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Abstract
(Spatio-)Temporal point processes are the de facto standard for
modeling events in (space and) time. This study addresses the gen-
eration of counterfactual sequences: Given a model and an observed
sequence, we investigate how the sequence would have evolved
under a hypothetical alternative model.

Our contribution is two-fold: Firstly, we demonstrate how to eas-
ily leverage established stochastic simulation algorithms to generate
counterfactual sequences. Secondly, we reveal that di�erent simu-
lation methods—despite being statistically equivalent—correspond
to distinct structural causal models of the point process, producing
distinct counterfactual distributions.

Given these �ndings, we recommend exercising greater caution
when applying counterfactual reasoning in this domain, particularly
concerning the relationship between counterfactual generation and
the underlying physical processes.

CCS Concepts
• Computing methodologies ! Modeling methodologies;
Planning under uncertainty; • Information systems! Geographic
information systems.
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1 Introduction
Imagine being presented with an alarming record of tra�c accidents
in your town, leading you towonder: “Would the number of accidents
be lower if the additional road had not been built?” In this work, we
seek to address questions like this within the framework of point
processes, while carefully considering the underlying assumptions.

Temporal point processes (TPPs) are a powerful framework for
modeling sequences of events that occur over time [Rasmussen
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2018].Marked temporal point processes (MTPPs) and spatio-temporal
point processes (STPPs) extend this framework by annotating events
with additional information such as marks and coordinates [Rein-
hart 2018]. These modeling paradigms are employed in diverse
�elds such as �nance [Linderman and Adams 2014], healthcare and
epidemiology [Kim et al. 2019], social networks, and seismology
[Kwon et al. 2023]. The cornerstone of TPPs is the conditional in-
tensity function, which represents the instantaneous rate at which
events occur given the current time (and position) and the history
of past events. This function underpins inference, analysis, and pre-
diction tasks. An intriguing but di�cult type of analysis concerns
the “What if” questions [Noorbakhsh and Rodriguez 2022].

“What if” questions are fundamental to human reasoning and
play a crucial role in the mathematical formalization of causality,
where they are discussed under the term counterfactuals. Counter-
factual analysis in the context of TPPs involves asking how an event
sequence might have di�ered under alternative scenarios. This anal-
ysis allows researchers to formalize the e�ects of interventions and
hypothetical changes in the system.

However, relating the intuition of human causal reasoning to
the mathematical formalization of causality is complex and fraught
with potential pitfalls [Halpern 2019; Hedden 2023; Markus 2021].
Nevertheless, it is widely accepted that counterfactual samples can
be computed within the framework of structural causal models
[Pearl et al. 2016].

Structural causal models (SCMs) use directed acyclic graphs
(DAGs) to represent causal relationships between variables. This
mechanistic relationship can be exploited to sample from a coun-
terfactual distribution. The method involves re-evaluating the data-
generating process under speci�c model modi�cations while �xing
the exogenous noise variables. Maintaining the same background
conditions, represented by the noise terms, aligns well with human
counterfactual reasoning as it answers the question: “What would
have happened if I had changed one thing (model modi�cation) but
kept everything else the same (external or internal noise)?”

In this work, we explore how to convert point process models
to SCMs to perform counterfactual analysis and identify potential
pitfalls in this process. Speci�cally, we demonstrate that there is no
single unique SCM corresponding to a point process model. Instead,
di�erent simulation algorithms, while statistically equivalent, cor-
respond to di�erent SCMs and, therefore, di�erent counterfactual
distributions.

We formalize point processes and the counterfactual distribution
in Section 2. We show how to represent simulation algorithms as
SCMs in Section 3 and in Section 4 perform the counterfactual
generation. Section 5 illustrate our �ndings. A discussion of related
works in Section 6 provides context for our contributions. Finally,
a conclusion in Section 7 completes the manuscript.
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Our analysis and derivations are all done on (vanilla) TPPs, with
an extensions to spatial TPPs provided in Appendix A.

2 Background
In this section, we formally introduce our point process basedmodel
for event data and explain how to simulate it. We also present our
model for causality through SCMs and demonstrate how to use
them for generating counterfactuals in a general setting. For a
detailed introduction to TPPs, we refer the reader to [Rasmussen
2018; Reinhart 2018; Rodriguez and Valera 2018], and for SCMs and
Pearl’s do-calculus, to [Pearl 2009; Pearl et al. 2016].

2.1 Temporal Point Processes
A given event sequence is a �nite set of non-negative, real-valued
timestamps, which is represented as an increasing sequence � =
[C0, C1, . . . , C=], where C8 2 R�0 and C8 < C8+1. W.l.o.g. we assume
that C0 = 0.

A TPPmodel identi�es a set of event sequences with a probability
density. Typically, one considers the set of event sequences where
C= (the maximal time point) is smaller than a given time horizon ) .
This is denoted as

H) = {all event sequences with C=  ) }.

The likelihood 5 (·) identi�es each sequence � 2 H) with its prob-
ability density. In TPPs, the future can never in�uence the past,
thus, the PDF can be decomposed into a factorization.

The likelihood function for the sequence � going until time
horizon ) is:

5 (� ) =

 
=÷
8=1

5 pred (C8+1 | �C8 )

! ⇣
1 � �pred

�
) | �C=

� ⌘
.

The term 5 pred (C8+1 | �C8 ) is known as the (conditional) predic-
tive distribution. It represents the probability density of the next
event occurring at time C8+1 given the history of all previous events
up to time C8 . �?A43 is used to denote the cumulative probability of
an event happening until time horizon T.

In practice, the (conditional) intensity function _(C | �C ) is used
instead of the predictive distribution because it is easier to parame-
terize and has some other practical advantages.

