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Abstract

Abstract

As an essential field of Statistics, Survival analysis predicts various aspects of time-to-event

data that includes censoreddata. Technological advancementof theanalysis of biologicalmole-

cules enables prediction of survival times, and risk of a specific disease occurrence by leverag-

ing omics data. Omics data generally contains thousands of features compared to the minimal

number of samples and the number of features only increases when additional omics types are

integrated to make a multi-omics dataset, which is hard to interpret by humans and can also

impact any model to analyze the data successfully.

Theobjectiveof this thesis is to compare the survival predictionperformanceof feature-selected

subsetswith the performance of the full multi-omics dataset. The thesis also explores howdoes

the integration of various omics types within amulti-omics dataset influence survival prediction

performance.

The findings show that it is uncertain whether models built on feature-selected subsets consis-

tently outperform models built on the full multi-omics dataset. Similarly, it is unclear whether

integrating more omics types to construct multi-omics dataset yields better predictive perfor-

mance than selectively including a less carefully chosen omics types to construct a multi-omics

dataset.

In general, survival analysis prediction performance heavily depends on the chosenmulti-omics

dataset, integration technique, selected survival analysis model and its configuration, and the

considered prediction performance measure.
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1 Introduction

1.1 Motivation

Unlike Genetics, which interrogates single genes or individual variants, Genomics was the first

omics discipline, a global or comprehensive assessment of a set of molecules, focused on the

entire genomes [1]. With the advancement of technology, analysis of biological molecules such

as genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc, are made efficient

and performant. Nowadays, many databases such as the Cancer Genome Atlas (TCGA), the

Gene ExpressionOmnibus (GEO), andNCIGenomics DataCommons (GDC) are publicly avail-

able that have different kinds of omics data for various diseases [2]. This kind of omics data can

be leveraged for survival analysis to predict the survival times and risk of a specific disease oc-

currence.

At the start of survival analysis with genomics data, only a single omics data was included to

build a predictionmodels [3]. With the availability of more andmore omics types to analyze, fo-

cuses are shifting towards leveraging more omics types together to predict model outcomes.

This kind of integration and combination of multiple omics types into a single dataset led to

the term multi-omics data [4]. Integration of various omics data to a multi-omics data is not

straightforward, and multiple approaches are proposed, such as early integration, mixed inte-

gration, intermediate integration, late integration, and hierarchical integration, each having its

own pros and cons [5]. Clinicians mostly prefer data and models that are easily interpretable

and applicable [6]. Integration techniques such as early integration or intermediate integration

may be preferable because of the easy interpretability of data as they do not transform the

omics data when integrating into multi-omics data, unlike mixed integration. Such integration

technique raises another kind of problem because of the inherent nature of omics data being

very high dimensional [7].

Omics data typically has thousands of features compared to the very small number of samples.

Integrating multiple omics types increase the number of features beyond the capacity of any

human to interpret the data without external help. In addition to that, biological data often con-

tains redundant, noisy, and irrelevant features due to the nature of biological experiments that

are contaminated during the experiment, as well as tools and equipment that often produce

noisy data [8]. Reducing the unwanted features from the high-dimensional data is important

beyond doubt to improve accuracy and reduce resource costs such as time and memory [9].
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1 Introduction

This reduction of the unwanted features can produce a subset of the original multi-omics data

with a small number of relevant features that are easy to interpret by clinicians but should not

come at a high cost of predictive performance [10]. To our knowledge, there is still a lack of

studies that neutrally compare the independently selected features subsets predictive perfor-

mance with the original multi-omics dataset in terms of survival analysis.

Moreover, there aremany omics types, such as gene expression (RNA),miRNAexpression, copy

number segment, protein expression, and DNAmethylation, available to construct multi-omics

data [11]. Because of the very high dimensional nature of omics data, it can be quite overwhelm-

ing for any model to successfully analyze when all available omics types are integrated to make

amulti-omics data. Determining the effect of survival prediction performance on incorporating

different numbers of omics types into a single multi-omics dataset is also desirable.

1.2 Research Questions

The purpose of the thesis is to provide answers to the following research questions.

1. To what extent does survival prediction performance differ between a feature-selected

subset and the full multi-omics dataset?

2. How does the integration of various omics data types within a multi-omics dataset influ-

ence survival prediction performance?

1.3 Overview

The thesis comprises six chapters, eachbuildingupon theprevious to achieve its goal. Chapter 2

lays thebackgroundby introducingessential concepts necessary for the research, such asmulti-

omics integration strategies, dimensionality reductionmodels, and survival analysismodels with

evaluation measure metrics. Chapter 3 details the methods and datasets used in the thesis.

Chapter 4 describes the experiment design and its results. Chapter 5 delves into the findings

based on the achieved results. Finally, Chapter 6 concludes the thesis by summarizing the key

findings.
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2 Background

2.1 Multi-omics Data Integration Strategies

Omics data contains a specific type of biological information such as genomics, transcriptomics,

proteomics, epigenomics, metabolomics, etc of a biological system or an individual [12]. When

different omics types are present in one dataset, then that new dataset is called multi-omics

data. Omic data generally have rows containing samples and columns containing biological vari-

ables. Integration ofmultiple omics data tomulti-omics data is not straightforward, andmultiple

strategies have been developed for integration, each having its own pros and cons. Five such

strategies have been commonly found in the literature and are described below [5].

1. Early integration: Every omics data set is concatenated into a large dataset. The number

of observations stays the same, but the number of variables increases. This technique

is commonly used because of its easy implementation and simplicity, as well as its more

straightforward data interpretation. Although the size difference of the omics dataset can

influence learning imbalance, the extent of the influence is not known.

2. Mixed integration: Inmixed integration, each omics dataset is independently transformed

into a more straightforward representation. This transformed representation can be less

noisy with lower dimensions. The differences between omics datasets in terms of their

data type, size, etc., are removed in the new dataset. Transformation can be done using

graph-based methods, kernel-based methods, or deep learning-based methods.

3. Intermediate integration: Intermediate integration can be described as a technique that

is capable of integrating multiple omics datasets without using a simple concatenation

and prior transformation. The output dataset is a newly constructed representation that

is common to all omics datasets. This can reduce both dimensionality and complexity and

is often implemented after some robust pre-processing and feature selection. SLIDE [13]

and an extension of mRMR [14] are examples of intermediate integration methods.

4. Late integration: Applying different models separately on each omics dataset and then

combining their prediction is called late integration. It is a straightforward integration

strategy that does not assemble different kinds of omics data. However, this strategy

does not share knowledge between models at any point of the models learning process,
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2 Background

and as a reason cannot capture or utilize inter-omics interactions and complementary in-

formation. Moreover, combining predictions of different models remains a challenge be-

cause the combined output simply cannot be enough to actually exploit or understand

multi-omics data. One can even argue whether late integration can be called a multi-

omics integration as it boils down to an analysis of multiple single omics.

5. Hierarchical integration: At themolecular level, Hierarchical integration leverages themod-

ular organization structure to exploit the nature of multidimensional data for multi-omics

integration. It includes prior knowledge of relationships between different omics data to

finally integrate them into multi-omics data.

Figure 2.1: Integration strategies of multi-omics data [5].

