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Abstract. Decentralised, modular production with the aim of individ-
ualised products leads to a more flexible production setup which, how-
ever, also influences the handling of faults and failures. Since faults occur
rarely compared to nominal behavior of Cyber-Physical Production Mod-
ules (CPPM), it is difficult in common manufacturing environments and
even harder in skill-based production to gain experience and knowledge
about faults and the context they occur in. Hence, leveraging knowledge
and data from multiple CPPM proves beneficial, facilitating the storage
of acquired information regarding faults and their context in federated
knowledge bases. However, although different approaches tackle the com-
munication between distributed knowledge bases, the use for distributed
knowledge-based fault detection and diagnosis in skill-based production
environments remains mainly unseen. In this paper the focus lies on the
development of a communication scheme that enables automated com-
munication between fault detection and fault diagnosis components for a
decentralised control setup to make distributed knowledge about faults
accessible. This includes the definition of fault detection and fault diag-
nosis components and their offered services which encapsulate different
forms of knowledge representations. For the communication between the
components, a unified model is elaborated, and the required informa-
tion is identified. An integration in a holonic manufacturing system of
SmartFactoryKL is presented and an outlook for further research is given.

Keywords: fault diagnosis · skill-based production · agent-based-communication
· holonic manufacturing systems

1 Introduction

More automation in fault detection and diagnosis (FDD) is a key factor to in-
crease resilience and self-healing capabilities of manufacturing systems. However,
the need for individualised products requires small batch sizes up to batch size
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one. Hence, more flexibility in factory automation is required, leading to modular
factory setup and skill-based production [1, 2]. The concept of Cyber-Physical
Production Systems (CPPS) enables flexibility due to multiple, interchangeable
constellations of production systems but increases complexity, especially in han-
dling of decentralisation of models and knowledge bases on the other hand. Even
in common manufacturing environments it is a challenge to gain experience and
knowledge about faults and failures since they occur rare when compared to
nominal behavior. The increased complexity in skill-based CPPS makes it even
more difficult. Individualised tasks and small lot sizes lead to small amounts of
data and knowledge scaling up the challenge additionally.
One way to tackle the challenge is to leverage data and knowledge from multiple
CPPM resulting in federated knowledge bases to store faults and their context.
Knowledge bases about faults and their context are modelled in the Capability-
Skill-Service-Fault-Symptom Model (CSSFS Model) in [3]. The model is trans-
ferred into a knowledge graph to make the knowledge accessible in a structured
format. To increase availability, resilience and the autonomy level of CPPS,
an automated decision making for FDD is required. However, even some ap-
proaches tackle the automated, industry-oriented communication between fed-
erated knowledge bases, the use case of FDD especially for skill-based production
systems remains mainly open.
Against this background, the focus of this paper is to develop a communication
scheme that enables automated communication between FDD components for
a decentralised control setup, making distributed knowledge, also about faults,
accessible. Therefore, the required FDD components and their tasks and ser-
vices are defined, encapsulating distributed forms of knowledge. For each task,
a heuristic communication scheme is defined to query the corresponding knowl-
edge. The responses of the queries are the basis for autonomous or manual deci-
sion making. The scheme is implemented using a multi-agent system (MAS) at
the real-world demonstrator at SmartFactoryKL. This demonstrates the appli-
cation of a Holonic Manufacturing System (HMS) to encapsulate the intricacies
of systems comprising multiple individual subsystems essential to deal with the
complexity in distributed skill-based production. Therefore, the entities respon-
sible for FDD, along with their respective tasks, are individually defined and
subsequently incorporated into the pre-existing holonic MAS that manages both
direct and indirect manufacturing tasks for the CPPS demonstrator.
In Section 2, the current state of the art in skill-based production, HMS and
fault diagnosis approaches, which are realized by MAS, is given. Required com-
ponents for FDD in skill-based production including their tasks as well as a
communication scheme between the components are outlined in Section 3. The
integration of the components and the communication scheme into the real-world
demonstrator of SmartFactoryKL and its MAS is shown with an example case in
Section 4. Finally, the paper closes with a conclusion and future work in Section
5.
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2 State of the Art