The (conditional) intensity function, intuitively, represents the
instantaneous rate of occurrence of events at time C given the his-
tory �C . It provides a measure of how likely an event is to happen
in the next in�nitesimal interval of time, given all the past events.
The intensity function is de�ned as follows:

_(C | �C ) = lim
�!0

% (Event happens in [C, C + �C) | �C )

�

where _(C | �C ) represents the conditional intensity function,
�C is the history of events up to (but not including) time C .

The corresponding factorization the likelihood of an event se-
quence � = [C0, C1, . . . , C=] with C=  ) is:

5 (� ) =

 
=÷
8=1

_(C8 | �C8 )

!
exp

✓
�

π )

0
_(C | �C ) 3C

◆
.

2.2 Stochastic Simulation of Point Processes
In this section, we document three well-known stochastic simula-
tion algorithms for generating event sequences for a given time
horizon ) and intensity _(C | �C ). All algorithms are statistically
equivalent, meaning that they sample from the same distribution
(the distribution over H) induced by _(· | ·)).

The overall algorithm that provides the framework is outlined
as follows:

Algorithm 1 Stochastic Simulation of TPPs
1: Input:
2: Time horizon ) 2 R>0
3: Intensity function _ : R>0 ⇥H) ! R>0
4: Output:
5: Event sequence �
6: Initialize C0 = 0, � = [C0], and 8 = 0
7: while true do
8: 8 = 8 + 1
9: C8 = sample_next_event_time(� , C8�1, _(· | ·))
10: if C8 > ) then
11: Return �
12: end if
13: Add C8 to �
14: end while

The function sample_next_event_time(� , C , _(· | ·)) takes as
input the history (up to the current time point), the timepoint of
the last event (explicitly included for better readability), and the
conditional intensity function. The three algorithms, we discuss
next, implement this function in di�erent ways.

Method I - Naïve Method. The rationale behind the �rst method
is to take directly take the de�nition of the intensity function and
decide if an event happens for each point in time. Therefore, we
discretize the time using a very small constant � approximating an
in�nitesimal time interval.

Algorithm 2 Method I (Naïve): sample_next_event_time(� , C , _)

1: Input:
2: List of events �
3: Intensity function _(C | � )

4: Current timepoint C
5: Output:
6: Next event time C 0
7: Initialize time C 0 = C
8: Choose a small time interval �
9: while true do
10: Update time: C 0 = C 0 + �
11: Compute event probability: ?C 0 = _(C 0 | � ) · �
12: Sample D uniformly at random in [0, 1]
13: if D < ?C 0 then
14: Return C 0

15: end if
16: end while
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Since the events happen on the real number line, discretising
time is an approximation. Technically, we need to note that this
method converges to the correct algorithm if � converges to zero.

Method II - Numerical Integration. The idea behind the method
employing numerical integration of the intensity function [Ras-
mussen 2018] is that instead of sampling a random variate to decide
if an event happens at each time point, we can sample the number
of times we would need to generate variates until we eventually
reach a case where D < ?C [Großmann et al. 2020]. However, since
?C changes over time, it is di�cult to directly predict the amount
of time (or the number of steps) until this happens. Therefore, we
sample a random variate from an exponential distribution with rate
one and then integrate until it reaches ; .

Algorithm 3 Method II (Integration): sample_next_event_time(� , C , _)

1: Input:
2: List of events �
3: Intensity function _(C | � )

4: Current timepoint C
5: Output:
6: Next event time C 0
7: Choose a small time interval �
8: Sample D uniformly at random in [0, 1]
9: De�ne ; = � ln(D) ù ; follows exp. distr. with rate 1
10: Initialize � = 0 ù Accumulated area under the curve
11: Initialize C 0 = C
12: while � < ; do
13: C 0 = C 0 + �
14: Update � = � + _(C 0 | � ) · �
15: end while
16: Return C 0

Again, this method is correct in the limit as � converges to zero.
It nicely illustrates another meaning of the intensity function: the
integral of the intensity function determines the expected number
of events over a given time interval.

That is, we �nd the next event time, C 0, such that:π C 0

C
_(C⇤ | � ) 3C⇤ = ; .

Method III - Thinning. The thinning algorithm [Ogata 1981] as
illustrated in 4 was invented to decrease the computational costs
of event sequence generation. The idea is that one can generate an
event sequence of some _(C | � ) by �rst generating a homogeneous
event sequence with a constant rate _max (assuming _max > _(C |
� ) for all C and � ) and then removing some of the events. This
approach is computationally e�cient because generating event
sequences with a �xed rate can be done by sampling inter-event
times using the exponential distribution.

The downside of this method is that �nding an upper bound for
the intensity function is not always possible. For simplicity, and
w.l.o.g., we assume that we have a �xed upper bound over the while
time interval while the widely-used Ogata’s thinning algorithm
also works with piece-wise upper bounds [Ogata 1981; Rasmussen
2018].

Algorithm 4 Method III (Thinning): sample_next_event_time(� , C , _)

1: Input:
2: List of events �
3: Intensity function _(C | � )

4: Current timepoint C
5: (Additionally) _max, an upper bound of _(C | � )

6: Output:
7: Next event time C 0
8: Initialize C 0 = C
9: while true do
10: Sample D uniformly at random in [0, 1]
11: Set Ccandidate = � ln(D )

_max
ù follows exp. distr. with rate _max

12: Update time: C 0 = C 0 + Ccandidate

13: Sample D0 uniformly at random in [0, 1]
14: if D0  _ (C 0 |� )

_max
then

15: Return C 0

16: end if
17: end while

2.3 SCMs and the Counterfactual Distribution
A Structural Causal Model (SCM) is a mathematical framework
designed to represent causal relationships among a set of variables
by specifying the underlying data-generating process. Formally,
an SCM is de�ned as a tuple (U,V, F, % (U), PA), where U denotes
the set of exogenous (external) variables, V represents the set of
endogenous (system) variables, F is the set of structural functions,
% (U) is the probability distribution over the exogenous variables,
and PA denotes the set of parent-child relationships between the
variables.