2.2 Dimensionality ReductionModels

Dimensionality reduction of data, in general, can be categorized into twomethods, such as fea-

ture selection and feature extraction [15] [16]. A subset of the most important and relevant

features of the original features are selected on certain criteria for the given task in feature

selection methods [16]. Selected features are not altered and they are a part of the original

dataset, which preserves the relationships and meaning among the original features, making
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2 Background

them more interpretable.

In comparison to the feature selection methods, the feature extraction methods aim to trans-

form the original features to make a new one that better represents the original data [16]. x =

[x1, x2, ..., xp′ ] in a feature spaceΩX of p′-dimension is transformed fromasample y = [y1, y2, ..., yp]

in a space ΩY of p-dimension using a map ofX = f(Y ) where p′ < p [16]. Feature extraction is

less interpretable because the extracted features do not represent the relationships andmean-

ing of the original features.

Feature selection and feature extraction can both be achieved in supervised, semi-supervised,

and unsupervisedmanners where evaluation of selected or extracted features is done by known

class labels, while alternative criteria are derived without knowing class labels in unsupervised

approaches [17]. As the feature selection methods preserve the relationships among the origi-

nal features and do not transform the features while making the feature subset, these methods

are more interpretable by the domain experts; thus, feature selection methods are often pre-

ferred over feature extraction methods in several cases [18].

In multi-omics genomic data, feature selection methods can retain the gene signature by se-

lecting a subset of genes while transforming the gene signatures, the feature extraction meth-

ods will not retain the originality of the original gene signature. Because of this reason, it is more

suitable to select feature selectionmethodsover feature extractionmethodswhenexperiment-

ing with multi-omics data [15]. Depending on the computation of feature evaluation indicators,

feature selectionmethods can be categorized into three such as filter methods, wrapper meth-

ods, and embedded methods [19].

2.2.1 Filter Methods

Independent of the selected classification method, filter methods act as pre-processing steps

by selecting feature subset. The selection can be carried out using both univariate and multi-

variate approaches. Univariate approaches such as Infor [20] and Correlation-based Feature

Selection [21] ignore feature dependencies and independently evaluate each feature accord-

ing to specific criteria. Multivariate feature selection methods such as Minimum Redundancy

Maximum Relevance (mRMR) [22] and ReliefF [23] are proposed to overcome the feature de-

pendency ignoring problem. Filter methods are easy to implement, classifier independent, and,

in general, faster than Wrapper and Embedded feature selection methods. Filter methods ig-

nore the classifier methods to be used later, thus needs to be performed once and the resulted

feature subset can be used to evaluate different classification methods.
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2.2.2 WrapperMethods

Wrapper methods take the classifier performance into account that guides the searching at

each iteration to iteratively evaluate and select feature subset [24] because ”The m best fea-

tures are not the best m features” [25] generally. Wrapper methods usually fall into two cate-

gories: greedy methods and random search methods [18]. In the hope of leading to a globally

optimal solution, well-known greedy methods such as Sequential forward selection and Se-

quential backward selection make locally optimal choices [26]. They are iterative approaches

where an initial solution is selected at the start andupdated in each iteration bygenerating some

alternative solutions to calculate their profitability and selecting the solution with themaximum

profit to replace the old selection. Either by reaching themaximum iteration number or fulfilling

a stopping criterion, the algorithm stops and the best selected feature subset is obtained [27].

Evaluation of the large numbers of possible subsets makes the greedy methods computation-

ally costly for high-dimensional data as the number of features becomes too large.

Alternatively, random search methods such as Genetic Algorithm [28] and Particle Swarm Op-

timization [29] generate random solution space instead of multiple solutions to obtain the final

feature subset. In theory, wrapper methods select more accurate feature subset by consider-

ing classifiers that will produce better accurate classification outputwhenwrappermethods and

classification methods are combined. But wrapper methods are computationally very resource

hungry and if not stopped iterative process early have a higher risk of overfitting.

2.2.3 EmbeddedMethods

Embedded methods are specific to the given machine learning algorithms and select feature

subset in the training process [30]. Regularization methods such as Lasso [31] and Elastic Net

[32] and Decision Tree Algorithms such as RF-VI [33] are two categories the Embedded meth-

ods fall into. Feature selection is performed implicitly in regularizationmethods by forcing coef-

ficients of the feature to be small or exactly to zero when the objective function model is regu-

larized with minimizing the feature weighting of estimated generalization error. Unlike wrapper

methods, embedded methods may be less prone to overfitting and computationally intensive

while considering classifiers like wrapper methods. However, compared to wrapper methods

and filter methods, sometimes embedded methods can produce worse classification perfor-

mance [34].
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2.2.4 Feature Selection andMulti-Omics Data

With integrated multidimensional analyses and large-scale genome sequences of more than

30 human tumors, The Cancer Genome Atlas (TCGA) is a public-funded project that has vari-

ous types of omics data of different types of cancer [11]. TCGA provides a rich set of omics data

types that includesGenomics, Transcriptomics, Epigenomics, Proteomics, miRNA-sequencing,

and so on. Biological data often contains redundant, noisy, and irrelevant features due to the

nature of biological experiments that are contaminated during the experiment, as well as tools

and equipment that often produce noisy data [8] [35]. Reducing the unwanted features from

the high-dimensional data is important beyond doubt to improve accuracy and reduce resource

costs such as time and memory [9].

In theory, Embedded methods such as RF-VI and Wrapper methods such as Genetic Algo-

rithm should produce better accuracy than Filter methods. However, experiments on multi-

omics data showed that Filter methods like mRMR produce better accuracy than RF-VI [36]

with slightly higher computation time but less memory. Wrapper methods, such as Genetic al-

gorithm and Recursive feature elimination took too much computation time, so they are not

suitable for multi-omics data for practical use [36]. These feature selection models were only

considered with binary outcomes and were not clear on performance of survival data. Another

study showed that the variance filter on omics data outperformedmRMR when applied the se-

lected features to a survival analysis model such as CoxPH [10]. Although filtering was done on

single omics data, this can be transferred to multi-omics data.

2.3 Survival Analysis Models

Survival analysis domain analyzes time-to-event data that consists of covariates, outcome (cat-

egorical and often binary) and time (until the outcome happens, generally refers as survival

time). Survival analysis is different than other areas of Statistics because it incorporates ”cen-

soring”, uncertainty of a real-world event occurring. For example, if a Cancer patient dies after

five months of the initial treatment date, then the outcome is known, that is, the patient died

after five months. Now, let’s say the patient is observed for ten months, and after that, the

patient does not come for the treatment. In this case, we can be sure that the patient survived

for ten months and after that the status of the patient being alive or dead is unknown. Then, it

can be said that the patient is censored at ten months.

Statistical models generally learn from known outcome data, while Survival analysis tries to in-
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corporate censored data to learn from the maximum information possible without knowing the

true value of the outcome. The structure of the survival analysis data is different than that of

other domains as the data is engineered to capture observed information rather than be directly

modeled. Let,

• X : X ⊆ Rp, p ∈ N>o be data features / variables.

• Y : T ⊆ R≥0 be the survival time.

• C : T ⊆ R≤0 be the censoring time.

