCT images. These
models utilize attention mechanisms to hierarchically process
visual information, improving classification accuracy and re-
ducing the number of trainable parameters. Another method
involves combining Vision Transformers (ViTs) with other
deep learning architectures, such as ResNet, to predict the
progression of AMD over time [151]. This hybrid integration
enhances the model’s sensitivity to subtle retinal changes
indicative of disease advancement. These developments under-
score the transformative potential of transformer-based models
in advancing early detection, monitoring, and personalized
management of AMD.

4) Datasets
We summarize below the most commonly used datasets in

ADM research.
a) AREDS-1

The AREDS-1 [162] dataset, obtained from the National
Eye Institute, initially comprised 188,006 images. These im-
ages underwent quality assessment using a neural network,
resulting in 118,254 gradable images from 4,591 patients.
Notably, 398 patients in the cohort developed advanced AMD
during the AREDS study period.

b) ARIA
ARIA [163] (Automated Retinal Image Analyzer) incor-

porates algorithms for vessel detection and diameter mea-
surement, and its associated database consists of 143 color
fundus images (768×576 pixels). The images are categorized
into three classes: age-related macular degeneration (AMD)
subjects (n=23), healthy control-group subjects (n=61), and
diabetic subjects (n=59).

c) KORA
The KORA dataset [164] is specifically curated to assess

the prevalence of early and late-stage AMD features within a
general adult population. It comprises fundus images collected
from 2,840 participants aged 25 to 74 years, as part of
the Cooperative Health Research in the Region of Augsburg
project. This dataset provides a valuable resource for studying
AMD across a diverse demographic.

d) OCTID
The open-access database [165] with over 500 high-

resolution images categorized into various pathological con-
ditions such as Normal, Macular Hole (MH), Age-related
Macular Degeneration (AMD), Central Serous Retinopathy
(CSR), and Diabetic Retinopathy (DR). The images were

obtained using a raster scan protocol with a 2 mm scan length
and a resolution of 512×1024 pixels.

e) iChallenge-AMD
The iChallenge-AMD [166] dataset comprises 400 images,

with 89 images from patients with AMD. Image sizes vary,
with some at 2124×2056 pixels and others at 1444×1444
pixels. All images are manually labeled as AMD or non-AMD.

TABLE VI
LIST OF DATASETS SUPPORTING AGE-RELATED MACULAR

DEGENERATION (AMD)

Year Dataset # Images Format Resolution
1999 AREDS-1 [162] 188,006 - -

2012 ARIA [163] 143 - 768×576

2016 KORA [164] 2546 - 768 x 576

2018 OCTID [165] 500 - 512×1024

2020 iChallenge-AMD [166] 400 - various

D. Retinal Vessel Segmentation
The primary objective of retinal vessel segmentation is to

facilitate the accurate and detailed analysis of retinal blood
vessels, which is crucial for diagnosing and monitoring various
ocular diseases. This process involves identifying and delin-
eating the intricate network of blood vessels within the retina
from retinal images (Figure 9). In this context, we explore a
range of state-of-the-art methodologies that leverage advanced
(i) attention-based algorithms and (ii) encoder-decoder archi-
tectures. These approaches have shown significant promise in
improving segmentation accuracy by focusing on the most
relevant regions of the image and capturing complex patterns.
The incorporation of attention mechanisms enables the model
to selectively focus on crucial areas of the retinal image (such
as blood vessels and the macula) without requiring uniform
processing of the entire image. On the other hand, encoder-
decoder frameworks are designed to transform the input into
a compressed latent space and then reconstruct it into the
output. In many cases, attention mechanisms are integrated
into encoder-decoder architectures, allowing the model to
prioritize specific regions of the data during both the encoding
and decoding stages, thereby enhancing its ability to capture
important features more effectively.