The set PA implicitly de�nes a DAG over the variables, such that
each+8 2 V has a corresponding set of parent variables %�8 ✓ V[U,
where the exogenous variables*8 2 U are always root nodes. The
values of the exogenous variables*8 are governed by the probability
distribution % (U). The values of the endogenous variables +8 2 V
are governed by the functions 58 2 F that take as input the values of
the parent nodes of+8 . Speci�cally,+8 = 58 (%�8 ). For simplicity and
to ensure better consistency with the data-generating process, we
allow endogenous variables that have no exogenous variables as
parents. We also allow +8 to be a root node, in which case %�8 = ;,
and +8 is a constant.

Counterfactuals. SCMs make it possible to study the e�ects of
modi�cations, i.e., interventions, to the data generation process (e.g.,
by �xing the value of a speci�c +8 ). Counterfactuals constitute the
third rung of Pearl’s Causal Hierarchy where based on an observed
outcome one tries to imagine how changing a speci�c event or
condition while keeping everything �xed changes the outcome.
Hence, they are used to study “What if ” scenarios.

When observational data, typically consisting of measurements
of some endogenous variables, is available alongside a speci�ed
SCM, one can hypothesize about how the observational data would
have looked like under a di�erent hypothetical SCM. The computa-
tion of a this counterfactual observational data involves a three-step
procedure [Pearl et al. 2016]:
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• Abduction: Infer the values of the exogenous variables U
from the observed evidence, e�ectively computing the pos-
terior distribution of the noise variables.

• Action: Modify the SCM by intervening on the variables or
relationships of interest. Note that the modi�ed SCM needs
to have the same number of noise variables as the original
one.

• Prediction: Utilize the modi�ed SCM, along with the in-
ferred values of the exogenous variables (posterior noise), to
predict the hypothetical outcome.

It is important to note that observations can either �x the exoge-
nous variables to speci�c values or update the prior distribution
% (U) to a posterior distribution, depending on the information
provided by the data.

Monotonicity. It is typically desired that counterfactual samples
ful�l a property called monotonicity [Hızlı et al. 2023; Noorbakhsh
and Rodriguez 2022; Oberst and Sontag 2019], which promotes
intuitive behaviour in the counterfactual distribution. Speci�cally,
monotonicity means that if an intervention on a variable causes an
outcome in one scenario, then a stronger intervention in the same
scenario should also cause the outcome B. Monotonicity prevents
counterintuitive situations where, for example, increasing the infec-
tivity rate of a disease (while keeping everything else �xed) leads
to fewer cases than a scenario with a lower infectivity rate.

Rethinking SCMs. At a high level, we can think of an SCM as a
mapping that takes a sample U from a noise distribution % (U) and
generates assignments of all endogenous variables V. In counterfac-
tual analysis, we examine scenarios where the same noise sample
(or a speci�c distribution) is used to generate endogenous variables
of a di�erent SCM.

Thus, counterfactuals can be understood as a mapping between
two distinct probability spaces: one representing the observations
and their associated probabilities as determined by the original SCM,
and the other representing the observations and probabilities under
the counterfactual SCM. This mapping can be either deterministic
(one-to-one) or stochastic (governed by the posterior distribution
of the noise variables).

3 SCM Representation of Point Processes
We can directly convert the three sampling algorithms from Section
2.2 into SCMs. These SCMs will ful�l the monotonicity assump-
tion in a reasonable sense. Note that we always use * to denote
external/noise variables. The corresponding DAGs of the SCMs are
illustrated in Figure 1. Please note that, unlike typical SCMs with
exogenous noise variables for all endogenous variables, we only
add exogenous noise variables to nodes corresponding to steps in
the simulation algorithm which sample from a distribution. All
other relations are kept noise-free and deterministic to represent
the stochastic generation accurately.

Naïve Method. We have the following variables:
• �8� (note that the time index is always a multiple �) is a
sequence of event times and contains the events up to time
point C = 8�.

• _8� 2 R�0 indicates the instantaneous rate at time point
C = 8�.

• The noise variable *8 , drawn uniformly in [0, 1] for each
time step 8 , introduces stochasticity to the model.

• ⇢8 2 {true, false} indicates if an event is happening within
[8�, (8 + 1)�) based on the current intensity and noise.

Next, we need to de�ne the functional relations between the vari-
ables. Speci�cally, we de�ne how the value of a node is determined
by the value of its parental nodes.

_8� = _(8� | �8�),

⇢8 = *8 < _8� · �,

�0 = [],

and for 8 > 0 :

�8� =

(
� (8�1)� if ⇢8�1 = false,

� (8�1)� [ {(8 � 1)�} otherwise.

Note that, by convention (the �rst event C0 happening at C = 0),
we have that ⇢0 = true. The �nal event sequence is determined by
considering the timepoints of all ⇢8 that are set to true.

The relationship to Algorithm 2 is that, in each iteration, the vari-
ableD maps to the node*8 , and the if condition maps to computing
the value of the node ⇢8 .

Numerical Integration. We have the following variables:

• *8 2 [0, 1], the noise that introduces stochasticity to the
model.

• �C8 , the event history which contain the event sequence that
includes all events that happen before C8 .

• C8 2 R�0, the time of the 8-th event.
• _8 : R�0 ! R�0, the intensity as a function over time that
we can integrate.

The functional relationships are de�ned as follows:

�C8 =

(
[0] for 8 = 0,
�C8�1 [ {C8�1} for 8 > 0,

_8 (C) =

(
_(C | �C8 ) for C > max(�C8 ),

0 otherwise,

C8 is s.t.:
π C8

0
_8 (C) 3C = � ln(*8 ) .