• T : min{Y,C} be the time of observed outcome.

• ∆ : I(Y = T ) = I(Y ≤ C) be event indicator.

Given the above-mentioned data structure, the event is observed when Y ≤ C and ∆ = 1,

otherwise censored when∆ = 0. There are three main types of censoring:

1. Right Censoring: Right censoring occurs if a subject has not encountered the event of

interest (e.g., death) by the time the study ends or drops out from themiddle of the study

without experiencing the event, making the true outcome of the subject unknown. For-

mally, if the study period is [ts, te] for some ts, te ∈ R≥0, then occurs right censoring when

Y > te or when Y ∈ [ts, te] and C ≤ Y . It is the most common type of censoring, and this

study focuses on it.

Figure 2.2: Censored and dead subjects (y-axis) over time (x-axis) [37]

Here, the vertical line indicates end time of the study. Censoring time is indicated using

white circles, and true death time by black diamonds. Subjects 1 and 2 die in the study
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2 Background

time while subjects 3 and 4 are censored. After the end of the study, subject 5 dies.

2. Left Censoring: Left censoring occurs if the subject has already encountered the event

of interest (e.g., death) before start of the time of the study given that the exact event

time is unknown but certain that the event has happened. Formally, left censoring can be

represented as Y < ts.

3. Interval Censoring: Interval censoring happens when the exact time of the event is not

known, but certain that the event has occurred within a time interval of the study period.

When the estimated probability of the time of an event is greater than a certain time t, then the

probability is represented by the Survival Function (S(t)) that is defined as:

S(t) = P (T > t)

Here, T is the time of observed outcome, and t is the time of interest.

Given that the individual has survived up to time t, then the event occurring instantaneous rate

is represented by the hazard function (h(t)), which can be defined as:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t

2.3.1 Classical Survival Models

The Kaplan-Meier is a non-parametric distribution estimator which estimates the survival func-

tion from a given dataset. Based on a subject’s survivability beyond time t, it defines a survival

function S(t) as the probability based on the censoring and the number of events at each time

point [38]. The survival function can be formulated as:

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
where ti is the time point at which at least one event occurred, di is the number of events at

time ti, and ni is the number of observations that are yet to experience the event but are at risk

just before time ti.

When cumulative hazard is of interest with the survival function, the Nelson-Aalen estimator is

used alongside to estimate the cumulative hazard function in survival analysis. It is an estimator

of the accumulated risk over time to experiencing an event [39] [40]. At a specific time t, the

Nelson-Aalen estimator for the cumulative hazard functionH(t) is:

Ĥ(t) =
∑
ti≤t

di
ni
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where ti is the time point at which at least one event occurred, di is the number of events at

time ti, and ni is the number of observations that are yet to experience the event but are at risk

just before time ti.

The survival function S(t) can be estimated by the cumulative hazard H(t) with the following

relationship:

S(t) = e−Ĥ(t)

This indicates that the survival probability decreases as the cumulative hazard increases. In

practice, the Kaplan-Meier estimation of a survival distribution is consistent and the simplest,

and it is the most widely used non-parametric estimator as a baseline that is utilized to judge

other models to ascertain overall performance [4]. Due to poor predictive performance of ex-

planatory variables exclusion, above mentioned two estimator are not used for prognosis di-

rectly but as graphical tools and baselines.

Another non-parametric estimator to calculate cumulative incidence function Fj(t) that repre-

sents the probability based on a condition that by time t, a specific event will occur of type j

that can be written as Akritas estimator [41]:

F̂j(t) =
∑
ti≤t

dij
ni

∏
tk<ti

(
1− dk

nk

)
where ti is the event time point. dij is the number of j type event which occur at time ti. dk is

the number of events at time tk, ni is the number of observation that are yet to experienced the

event but are at risk just before time ti and
∏

tk<ti
(1 − dk

nk
) is the subjects surviving probability

past previous time points to ensure the risk of subjects for the interest event by time ti.

The Cox Proportional Hazards Model (CoxPH) is probably the most used method in survival

analysis that estimate effect of covariates or predictors on the hazard rate [42]. It a semi-

parametric model that express the effect of covariates multiplicatively on the hazard function

without assuming a specific base hazard distribution over time. For an individual, the hazard

function h(t/X) with covariatesX = (X1, X2, ..., Xn) is:

h(t|X) = h0(t) exp(X.β)

where h(t|X) is the hazard function for an individual with covariates X at time t. h0(t) is the

hazard when all covariatesX = 0. β = (β1, β2, ..., βn) is the vector of each covariate regression

coefficients. exp(X.β) = exp(X1β1 + X2β2 + ... + Xnβn) is the proportional effect of X on

the hazard. CoxPH is a highly accessible and transparent model for survival analysis the has

excellent predictive performance and has been routinely outperforms sophisticated Machine

Learning models or at least has not unperformed [37].
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2.3.2 Machine Learning Survival Models

Random Survival Forest (RSF) is a powerful machine learning model for survival analysis which

has been studied extensively for the past four decades [37] [4]. RSF can be summarized into

the following five models:

1. Relative Risk Tree (RRT): RRT adopts proportional hazard model of CoxPH to use a de-

viance splitting rule for ranking prediction at terminal node [43]. This model is the least

transparent and accessible among all the RSF models discussed here. The prediction is

harder to interpret and the assumptions themodel makesmay not be that realistic. More-

over, the performance is worse than other types of RSF models [37].

2. Relative Risk Forest (RRF): RRF is a extension of RRT which unlike RRT prediction during

tree growing process, predicts after the tree is grown in every iteration [44]. Although

in theory RRF can outperform RRT, but there are no implementation or usage found in

literature. As a result RRF can not be considered because of it’s predictive performance

is simply unknown.

3. RSDF-DEV: Another extension of RRT assuming a PH and creating a random forest by

introducing a bagging composition with a deviance splitting rule is RSDF-DEV [45]. Ter-

minal node ranking prediction is altered with bootstrapped Kaplan-Meier prediction to

make the model more transparent and accessible. However, the predictive performance

is worse than RSF [37].

4. Random Survival Conditional Inference Framework Forest (RSCIFF): RSCIFF is a condi-

tional inference model that predict log-survival time using weighted average of Kaplan-

Meier estimation in the terminal node where inverse probability of censoring loss function

is leveraged for splitting rule [46]. The implementation of RSCIFF is complex, making it

less transparent and accessible to include in benchmark studies.

5. RSDF-STAT: LeveragingbootstrappedNelson-Aalen estimation for terminal nodepredic-

tion with a choice of log-rank and log-rank score hypothesis tests, RSDF-STAT probably

is the most general and used model among the RSF variation [47]. It is highly accessible,

transparent and performs well on most data. There are several implementations available

in different programming languages. In this thesis, RSDF-STAT will be refereed as RSF

from now on.
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Gradient Boosting Machines (GBM) considers survival context by a sensible choice selection

of loss function unlike other machine learning algorithms that typically ignored survival analysis

at their early stages [48]. Although there has been a long gap of developing GBM in survival

context, but recently GBM are catching on. Instead of predicting survival distribution directly,

in general GBMmakes ranking predictions.