1) Attention-based Algorithms
In retinal vessel segmentation, attention mechanisms have

proven to be essential for improving model accuracy by
enabling selective focus on critical features while suppressing
irrelevant ones. Dong et al. [167] introduced the Cascaded
Residual Attention U-Net (CRAUNet), which integrates a
multi-scale fusion channel attention (MFCA) module to im-
prove vessel delineation by focusing on relevant features at
different scales. Similarly, Li et al. [168] developed the GT-
DLA-dsHFF model, which combines global transformer (GT)
and dual local attention (DLA) mechanisms to capture both
long-range dependencies and fine-grained local features. Liu
et al. [169] further advanced this by proposing the DA-
Res2UNet, using dual attention to adaptively highlight impor-
tant regions while incorporating multi-scale feature extraction
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for more accurate segmentation. Ni et al. [170] also employed
attention mechanisms in their FAF-Net model, focusing on
the aggregation, reuse, and fusion of multi-scale features to
minimize semantic information loss, further enhancing vessel
segmentation accuracy.

In addition to these developments, other models have incor-
porated attention mechanisms in innovative ways to address
specific challenges. Ouyang et al. [171] refined U-Net by
adding a Local Feature Enhancement Module combined with
an attention module, emphasizing relevant local features to
improve segmentation precision. Transformer-based models,
such as Shi et al.’s [172] TCU-Net, utilize cross-fusion trans-
formers and channel-wise cross-attention mechanisms to sur-
pass traditional convolutional networks, offering more efficient
segmentation by focusing on critical features and learning
relationships between different image modalities. Wang et al.
[173] introduced a directed graph search-based method for
vascular network segmentation, leveraging learnable attention
to detect and prioritize feature points for more accurate results.

Other notable advancements include You et al.’s [174] CAS-
UNet, which employs Cross-Fusion Channel- and Structured
Convolutional Attention (Figure 9), as well as an Additive
Attention Gate and SoftPool pooling method, achieving high
accuracy and sensitivity. Yuan et al. [175] proposed AACA-
MLA-D-UNet, incorporating an Adaptive Atrous Channel-
aware mechanism to capture important features at multiple
resolutions while reducing model complexity. This model also
includes a multi-level module that improves generalization
ability and performance across various retinal images. To-
gether, these advancements demonstrate the growing impor-
tance of attention mechanisms in enhancing the robustness,
accuracy, and generalization of retinal vessel segmentation
models.

2) Encoder-Decoder Algorithms
The publication [180] introduces GDF-Net, a multi-task

symmetrical network designed for accurate retinal vessel
segmentation. By employing two symmetrical segmentation
networks, GDF-Net addresses information loss in thin vas-
cular detection, capturing both global contextual and detailed
features. The fusion network integrates these features, yielding
improved segmentation accuracy as demonstrated in competi-
tive experimental results.

Similarly, the publication [181] introduces Wave-Net, a
lightweight model tailored for precise retinal vessel segmen-
tation in fundus images. Overcoming challenges like semantic

information loss and limited receptive field, Wave-Net incor-
porates a Detail Enhancement and Denoising block (DED) and
a Multi-Scale Feature Fusion block (MFF). Moreover, [179]
introduces an enhanced U-Net model for retinal vessel seg-
mentation, incorporating local-region and cross-dataset con-
trastive learning strategies. The local-region strategy focuses
on separating features within local regions, while the cross-
dataset strategy utilizes a memory bank scheme for global
contextual information.

In a different approach, [178] introduces MMDC-Net, a
multi-layer multi-scale dilated convolution network for retinal
vessel segmentation. Addressing the lack of global information
exploration and class imbalance, MMDC-Net employs an
MMDC module and a multi-layer fusion module to capture
blood vessel details effectively. The incorporation of a recall
loss aids in resolving the class imbalance issue, demonstrating
superior performance in terms of accuracy and sensitivity
across various datasets. Additionally, [176] presents a novel
approach for multi-class segmentation of retinal blood vessels .
Decomposing the segmentation task into binary classifications,
including artery segmentation and vein segmentation, followed
by a final multi-class prediction. By explicitly maintaining
class-specific gradients and favoring discriminative features,
this approach addresses intra-segment misclassifications in
retinal imaging.

Study Group Learning (SGL) scheme is another direction
proposed by Zhou et al. [177] to enhance the robustness of
models trained on noisy labels for retinal vessel segmenta-
tion. This approach utilizes a concatenated U-Net architec-
ture, which incorporates both enhancement and segmentation
modules to process raw retinal images without requiring
preprocessing. The SGL strategy partitions the training set
into multiple subsets, allowing individual models to be trained
independently. By aggregating knowledge from these distinct
subsets, SGL helps reduce overfitting to noisy labels. Addition-
ally, the Vessel Label Erasing technique simulates incomplete
annotations, further enhancing the model’s ability to segment
smaller objects accurately.