2.1 Modular, Skill-Based Production

Cyber-Physical Systems (CPS) play an important role in Industrie 4.0 [4]. A
CPS can provide autonomous control and is crucial for the design of smart
factories [5]. CPPMs are built of CPS and provide standardised interfaces for
different functionalities [6]. Using these interfaces, CPPMs can be used to built
CPPSs in the way of a flexible aggregation of lower-level components [7]. The
Capability-Skill-Service Model is based on the PPR-model which provides a for-
malised and machine-readable description of manufacturing functions [8]. In a
structure of CPPS, each CPPM can encapsulate and provide manufacturing
skills, based on the concept of skill-based engineering [2]. Skills can be defined
in the manufacturing context as the asset-dependent implementation of asset-
independent capabilities [9, 10]. The relation of functionalities of skill-based en-
gineering, considering the PPR-model, are also shown in [10]. There, capabilities
are used to enable a product driven production. Product requirements are re-
alised with more dynamic possible production processes, which manifest as skills
on the shop floor. To follow the paradigm of a Shared Production, production
skills can furthermore be abstracted and provided as decentralised production
services [11].

2.2 Holons in the Context of Skill-based Production

The skill-based approach enables the connection between the OT and the IT layer
by standardised interfaces with self-contained functionality. Reconfiguration of
the production lines is possible by dynamic parametrisation and skill sequencing.
For this purpose intelligent system behavior is needed to deal with disturbances
efficiently by using the skill interface.

A manufacturing paradigm to deal with this challenge is named HMS. This
system consists of one or multiple holons that can be simultaneously a part
and a whole. It represents an analogy of a system consisting of several au-
tonomous subsystems [12]. A more technical definition describes a holon as
an autonomous and co-operative building block of a manufacturing system for
transforming, transporting, storing and/or validating information and physical
objects. The holon consists of an information processing part and often a physical
processing part [13]. These concepts are manifested in the reference architecture
PROSA [14] that covers aspects of hierarchical and heterarchical control archi-
tectures. In PROSA product, order and resource holons are responsible for one
aspect of manufacturing control each. The basis of PROSA served as inspiration
for the development of new architectures, e.g., ADACOR. ADACOR [15] defines
four holons: product, task, operational and supervisor holon. The aim was to
balance between a more centralised approach and a flatter one. In case of ma-
chine failure, the hierarchical architecture reorganises heterarchical to achieve an
alternate plan. ARTI [16] refined and improved PROSA by avoiding the usage of
manufacturing specific wordings. The authors distinguish between digital twins
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and decision-making elements. In this context, resource type, resource instance,
activity type and activity instance are introduced as elements of the world of
interest. The boundary is defined by digital twins for decision-making. These
digital replicas, operating in a non-physical realm, facilitate the virtual execu-
tion of decision makers’ intentions on corresponding resource instances faster
than real time.

The concepts HMS, digital twins and also CPPS have great potential for
combination. This is demonstrated in our approach in [17], inspired by PROSA,
ARTI and the CSS-Model [8,14,16]. Holons are combined with standardised in-
terfaces of the skill-based approach and associated digital twins known as Asset
Administration Shell (AAS). Service, product and resource holons are defined
to handle intra- and inter-organisational optimisation. However, at this stage, it
is exemplary shown how to solve planning and scheduling issues to ensure pro-
duction dynamically. Currently malfunctioning resources are not considered any
further. In this work, the extensions of the CSSFS will be added to dynamically
detect and diagnose faults [3].

2.3 Multi-Agent based Fault Diagnosis

HMS are mainly motivated by the manufacturing domain, following the goal
of increasing flexibility. Approaches in the field of fault diagnosis are primarily
located in the field of engineering and more and more in artificial intelligence.
The role of agents is to demonstrate the collaboration of different entities incor-
porating different tasks each. Therefore, in case of fault diagnosis in HMS the
tasks of fault detection and of fault diagnosis need to be covered and knowledge
from different sources need to be used to elaborate a holonic solution. In this
sub-section the related work in the field of multi-agent based fault diagnosis is
shown.