GBM-COX estimate coefficients of Cox model using proportional hazard assumption for data

distribution prediction in it’s boosting framework [48]. Suitable loss function is minimized to

predict ĝ(X∗) = n̂ := X∗β̂. Minimizing negative partial log-likelihood, −l with proportional

hazard assumption can be formulated as:

l(β) =
n∑

i=1

∆i

ni − log

 n∑
j∈Rti

exp(ni)


where ni = Xiβ and Rti is sample set with risk at time ti.

AlthoughGBMare well-understood and transparent, but GBM-COX is not very flexible for cus-

tom implementation.

CoxBoost model optimize partial log likelihood penalization to boosts CoxPH by taking manda-

tory variates [49]. Mandatory variates make the model more interpretable and allow inclusion

of prior expert knowledge. A componentwise framework of CoxBoost is implemented using R

package ”CoxBoost”, though a non-componentwise framework also exists [50]. CoxBoost per-

forms well, but due to the algorithm being complex, it is less transparent [37]. Moreover, it is

less accessible as only one off-shelf implementation exist and custom implementation is harder

than other GBMmethods.

GBM-COX and CoxBoost are GBMmodels for proportional hazards data. For non proportional

hazards data, GBM for accelerated failure time models are proposed that are fully parametric

and estimate linear predictor, ĝ(Xi) = η̂, simultaneously [51]. Thesemodels do notmandate as-

sumption of often-unrealistic proportional hazards on the data to predict ranking. Experiments

suggest that they can outperform CoxPH and are transparent and accessible as GBM-COX.

GBMcanbemodified tomeasure different kinds ofmeasurement, such asGehan loss, Buckley-

James imputation, Harrell’s C and Uno’s C. AlthoughGBMmodels are useful in survival analysis

that can outperform a classical model such as CoxPH, but these models are resource intensive.

One should be careful to leverage GBM in very high-dimensional data due to the limitation of

the resource at hand and not look only at predictive performance.
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Artificial Neural Networks (ANN) have been adopted for survival analysis for decades in con-

trast to other machine learning models. ANN are in general consider as a black-box model and

are less interpretable that decrease rapidly with an increased number of nodes or hidden layers.

On the other hand, ANN adaptation of survival analysis are mostly implemented using Python

language and with fewer implementations available in R language make them less accessible

[37]. Many researchers claim to adopt ANN for survival analysis, but in reality the task of the

adopted model is to find probability of death at a specific time point which cannot be call as a

survival analysis. Also, superior performance of classification task over Cox models cannot be

considered as a survival task [37].

ANN-COX estimates prediction function ĝ(X∗) = ϕ(X∗β̂) to propose a non-linear proportional

hazard model [52]:

h(t|Xi, θ) = h0(t) exp(ϕ(Xiβ))

where θ = β are model weights and ϕ is the sigmoid function. The model is trained with partial-

likelihood:

L(ĝ, θ|D0) =
n∏

i=1

exp(
∑M

m=1 αmĝm(X∗))∑
j∈Rti

exp(
∑M

m=1 αmĝm(X∗))

where at time ti the risk group is Rti , number of hidden unit isM , model weights are θ = {β, α}

and ĝm(X∗) = (1 + exp(−X∗β̂m))−1. ANN-COX has one hidden layer that is trained using

back propagation with Newton-Raphson weight optimization. This model does not outperform

aCoxPHevenwith independent studies using pre-processing and hyper-parameter tuning [52].

COX-NNET adopt ANN-COX by maximising regularized partial log-likelihood [53]:

L(ĝ, θ | D0, λ) =
n∑

i=1

∆i

ĝ(Xi)− log

∑
j∈Rti

exp(ĝ(Xj))

+ λ (∥β∥2 + ∥w∥2)

withweights θ = (β,w), bias b, tanh activation function σ and ĝ(Xi) = σ(wXi+b)Tβ. Overfitting

is preventedby incorporating dropoutwithweight decay. COX-NNET is not performant in terms

of CoxPH performance.

DeepSurv extends ANN-COX and COX-NNET with multiple hidden layers where weight decay

average negative log partial likelihood is chosen as error function [54]:

L(ĝ, θ | D0, λ) = − 1

n∗

n∑
i=1

∆i

ĝ(Xi)− log
∑
j∈Rti

exp(ĝ(Xj))

+ λ∥θ∥22

where n∗ :=
∑n

i=1

∏
(∆i = 1) is the uncensored observations number and ĝ(Xi) = ϕ(Xi|θ) is

the prediction object as ANN-COX. The author claimed that it can outperform CoxPH, but in-

dependent experiments do not confirm this claim [55].
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DNNSurv [55] trains a regression ANN with squared error loss and sigmoid activation to com-

pute pseudo survival probability using jackknife-style estimator at first with:

S̃ij(Tj+1, Rtj ) = njŜ(Tj+1 | Rtj )− (nj − 1)Ŝ−i(Tj+1 | Rtj )

where for risk setRtj , Ŝ is inverse probability of censoring weighted Kaplan-Meier estimator, for

all observation excluding i in Rtj , Ŝ−i is the Kaplan-Meier estimator and nj := |Rtj |. DNNSurv

author did not find any improvement over other models mentioned above in terms of C-index

and Brier score evaluation. With a valid proportional hazard assumption, DNNSurv failed to

outperform the CoxPH model, although on the non-portional hazard dataset, DNNSurv out-

performed Cox models.

DeepHit uses a deep neural network to directly learn survival time distributions without assum-

ing any stochastic underlying process that allows the possibility of covariates and risk relation-

ship changingover time [56]. The survival function is foundusing Ŝ(tk|X∗) = 1−
∑K

k=1 ĝi(tk|X∗)

where k = 1, 2, ...,K is distinct time interval and gi is prediction of failure at each time interval.

With respect to separation, DeepHit outperformed CoxPH and RSF, but demonstrated worse

performance than CoxPH with respect to integrated Brier score [57].

While above mentioned survival ANN focus on probabilistic prediction, RankDeepSurv [58]

tackles the deterministic problem by predicting survival time T̂ = (T̂1, T̂2, ..., T̂n). The proposed

composite loss function is:

L(T̂ , θ|D0, α, γ, λ) = αL1(T̂ , T,∆) + γL2(T̂ , T,∆) + λ∥θ∥22

where model weights are θ and shrinkage parameter is α, γ ∈ R>0, λ. With an unclear compari-

son, the author claimed superiority of RankDeepSurv over CoxPH, RSF and DeepSurv, making

an independent study necessary to support the claim [37].

DeepOmix is another recent ANN model that enables multi-omics dataset to incorporate user

define prior biological knowledge that is said to outperform CoxPH, RSF [59]. No implementa-

tion of DeepOmix is found to independently verify the claim. The complex structure of Deep-

Omix makes it less transparent and lack of implementation makes it less accessible for inde-

pendent researchers.

2.3.3 EvaluationMeasure for Survival Models

The simplest and most common way to measure a model’s ability to distinguish risk levels is

with concordance indices (C-index) [2]. These indices look at how often the model success-

fully separates pairs of observations into ‘low-risk’ and ‘high-risk’ groups. C-index value resides
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between [0, 1] with 0 being no separation, 1 being perfect separation and 0.5 being random

separation. C-index may also be reported as a value in [0, 1], as a discriminatory power or as a

percentage.