(1)

Note that � ln(*8 ) follows an exponential distribution with rate
one. The �nal event sequence is determined by the list of all C8 .

The relationship to Algorithm 3 is that, for each function call, the
variable D maps to the node*8 , and the computation of the integral
corresponds to the computation of node C8 based on integrating _8 .

Thinning. The novel aspect of the thinning algorithm is that it
requires two random noise variates for each event candidate. The
�rst variate, *8 , is used to determine the candidate for the 8-th
event. The second random variate, * 0

8 , is used to decide whether
this candidate actually becomes an event (⇢8 = true) or is rejected
(⇢8 = false).

The candidate event times can be computed as (assuming C0 = 0):

C8 = C8�1 +
� ln(D8 )
_max

. (2)
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Figure 1: SCM representations of three algorithms for realising counterfactual event sequences

Note that � ln(*8 )

_max
follows an exponential distribution with rate

_max.
The intensity of the 8-th event is _8 = _(C8 | �C8 ), and it is used

to compute the rejection probability, leading to:

⇢8 = * 0
8 

_8
_max

. (3)

The �nal event sequence is determined by �ltering out all C8
where the corresponding ⇢8 is true.

The relationship to Algorithm 4 is that, each function call adds
multiple layers to the SCM until eventually one ⇢8 will be true. That
is, the (rejected) candidate times are explicitly accounted for in the
SCM. The noise variables in the algorithms directly correspond to
the nodes*8 and* 0

8 .

4 Sampling from the Counterfactual
Distribution

This section describes the process of sampling from the counterfac-
tual distribution by applying the abstract recipe from Section 2.3 to
the constructed SCMs. From now on, we will use colors do indicate
if data, parameters, or models belong to the original or the counter-
factual setting. Our focus will be on converting an original event
sequence into a counterfactual event sequence using a provided
counterfactual intensity function, denoted as _cf (C | � ). These
methods can be generalized to other counterfactual interventions.

Note that, if we compute counterfactuals using the Abduction,
Action, Prediction method, the following automatically holds:

• When the counterfactual intensity function is identical to
the original intensity function, i.e., _(· | ·) = _cf (· | ·), the
resulting counterfactual event sequence matches the original
event sequence exactly.

• Given a pair of intensity functions, _cf (· | ·) and _(· | ·), the
following procedure yields an unbiased sample from the
distribution over event sequences induced by _cf (· | ·): (1)
Sample a random event sequence, � , from _(· | ·); (2) Com-
pute the counterfactual event sequence using _cf (· | ·). In
other words, by marginalizing over all possible sequences,
the counterfactual sample provides a distributional sample as
if the counterfactual intensity function had been employed
through stochastic simulation.

The second point can also be interpreted to mean that the map-
ping induced by the counterfactual process does not distort the

probability distributions. For example, in Figure 7 in Appendix B,
sampling directly from a coin with ?� = 0.5 is equivalent to sam-
pling from a coin where ?� = 0.4 and then transitioning to the
counterfactual case of ?� = 0.5.

For plausible counterfactual sequences, akin to the monotonicity
condition, we formulate the following properties we expect to hold:

• If an event occurs at time C in the original sequence and the
counterfactual intensity at this time point is higher, then the
event must also occur in the counterfactual sequence.

• If an event does not occur in the original sequence at time C
and the counterfactual intensity at this time point is lower,
then the event cannot occur in the counterfactual sequence.

Next, we discuss how to translate the three SCMs and the general
method form the previous sections into concrete algorithms. A
schematic illustration of the methods is provided in Figure 2.

Naïve Method. Computing the posterior noise distribution for a
given sequence is straightforward and results in an interval for each
time step 8 . Depending on whether an event occurs, this interval is
either very small ([0, %8event]) or large ([%

8
event, 1]). Note that %

8
event

will typically be extremely small because � is considered to be
extremely small. To generate the counterfactual event sequence,
we can then resample from that interval for each time step. In this
case, D8 in Algorithm 5 directly corresponds to *8 in the SCM in
Figure 1a and the return value � cf corresponds to the timepoints
for which ⇢8 = true in the counterfactual distribution of the SCM
(i.e., given the counterfactual intensity function where the noise
variables are instantiated based on the posterior noise distribution).
The sampling algorithm is provided in Algorithm 5.

Numerical Integration. The interesting part about this method
is that we do not have a posterior noise distribution that corre-
sponds to a given event sequence. Instead, we have exact values
for each noise variable. Thus, we identify the unique values of *8
that generate the observed sequence and, swapping the intensity
function then yields the counterfactual sequence. The variables
form the SCM in Figure 1b directly map to Algorithm 6. Note that
this method implicitly changes the time horizon of the sequence.

Thinning. A direct translation is more di�cult than in the previ-
ous cases because we do not observe the sequence of event time
candidates, only the sequence of successful events. This would
make it necessary to integrate over all possible candidate sequences,
which is infeasible. To circumvent this, we combine the numerical
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Figure 2: Schematic overview of the counterfactual event sequence generation for the three methods. The original intensity
(increases over time) is shown in blue, the counterfactual intensity is shown in purple (decreases over time).
(a) Method I: Where the original intensity is larger than the counterfactual intensity, events may disappear (indicated with
purple crosses). Conversely, where the original intensity is lower than the counterfactual intensity, new events may emerge
(dark purple lines). Since new events may emerge the indexing of events in the counterfactual sequence don’t correspond to
the indexing of the observed sequence.
b) Method II: Event times are shifted to the right to ensure that the integral from C8 to C8+1 of _(C) equals the integral from Ccf8 to
Ccf8+1, which is demonstrated for C3 and C4 with darker shaded areas.
c) Method III: (A) The original sequence of �ve arbitrary events. (B) Sampling of rejected events (gray) given _(C). (C) Leftward
shift of events, assuming _cfmax > _max. (D) Application of counterfactual intensity _cf (Ccf) stochastically �ips event types:
rejected events can become real (black) where _cf (Ccf8 ) > _(C8 ), and real events can become rejected (gray) where _cf (Ccf8 ) < _(C8 ).
The �nal counterfactual sequence are the black events in (D).

methods to generate counterfactual sequences of the background
process and combine it with the way counterfactual choices were
made in the naïve method.