Building on similar objectives of improving segmentation
accuracy and generalization, the AFFD-Net proposed by Zijian
et al. [182] introduces a dual-decoder network to address chal-
lenges such as low sensitivity and poor generalization in retinal
vessel segmentation. The model incorporates modifications
like reduced convolution filters and additional modules for
multi-scale feature extraction, which contribute to improved
sensitivity and segmentation performance. When evaluated on
public databases, AFFD-Net outperforms classical networks,
demonstrating superior generalization and segmentation accu-
racy with fewer parameters.

Overall, the aforementioned advancements, summarized in
Table VII, highlight continuous efforts to enhance the effi-
ciency and effectiveness of retinal vessel segmentation models,
particularly through the use of encoder-decoder and attention-
based methods. These approaches are especially effective
in addressing challenges such as noisy data and complex
image features, significantly improving model performance in
demanding segmentation tasks.



13

TABLE VII
TYPICAL STUDIES ON THE APPLICATION OF AI IN VESSEL SEGMENTATION.

Year Study Method Performance

2021
Yukun et al. [176] Binary-to-multi-class Fusion Net-

work
DRIVE: Sen=0.699, F1=0.700, ROC=0.841, HRF: Sen = 0.68, F1 = 0.72, ROC = 0.83

Yuqian et al. [177] Concatenated UNet DRIVE: Sen=0.838, Spec=0.983, DICE=0.832, Acc=0.971, AUC=0.989; CHASE DB1: Sen=0.869, Spec=0.984,
DICE=0.827, Acc=0.977, AUC=0.992

2022

Fangfang et al. [167] CRAUNet DRIVE AUC= 0.983, CHASE DB1 AUC=0.987

Li Yang et al. [168] Global Transformer (GT) and Dual
Local Attention (DLA) network

DRIVE: Acc=0.970, Sen=0.836, Spec=0.983, AUC=0.986; STARE: Acc=0.976, Sen=0.848, Spec=0.986,
AUC=0.991; CHASE DB1: Acc=0.976, Sen=0.844, Spec=0.986, AUC=0.989; HRF: Acc=0.969, Sen=0.817,
Spec=0.983, AUC=0.985

Xiang et al. [178] Multi-layer multi-scale dilated con-
volution (MMDC-Net) network

STARE: Acc = 0.96, Sen = 0.85, Spe = 0.97, AUC = 0.97; CHASEDB1: Acc = 0.95, Sen = 0.84, Spe = 0.97, AUC
= 0.95; DRIVE: Acc = 0.96, Sen = 0.81, Spe = 0.98, AUC = 0.96

Rui et al. [179] Contrastive learning DRIVE: ACC = 0.97, Sen = 0.84, Spe = 0.98, AUC = 0.99, Dice = 0.83; CHASE DB1: Acc = 0.98, Sen = 0.85,
Spe = 0.99, AUC = 0.99, Dice = 0.82

2023

Renyuan et al. [169] DA-Res2UNet CHASE DB1: F1=0.819; DRIVE: F1=0.828; STARE: F1=0.839

Jiajia et al. [170] Feature Aggregation and Fusion net-
work (FAF-Net)

DRIVE: Acc = 96.08, Sen = 86.90, Spe = 97.37, AUC = 98.39; CHASE DB1: Acc = 97.53, Sen = 84.11, Spe =
98.43, AUC = 98.98; STARE: Acc = 97.10, Sen = 85.02, Spe = 98.36, AUC = 98.99

Jihong et al. [171] LEA U-Net DRIVE: Acc=0.9563, F1=0.823, TPR=0.7983, TNR=0.9793. The AUC of PRC is 0.9109, and the AUC of ROC is
0.9794

Zidi et al. [172] TCU-Net ROSE-1: Acc=0.945, AUC=0.862

Gengyuan et al. [173] Directed graph search-based method DRIVE: F1=0.863, Acc=0.914; IOSTAR: F1=0.764, Acc=0.854

Zeyu et al. [174] CAS-Unet CHASE DB1: Acc=0.967, Sen=0.832; DRIVE: Acc=0.959, Sen=0.838