Improvement percentage of a model above the baseline 0.5 refers as discriminatory power.

With a concordance of 0.7, the discriminatory power of the model is (0.7 - 0.5)/0.5 = 40%. Dis-

criminatory power represents a model improvement over a baseline, but can be easily confused

with percentage reporting of concordance of 0.7 as 70%. Harrell’s concordance index, CH [60]

andUno’s concordance index,CU [61] are two of themost commonC-indexmeasurementmet-

ric found in literature.

CH ignores thepairswhich are censored for shorter survival timeand is affectedby thepresence

of censoring [62]. CU also suffers drastically with increased censoring than other concordance

measures [62]. Both of themeasures are not perfect as they are affected by censoring to some

extent that can lead to over-confidence and under-confidence for a model discriminatory abil-

ity. CU has observed to report value as 0.2 when the true estimation was 0.6 and reporting CH

= 0.7 may be incorrect as different amounts of censoring can mean different things [62].

Both CH and CU tend to produce similar values and comparison of studied models with same

datasetwill not beaffectedby the instability fromcensoring. As a result, utilizingC-index for this

thesis model evaluation is not of concern as the censoring affects equally for selected models

and are free from abovementioned problems. However, comparing a concordance from differ-

ent study remains a challenge where the datasets differ in terms of censoring proportion with

the sample size [37].

Another scoring rule for classification is the Brier score [63] where scores are minimized with

true prediction.

Figure 2.3: Brier scoring rules for probabilistic predictions. [37]
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Here x-axis is probabilistic prediction and y-axis is Brier score. Blue line is varying Brier score

when true outcome is 1 and red line is varying Brier score when true outcome is 0. Both scores

are minimized for correct prediction. The range for the Brier score is [0, 1] and lower value indi-

cates better survival prediction performance.

From the Figure 2.3 cutoff, it can be interpreted that a value below 0.25 has better predictive

performance than an uninformed prediction of value 0.5. By predicting cumulative distribution

function with the true event over the entire distribution, instead of prediction of correctness at

a single point, Brier score for classification can be extended for regression and used as Inte-

grated Brier Score (IBS) for survival settings. This thesis also leverage IBS alongside C-index

as IBS is probably the most utilized measurement after C-index [2].

2.3.4 Survival Prediction andMulti-Omics Data

In the experiment done in [37], author stated that among the machine learning models, GBM

and RSF were methods that generally perform well. From classical models, CoxPH also per-

formed well, though it may fall sort when dealing with high dimensional data. Another bench-

mark study was done in [4] with multi-omics data where CoxBoost and RSF were two models

that deemed applicable for multi-omics survival prediction. A general workflow of multi-omisc

survival analysis is shown in Figure 2.4.

Figure 2.4: A General workflow of multi-omics survival analysis.
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3.1 Variance Filter

Variance filter is a feature selection method that creates a subset of the given dataset by in-

cluding features that have very high variance in the dataset assuming that the features with high

variance providemore useful information for distinguishing between target classes and remove

features of the given dataset that have very low variance under the assumption that low vari-

ance features do not provide that much useful information for target classes distinction [19].

Features with low variance in general have values that are quite same across all samples and

are unlikely to contribute to model’s predictive performance compared to features with high

variance. For a feature set X = {X1, X2, ..., XN} with N observations, the variance σ2
X of X is

calculated as:

σ2
X =

1

N

N∑
i=1

(Xi − X̄)2

whereXi is the i-th value ofX and X̄ = 1
N

∑N
i=1Xi is the mean ofX .

To include or exclude the feature to the subset, a threshold θ is determined by which features

are be discarded. This can be a fixed value or a percentile of the variances among the original

data. Steps to perform variance filter is:

• Decide a threshold θ by which features will be included or excluded.

• For each feature ofX , calculate σ2
X

• Include any feature ofX that has σ2
X ≥ θ and exclude any feature ofX that has σ2

X < θ to

the new dataset.

3.2 Cox Proportional Hazards (CoxPH)

Assuming the event has not occurred yet, the CoxPH model assesses the effect of predictor

variable on the hazard rate that represents event occurring risk at a particular time. CoxPH

does not require a specific probability distribution of survival time to analyze the influence of

multiple covariates on survival [42]. The hazard function h(t|X) is defined as:

h(t|X) = h0(t) exp(X.β)

where h(t|X) is hazard rate for an individual with covariates X at time t. h0(t) is the baseline

hazard function at time t when all covariates X = 0. exp(X.β) = exp(X1β1 + X2β2 + ... +
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Xnβn) is the proportional effect of X on the hazard and β = {β1, β2, ..., βn} is the coefficients

representing the effect on the hazard of each covariateXi.

For a covariateXi, the hazard ratio can be described as:

Hazard Ratio forXi = exp(βi)

Here, if βi < 0, then an increase of Xi decreases the hazard or risk of event, leads to longer

survival time. If βi = 0, then covariate Xi has no effect on survival. Finally, if βi > 0, then an

increase ofXi also increases the hazard or risk of event, suggest a shorter survival time [64].

Proportional hazards of the CoxPH assume that the hazard ratio between to training observa-

tions is constant over time. The ratio for two observations with covariatesXA andXB does not

depend on t and mathematically:

h(t|XA)

h(t|XB
= exp

(
p∑

i=1

βi(XA,i −XB,i)

)

Since the baseline hazard h0(t) is unspecified, parameters β are estimated using partial like-

lihood [65]. Rather than exact timing, the partial likelihood L(β) focuses on the order of the

events occurring at times T1, T2, ..., TD for a dataset withN individuals.

L(β) =
D∏
i=1

exp(Xi · β)∑
j∈R(Ti)

exp(Xj · β)

whereD is the set of events and R(Ti) is the risk set at time Ti.

GivenX covariates, the probability of surviving beyond time t, the survival function S(t|Xi) can

be estimated using hazard by:

S(t|Xi) = exp(−h0(t) exp(X.β))

One problem with the proportional hazard assumption is that the risk of event over time may

not be constant and the proportional hazard assumption may be unrealistic [37].

3.3 Random Survival Forests (RSF)

Random Survival Forests (RSF) is an extension of the random forest developed by Breiman

[33] where multiple survival trees are created using a bootstrapped sample of the original data

and each node is split with a random subset of variables [47]. Each tree predicts the survival

probability or at a given time the risk of event occurrence also known as hazard function and

the forest provides an averaged prediction. Each tree is a survival tree in RSF and rather than
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traditional regression or classification criteria, each node is split based on survival criteria while

constructing each tree. Log-rank statistics is a common splitting criterion which assesses the

wellness of a split separating groups with different survival in RSF [47].

Let’s assume Ti is the observed survival time for i-th sample. δi is the event where δi = 0means

censored and δi = 1 means the event occurred and D is the set of all individuals in a node.

Maximizing log-rank statistic L over potential splits can maximize survival difference between

the child nodes.

L =

(∑
j∈L dj − NL

N

∑
j∈D dj

)2
NL
N

∑
j∈D dj(1− NL

N )

whereN is the number of samples in the original nodeD,NL is the number of samples in node

L and dj is the number of events at time j.

