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Abstract. Brain-Computer Interface (BCI) systems represent an inno-
vative approach to human-computer interaction, enabling users to con-
trol devices and interact with technology solely through brain activity.
This study investigates the feasibility and potential of non-invasive EEG-
based BCI for elevator control, addressing two primary research ques-
tions: 1) Can a person reliably control an elevator through a BCI system?
and 2) What are the usability and user experience outcomes of such a sys-
tem? We integrated a Muse headset with a remote-controllable elevator
system using an iPhone as the interface over a local network. This setup
allowed users to operate the elevator using blinking, jaw clenching, and
mental focussing as triggers. Performance, accuracy, and user experience
were evaluated through experiments involving 50 participants aged 12 to
60. Usability was measured with the System Usability Scale (SUS) ques-
tionnaire along with additional feedback questions. Key findings indicate
that the system achieved an average SUS score of 80.3, reflecting excel-
lent usability on the adjective rating scale. Moreover, 94% of participants
successfully controlled the elevator, performing tasks such as activating
and deactivating brain control, calling the elevator, and selecting floors.
The user experience questionnaires reveal that most participants found
the system easy to use, well-integrated, and perceived the introduction
of brain-controlled elevators to positively impact accessibility and inclu-
sivity in buildings.

Keywords: Brain-Computer Interface (BCI) · EEG-based BCI · Non-
invasive BCI systems · Elevator control via BCI · Accessibility

1 Introduction

The intersection of neuroscience and technology has led to groundbreaking ad-
vancements in the field of Brain-Computer Interface (BCI), revolutionising the
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way humans interact with machines [11]. BCI systems enable direct communica-
tion between the human brain and external devices, bypassing traditional input
modalities such as keyboards or touchscreens [29]. This holds promise for enhanc-
ing accessibility, improving human-computer interaction, and even restoring lost
functionalities for individuals with disabilities [14].

Among various modalities of BCI, electroencephalogram (EEG)-based BCIs
have received significant attention due to their non-invasiveness, portability, and
affordability [13]. EEG-based BCIs detect and analyse electrical activity in the
brain through scalp electrodes, allowing real-time monitoring of neural signals
associated with different mental states and intentions [15]. Such systems have
demonstrated remarkable potential in enabling users to control external devices
solely through their brain activity [23].

Despite the progress made, current BCI-based elevator control studies, as
discussed in Section 2, are often hindered by complex setups, limited flexibility,
and extensive training requirements. Many existing systems are not intuitive
and provide only passive suggestions for floor selection. Addressing these limita-
tions, our work aims to offer a more user-friendly and efficient EEG solution for
BCI-based elevator control in a real-world setting. Using Muse headset for its
convenience and comfort, we developed a concept that seamlessly integrates into
user interaction with minimal interruption and ease of use. The headset cap-
tures and interprets EEG data in real-time and transmits the signals to a mobile
phone via Bluetooth, where a dedicated application processes them and com-
municates with the server orchestrating the elevator’s operations. By utilising
the signals captured by the Muse headset, variations caused by jaw clenching,
blinking patterns, and cognitive states such as mental focus are construed to
trigger specific actions within the elevator environment, such as calling it and
selecting the floor. This setup establishes a seamless interface between the user’s
brain activity and the elevator’s control system, addressing two primary research
questions: Can a person reliably control an elevator through a BCI system? and,
what are the usability and user experience outcomes of such a system? To an-
swer these questions, we evaluated our developed system in a user study with
50 participants aged 12 to 60, measuring performance, accuracy, and user ex-
perience. The results showed an excellent usability and performance, making it,
to the best of our knowledge, the first user-friendly and unobtrusive BCI-based
elevator control.