The field of online safety monitoring covers the tasks of FDD, alarm annun-
ciation and fault controlling. A hierarchical MAS covering different system levels
and a distributed monitoring model is used to develop the safety monitor. The
monitoring model is derived from a safety assessment model and consists of a
behavior model of hierarchical state machines and a fault propagation model
of multiple fault trees. The MAS is a set of Belief-Desire-Intention Agents that
are able to reason locally at sub-system level and at global system level using
a collaboration protocol. [18–21] Li, Wang & Wu introduce a distributed fault
diagnosis system reference model based on MAS covering the tasks of detec-
tion of local and global anomal behavior, fault analysis and diagnosis, causes
identification, preventive and corrective maintenance tasks running as well as
maintenance planning and the development of predictive models. To tackle the
challenge, agents coordinate the interactions and are able to execute reasoning,
adaptive and corrective aspects in their behaviors. The agents have access to
various data from different sources to fulfill their tasks. In this paper the fol-
lowing agents are introduced taking over different tasks: Detect Agent, Analysis
Agent, Diagnosis Agent, Manage Agent, User Agent and DB Agent. [22]
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Mendoza, Xu & Song develop a fault diagnosis multi-agent model for petrochem-
ical plants. The concept of leadership is introduced that combines the benefits of
centralised and decentralised coordination schemes. Multiple agents monitor a
set of sensors in the plant for normal and anomal states. The first agent that de-
tects an anomal state takes the leader role and aggregates state information from
the other agents. The leader agent builds a spatio-temporal pattern of anomal
events that is compared to existing fault templates to identify the fault. [23,24]
A multi-agent architecture for distributed fault diagnosis problems is developed
in [25]. The framework is split into knowledge abstraction, data acquisition,
fault diagnosis inference and a user interface. Four agent types are introduced:
Supervisor Agent, HCI Agent, Facilitator Agent and Diagnostic Agents. The
Diagnostic Agents are responsible for fault detection and isolation in a local do-
main part of the system. A Hidden Markov Model is shown that evaluates the
results of the local fault detection, thus, enabling the isolation of faults.

Although different approaches tackle the challenge of automated fault di-
agnosis, the distributed character of flexible manufacturing systems is rarely
focused. Additionally, the integration of fault diagnosis task in a MAS to han-
dle skill-based control tasks of a manufacturing system to make a further step
towards autonomous self healing of distributed systems remains unseen.

3 Architecture for Automated Communication to
Enable Fault Diagnosis in Skill-Based Production
Environments

FDD is a key in complex manufacturing systems to foster a high level of re-
silience. Fast detection and advanced diagnosis of faults are the basis for high
productivity and intelligent decision making in faulty scenarios. Holonic MAS
can be used for encapsulated and modularised control of production modules
and to establish communication and access to required information sources for
FDD. A schema for an automated communication between fault detection and
diagnosis components using distributed knowledge bases is needed and must be
considered in an overarching concept. Therefore, the fault detection and diag-
nosis components as well as their tasks are described. Communication between
the components and their decision making process with their related message
contents and a heuristic communication scheme are presented.

3.1 Overview communication schema

Different functionalities of multiple factory layers can be encapsulated using
holonic MAS. For a resilient production, a FDD is needed that requires three
components to be implemented: a fault detection component, a fault diagnosis
component and a knowledge base. In general, the fault detection component
triggers a request for a diagnosis tasks in case of a deviation from nominal
behavior. Therefore, it needs to submit the required information to the fault
diagnosis component that queries the knowledge base for potential solutions
(see Fig. 1).
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Fig. 1. Overview of the communication schema

3.2 Fault Detection Component

In general, the task of Fault Detection is to determine whether a fault is present
in a system or not. Hence, in skill-based production, we tried to determine faults
on a resource during the execution of one or multiple skills. The determination of
faults rely on the generation of symptoms that referred to a specific fault class.
For the generation of these symptoms, it is possible to use phenomenological or
model-based approaches, whereas phenomenological approaches use classifiers to
model the direct relationship between input variables and the symptoms. Model-
based approaches model the nominal behavior of a system that is compared with
the actual behavior. If there is a significant deviation between nominal and ac-
tual behavior corresponding symptoms are generated. Following the work of [26]
for fault detection in skill-based production, model-based approaches are chosen.
Therefore, the introduction of the tasks of monitoring, nominal modelling and
symptom generation was needed.
The monitoring component provides observations of a defined set of features that
are characteristic to describe the behavior of a system. The same set of features
is modelled to describe the nominal behavior of the same system. Finally, those
values are compared and symptoms are generated if they deviate significantly.
Further information on the tasks can be found in [26] and are not further elab-
orated here since the focus of this paper is the corresponding communication
scheme.
The calculated symptoms initiate the communication with the diagnosis compo-
nent. Required output for the following diagnosis tasks are the elaborated set of
symptoms, the resource of the current fault as well as the skill that was executed
during the occurrence of the fault and a timestamp to be able to use information
from other sources. Resource and skill elements are submitted for identification
purposes, so static identifier are sufficient there. The submission is mandatory.
Contrasting to this, the length of the set of symptoms needs to be variable since
before the calculation it is not clear how many symptoms are observable in the
system. To be able to detect a fault, at least one observable symptom is required.
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3.3 Fault Diagnosis Component