For each sample, a cumulative hazard function is produced in each tree and once the multi-

ple survival trees are grown, the forest averages them to produce a stable cumulative hazard

function. Based on a single tree k at time t, the cumulative hazard function can be denoted by

hk(t|Xi) for a sample i that has a feature vector Xi [47]. With the total number of trees K in

the forest, the overall cumulative hazard function can be averaged across all trees of the forest

for a sample i:

h(t|Xi) =
1

K

K∑
k=1

hk(t|Xi)

The survival function S(t|Xi) for each sample can be estimated by the relationship between the

cumulative hazard function h(t|Xi) and the survival as [66]:

S(t|Xi) = exp(−h(t|Xi))

The following algorithm is based on [47]:

1. Draw B bootstrap samples from the original data.

2. For each bootstrap sample, grow a survival tree by randomly select p candidate variables

that maximizes survival difference between daughter nodes.

3. Grow a full size tree that should have d0 > 0 unique deaths at terminal node.

4. Calculate cumulative hazard function for each tree and obtain the ensemble cumulative

hazard function by averaging them.
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3.4 Datasets

The Cancer Genome Atlas (TCGA) is a publicly funded project with a goal to make over 30 hu-

man tumours large scalegenomesequencingomicsdatapublicly available to improvediagnosis,

treatment and ultimately prevent cancer [11]. TCGA offers different types of omics data such as

Transcriptomics, Genomics, Proteomics, Epigenomics that can be utilized for multi-omics data

analysis. Among different cancer types, six of them are selected for this study with three types

of omics data such as Gene Expression RNA Sequencing (RNA), miRNA Expression Quantifi-

cation (miRNA), and Protein Expression Quantification (Proteome). Overall survival times and

status of six cancer patients from TCGA are shown in Figure 3.1.

• TCGA-BRCA: TCGA-BRCA refers to Breast Invasive Carcinoma dataset for breast can-

cer. This dataset includes Luminal A, Luminal B, HER2-enriched, Triple-negative breast

cancer, etc molecular subtypes of breast cancer.

Table 3.1: Details of TCGA-BRCA dataset.

Omics Type Sample Size Feature Size

RNA 1095 60660

miRNA 1079 3762

Proteome 881 217

Clinical 1098 70

• TCGA-LUAD: One of the common forms of lung cancer is Lung Adenocarcinoma, a sub-

type of non-small cell lung cancer, is presented in TEGA-LUAD dataset. Including sub-

types such as Epidermal growth factor receptor (EGFR), KRASMutant, and TP53Mutant

play a significant role in tailoring treatment plans as different subtypes respond differently

to therapies and medicine.

Table 3.2: Details of TCGA-LUAD dataset.

Omics Type Sample Size Feature Size

RNA 517 60660

miRNA 513 3762

Proteome 365 216

Clinical 585 71
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• TCGA-BLCA: TCGA-BLCA refers to Bladder Urothelial Carcinoma dataset representing

Bladder cancer that affects mainly the lining of bladder. This includes Luminal, Basal,

Neuroendocrine molecular subtype.

Table 3.3: Details of TCGA-BLCA dataset.

Omics Type Sample Size Feature Size

RNA 406 60660

miRNA 409 3762

Proteome 343 216

Clinical 412 71

• TCGA-COAD: Colon Adenocarcinoma is a malignant tumor which is from epithelial cells

of the colon. It is the most common type of colon cancer and the corespondent data

resides in TCGA-COAD dataset. Common molecular subtypes of colon adenocarcinoma

are Microsatellite Instable Immune, Carnonical, Metabolic, and Mesenchymal.

Table 3.4: Details of TCGA-COAD dataset.

Omics Type Sample Size Feature Size

RNA 458 60660

miRNA 444 3762

Proteome 360 216

Clinical 461 70

• TCGA-LIHC:DatasetTCGA-LIHC representsLiverHepatocellularCarcinomacancergenome

sequencing. It is the most common type of primary liver cancer with molecular subtypes

such as TP53, CTNNB1 (β-catenin), and ACIN1.

Table 3.5: Details of TCGA-LIHC dataset.

Omics Type Sample Size Feature Size

RNA 371 60660

miRNA 373 3762

Proteome 184 458

Clinical 377 69
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• TCGA-PAAD: TCGA-PAAD refers to Pancreatic Adenocarcinoma cancer from exocrine

pancreas cells that produce digestive enzymes. Common genetic mutations are KRAS,

TP53, CDKN2A, SMAD4.

Table 3.6: Details of TCGA-PAAD dataset.

Omics Type Sample Size Feature Size

RNA 178 60660

miRNA 178 3762

Proteome 120 217

Clinical 185 70
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(a) TCGA-BRCA (b) TCGA-LUAD

(c) TCGA-BLCA (d) TCGA-COAD

(e) TCGA-LIHC (f) TCGA-PAAD

Figure 3.1: Overall survival times and status of six cancer patients from TCGA
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4.1 Environment and Packages

The experiment is carried out on Google Colab Pro with 51GB RAM and 225GB HDD. All code

is written and implemented in the R programming language version 4.4.1. There are several

packages imported from the Comprehensive R Archive Network (CRAN), the official reposi-

tory for R that provides R software, packages, and documentation. Utilized packages are listed

below:

• BiocManager v1.30.25 [67]: BiocManager is a R package that is designed to access pack-

ages from Bioconductor, a repository of bioinformatics that provides packages and tools

to access, download, and process Omics data.

• TCGAbiolinks v2.34.0 [68]: TCGAbiolinks aims to retrieve open-access data from TCGA.

It simplifies downloadingofOmics data such asGeneexpression (RNA-Seq), DNAmethy-

lation, miRNA expression, Proteome, etc. In addition to that, this package can also help

to pre-process the data and carry out some different standard analysis.

• SummarizedExperiment v1.36.0 [69]: Provides one or more assays to represent a matrix-

like object where rows represent genomic ranges and columns represent samples. It has

three main components, such as assays to hold the main experimental data, rowData to

hold metadata about each feature, and colData to provide metadata for each sample like

clinical data, treatment information.

• DESeq2 v1.46.0 [70]: Package that counts data from assays often generated from RNA-

Seq to identify and normalize differentially expressed genes.

• M3Cv1.28.0 [71]: Tool to clusteringof high-dimensional datausing theMonteCarlomethod.

It provides ”featurefilter” method for feature selection by variance.

• survival v3.7.0 [72]: Contains core survival analysis methods such as Kaplan-Meier curves,

CoxPH to implement and evaluate.

• randomForestSRC v3.3.1 [73]: An R package to implement random forests for survival

analysis. It extends classic random forest to handle censored data, making it useful in

time-to-event data and survival data.
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4.2 Experimental Design

For this thesis experiment, RNA, miRNA, and Proteome, three types of omics data are used.

Data is downloaded using TCGAbiolinks package and then converted to matrix using Sum-

marizedExperiment package. As it is recommended to use TMM or DESeq2 normalization for

RNA-Seq data prior to further analysis [74], RNA data is normalized using package DESeq2. In

addition to that, every omics dataset is pre-processed to remove any missing value, and con-

vert the patient id into a common representation so that the integration of multiple omics data

can leverage the patient id to match a patient with their appropriate omics data.