First, we need to generate samples from the background process,
which is challenging because we only observe accepted samples
in the trajectory � . We employ the same trick as [Noorbakhsh
and Rodriguez 2022]. That is, we build a complementing or shadow
process [Cota and Ferreira 2017; Großmann et al. 2020] that ac-
counts exactly for the di�erence between the upper bound, _max,
and the actual intensity: _shadow (C | �C ) = _max � _(C | �C ). We
then conceptually consider the rejected events not rejections but as
instantiations of the shadow process. This allows us to sample from
the set of rejected events by �st sampling a homogeneous sequence
using _max and then thinning this sequence based on the shadow
process, yielding a sample from the posterior background sequence.
The reason this works is that the sequence from the shadow process
is independent of the accepted (observed) sequence, allowing us to
generate it retrospectively, even after the accepted data has been
�xed.

After this, we obtain a sequence of accepted events in the original
process, denoted by� , and a sequence of rejected events, denoted by
'. The e�ect of the counterfactual intensity function _cf (C | �C ) is to
swap events between� and '. Speci�cally, an event can move from
' to � if the counterfactual intensity is greater than the original
intensity, and vice versa.

Adjusting the counterfactual upper bound _cfmax has the same
e�ect as described in Algorithm 6, shifting the samples to the left if
_cfmax > _max or to the right if _cfmax < _max.

The sampling algorithm is detailed in Algorithm 7.
It may seem counter-intuitive that selecting a di�erent upper

bound _cfmax alters the counterfactual event sequence even if the
actual intensity function remains unchanged. This would indeed
be the case if the thinning algorithm were merely a computational
trick to simplify stochastic generation. However, if we interpret
the rejections as an intrinsic part of the physical process and as-
sign physical meaning to the upper bound, then this adjustment is
reasonable.

5 Case Study: A Mechanistic Model of Epidemic
Spreading

In this case study, we examine a mechanistic model of epidemic
spreading to analyze how counterfactual interventions on epidemic
parameters alter a given sequence of infection events. Speci�cally,
we demonstrate that intervening on the transmissibility aligns with
the counterfactual distribution derived from Algorithm 6. Essen-
tially, a higher infection rate results in infection events occurring
more rapidly, as individuals become infectious earlier.

In contrast, modifying the connectivity of agents increases the
frequency of infection events. For example, if people stop work-
ing from home and start meeting at work, new infection chains
become possible. This scenario corresponds more closely to the
counterfactual computations described in Algorithm 5.

The purpose of this example is not propose this as the most
suitable model for counterfactual epidemic spreading. Rather, it
aims to illustrate that this relationship between physical world and
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Algorithm 5 Generating Cf. TPP Sequences - Method I
1: Input:
2: Event sequence � = [C0, C1, . . . , C=]
3: Conditional intensity function _(C | �C )

4: Time horizon )
5: Counterfactual intensity function _cf (C | �C )

6: Step size � 2 R>0
7: Output:
8: Event sequences, sampled from the counterfactual distribu-

tion � cf

9: Split the time interval [0,) ] into steps of size �. ù Assume
) /� is an integer.

10: De�ne g8 = 8 · � for 8 = 0, 1, 2, . . . , )�
11: for each interval [g8 , g8+1) do
12: Compute the event probability %8event = _(g8 | �g8 ) · �
13: if 9C 0 2 � such that C 0 2 [g8 , g8+1] then ù Event happened
14: Sample D8 uniformly at random from [0, %8event]
15: else ù No event
16: Sample D8 uniformly at random from [%8event, 1]
17: end if
18: end for
19: Initialize the counterfactual history � cf = []

20: for each interval [g8 , g8+1) do
21: Compute the counterfactual intensity _cf8 = _cf (g8 | � cf

g8 ) for
that interval.

22: Compute the new threshold \ cf8 = _cf8 · �

23: if D8  \ cf8 then
24: Add g8 to � cf ù Cf. event happens
25: end if
26: end for
27: Return � cf

Algorithm 6 Generating Cf. TPP Sequences - Method II
1: Input:
2: Event sequence � = [C0, C1, . . . , C=]
3: Conditional intensity function _(C | �C )

4: Counterfactual intensity function _cf (C | �C )

5: Step size � 2 R>0
6: Output:
7: Event sequences, sampled from the counterfactual distribu-

tion � cf

8: for 8 2 [1, . . . ,=] do
9: Compute ;8 =

Ø C8
C8�1

_(C | �C ) 3C ù Assuming C0 = 0, use step
size �

10: end for
11: Initialize the counterfactual history � cf = []

12: for 8 2 [1, . . . ,=] do
13: Compute Ccf8 such that ;8 =

Ø C cf8
C cf8�1

_cf (C | �C ) 3C ù Assuming

Ccf0 = 0
14: Add Ccf8 to � cf

15: end for
16: Return � cf

Algorithm 7 Generating Cf. TPP Sequences - Method III
1: Input:
2: Event sequence � = [C0, C1, . . . , C=]
3: Upper bound _max 2 R>0
4: Conditional intensity function _(C | �C )

5: Counterfactual upper bound _cfmax 2 R>0
6: Counterfactual intensity function _cf (C | �C )

7: Output:
8: Event sequences, sampled from the cf. distribution � cf

9: Initialize the sequence of rejected ' = []