The task of the Fault Diagnosis Component is to analyse characteristics of a
fault based on the inputs of the Fault Detection Component. This can include
various sub-tasks that determine kind, size, location or causes and the severity
of faults. In this paper, the focus is on tasks for classification, root cause anal-
ysis and recommendation for fault handling. For the task execution a heuristic
query scheme is followed whereas the tasks are executed in the aforementioned
sequence, since the inputs of the previous tasks are required at each step. Addi-
tional tasks can be introduced and put at the required spot in the sequence, if
they are necessary.
In this work, a knowledge-based approach for fault diagnosis was used. The char-
acteristics of a fault, as well as its context, are modelled in an information model
and made accessible using knowledge graphs. Each fault was modelled at least
with its symptoms, the resource it occurred on, the product that was produced
and the skill that was executed during the occurrence of the fault. This follows
the CSSFS-Model developed in [3].
After modelling, the knowledge graph needed to be queried to get access to the
stored knowledge used for answering the fault diagnosis tasks. Each task requires
an own definition for the used queries. Since there are different scenarios possible
in each task, a hierarchical query scheme for each task was developed.
The heuristic communication scheme queries different scenarios iterative, start-
ing with the one having the most precise and easiest answer. If no match can
be found, the next step of the scheme is executed. Once all steps are executed
without having a match, the fault is classified as unknown. In that case, a human
expert needs to analyse the situation and define it in the knowledge base.

For the classification task, the query in Step 1 tries to find an exact match
of fault symptoms on the same resource, executing the same skill. If a match
exists the scheme the can be exited and reply the fault class that was found.
In Step 2, similar faults on the same resource are looked up if there was no
match in Step 1. This is the case when just a subset of the corresponding set
of symptoms are observed during the execution of the same skill or the same
set of symptoms during the execution of another skill. The match of Step 2
is a fault class suggestion because there was no exact match for all queried
input parameters. Step 3 addresses similar faults on other resources, but on the
same resource type, for example a milling machine of the same vendor. Different
definitions of similarity of resources can be done and can be concreted domain
specific and use case specific. In Step 4, similar faults on other resources and
other resource types are looked up. Additional similarities of the resource can
be taken into account, like same components or same functions to make sense of
the given results. The query scheme is shown in Fig. 2. Finally, if none of these
steps deliver a response, the inputs from the Fault Detection Component are
classified as unknown. After a human analysis of the system, the fault definition
can be added to the knowledge base.

The other tasks can be modelled analogous and are not displayed.
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Fig. 2. Heuristic communication scheme for a fault classification task

4 Implementation and Results

The integration in this work is shown on a CPPS of the SmartFactoryKL pro-
duction ecosystem. The CPPS consists of several CPPMs, providing different
skills to be able to produce product in small batch sizes (see Fig. 3).

For the fault detection component the nominal behavior was modelled with
physical models on atomic skill level and suitable sensors are attached for moni-
toring the features. For the fault diagnosis component the faults and their context
were modelled using AAS. Faults itself, the resources and skills were modelled
in resource AAS and product information in a product AAS. The AAS were
transformed in Neo4j label property graphs and follow the information model
elaborated in [3] to be accessible.
The Shared Production HMS of SmartFactoryKL consists of three holons: Ser-
vice Holon, Product Holon and Resource Holon. For self description purposes
each holon has its own AAS. An Identification Submodel serves for identification
and a submodel for the interfaces of the holon to enable communication using
different technologies. A topology submodel describes the internal structure of
the holon consisting of several sub-holons. The Service Holon provides and man-
ages the services of the factory to the world outside of the factory. The Product
Holon divides the required tasks for the production into sub-tasks and handles
the production process. Finally, the Resource Holon covers the management of
the CPPMs using different APIs like OPC UA and are connected to the AAS. Re-
source Holons of the type CPPS and CPPM are differentiated, whereas a CPPS
Holon demonstrates the existence of multiple sub-holons and the CPPM Holon
abstracts the smallest possible entity that is not further partitioned. On an inter-
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Fig. 3. CPPS of SmartFactoryKL

