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Abstract. Formal methods based on formal logical or mathematical
symbolic techniques provide the highest standards to analyse and ensure
safety and security properties of cyber-physical systems—but require a
large overhead to specify and especially to verify system properties. The
laborious and often manual and creative tasks consist of coming up with
the appropriate specifications, to specify required lemmas or to guide the
verification process. Once properties, lemmas, proof guidance or a proof
itself is given, checking it rigorously for correctness is an easy task. Large
Language Models (LLMs) have demonstrated remarkable proficiency in
a variety of domains, and there is a recent trend of research that tries
to leverage that potential for the creative parts of formal verification.
On the other hand, digital twins as virtual replicas of physical systems
or processes are used to simulate and analyse real-world systems or sce-
narios, allowing for predictive maintenance, optimization, and testing of
the systems. They can be used to predict and prevent failures, optimize
processes, and test different designs in a virtual environment. They can
also aid monitoring of real systems and offer support to adapt systems
to new situations, e.g., in case of failures to simulate how to reestablish
safe operations. Starting from examples of research results using LLMs
for symbolic techniques, we advocate researching how to systematically
design digital twins for systems under investigation, use simulation capa-
bilities to explore system behaviours and assess their formal properties to
create high-quality training data sets to pre-trained LLMs offline. Such
LLMs shall then serve in specific verification tasks in practice, to take
care of the difficult and, so far, manual task of generating appropriate
candidate properties, lemmas or proofs that are subsequently automati-
cally and efficiently checked for correctness using formal techniques.
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1 Introduction

Formal methods provide the highest reliability that systems comply with their
safety and security requirements. However, the effort required to apply them in
practice is extremely high and thus far they are only used if required, e.g., for the
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higher safety integrity levels (SILs) of the IEC 61508 standard [15] (and related)
or when costs of failures are extremely high. Compared to the less reliable but
much adopted testing of software, formal methods require the formalization of a
system in development or under investigation in an appropriate formal logical or
mathematical language, the specification of the safety and security requirements
and subsequently the verification of the properties on the system specification.
Verification is more often than not an interactive manual process, either requiring
the experts guiding the proofs or decomposing the properties into sub-properties
and lemmata. And even if automatic, the verification process may suffer from
state space explosion. This makes the use of formal methods laborious in prac-
tice already during the development phase. When it comes to the deployment
phase system failure may nevertheless occur, e.g., due to failing or unreachable
sub-systems or successful security attacks, using formal methods to design the
reactions to bring the system back towards a safe and secure operation is nearly
excluded due to lack of time.

Large Language Models (LLMs, e.g., [7, 3] have demonstrated remarkable
proficiency in a variety of domains and there is recent interest to explore their
potential as oracles in formal methods (See Section 2), though focusing mainly
on the development phase of systems and not deployment phase where system
are in operation.

First presented in 2002 by Grieves [13], digital twins have gained a lot of
interest in industry as digital counterparts to the physical system or processes,
that can be used to for simulation, integration, testing, monitoring as well as
maintenance planning. Being a concept that covers the whole product life cycle,
they thus address both the development phase as well as the deployment and
maintenance phases.

This paper proposes leveraging LLMs as oracles to be used for the different
tasks that make the use of formal methods difficult in practice. To do so, it
proposes to systematically organise the development of domain-specific LLMs in
combination with formal methods for the different specific tasks, and especially
also exploit digital twins to develop domain-specific LLMs to assist during the
deployment and maintenance phase.

The paper starts with a review of examples using LLMs for formal methods
in Section 2. Section 3 provides an overview of the use of digital twins and
especially for which specific tasks which arise in the product life cycle they are
used for. Based on these Section 4 will discuss the role LLMs shall / could
play to foster the use of formal methods for specific tasks throughout the whole
software development life cycle (SDLC), which includes the deployment and
maintenance phases where digital twins are used. For the different cases, we
will discuss the role and requirements for formal methods techniques that arise
from their interplay with LLMs, before a summarizing discussion in Section 5
concludes the paper.
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2 LLMs for formal methods

Reviewing methodology. The following is a review of existing work on using LLMs
for formal methods. It is not a systematic review in the proper sense, but search
has been conducted through usual internet search engines (Google1, Startpage2)
using combinations "large language model" and "foundation model" and short-
cuts "LLM" in combination with the formal software development methods of
interest such as "(automated) theorem proving", "logical formalization", "pro-
gram verification", "program synthesis" and similar. Futhermore, pointers given
by authors of found literature to interesting related where also followed.