10: Generate a homogeneous TPP sequence, !, with rate _max.
11: ù Sample a posterior sequence of rejected events
12: for each event C8 in ! do
13: Sample D8 2 [0, 1]
14: if D8 <

_max�_ (C8 |�C8�1 )

_max
then ù Part of shadow process

15: Add C8 to '
16: end if
17: end for

ù �⇤ is the union of rejected and accepted events
18: De�ne �⇤ = � [ '
19: De�ne � cf = [] ù Cf. sequence of accepted events
20: De�ne 'cf = [] ù Cf. sequence of rejected events
21: for each C8 in �⇤ do
22: Compute acceptance threshold: \8 =

_ (C8 |�C8 )

_max
23: if C8 2 � then ù Event accepted in original process
24: Sample uniformly D8 2 [0, \8 ]
25: else ù Event was rejected in original process
26: Sample D8 2 [\8 , 1]
27: end if
28: ù Shift event times according to the new upper bound
29: Compute inter-event time G8 = C8 � C8�1 (assuming C0 = 0)
30: Compute counterfactual inter-event time Gcf8 = G8 ·

_max
_cfmax

31: Ccf8 = max('cf [ � cf
) + Gcf8 ù max of ; is 0.

32: ù Decide acceptance in the cf. process.

33: Compute acceptance probability ?08 =
_cf (C cf8 |� cf

)

_cfmax
34: if D8 < ?08 then
35: Add Ccf8 to � cf

36: else
37: Add Ccf8 to 'cf
38: end if
39: end for
40: Return � cf

counterfactual generation is complex and necessitates careful de-
sign choices. This is only one way of expressing epidemic spreading
as a mechanistic model and that there are also more possibilities
on how to model counterfactual distributions within this setting.

5.1 Model Formulation
We use a network-based stochastic model of epidemic spread-
ing. That is, a given contact graph, G = (V, E), speci�es a set
of agents (as nodes) and their connectivity (as edges). We use a
simple continuous-time Susceptible-Infected model where nodes
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Sequence of
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Figure 3: The rate of infection events depends on both the
properties of the virus and the characteristics of society.
Counterfactual analysis of these properties (e.g., “What if
the virus was less transmissible?” or “What if society was
less connected?” ) can lead to a di�erent intensity of infection
events, and consequently, to a di�erent sequence of infection
events in a non-obvious way.

occupy one of two states: infected or susceptible. Infected nodes
infect their susceptible neighbors after a random exponentially dis-
tributed waiting time (parametrized by the infection rate constant
V 2 R�0). Infected nodes remain infected inde�nitely. This leads to
a continuous-time Markov chain (CTMC) semantics.

5.1.1 Generating Trajectories. We need a method to sample tra-
jectories from this model that allows for the computation of coun-
terfactuals. Speci�cally, the external noise should be �xed given a
particular event sequence.

To stochastically generate a trajectory, we �rst sample a random
matrix of waiting times T 2 R#⇥# , where C8 9 2 R�0 follows an
exponential distribution with the infection rate V . This value rep-
resents the time it takes for node E8 , after becoming infected, to
infect node E 9 if they are adjacent. If node E 9 is already infected or
the two nodes are not connected by an edge, the induced infection
event has no in�uence. We start with a single randomly chosen
infected node. In each step, we identify the next infection trans-
mission based on the connectivity E, the infection times T, and
the current time, and identify the next susceptible node to become
infected. The simulation ends when all nodes are infected (which
will eventually happen if the network is connected).

5.2 Counterfactuals
We assume that we observe which nodes get infected by which node
at which point in time. Thus, the noise posterior is a distribution
over T. A given observed sequence �xes parts of the matrix T (the
entries that correspond to actual new infections) but only provides
bounds for the remaining entries.

We test two types of counterfactual manipulations (cf. Figure
3): changing the transmissibility of the virus (by changing V) and
changing the connectivity of the contact graph (by changing E).

5.3 Speci�cation
We utilize a random graph where each pair of nodes is connected
with a probability of ? = 0.2. To test the counterfactual connectivity,

we increase this probability to ? = 0.3, resulting in �ve additional
edges (cf. Figure 5). The infection rate is set to V = 0.2 for the
original sequence and V = 0.19 for the counterfactual sequence
with decreased transmissibility.

5.4 Results
The main results are reported in Figure 4 where the infection times
of all nodes are reported as time-stamped events. Alternatively, the
propagation of the infection without timestamps is also shown in
Figure 6.

As expected, changing the infection rate merely decelerates the
infection process without altering the infection chains. In contrast,
changing the connectivity opens new potential pathways for the
infection to spread. We observe that �ve nodes become infected
through di�erent pathways, leading to earlier infections.

The concept of monotonicity is maintained in this mechanistic
model, as a decreased infection rate ensures that infections occur
strictly later (i.e., a smaller V can never cause a node to become
infected earlier). Similarly, adding new edges cannot result in a
node becoming infected later.

It is also important to note that for the intervention on the
infection rate, the counterfactual is �xed, whereas changing the
connectivity yields a distribution of counterfactuals. From this
distribution, we present one arbitrary example.

6 Related Work
Causality and TPPs. Foundational work on the combination of

point processes and causality was conducted by Gao et al. [Gao et al.
2021]. They demonstrated how to compute the average treatment
e�ect on on marked TPPs.