action level, this differentiation has no effect. CPPS Holons cover lifecycle man-
agement and coordination tasks and behaviors, whereas CPPM Holons perform
and schedule tasks on a concrete level. Additionally to AAS, Lifecycle and I4.0
Message Skills, the CPPS Holon offers the following behaviors: Update, Inter-
Holon, Negotiation and Human Behavior. Especially the Human Behavior needs
to be emphasised because human expertise is required for improvement of the
modelled knowledge in the graph and for the case of previously unknown faults.
On the CPPM Level AAS, I4.0 Message Skill and Human Behavior was included
as well. Furthermore, Bidding and OPC UA Skills and Requirement Check, Bid-
ding, Neighbor, Execution and Monitoring Behavior are covered. More detailed
descriptions of the Skills and Behaviors can be found in [17].
Following the description in Section 3, FDD components with their tasks needed
to be integrated into the existing HMS to create a holonic approach that can
handle the whole manufacturing. Since existing Behaviors and Skill allowing the
communication and monitoring of the CPPM on a control and hardware level,
the fault detection component was integrated into the Resource Holon on the
CPPM Level. Therefore, the already existing Monitoring Behavior was adapted
and a Behavior simulating nominal behavior of the CPPM and a behavior for
generating symptoms were added to the portfolio.
The fault diagnosis components require more coordination capabilities since the
knowledge bases of multiple CPPMs are required to find similar cases if no match
is found on the CPPM the fault occurred on. Accordingly, the fault diagnosis
component was attached to the CPPS Holon. A visualisation of the Resource
Holon and the integration of FDD is shown in Fig 4.
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Fig. 4. Visualisation of Resource Holon with integrated FDD

5 Conclusion & Outlook

In this paper a communication scheme for integrated and autonomous FDD
for skill-based production environments is developed to make distributed con-
trol setups and knowledge bases accessible. Therefore, required components for
FDD and their tasks are elaborated and a communication scheme between the
components is outlined. The fault detection components include the tasks of
monitoring, nominal behavior and symptom generation. Once a deviation be-
tween nominal and actual behavior is present, symptoms, timestamps, skill and
resource information are submitted to the fault diagnosis component and an
analysis is triggered. The tasks of fault diagnosis subsume e.g. classification,
root cause analysis and handling recommendations. Additional tasks can be in-
troduced when they are required and integrated accordingly.

To elaborate the tasks, the fault diagnosis component queries a knowledge-
base that stores knowledge about faults and their manufacturing context using
a heuristic query scheme. The scheme allows to efficiently access the knowledge
instead of running resource intensive similarity analysis in the first step. The
steps start with a direct full match and use other scenarios that are queried, if
there is none. Once there is no match found, the fault is declared as unknown
and a human expert is required to analyse the situation and define the fault then
in the knowledge base.

Finally, the components and interaction scheme are integrated and tested
into the existing HMS of SmartFactoryKL. With the integration a crucial com-
ponent can be added to the HMS to reach the goal of a resilient and almost
autonomous HMS, that provides a decision support to human workers. The
elaborated FDD components better suit the requirements of skill-based produc-
tion system. Rather than using anomaly detection or monitoring techniques, the
nominal behavior is simulated that is compared to actual behavior. Additionally,
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the knowledge-based approach for diagnosis allows more possibilities for analysis.
Due to this assumptions from previous work, that differs from other approaches,
the architecture for the components and the communication followed. In contrast
to the leadership concept introduced in [23] the coordination is handed to the
diagnosis component and does not stay with the first holon, since the diagnosis
component manages the sequence of the tasks as well as the scheme within the
tasks. The diagnosis component is integrated on the CPPS level of the existing
HMS, so it can undertake the communication with other holonic agents. This
was out of scope for this work, but needs to be tackled in the future. Since the
scope of this work was on the communication scheme, future work can focus
on the messages between the components. The structure of messages based on
the I4.0 specification can be included. Additionally, further diagnostic tasks and
similarity approaches can be added in future work.
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