2.1 LLMs in theorem proving

Proving formal theorems is a core activity in formal methods. Automated theo-
rem proving and model checking procedures become more and more powerful but
depend on having the right properties and lemmata formulated. We will come
back to this in the next Section 2.2. The painful part of applying formal methods
arise when proofs have to be constructed interactively with an interactive proof
assistant such as Coq [25], Isabelle [33], or Lean [6] to name a few.

Starting from the LLama framework [30] Azerbayev et al. [1] pre-train the
LLM LLemma on Proof-Pile-2, which is mixture of scientific papers (29 billion
tokens), web data containing mathematics (15 billion tokens), and mathematical
code (11 billion tokens). Given a mathematical problem formulation, LLemma
generates a proof as typically found in textbooks with a mix of natural language
and formulas. Furthermore, it is able to generate proof scripts for the Isabelle
proof assistant in the declarative Isar style, if, additionally, a formal statement
of the problem is provided. Furthermore, with a formal statement of the problem
and a proof state in Lean, it generates the subsequent steps. All details can be
found in [1].

Similarly, the Baldur system of First et al. [8] also targets the Isabelle proof
assistant and, given a formalized problem statement, generates a proof script,
which can then be checked by Isabelle. The interesting addition compared to
LLemma is that in case Isabelle fails to check the generated proof script, it
takes the generated error message together with the problem statement and last
generated candidate proof as input to generate a new, adjusted proof script.

As a final example in that line of research Song et al. [28] provide an LLM
as copilot to interactively create proofs in Lean. Analogously to code copilots,
the user builds the proof script interactively and obtains on demand suggestions
of proof steps (tactics), completes intermediate proof goals by automatic proof
search, or helps selecting relevant premises. To this end specific commands have
been included in the proof script language: these trigger the corresponding LLM
assisted process and suggestions are provided on the side, from which the user
can then copy and paste.
1 www.google.com
2 www.startpage.com
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2.2 LLM for property formalization

Another challenge in using formal methods is that requirements which are typi-
cally stated in natural language need to be translated into the formal language
at hand. In the context of the Isabelle proof assistant Wu et al. [35] studied how
LLMs can generate formalizations of mathematical problems, a process denoted
as autoformalization [32, 29]. Wu et al. pre-trained a version of GPT-2 on two
corpora of data: The first containing 12500 middle school and high school math-
ematical competition problems in seven mathematical categories and second a
benchmark of 488 mathematical competition statements manually formalized by
humans in three different formal languages. To evaluate the autoformalization
they iteratively trained the neural theorem prover LISA [17] on the generated
formalization and proofs and measured if the performance of LISA is improved,
i.e., that the neural prover benefits from proving the generated theorems.

2.3 LLM in program verification

Program verification is a core discipline in formal methods and decades of re-
search have been going into this. The starting point is actually to come up for a
given program in some programming language with a formal specification that
can be annotated on the code, on which basis the verification happens. This
is related to the previous section in the sense that formalizations need to be
found, but more tailored to actual programs and properties about programs.
Here, formal annotations need to be created, which often is a manual process
and also requires some creativity, e.g., in the case of coming up with invariants.
There exists a variety of automated program specification generation tools which
typically rely on templates defined by experts. They are used to generate can-
didate specifications, which are then filtered by verifiers to eliminate incorrect
specifications.

Ma et al. [22] consider java programs and JML annotations to use an LLM to
overcome the pre-definition of templates. Using prompt engineering, they took
advantage of OpenAI’s gpt-3.5-turbo-1106 as LLM to create a conversation
between the LLM and the JML specification verifier OpenJML [5], where the
LLM proposes specifications for a program and the verifier either accepts or
provides feedback why the specification is rejected. This is comparable to the
approach used in [8] for generating Isabelle proof scripts.

Pei et al. [26] tackled the problem of creating invariants for programs: they
also chose Java programs as application domain and created a dataset of pro-
grams with invariants at different relevant positions in the program source code.
From that they pre-trained an LLM (GPT-4) on the source codes annotated
with invariants. The pre-trained LLM in turn was then fine-tuned to take as
input the source code of a program, and a target program position, to output a
list of invariants for the designated program position.