2 Related Work

BCIs have seen substantial progress, particularly in smart home scenarios where
they are used to control various devices and systems [7]. BCI systems can be
categorised into active, reactive, and passive types. Active BCIs rely on deliber-
ate mental tasks, such as motor imagery [17] or speech imagery [22], to generate
control signals. Reactive BCIs detect specific brain responses to external stimuli,
such as error potentials [2]. Passive BCIs monitor brain activity without requir-
ing volitional modulation, providing insights into cognitive states like attention,
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mental fatigue, and emotional states [30]. This section reviews existing research
on the use of different types of BCIs with a focus on the application of EEG in
real-world environments in general and regarding elevator control.

Early research in BCI applications often involved complex clinical EEG se-
tups designed to enable people with mobility impairments to control wheelchairs
[21]. These studies demonstrated the feasibility of using EEG-based BCIs to
control devices in real-world environments, but also highlighted significant chal-
lenges. The setups were typically cumbersome and required extensive calibration
and user training, which limited their practical usability [12].

To address these challenges, portable EEG solutions have been developed.
Devices such as Emotiv EPOC [27] and Muse headband [16] offer improved
usability, although they sacrifice some flexibility and signal quality compared
to clinical-grade EEG systems [6]. Despite the limitations, these devices have
shown potential in controlling BCI applications. Simar et al. [25] investigated
the potential of BCIs to control a small robot using Muse EEG headband. Their
study demonstrated successful robot control based on real-time analysis of brain
signals, focussing on the modulation of alpha oscillations to determine control
commands. Despite the challenges posed by physiological artefacts, their findings
suggest the feasibility of using consumer-grade EEG devices for robust BCI appli-
cations. Advancements in mobile EEG (mEEG) technology further expanded the
application of BCIs in smart home scenarios. Krigolson et al. [10] demonstrated
the utility of mEEG in rapidly assessing cognitive performance and neural states.
Combining event-related brain potentials (ERPs) and EEG oscillations, their re-
search provided accurate predictions of cognitive states, showcasing the potential
of portable mEEG devices for real-world applications in cognitive research.

In the context of smart home environments, Raizer et al. [19] discussed the
development of an agent to assist BCI users in controlling smart environments,
including elevators. This agent proposed interactions based on various parame-
ters rather than requiring active user control, suggesting relevant actions such
as calling an elevator based on predefined goals, state of the environment, and
scheduled events. Similarly, Saboor et al. [24] used Steady-State Visual Evoked
Potentials (SSVEPs)-based BCIs to control smart devices, including an eleva-
tor, through visual stimuli displayed on AR glasses, with QR codes employed to
identify the devices to be controlled via BCI. Chatziparasidis et al. [5] focused
on residential buildings equipped with BCI functionality, targeting disabled and
elderly users. This study used Emotiv EPOC with semi-dry sensors and mo-
tor imagery-based BCIs involving imagining pulling a 3D object to control a
two-floor elevator. While it provided a proof-of-concept, the study had several
limitations, including a small sample size of five participants, long training times,
and insufficient reporting on the success rate and usability of interactions.

While existing studies have laid the groundwork for BCI-based elevator con-
trol, they face challenges such as complex setups, limited flexibility, and extensive
training requirements. Our work seeks to overcome these issues by using more
user-friendly and efficient EEG solutions, providing a detailed and comprehen-
sive evaluation of the performance of the BCI elevator in a real-world setting.
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3 Methodology

3.1 Design Criteria and Procedure

The primary objective of our study was to design a user-friendly and efficient
BCI system for elevator control, emphasising minimal interruption and ease of
use. Key design criteria included:

– Accessibility and Comfort: Use of a non-invasive, portable EEG device.
– Simplicity and Intuitiveness: Ensuring that the control mechanism was

straightforward for users of varying ages and abilities.
– Efficiency: Reducing the need for extensive training and complex setups.

3.2 EEG Headset

Considering its accessibility and comfort, we decided to use the Muse EEG head-
set1, known for its accessibility, portability and versatility. It features an array
of strategically positioned electrodes. The headset as shown in Fig. 1, includes
two temporal electrodes, TP9 and TP10, situated over the left and right tem-
poral lobes respectively and two frontal electrodes, AF7 and AF8, positioned
at the anterior regions of the scalp. Additionally, FPz reference electrodes serve
as a stable point for signal comparison, ensuring accuracy in measuring neural
oscillations in different regions of the brain.