Jianyong et al. [180] GDF-Net CHASE DB1: Acc = 0.97, Sen = 0.79, Spe = 0.99, AUC = 0.99; STARE: Acc = 0.96, Sen = 0.76, Spe = 0.99,
AUC = 0.99; DRIVE: Acc = 0.96, Sen = 0.83, Spe = 0.99, AUC = 0.99

Yanhong et al. [181] Wave-Net DRIVE: Sen=0.816, Spec=0.976, Acc=0.956, F1=0.825

Zijian et al. [182] AFFD-Net DRIVE: Sen=0.842; STARE: Sen=0.846; CHASE DB1: Sen=0.826

3) Datasets
a) STARE

The STARE [183] database, generated by scanning and
digitizing 20 retinal image photographs, has lower image
quality compared to other public databases. Captured by a
narrow field of view (35 degrees) camera, the images in the
STARE database have a resolution of 700×605 pixels.

b) DRIVE
The DRIVE [184] database comprises 40 retinal images,

with 33 depicting healthy conditions and 7 exhibiting specific
pathologies. Captured with a fundus camera featuring a 45-
degree field of view, the images in this database have a
resolution of 565×584 pixels.

c) CHASE DB1
Kingston University, London, in collaboration with St.

George’s, University of London, has released a public retinal
vessel reference dataset, CHASE DB1 [185], comprising 28
retinal images from multi-ethnic children in the Child Heart
and Health Study in England (CHASE). The images in this
database have a resolution of 1280×960 pixels.

d) HRF
The HRF [186] dataset, designed for retinal vessel segmen-

tation, consists of 45 images arranged into 15 subsets. Each
subset includes a healthy fundus image, an image of a patient
with diabetic retinopathy, and a glaucoma image, with image
sizes set at 3,304×2,336 pixels.

e) IOSTAR
The IOSTAR [187] vessel segmentation dataset consists of

30 retinal images, each with a resolution of 1024×1024 pixels.
Expert annotations cover vessel segmentation, optic disc, and
artery/vein ratio.

f) RC-SLO
The RC-SLO [188] dataset comprises 40 image patches,

each with a resolution of 360×320 pixels. It includes vessel
annotations by retinal image analysis experts and covers vari-
ous challenging scenarios like high curvature changes, central
vessel reflexes, micro-vessels, and crossings/bifurcations.

g) ROSE-1
The ROSE-1 [189] encompasses 117 Optical Coherence

Tomography Angiography (OCTA) images from 39 subjects,
with 26 having diseases and the remainder serving as healthy
controls. All OCTA scans were acquired using the RTVue XR
Avanti SD-OCT system by Optovue (USA) with AngioVue
software, boasting an image resolution of 304×304 pixels.

TABLE VIII
LIST OF DATASETS SUPPORTING RETINAL VESSEL SEGMENTATION.

Year Dataset # Images Format Resolution
2000 STARE [183] 20 JPEG 700×605

2004 DRIVE [184] 40 JPEG 565×584

2009 CHASE DB1 [185] 28 TIFF 1280×960

2013 HRF [186] 45 - 3304×2336

2015 IOSTAR [187] 30 JPEG 1024 ×1024

2015 RC-SLO [188] 40 JPEG 360×320

2021 ROSE-1 [189] 117 - 304×304

IV. FUTURE PERSPECTIVES

The field of medical imaging, particularly in diagnosing
eye diseases such as diabetic retinopathy (DR), macular
edema, age-related macular degeneration (AMD), glaucoma,
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and retinal vessel segmentation, has experienced remarkable
progress, with advancements driven by Explainable AI (XAI)
and human-in-the-loop methodologies. These approaches have
significantly enhanced the transparency and trustworthiness of
AI models, making them more acceptable in clinical settings.
At the same time, deep learning techniques, including both
convolutional neural networks (CNNs) and transformer-based
architectures, have demonstrated exceptional capabilities in
extracting intricate patterns and features from complex medical
images. Despite these advancements, there are still numerous
promising opportunities for future research to enhance the in-
terpretability, accuracy, and practical applicability of AI-driven
solutions in ophthalmology. This section explores potential
future directions aimed at advancing the development of more
reliable, efficient, and clinically adaptable AI-based models for
ophthalmic applications.