Inspired by Pei et al. [26], Wu et al. [34] proposed the LEMUR framework as
fully automated framework combining LLMs and reasoners. In this framework,
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LLMs propose program invariants, which are then checked by automated reason-
ers. They present LEMUR as a proof system for which they prove soundness and
termination. They instantiate the framework with OpenAIs GPT-3 and GPT-4
as starting LLMs. Similarly to First et al. [8] they use pre-trained LLMs to gen-
erate invariants as well as to correct invalid / non-provable invariants based on
the feedback of the underlying reasoner. As verification tools they used ESBMC
from Gadelha et al. [10] and UAUTOMIZER from Heizmann et al. [14].

2.4 LLMs in program synthesis

LLMs in the style of CoPilots are increasingly used to help writing programs.
While these start from natural language descriptions, there is no guarantee that
the generated programs comply with the original specification or are free of
flaws. Investigations have been conducted in that direction, where LLMs are
given formal specifications to generate programs that fulfil that specification.

The best-performing synthesizers in the domain of formal synthesis with
precise logical specifications are still based on enumerative algorithms (see Li
et al. [20]). Li et al. investigated the use of LLMs in that enumeration process.
They propose two variants how the enumeration process and the LLMs are
cooperating. They start from GPT-3.5-turbo and perform prompt engineering
using formal property specifications in SMT-lib format and prompt directives.

Another line research, actually driven by the motivation to control the hal-
lucinations of LLMs, is presented by Jha et al. [16]. In that work an overall
approach similar to First et al. [8] and Ma et al. [22] is used, where an LLM is
used to propose solutions, which are then assessed by a verifier based on a given
formal specification: if the proposed solution is correct, the solution is returned
as a verified solution. If the solution has flaws, counter-examples are added to
the query which was re-submitted to the LLM in order to generate a new solu-
tion. They tested this approach in the AI planning domain [11], using ChatGPT
as LLM, which is asked to generate AI plans for stated planning problems. The
generated plans are verified by plan execution to check if the generated plan
indeed solves the problem; invalid intermediate plans are added to the query
indicated as being invalid plans in order to discard them to be re-proposed.

3 Digital twins

Digital twins have gained a lot of interest in industry as digital counterparts to
the physical system or processes, that can be used to for simulation, integration,
testing, monitoring as well as maintenance planning. Digital twins are also used
in the different phases of the life cycles of systems and processes (cf. Negri
et al. [24]), similar to those life cycle phases considered to structured this paper.
In an effort introduce more structure Kritzinger et al. [19] proposed a refined
terminology3 of digital twins according to which automatic data flows exists
3 Kritzinger et al. [19] denote the counterparts as ’objects’, i.e., ’Real Object’ and

’Digital Object’, as they also deal with processes. We used system here as we are
only concerned with software and hardware.
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Fig. 1. Terminology for digital twins following Kritzinger et al. [19]

between the twin and the real system under consideration (cf. Fig. 1): They
propose to denote as (i) Digital Models (DM) those systems, where there is
neither automatic data flow from the real system to the digital system nor vice
versa; (ii) Digital Shadow (DS) if there is only automatic data flow from real
system to the digital system, and (iii) Digital Twin (DT) if data automatically
flows from either system to the other.

In their review, which also included processes and not only systems, from2018
Kritzinger et al. [19] noted that most works were concerned with Digital Shad-
ows (35 percent), followed by Digital Models (28 percent) and actually only 18
percent considered Digital Twins in the sense of their definition.

While there is still a debate4 around that terminology which seems to revolve
around the fact that Kritzinger et al. [19] assign digital systems exclusively to
be either a model, a shadow, or a twin, which is not necessarily. Indeed, a digital
model used a design time, may evolve into a digital shadow or digital twin for a
real system, while a copy may still serve to model next versions of the system.
Similarly, digital shadows may serve for simulations how to adjust configurations
in the physical system. Also a digital twin may be taken partially offline to be
a digital shadow in order to serve for the aforementioned types of simulations.
In the following and especially in Section 4, we will employ that terminology
in order to make explicit the type of interaction between physical and digital
systems under consideration.

Löcklin et al. [21] conducted in 2020 an overview of the use of digital twins
specifically for verification and validations in industrial automation systems.
Their findings are that in that domain, digital twins are used for one or more of
the three following tasks: exploratory investigation, testing and formal proving.
An investigation on 33 approaches using digital twins for verification and vali-
dation showed that 13 are used for exploratory investigations, 17 for testing and
only 3 for formal proving.