Fig. 1: Electrodes placement in Muse headset [28]

3.3 Elevator Control Procedure

Mental focus to ensure effective modulation of brain activity is a widely recog-
nised criterion in BCI research, providing reliable triggers for control actions.
However, artefacts such as jaw clenching and eye blinking pose challenges to
signal interpretation and are typically regarded as noise in EEG recordings [20].
Utilisation of these artefacts by repurposing them as meaningful inputs for con-
trolling external systems presents an interesting approach for interaction in BCI
1 https://choosemuse.com/
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applications. We designed our triggers by incorporating mental focus, as well as
capitalising on these artefacts, to create a robust and user-friendly BCI control
mechanism.

The user interaction with the elevator involves intuitive gestures and cog-
nitive commands. We developed an iOS application that connects to the Muse
headset and provides voice instructions to guide the user through each step. To
activate brain control, the user performs four blinks to signal readiness and pre-
vent unintended interactions. Subsequently, the user modulates brain activity
by mentally focussing on solving a maths problem to call the elevator. For the
purpose of the study, the elevator is always called to the ground floor where
participants are located. The user then selects one of the 5 destination floors by
blinking a specific number of times in the period of 4 seconds to avoid interference
with natural blinks. Specifically, no blinks indicate staying on the ground floor,
and the number of blinks increases with each subsequent floor. Jaw clenching is
further used to deactivate brain control, ensuring a seamless transition between
manual and BCI-driven operation. API calls from the application to the server
trigger the elevator’s actions at each step, facilitating smooth elevator operation.

3.4 EEG Data and Determination of Triggers

To ensure accurate and reliable brain-controlled elevator operation, the system
incorporates an intricate process for determining the set triggers based on data
acquired from Muse headset. The Muse SDK facilitates the detection of eye
blinking and jaw clenching through its built-in functions. Conversely, EEG data,
particularly the beta, and gamma bands are used to identify focussed state [20],
which is relevant for calling the elevator.

The fact that the beta band dominates during a regular state of mind serves
as a foundational understanding for subsequent analysis [18]. Through experi-
mentation, it was observed that when users focus, thereby increasing cognitive
engagement, beta band values decrease while gamma band values increase. This
shift signifies the transition from the beta state to the gamma state, indicating
an increased focus [8]. To operationalise these findings, a calibration process is
carried out to determine individual threshold values for beta-band activity. This
process involves the following steps:

1. Baseline Measurement: Each user undergoes an initial assessment to es-
tablish their baseline beta band value in normal state, with minimal cogni-
tive engagement. The mean beta band value during this period is set as the
baseline.

2. Focus State Measurement: Users are then instructed to engage in a fo-
cussing activity, such as performing a mental arithmetic task, during which
their beta band values are monitored.

3. Threshold Setting: The threshold value is set based on the mean beta
band activity observed during the focussed state.

The accuracy and reliability of the system relies on this calibration process.
During operation, if beta band values fall below the established threshold by
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mental focussing, the system initiates the action to call the elevator. Given the
distinctive roles of frontal and temporal electrodes, the selection of electrodes for
analysis is critical. Frontal electrodes, located on the frontal lobes, are associated
with reasoning; however, due to potential interference from eye movements when
focussing, temporal electrodes are deemed to be more optimal. Temporal regions,
responsible for language, memory, senses, and emotions, offer better reflection
of cognitive states and are more robust to muscle artefacts due to their position
behind the ears. To induce increased brain activity for focussing, mental maths
questions are utilised, leveraging the linguistic processes associated with math-
ematical reasoning. This task is aligned with the cognitive processes monitored
by the temporal electrodes. Comparative analysis of EEG data between the left
and right temporal electrodes revealed that the left temporal electrode (TP9)
provides more accurate readings. This finding aligns with the understanding that
the left hemisphere of the brain, associated with analytical thinking and logical
reasoning, is primarily engaged in cognitive tasks requiring focussed attention
[9]. Therefore, the signals of TP9 were chosen as input for the elevator control.