A. Integration of Multimodal Data
One promising direction in advancing AI-driven diagnostics

for ophthalmology is the integration of diverse data sources
beyond conventional retinal imaging. By incorporating genetic
markers, patient demographics, lifestyle factors, and clinical
histories, a more holistic view of the pathogenesis and progres-
sion of eye diseases can be achieved. For instance, the role of
genetic markers has been emphasized in studies such as [190],
which highlight the potential of leveraging genomics for iden-
tifying disease susceptibility. Similarly, patient demographic
information, such as age, ethnicity, and socioeconomic status,
has proven valuable in risk stratification, as demonstrated by
[191]. Lifestyle factors, including diet and smoking habits,
play a significant role in diseases like diabetic retinopathy
and macular degeneration, as explored in [192]. Additionally,
the integration of longitudinal clinical histories can provide
temporal insights into disease progression, as evidenced by
[193].

This multimodal approach, which combines diverse data
modalities [194], enables AI systems to capture the intricate
interplay of genetic predispositions, environmental exposures,
and disease trajectories, leading to more personalized and
precise diagnostic assessments [195]. The use of advanced
multimodal fusion techniques and machine learning algorithms
on this aspect is crucial in extracting meaningful insights
from such heterogeneous datasets. Techniques like attention-
based fusion [196]–[198], graph neural networks [199]–[201],
and large-scale pre-trained medical models [202]–[205] can
effectively model relationships between disparate data types,
enhancing diagnostic accuracy and robustness. Furthermore,
these approaches improve interpretability, enabling clinicians
to understand how different data sources contribute to diag-
nostic decisions.

B. Human-Centric Design of XAI Systems
Future research should prioritize the design and implemen-

tation of Explainable AI (XAI) systems that are grounded in
user-centric principles, as emphasized in [206], [207]. Such
systems are particularly important in bridging the gap between
advanced AI models and their practical utility in clinical

environments, particularly in diagnosing and managing eye
diseases such as diabetic retinopathy, age-related macular de-
generation, and glaucoma. Grounded in user-centric principles,
these systems must deliver outputs that are comprehensible
and actionable for healthcare professionals. For example,
interactive tools like saliency maps or heatmaps [68], [208]
over retinal images can help ophthalmologists pinpoint areas
critical to AI predictions, fostering trust and improving diag-
nostic accuracy. Seamless integration into existing workflows
through intuitive dashboards and real-time visualization of AI-
based support systems [209] can further enhance usability and
adoption.

Additionally, incorporating clinician feedback mechanisms
into XAI systems [71], [210], [211] can empower ophthalmol-
ogists to refine model outputs and validate predictions, leading
to better alignment with clinical needs. These mechanisms
allow AI systems to dynamically adapt to specific diagnostic
contexts, improving accuracy and reliability. Furthermore, XAI
systems should clearly communicate uncertainties in their
predictions [212]–[215], enabling clinicians to make informed
decisions, especially in cases with ambiguous findings. By
prioritizing transparency, interactivity, and clinician involve-
ment, XAI can become a transformative tool in ophthalmology,
facilitating precise, efficient, and trustworthy patient care.

C. Longitudinal Monitoring and Prognostic Modeling

Expanding beyond static diagnostic tasks, the future direc-
tion in ophthalmology should focus on longitudinal monitor-
ing and prognostic modeling of eye disease progression. By
analyzing temporal changes in retinal morphology, vascular
patterns, and other biomarkers, AI systems using transformer
[216] or graph neural networks [217], [218] can provide
early warnings of disease exacerbation and guide personalized
treatment strategies. For example, tracking retinal thickness or
vascular anomalies over time could enable early detection of
diabetic retinopathy progression or macular edema recurrence.

Prognostic models with interpretability can empower clini-
cians to make informed decisions about patient management
and treatment planning, such as predicting responses to ther-
apies like anti-VEGF in age-related macular degeneration.
Similar approaches have proven effective in other fields, like
Alzheimer’s disease, where machine learning forecasts cogni-
tive decline from longitudinal data [219]. These advancements
hold promise for improving both preventive and therapeutic
outcomes in ophthalmic care.