Including non-genetic clinical features such as age, sex, ethnicity, race can improve prediction

of survival models [10]. In TCGA cohort, clinical dataset typically has 69 to 70 features. Not

all of them are useful as they mostly contain administrative information such as diagnosis_id,

treatments_pharmaceutical_treatment_id or contain NA value depending on the cancer type.

10 features are selected from the clinical data that are common to all cancer types.

Mixed integration makes the multi-omics data less interpretable, Hierarchical integration re-

quires prior knowledge and Late integration can technically be called single-omics analysis, we

decided to integrate different omics types using Early integration and Intermediate integra-

tion. Using Early integration, two multi-omics datasets are created, once with all three omic

types and another with only RNA and miRNA omic type. From now on both datasets will be

referred to as ”All 3 Omics” and ”RNA and miRNA” respectively. Variance filter is applied to

All 3 Omics multi-omics dataset to select 0.2% of the features that is around 130 features ex-

cept TCGA-LIHC and the dataset with selected feature subset will be referred as ”EI Subset”.

It should be noted that the resulting EI Subset may not contain the same number of features

from the three omics dataset.

To make a multi-omics dataset that contains roughly the same number of features from every

omics dataset, we apply variance filter to every omics dataset and then integrate them using

Intermediate integration. We construct two subsets with all three omics data where one sub-

set contains around 130 features with around 43 features from each omics data, and another

subset contains around 70 features with around 23 features from each omics data. These two

subsets of multi-omics dataset will be referred to as ”II Subset 1” and ”II Subset 2” respectively.

Finally, we apply CoxPH and RSF survival analysis models to every multi-omics and subset of

multi-omics datasets.

To assess the performance, a 10-fold cross validation strategy is used where each dataset is
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randomly split into 10 subsets (folds). 1 subset is used for testing and all the other 9 subsets

are used for training. This process is done for every subset and their performance is averaged

over all 10 folds in the end [75]. The performance is measured with C-index and IBS as well

as their confidence interval. Total time for training and testing for each run is also recorded in

seconds.

4.3 Results

In this section, we present the performance measure of both models in terms of C-index, IBS,

and completion time. Results are presented separately for each TCGA datasets.

Although different omics data have different number of samples, integrating them based on

patient id resulted 846 samples for All 3 Omics with 120 events (death) and 1055 samples for

RNA and miRNA with 147 events for BRCA dataset. Table 4.1 and table 4.2 show the perfor-

mance of CoxPH and RSF with respect to their C-index, confidence interval of C-index, IBS,

confidence interval of IBS, and completion time in second.

Table 4.1: CoxPH performance on TCGA-BRCA dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4482 [0.3963, 0.5001] 0.1259 [0.0712, 0.1805] 27

II Subset 1 0.4209 [0.3497, 0.4921] 0.1244 [0.0628, 0.186] 2

II Subset 2 0.4209 [0.3497, 0.4921] 0.1244 [0.0628, 0.186] 2

EI Subset 0.4209 [0.3497, 0.4921] 0.1244 [0.0628, 0.186] 2

RNA and miRNA 0.4686 [0.4295, 0.5078] 0.1043 [0.064, 0.1445] 30

Table 4.2: RSF performance on TCGA-BRCA dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4637 [0.4102, 0.5172] 0.1224 [0.0716, 0.1731] 183

II Subset 1 0.457 [0.3906, 0.5235] 0.1327 [0.0724, 0.1929] 5

II Subset 2 0.456 [0.3918, 0.5201] 0.1287 [0.0772, 0.1803] 4

EI Subset 0.4614 [0.3915, 0.5313] 0.1284 [0.0771, 0.1798] 5

RNA and miRNA 0.4826 [0.444, 0.5213] 0.0951 [0.068, 0.1222] 154
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TCGA-LUADhas 342 samples with 137 events common for all 3 omics data types and 488 sam-

ples with 177 events for RNA and miRNA omics types. Table 4.3 and table 4.4 show the per-

formance of CoxPH and RSF with respect to their C-index, confidence interval of C-index, IBS,

confidence interval of IBS, and completion time in second for TCGA-LUAD.

Table 4.3: CoxPH performance on TCGA-LUAD dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.5415 [0.4842, 0.5988] 0.0499 [0.0303, 0.0695] 31

II Subset 1 0.491 [0.4454, 0.5366] 0.0524 [0.0292, 0.0756] 2

II Subset 2 0.491 [0.4454, 0.5366] 0.0524 [0.0292, 0.0756] 2

EI Subset 0.491 [0.4454, 0.5366] 0.0524 [0.0292, 0.0756] 2

RNA and miRNA 0.5293 [0.4606, 0.598] 0.0531 [0.0363, 0.0699] 25

Table 4.4: RSF performance on TCGA-LUAD dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.492 [0.442, 0.542] 0.0491 [0.0243, 0.0738] 132

II Subset 1 0.5258 [0.4812, 0.5704] 0.0487 [0.0241, 0.0733] 4

II Subset 2 0.501 [0.4539, 0.548] 0.0489 [0.0248, 0.0731] 3

EI Subset 0.499 [0.4503, 0.5478] 0.0461 [0.0273, 0.0649] 4

RNA and miRNA 0.4527 [0.3924, 0.513] 0.053 [0.0345, 0.0714] 128

In TCGA-BLCAdata, weget 332 sampleswith 150events and397 sampleswith 174events for all

3 omics types and RNA and miRNA omics types respectively. Table 4.5 and table 4.6 show the

performance of CoxPH and RSF with respect to their C-index, confidence interval of C-index,

IBS, confidence interval of IBS, and completion time in second for TCGA-BLCA data.
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Table 4.5: CoxPH performance on TCGA-BLCA dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.5037 [0.4542, 0.5533] 0.0612 [0.0458, 0.0766] 25

II Subset 1 0.4286 [0.3858, 0.4714] 0.0647 [0.0473, 0.0821] 2

II Subset 2 0.4286 [0.3858, 0.4714] 0.0647 [0.0473, 0.0821] 2

EI Subset 0.4286 [0.3858, 0.4714] 0.0647 [0.0473, 0.0821] 2

RNA and miRNA 0.4918 [0.4395, 0.5442] 0.0645 [0.0521, 0.0768] 30

Table 4.6: RSF performance on TCGA-BLCA dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.5133 [0.4525, 0.5741] 0.0667 [0.0517, 0.0817] 117

II Subset 1 0.4264 [0.379, 0.4738] 0.0713 [0.0516, 0.091] 3

II Subset 2 0.4211 [0.3724, 0.4699] 0.0715 [0.0515, 0.0915] 3

EI Subset 0.4243 [0.3781, 0.4704] 0.0718 [0.052, 0.0916] 3

RNA and miRNA 0.4785 [0.4376, 0.5193] 0.0641 [0.0478, 0.0804] 128

TCGA-COAD has 325 samples common for all 3 omics types with 70 events and 419 samples

common for RNA andmiRNA omics types with 94 events. Table 4.7 and table 4.8 show the per-

formance of CoxPH and RSF for TCGA-COAD data with respect to their C-index, confidence

interval of C-index, IBS, confidence interval of IBS, and completion time in second.