3.5 System Configuration

The system comprises interconnected components, as illustrated in Fig. 2. An
iPhone running an iOS application serves as the primary interface for the user.
The Muse headset connects to the iPhone via Bluetooth BLE, facilitating the
transmission of EEG data. Within the local network, the iPhone interfaces with
a server hosting a Java-based API developed using the Quarkus framework. This
API functions as an intermediary, managing incoming requests and establishing
communication with the elevator. It is also possible to remotely monitor elevator
actions in real-time via a dedicated device connected to the local network. This
device continuously streams and visualises the elevator’s movements, facilitating
effective system monitoring and interaction.

4 User Study

We conducted a usability study of our BCI-operated elevator control system in
a real elevator located in the entrance hall of the German Research Center for
Artificial Intelligence. The choice of a real-world environment improves the ex-
ternal validity of our findings, providing realistic insight into practical usability.
This method also enables us to capture genuine user behaviour and feedback,
ensuring the relevance and applicability of our results to real-life applications.

4.1 Participants

A total of 50 participants were recruited for this study. The demographics of the
participants were varied, with a gender ratio of 32 males and 18 females, and
ages ranging from 12 to 60 years (mean age = 25.14 years, SD = 9.96). The
participants were from various backgrounds, with different levels of familiarity
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Fig. 2: System configuration of BCI setup for elevator control

with BCI technology. Specifically, 26 participants were familiar with BCI, while
24 participants had no prior knowledge of it. Furthermore, 8 participants had
used BCI technology before, while 42 participants were completely inexperienced
with BCI systems.

4.2 Procedure

The participants were first given a brief introduction to the study and the BCI
technology. They then completed a consent form for participation. Following this,
the participants underwent a calibration session with the BCI headset to ensure
accurate signal capture. The calibration, which took an average of 45 seconds
once the headset was properly worn, involved mental focussing by solving a
mental maths problem to observe the variation in the beta signals from the
baseline and determining the threshold for the trigger. After calibration, the
participants were asked to complete the elevator control procedure as shown in
Fig. 3, fill out the System Usability Scale (SUS) questionnaire, and additionally
answer custom usability questions regarding the elevator use case. They were
also asked to provide qualitative feedback on their experience.

4.3 SUS Questionnaire

The System Usability Scale (SUS) is a ten-item questionnaire that provides an
overall evaluation of subjective usability [4]. These ten questions, when applied
to systems that exemplify extremes of usability and non-usability, elicit the most
extreme positive and negative responses. The individual questions in SUS are
not inherently significant on their own and are designed to be broadly applicable
across different technologies. The aggregate rating of these ten questions provides
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Fig. 3: A participant performing the BCI elevator control task

an overall measure of perceived usability [3]. However, the SUS score should not
be used alone to evaluate the system’s usability. The success rate and the nature
of failures during user testing are also crucial factors in assessing usability [26].

5 Results and Discussion

The data collected from participants included demographic information, previous
BCI experience, responses to the SUS, and additional feedback on responsive-
ness, reliability, comfort, and ergonomics, as well as qualitative feedback. The
analysis focussed on evaluating the usability, efficiency, and user satisfaction with
the BCI-controlled elevator system.

The average SUS score of the system was evaluated as 80.3, indicating ex-
cellent usability on the adjective rating scale [1]. This score signifies that the
majority of users found the system easy to use and well-integrated. Despite 84%
of the participants having never used a BCI system, 94% were able to success-
fully complete the elevator control interaction, highlighting the intuitiveness and
effectiveness of the system. The distribution of SUS scores among participants is
shown in Fig. 4. These scores fall predominantly between 70 and 100, indicating
high levels of satisfaction. The peak at 100 indicates that a significant number
of users rated the system as extremely user-friendly.