D. Interactive Explanations with Generative AI

A compelling avenue for future research is the integra-
tion of Generative AI, particularly large language models
(LLMs), into ophthalmology applications to enhance the in-
terpretability and usability of AI-driven diagnostic systems.
Models such as GPT [220], Gemini [221], LLaMA [222],
Claude [223], Mixtral [224], and Falcon [225], along with
domain-specific adaptations like LLaVA-Med [226], BioMed-
GPT [227], and LoGra-Med [228], hold significant potential
for creating interactive explanations of AI predictions. These
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models can generate human-readable explanations as demon-
strated in [229], tailored to individual users’ understanding and
preferences, enhancing transparency and trust in AI-driven di-
agnostic systems. Empowering end-users, including healthcare
professionals and patients, to interact dynamically with LLM-
generated explanations fosters collaborative decision-making
and enhances understanding of complex diagnostic outcomes.
This interactive approach also allows clinicians to delve deeper
into the AI’s reasoning, improving confidence in the system
while enabling patients to comprehend their diagnoses and
treatment options better.

To ensure safety and mitigate potential distress for patients,
integrating the principles of Constitutional AI (CAI) [230]
offers a valuable framework for designing AI-driven diagnostic
systems. CAI emphasizes transparency, non-evasiveness, and
harmlessness in AI interactions, guiding systems to produce re-
sponses that are both informative and empathetic. For instance,
AI models can present diagnostic findings in a manner that
is clear yet reassuring, reducing patient anxiety and fostering
trust in the AI-assisted diagnostic process. This thoughtful
integration of ethical principles ensures that AI systems not
only enhance clinical decision-making but also support a
patient-centered approach in healthcare.

E. Addressing Disparities and Bias
Mitigating disparities and biases in AI-driven diagnostic

systems should be a central focus of future research to
ensure equitable healthcare for all patients. A critical as-
pect of this is the development of fairness-aware algorithms
[231]–[233] that actively identify and reduce demographic
biases, ensuring that AI models deliver consistent, unbiased
diagnostic outcomes across diverse patient populations. These
algorithms can address biases related to age, gender, ethnicity,
and socioeconomic status, helping to create more equitable
AI tools. In parallel, incorporating diverse and representative
training datasets is essential to improve the generalizability
of AI models. By including data from a wide array of
geographic regions, ethnic groups, and clinical settings [234],
[235], AI systems can better reflect the variety of patient
experiences and disease manifestations. This not only reduces
algorithmic biases but also enhances the robustness and accu-
racy of AI models across different populations. Additionally,
standardizing data collection protocols and encouraging the
sharing of underrepresented datasets can further strengthen the
inclusiveness of these systems. Collectively, these efforts will
contribute to more fair and reliable AI-driven diagnostic tools
that promote trust and equality in healthcare

F. Clinical Validation and Real-World Deployment
Lastly, prospective research should prioritize rigorous clin-

ical validation and real-world deployment of XAI-driven
diagnostic systems to ensure their effectiveness in diverse
healthcare settings [236]–[238]. Collaborative studies involv-
ing multi-center clinical trials and real-world implementation
in diverse healthcare settings are essential, as they can pro-
vide valuable insights into the scalability, effectiveness, and
clinical utility of AI-driven solutions. Furthermore, continuous

monitoring of system performance and user feedback in these
real-world settings will enable iterative improvements and
optimization of XAI algorithms, ultimately ensuring that AI-
driven tools are not only scientifically robust but also practical
and beneficial for clinical use.

V. CONCLUSION

In this paper, we introduce a comprehensive overview of the
current state-of-the-art AI methods, with a particular focus on
deep learning approaches such as Convolutional Neural Net-
works (CNNs) and Transformer architectures. We explore their
applications in major ophthalmic conditions, including diabetic
retinopathy, glaucoma-related diseases, age-related macular
degeneration, and retinal vessel segmentation. Building on
this overview, we highlight key areas for future research,
emphasizing the importance of interdisciplinary collaboration,
user-centric design, longitudinal monitoring, interactive expla-
nations, fairness, and real-world validation. We hope that this
survey will provide valuable insights into the current landscape
of AI in ophthalmology and inspire further research to address
ongoing challenges, ultimately unlocking the full potential of
AI for improving diagnosis and patient care.
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