However, for this work, the most relevant prior literature is the
work by Noorbakhsh and Rodriguez [Noorbakhsh and Rodriguez
2022], who studied the problem of generating counterfactual se-
quences for TPPs. To the best of our knowledge, this is the only
work that directly transforms a sampling technique into a method
to sample counterfactual sequences. Their approach relies on cer-
tain assumptions, such as the ability to handle only linear Hawkes
processes by leveraging its branching process interpretation. In
their method, each event is attributed to a subsequent event. The
algorithm processes all observed events sequentially, retaining only
those events whose triggering event is preserved in the counterfac-
tual distribution. For new events that did not occur in the original
sequence, new processes are generated, and events are sampled
from these processes using the superposition principle. This re-
cursive process continues for all newly sampled events. Moreover,
assigning events and generating new ones based on counterfactual
events introduces additional stochasticity in an unprincipled way.

Their work is rooted in the transformation of a Markov decision
process (MDP) into a Gumbel-Max SCM as proposed in [Oberst
and Sontag 2019]. Using the Gumbel-Max distribution is bene�cial
because when the probability of an action taken in a counterfactual
setting increases, it automatically means that this action is also
taken. Likewise, if an action was not taken in the original sequence
and its probability decreases in the counterfactual setting, it is also
not taken in the counterfactual sequence.
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Original sequence

Counterfactual 
sequence with 
smaller infection rate

Counterfactual 
sequence with 
higher connectivity

Infections as Event Sequence

Time

Figure 4: Top row: Original sequence showing the infection times of all nodes. Middle row: Counterfactual sequence with
decreased virus transmissibility. Bottom row: Counterfactual sequence with increased connectivity of the contact graph. Nodes
that become infected at a di�erent timepoint compared to the original sequence are annotated with a triangle. Colors identify
nodes and correspond to Figure 5. The shaded area indicates the instantaneous rate of an event, which is determined by the
number of SI edges and the infection rate.
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Figure 5: The original contact graph is shown on the left. The
contact graph (undirected as per standard practise) used for
counterfactual generation is shown on the right. It was cre-
ated by increasing the probability of two pairs of nodes being
connected, resulting in �ve additional edges. Only the new
edges are shown in black, while edges that are also present
in the original graph are shown in gray.

Computing counterfactuals in the context of Reinforcement
Learning has since been a widely researched topic, with most work
focusing on o�-policy evaluation and optimizing hypothetical ac-
tion sequences [Hızlı et al. 2022; Parbhoo et al. 2022; Tsirtsis and
Rodriguez 2024].

Jing et al. [Jing et al. [n. d.]] explore counterfactuals in TPPs
within healthcare, speci�cally optimizing treatment strategies by

answering counterfactual questions. They build directly on the
framework by Noorbakhsh et al. but focus on sampling and op-
timizing counterfactual treatment roll-outs using temporal logic
rules to enforce plausibility.

Moreover, [Hızlı et al. 2023] use a combination of Gaussian
Processes and marked TPPs to construct a causal model of the
treatment–outcome relationship within patients, learned from ob-
servational data. They extend the method by Noorbakhsh et al. to
generate counterfactual samples in a more �exible way. In their
follow-up work [Hızlı et al. 2024], this framework is extended to
accurately capture the direct and indirect e�ects of interventions.

Counterfactuals in Neural TPPs. Neural networks are also used
to generate counterfactual trajectories, as an alternative approach
to Pearl’s do-calculus. Bica et al. [Bica et al. 2020] generate counter-
factuals in point processes using RNNs. They employ data from a
simulated tumor growth model and real-world data from the Med-
ical Information Mart for Intensive Care database. Their focus is
on adversarial training to create representations invariant to treat-
ment assignments. Essentially, they learn a model that can simulate
future states based on a learned representation where information
predicting which treatment is taken is removed. This approach
di�ers from traditional counterfactual methods that compute a pos-
terior of the noise distribution, thereby using information from the
observed trajectory to shape the counterfactual trajectory. Like-
wise, Zhang et al. construct a causal model to study the in�uence
of fake news in social media as a point process, where they use
domain adversarial training to account for the bias introduced by
personalized recommendation systems [Zhang et al. 2022].

Ambiguity of Counterfactuals. A comprehensive introduction
to the meaning of counterfactuals in di�erent frameworks (Ru-
bin’s Causal Model, Lewis’ Theory of Counterfactual Conditionals,
Pearl’s do-calculus) is provided by [de Lara 2024; Markus 2021]. For
an introduction to causal models that incorporate space and time,
we refer to [Kang et al. 2024]. Discussions on howwell these notions
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Figure 6: Trajectory of disease propagation (I: blue/purple, S: gray) in the original contact graph (top) and in the counterfactual
contact graph with �ve additional edges (bottom).

correspond to our intuitive understanding of “What if ” questions
are rare. However, [Chvykov 2021; Gundersen and Kallestrup 2023]
investigate paradoxes and discusses potential resolutions. We will
not explore the philosophical literature in detail but refer interested
readers to [Hájek 2014; Lebow 2000; Lewis 2016].

7 Conclusions and Future Work
In this work, we introduced three straightforward algorithms to
generate counterfactual event sequences based on a hypothetical
intensity function. These algorithms were derived directly from
stochastic simulation algorithms and their corresponding structural
causal models, thereby circumventing the need for a Gumbel-Max
construction. Furthermore, we demonstrated that these three meth-
ods produce di�erent types of counterfactuals. This diversity does
not imply incorrectness but rather indicates signi�cant �exibility in
design choices. Using a mechanistic model of epidemic spreading,
we investigated the conditions under which certain counterfac-
tual algorithms might more accurately re�ect the physical reality
modeled by the intensity function.

Overall, this work illustrates that generating counterfactual se-
quences is computationally simple, but the implicit design choices
must be carefully considered to ensure they re�ect relevant aspects
of reality.
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A Extensions to Spatio-Temporal Point
Processes

A spatio-temporal point process (STPP) is a type of point process
where events are associated with locations in space (typically 2-
dimensional Euclidean space) as well as time. The data is repre-
sented as a sequence of tuples:

� = [(C1, s1), (C2, s2), (C3, s3), . . .],
where C8 denotes the time of the event, and s8 2 S ⇢ R2 represents
the spatial location in a space.