Most of the participants did not experience discomfort or fatigue, reflecting
the general comfort and usability of the system. Muse headset received a comfort
and ergonomics rating of 4.06 on a scale of 1 to 5, indicating it is well-regarded
by users. However, issues were noted, particularly for users who wear glasses or
hijab, suggesting a need for design improvements to better accommodate such
users. The voice instructions were found helpful by the majority, guiding their
interaction with the elevator effectively. Only one participant found the instruc-
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tions distracting, suggesting that while generally effective, the system should
allow customisation of feedback methods to cater to individual preferences.

Fig. 4: SUS score distribution for all 50 participants.

The system was perceived reliable and responsive by most participants with
a high average rating of 4.2 out of 5. This reliability is crucial for the practical
adoption of BCI technology in real-world applications, as it directly impacts
user trust and satisfaction. The introduction of brain-controlled elevators was
positively rated for improving accessibility and inclusivity, with an average score
of 3.96 out of 5. This suggests that participants recognise the potential benefits
of such systems in making buildings more accessible to individuals with mobility
impairments. However, there remains room for improvement in educating users
about these advantages and further enhancing the system’s ease of use.

Despite the overall positive feedback, 12% of participants had difficulty deac-
tivating the brain control using jaw clenches. This highlights the need to improve
the control mechanisms for more reliable and user-friendly interactions. In addi-
tion, participants pointed out discomfort due to sweat accumulation, indicating
areas where ergonomic improvements are necessary.

The analysis of the time taken to complete each step in the BCI elevator con-
trol process across multiple participants reveal several insights and is illustrated
in Fig. 5. Activating brain control generally takes a relatively short amount of
time, though there are few outliers indicating some participants took longer, po-
tentially due to initial unfamiliarity with the system. Calling the elevator shows
a wider range of time taken, suggesting variability in participants’ ability to
modulate brain activity to trigger this action. The presence of multiple outliers
also suggests that some participants faced challenges in achieving the required
mental focus state. The time taken to select a floor is consistently short, with
minimal spread and few outliers, indicating the process of selecting a floor by



10 Srivastav et al.

blinking was generally quick and straightforward for most participants. Deacti-
vating brain control shows a larger spread and higher median time, indicating
deactivating brain control via jaw clenching was challenging for participants,
which aligns with the feedback indicating difficulties with this control mecha-
nism.

Fig. 5: Analysis of time taken for each step of the BCI elevator control

Participants also provided a range of qualitative feedback, highlighting pos-
itive aspects and areas for improvement. Many found the experience exciting,
describing it as "fun" and noting the thrill of moving the elevator using BCI. The
concept was well-received, with participants recognising its use cases in special
areas, even if it might not be practical for everyday life in its current form. There
was also a suggestion to ensure affordability to enhance impact on accessibility.

6 Conclusion and Future Work

This study demonstrates the feasibility and effectiveness of EEG-based BCI for
controlling elevators. By integrating Muse headset with a remote-controllable
elevator, we found that users could reliably control the elevator using brain
activity, achieving a 94% success rate among participants, the majority of whom
had no prior experience with BCI. Participants positively rated the potential of
brain-controlled elevators to enhance building accessibility, highlighting both the
novelty of the experience and areas for improvement such as headset comfort and
jaw clench detection. Overall, this study highlights the potential of BCI systems
in existing infrastructure, suggesting broader adoption possibilities with further
refinement.
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The current setup assumes the user is always on a specific floor where the
elevator is called. Future work includes designing a mechanism to detect the
user’s location and call the elevator to their current floor using dynamic location
detection or a blink-based method. Additionally, we aim to deploy the application
on wearable devices like smartwatches for a seamless, hands-free experience.
Future research will also explore the long-term usability and acceptance of BCI
systems, their sustained use, and their impact on daily life over extended periods.
Addressing the factors contributing to occasional failures and user difficulties will
be crucial for improving BCI systems and ensuring their practical viability.
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