4 https://www.linkedin.com/pulse/digital-model-shadow-twin-michael-grieves, pub-
lished: April 6, 2023, accessed: August 22, 2024
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All 33 approaches make use of digital models of physical systems, but only 19
exploit the simulation capabilities in the sense of Digital Models (DM). 15 com-
bine available operational data and data analysis on the Digital Shadow (DS) in
a central interface. Surprisingly, none made use of the possibility to synchronize
the physical system and the digital system, i.e., making a Digital Twin, while
in principle having an up-to-date model would be beneficial to develop for au-
tomated, dynamic verification and validation during operation, a key feature of
intelligent autonomous systems to safely self-adapt during operation.

Regarding the specific tasks the models are used for, the authors could derive
3 types of activities: first, digital twins are used for what-if-analysis, for eval-
uating different options, or effect of bringing back to normal operation specific
parts (21 approaches). Second, 5 approaches used them for cross-validation to
detect differences between models and the behaviour of real systems. Thirdly,
the digital twin is used for evidence advice (7 approaches), to measure test
coverage or respectively to find gaps in test coverage.

4 Fostering further practical use of formal methods

In this section we discuss along the life cycle of a system the different activities
that need to be performed using formal methods and which shall be supported
by specifically trained LLMs. The guiding idea is that checking with formal
methods is much simpler than searching, the goal is that LLMs take over the
tasks of proposing a solution, that can then be checked using formal methods.
This is very much like in theorem proving where searching for an appropriate
instance of an existentially quantified variable is the difficult part and checking if
a proposed instance satisfies the formula is simpler—if the proposed instance is
correct. Analogously, output of the LLMs, even if trained on excellent data, may
be wrong, which is only detected through the use of formal methods techniques.
To serve the practical use of formal methods, the roles played by the formal
methods need to be taken into account: first, they shall be able to quickly check
if a solution is correct and if not, rather than performing time consuming search,
provide feedback that may be used by the LLMs or the developer to adjust the
solution or the system. Of course, powerful formal methods proof search and
checking techniques are still required, but may be more used during the training
time in order to generate and check suitable data, on which the LLMs are pre-
trained.

4.1 Requirements Elicitation

Challenge using formal methods. Requirements for systems under development
are formulated in natural language and a difficult task is to translate these
requirements into formal specifications.

Support offered by LLMs. Large language models can be used to analyse natu-
ral language descriptions of safety and security requirements (see Rajkovic and
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Enoiu [27]) and generate formal specifications in a formal language such as math-
ematical logic or model-based specifications. This can help to reduce the com-
plexity of the requirements gathering process, the challenge being that the LLMs
produce results ensuring that the requirements are unambiguous and consistent.
This was a reason to introduce the Attempto Controlled English [9] and the
challenge is to design means to create datasets and train LLMs that support
the task, while accommodating a more flexible language as well as also other
languages than English.

The work presented in Section 2.2 are first steps in that direction, but there
is still a lot of room for improvement. The work in Section 2.2 targeted the
mathematical problem domain and it seems sensible to consider other domains
that pertain to typical application domains of formal methods.

Requirements for formal methods. The method presented in the example of Sec-
tion 2.2 to check the usefulness of autoformalization is based on whether the
neural theorem prover can be improved based on the additional knowledge. This
is possible and valid regarding the application domain of mathematical com-
petition problem, but not for the task of providing formalizations for program
verification. For that one will have to develop means how to check created for-
malization and maybe also think about solutions like autoencoders, to recreate
the original natural language specifications from the formalization. Another pos-
sibility could be to include humans in the loop to visualize the behaviour induced
by the requirements. If the requirements would allow to create a digital twin (in
the sense of a digital model), which could be used for simulations, would be in-
teresting. This could be a possible topic to investigate, by not going the full way
to program synthesis (see Section 2.4), but actually generating digital models.
Alternatively, properties that can be derived from the generated requirements
could be generated and provided to the user to allow the user to check these and
assess if this is indeed what he/she wanted to specify.

Training data for pre-training LLMs. In order to train LLMs, data from past
and ongoing developments could be used. The challenges will probably consist
of getting access to such data, as they are usually not publicly available and also
may contain sensible information. This may require thinking in the direction
to protect the data by using approaches like federated learning with dynamic
federations of participating institutes and industry.