To de�ne the intensity function, we consider an in�nitesimal
grid over both space and time:

_(s, C | �C ) := lim
�B!0,�C!0

% (Event in ⌫(s,�B ) ⇥ [C, C + �C ) | �C )

|⌫(s,�B ) | �C
,

where |⌫(s,�B ) | is the Lebesgue measure (i.e., the area) of ⌫(B,�B ),
a 2D ball (i.e., disk) centered at s with radius �B .

Although we de�ne the in�nitesimal area around a point using
a disk, in practice, we use grids with a uniform size of � in all three
dimensions.

Next, we discuss how to generalize the three methods for sam-
pling from the counterfactual distributions to the spatio-temporal
case. In most cases, the generalization is straightforward, with
Method II being the only one where we encounter some conceptual
choices. For ease of notation, we de�ne the marginalized intensity
over time as _(C | �C ) :=

Ø
B2( _(s, C | �C ).

We can also establish new desirable properties for the model. For
example, when the intensity function changes only within a speci�c
time slice, meaning _(C | �C ) = _cf (C | �C ), we would expect that
in the counterfactual sequence, only the spatial coordinates of the
events change, while the timestamps remain una�ected.

Method I
We begin by discretizing the space in all three dimensions using a
grid of size � (using the same grid size in all dimensions w.l.o.g.).
Next, we iterate over the grids sequentially from left to right, cor-
responding to increasing time, and determine whether an event
occurs within each grid. Note that there is no natural order among
the grids within a speci�c time interval. Therefore, it is essential
to make the grid size su�ciently small to avoid having multiple
events at the same time point, which would introduce ambiguity.

To decidewhether an event occurswithin a grid, one canmultiply
the event rate by the grid volume. Speci�cally, the probability of
an event occurring in a grid located at (s, C) is given by:

%s,CEvent = _(s, C | �C ) ⇥ �3 .

After computing this probability, the noise posterior Ds,C can be cal-
culated for each grid. This posterior can then be used to determine
the counterfactual sequence.

Method II
The rationale behind Method II is that we �x the integral of the
intensity function between to consecutive events:

Ø C8+1
C8

_(C) =Ø C cf8+1
C cf8

_cf (C) and that the size of the integral is determined by an

exogenous noise variable. That notion works in space but has no
direct translation to time.
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However it is straight-forward to move the points in space in
order for this condition to be satis�ed. Therefore, use the marginal-
ized _(C | �C ). This allows us to move the timepoints of all events
to be consistent with a counterfactual intensity function.

Moving the spatial coordinates is less straightforward and may
not necessarily yield a unique solution. Formally, the challenge
arises because we have two intensity maps, 5 (s) := _(s, C8 | �C )

and 5 cf (s) := _cf (s, Ccf8 | �C cf8
), and we need a method to move the

event coordinate from s = (G1, G2) to scf = (Gcf1 , G
cf
2 ).

One possible approach is to factorize the spatial dimensions, �rst
moving the B1 coordinate and then the B2 coordinate. Although
this method yields a unique mapping, the choice of which dimen-
sion to transform �rst remains somewhat arbitrary. An alternative
approach is to normalize the two functions 5 (·) and 5 cf (·), and
then compute a transport map based on the Wasserstein distance.
This transport map can subsequently be applied to s to obtain the
transformed coordinates scf.

Method III
Fortunately, it is straightforward to generalize Method III. The �rst
step remains the same: we sample from the shadow process and
record the posterior noise responsible for determining whether an
event was rejected or not. Note that we therefore sample events in
time following an exponential distribution and in space following a
uniform distribution. Next, we consider the marginalized _max (C |
�C ) and adjust the event times (of both rejected and accepted)
by shifting them either to the left or to the right, depending on
the counterfactual _max. The event coordinates remain the same.
Finally, we stochastically swap the rejected and accepted labels of
the events based on the counterfactual intensity and the posterior
noise obtained in the �rst step.

• The �rst step is equivalent: you sample from the shadow
process.

• The second step is equivalent: you move the points to the
left or right in time.

• The third step is similar to the TPP version: you swap events
between the original and the shadow process based on the
new intensity.

B Counterfactual Illustrative Example
Consider a model for tossing a biased coin (cf. Figure 7). We have a
noise variable* that follows a uniform distribution on the interval
[0, 1], and a variable + 2 {HEADS,TAILS} that determines which
side of the coin is facing up. We can de�ne + as a function of* :

+ = 5 (* ) =

(
HEADS if* < 0.4,
TAILS if* � 0.4.

Now, suppose we observe TAILS. The information, we now have
on the noise variable is that it is uniformly distributed in [0.4, 1].
This is expressed in the posterior noise distribution. Suppose, we
are interested in �nding the counterfactual distribution under the
assumption that the coin was fair. We can achieve this by modifying
the SCM and de�ning + = 5 cf (* ) as:
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Figure 7: Counterfactual coin �ip: probability of heads being
40% (left) or 50% (right).

+ = 5 cf (* ) =

(
HEADS if* < 0.5,
TAILS if* � 0.5.

Sampling from the posterior distribution of the noise variable *
in this modi�ed model would result in HEADS with probability 1

6
and TAILS with probability 5

6 . This setting satis�es monotonicity
because we increase the probability of HEADS, and all scenarios
that lead to HEADS in the original setting will also lead to HEADS
in the counterfactual setting. However, we could also de�ne the
counterfactual SCM as:

+ = 5 cf (* ) =

(
TAILS if* < 0.5,
HEADS if* � 0.5.

This would not be a monotonic model because, even though the
general probability of HEADS increases, all the samples that would
have been HEADS in the original setting would switch to being
TAILS.