4.2 Formal Specification

Challenge using formal methods. To specify a system requires to describe its en-
vironments, the input and the output and the relation between these. As inputs
and outputs have meaning and properties in the environment, they also need to
be specified and possibly relevant aspects of the environments. All the knowl-
edge that is required here, needs to be available in the used formal specification
formalism. That formal descriptions which are prerequisite for the actual specifi-
cation are a necessary background theory and providing that in sufficient detail
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in order to allow to specify and possibly verify the requirements is a challenge.
Further challenges are to come up with lemmata which are necessary to auto-
matically prove domain properties, or annotations to programs, such as, e.g.,
necessary invariants.

Support offered by LLMs. The examples presented in Section 2.3 mainly address
the annotation of programs and the generation of invariants. The interaction
between the LLM generating the annotations and the verifier checking and pos-
sibly rejecting them is a sensible approach to continue on. What is actually
entirely missing in the literature are approaches how a background theory could
be obtained.

Requirements for formal methods. Formal verification tools can be used to anal-
yse the formal specifications generated by the large language model and verify
that the system meets the safety requirements. Digital twins used as digital
models can be used to simulate the behaviour of the system and provide a vi-
sual representation of the system’s dynamics, allowing engineers to analyse and
understand the system’s behaviour and identify potential safety issues. This is
in line with most usages of digital twins identified in the work presented in
Section 3. Large language models can be used to analyse the output of the for-
mal verification process and provide a natural language summary of the results,
making it easier for engineers to understand the results and identify areas for
improvement.

Training data for pre-training LLMs. A possible avenue to explore how to obtain
high-quality domain theories is the infusion of domain knowledge into LLMs.
Currently, the background or domain knowledge can be included via fine tuning
the models, integration of knowledge graphs or adding memory, e.g., in the form
of key value pairs (Jha et al. [16]). A good survey on knowledge graph embedding
is provided by Wang et al. [31]. All this happens in the context of neurosymbolic
AI, where, e.g., Glauer et al. [12] provide an interesting approach to fuse LLMs
and ontologies (there for the domain to detect poisonous chemical substances,
but the method is more general). Such activities of including domain knowledge
in LLMs could then be combined with the activities on theory exploration that
was coined by Buchberger [4] (see Johansson [18] for more recent work).

4.3 Software / Program Synthesis

Challenge using formal methods. Compared to the programming CoPilots that
are currently proliferating the challenge for software/program synthesis in formal
methods is that not only the software is syntactically and statically correct, but
also fulfils the formal properties.

Support offered by LLMs. The LLM support provided in Section 2.4 are based
on the means developed in formal software synthesis consisting of enumerating
programs. LLMs are included to improve that process, but not to fundamentally
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change the process. This could be reconsidered by, e.g., more tightly combine
specifications and annotated programs based on examples. A conversational ap-
proach between the programmer, the LLM generating annotated software and
a verifier (as done in the examples from Section 2.3) checking or rejecting an-
notated software could be a sensible approach. Blocklove et al. [2] present such
work in the context of hardware design exploration, for instance.

Requirements for formal methods. For a formal method verification tool to be
included in the interaction with the LLMs the information returned in case of
rejecting a solution (i.e., a program) gets more crucial. Indeed, that information
shall be used by the LLM in order to gear it towards a better / correct solution.
To date no research is known how in a systematic and structured manner negative
feedback of a verifier shall be provided depending on the task at hand in order
to assist the user (or then the LLM).

Training data for pre-training LLMs. Published annotated programs / software
could serve as a basis to pre-train LLMs. Similarly to the problem to formalize
natural language requirements from Section 4.1, the problem may be that such
data is not publicly available, e.g., because it may contain sensible information.
Again, this may require thinking in the direction to protect the data by us-
ing approaches like federated learning with dynamic federations of participating
institutes and industry.

An enhancement in the direction of providing more ascertained relationships
between software and formalizations is to not only provide, e.g., pre- and post-
conditions, but fully annotated program code, where all intermediate points in
the program are annotated with properties holding at this point. This infor-
mation is typically computed by verification condition generators and could be
included. It would be something like properties carrying code in the spirit of proof
carrying code (Necula and Lee [23]) and, aside from providing more knowledge
for LLMs on the relationship between code and formal properties, maybe also
be used to allow for LLMs to suggest correct-by-construction programs.

4.4 Continuous Monitoring

Challenge using formal methods. As presented in Section 3, digital twins are
not taken advantage of during operation, e.g., for purposes of self-adaptation.
Though there are no reasons indicated by Löcklin et al. [21], one issue could be
that formal method representations are different from the data representation of
the actual system. Hence to use formal methods techniques, e.g., for analysis or
synthesis, would need a mapping of the real data into formal representations.

Support offered by LLMs. LLMs support could be envisioned in different as-
pects for systems in operation. First, LLMs could be used to monitor the be-
haviour of the system in real-time and detect potential safety issues, that may
for instance result from deficient components. LLMs can be used to analyse the
output of the monitoring process and provide a natural language summary of
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the results, making it easier for engineers to understand the results and iden-
tify areas for improvement. Furthermore, in case operational systems need to be
adapted, e.g., because additional requirements arise, components need to be ex-
changed, or some components are disfunctional, there is a need to come up with
a plan how to go from the current system towards the new system, while ensur-
ing different system properties during the transformation process.5 Performing
such search in combination with formal methods verifying the properties can be
a long process, for which there may not be enough time, because the reactions
need to happen quickly, i.e., to restore again full operation of the overall sys-
tems. In this case LLMs, pre-trained on appropriate data, could serve to suggest
the adaptions and transformations (similar to the approaches presented by Jha
et al. [16] (see Section 2.4): these could be based on a digital model of the real
system (or digital shadows and twins taken offline that are then usable as digital
models) could be used to simulate the effect of adaptations proposed by the LLM
in interaction with a verifier checking proposed solutions, until viable solutions
are found and can be proposed to the users.

Training data for pre-training LLMs. Digital models (or, again, digital shadows
and twins taken offline that are then usable as digital models) of the real sys-
tem can be used to simulate the behaviour of the system and provide a visual
representation of the system’s dynamics, allowing engineers to analyse and un-
derstand the system’s behaviour and identify potential safety issues. Moreover
they could serve to systematically generate adaptations of a system and assess
safety or security properties. Those adaptations could serve as training data for
LLMs to suggest safe variants of a given systems or steps to take to adjust a
given system at risk towards obtaining again a safe system.

In summary, large language models and digital twins/shadows that consist
of an executable digital model could be used cooperatively to automate creative
tasks in providing safety properties and formal verification of real-world systems.
They could be used to generate formal specifications, verify the safety of the
system, develop safety cases, generate test cases, and monitor the behaviour of
the system in real-time.

5 Discussion

Motivated by the increasing adoption of large language models with good gener-
ative capabilities for many tasks, we have reconsidered the reasons why the use
of formal methods is not so common practice. Along the life cycle of software
development and deployment we reviewed the literature how LLMs are used in
5 Systems that have been formally verified may be disfunctional in operation. This

can be due to the abstraction necessarily made to formalize the actual system in
operation. Also latencies in communication or deficiencies in hardware may be rea-
sons. Overall, there are despite verification possibilities for failures or attacks not
visible during verification which could be summarized as simulation to reality gap as
known, e.g., from robotics systems.
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different tasks or phases. That literature turns out to be very recent, some only
published in pre-prints at time of writing this paper, which indicates a growing
interest of the research community in that topic in general. A general scheme in
the use of LLMs with formal methods is conversational, i.e., where a conversa-
tion is created between the LLMs that provide suggestions for the specific task
and formal method verifiers assessing the suggestions and, in case of rejection,
provide feedback to the LLMs in a form that allows them to adjust their sugges-
tions. However, nearly all reported activities though promising are either very
narrow in the target application domain or still at the beginning of the whole
endeavour.

Following that, we have identified for each specific tasks in the life cycle
what makes the adoption and use of formal method techniques difficult and
cumbersome. For the different tasks we discussed the role LLMs could play, how
the interaction with the formal methods tools could be, and how data could be
generated. Regarding the interaction between a formal method technique and
LLMs, an interesting research avenue to explore systematically how, for the task
at hand, formal methods should provide their feedback in case they reject sug-
gestions of the LLM. Regarding the generation of data to pre-train LLMs, we
have proposed new ideas. Especially to support requirements elicitation, engi-
neering of formal specifications and continuous monitoring and adaptation at
runtime, digital models (possibly obtained by taking offline real digital twins or
digital shadows) in combination with formal method checking tools could bene-
ficially be used to create training data to pre-train LLMs offline. Especially for
continuous monitoring, where currently digital twins are not used (but maybe
digital models or shadows are available) having LLMs available could foster the
application of formal methods in such time critical situations.
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