Table 4.7: CoxPH performance on TCGA-COAD dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4528 [0.3808, 0.5247] 0.1354 [0.095, 0.1757] 22

II Subset 1 0.5917 [0.5355, 0.6479] 0.1176 [0.0802, 0.1549] 2

II Subset 2 0.5917 [0.5355, 0.6479] 0.1176 [0.0802, 0.1549] 2

EI Subset 0.5917 [0.5355, 0.6479] 0.1176 [0.0802, 0.1549] 2

RNA and miRNA 0.46 [0.4234, 0.4965] 0.1316 [0.0856, 0.1777] 28
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4 Experiments and Results

Table 4.8: RSF performance on TCGA-COAD dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4857 [0.4085, 0.563] 0.1205 [0.0894, 0.1517] 96

II Subset 1 0.5776 [0.4831, 0.6721] 0.097 [0.0703, 0.1237] 3

II Subset 2 0.5711 [0.472, 0.6702] 0.0976 [0.0703, 0.1248] 2

EI Subset 0.5767 [0.4782, 0.6752] 0.0974 [0.0702, 0.1246] 2

RNA and miRNA 0.4464 [0.372, 0.5208] 0.1116 [0.0681, 0.155] 110

TCGA-LIHC data has 175 samples with 90 events and 361 samples with 128 events for all 3

types omics data and RNA and miRNA data respectively. Table 4.9 and table 4.10 show the

performance of CoxPH and RSF with respect to their C-index, confidence interval of C-index,

IBS, confidence interval of IBS, and completion time in second for TCGA-LIHC data.

Table 4.9: CoxPH performance on TCGA-LIHC dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4862 [0.4285, 0.5439] 0.062 [0.0283, 0.0957] 22

II Subset 1 0.4804 [0.4227, 0.5381] 0.0674 [0.0337, 0.1011] 2

II Subset 2 0.4804 [0.4227, 0.5381] 0.0674 [0.0337, 0.1011] 2

EI Subset 0.4804 [0.4227, 0.5381] 0.0674 [0.0337, 0.1011] 2

RNA and miRNA 0.4968 [0.4704, 0.5232] 0.0725 [0.0484, 0.0966] 24

Table 4.10: RSF performance on TCGA-LIHC dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.482 [0.4229, 0.5411] 0.0628 [0.0277, 0.0979] 84

II Subset 1 0.4858 [0.434, 0.5377] 0.0625 [0.0278, 0.0973] 3

II Subset 2 0.4783 [0.419, 0.5375] 0.0624 [0.028, 0.0968] 2

EI Subset 0.4849 [0.4214, 0.5484] 0.0625 [0.0279, 0.0972] 3

RNA and miRNA 0.5011 [0.471, 0.5312] 0.0665 [0.0424, 0.0907] 108
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4 Experiments and Results

TCGA-PAAD has 113 samples common for all 3 omics types with 63 events and 177 samples

common for RNA and miRNA omics types with 93 events. Table 4.11 and table 4.12 show the

performance of CoxPH and RSF with respect to their C-index, confidence interval of C-index,

IBS, confidence interval of IBS, and completion time in second for TCGA-PAAD.

Table 4.11: CoxPH performance on TCGA-PAAD dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4705 [0.3879, 0.553] 0.0774 [0.0392, 0.1155] 25

II Subset 1 0.4807 [0.3981, 0.5633] 0.081 [0.0428, 0.1192] 2

II Subset 2 0.4807 [0.3981, 0.5633] 0.081 [0.0428, 0.1192] 2

EI Subset 0.4807 [0.3981, 0.5633] 0.081 [0.0428, 0.1192] 2

RNA and miRNA 0.4564 [0.4125, 0.5004] 0.0936 [0.0348, 0.1524] 24

Table 4.12: RSF performance on TCGA-PAAD dataset.

Type C-index Confidence

Interval

IBS Confidence

Interval

Time

(S)

All 3 Omics 0.4741 [0.3924, 0.5557] 0.0861 [0.0496, 0.1226] 83

II Subset 1 0.4804 [0.399, 0.5619] 0.0861 [0.0502, 0.122] 3

II Subset 2 0.4809 [0.3974, 0.5643] 0.0861 [0.0498, 0.1224] 2

EI Subset 0.4659 [0.3829, 0.5489] 0.0862 [0.0503, 0.1222] 3

RNA and miRNA 0.4595 [0.4182, 0.5008] 0.0867 [0.0316, 0.1418] 88
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5 Discussion

5.1 Performance Based on Feature Selection

Models predictive performance is measured in both C-index and IBS. First, we look at the pre-

dictive performance in C-index for both model across all 6 multi-omics datasets with and with-

out feature selection to discuss about the effect of feature selection on multi-omics data and

Figure 5.1 shows models’ performance in C-index for different feature selections. On BRCA

dataset, both the CoxPH and RSF models achieve higher C-index when no features are se-

lected. RSF achieves higher C-index for LUAD data when feature selection is applied for both

EI and II multi-omics datasets. CoxPH does not perform better when features are selected for

the same dataset. Similar to BRCA, both models perform poorly for feature selected subsets

of BLCA data. CoxPH do not perform well for feature selection on LIHC data, while RSF does

except II Subset 2 dataset. For COAD and PAAD datasets, both models perform better when

features are selected prior to survival analysis. However, RSF EI Subset do not perform well

compared to both II subsets.

Nowwe look at IBS performance for bothmodels where a lower IBS scoremeans better perfor-

mance. CoxPH IBS is lower for all 3 feature selected subsets for BRCA, while RSF IBS is higher.

For LUAD dataset, we can see the different scenario where RSF IBS is lower for all 3 feature se-

lected subsets, but CoxPH IBS is higher. On the other hand, both models fail to achieve a lower

IBS on all 3 feature selected subsets for BLCA data. Both models’ performance on COAD data

are quite opposite than the performance on BLCA data. For COAD, both models achieve a

lower IBS score for all 3 subsets. On the other hand, only RSF performs better in terms of IBS

for all 3 subsets of LIHC than original dataset, while CoxPH does not outperform the prediction

of the original dataset for the subsets. Lastly, both models’ performance are superior on the

original dataset than all 3 feature selected subsets for PAAD data. Models performance in IBS

for different features selection subsets and the original multi-omics dataset can be observed

in Figure 5.2.

With respect to our first thesis question, we can see that feature selected subsets do not al-

ways perform better than the original multi-omics dataset, nor the original multi-omics dataset

always performs better than the feature selected subsets. Mostly the survival prediction per-

formance depends on the selected dataset, analysis model, and performance measure met-

ric.
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5 Discussion

(a) TCGA-BRCA (b) TCGA-LUAD

(c) TCGA-BLCA (d) TCGA-COAD

(e) TCGA-LIHC (f) TCGA-PAAD

Figure 5.1: Models performance in C-index for different features selection.
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5 Discussion

(a) TCGA-BRCA (b) TCGA-LUAD

(c) TCGA-BLCA (d) TCGA-COAD

(e) TCGA-LIHC (f) TCGA-PAAD

Figure 5.2: Models performance in IBS for different features selection.
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5 Discussion

5.2 Performance Based on Omics Selection

There are many omics types such as gene expression (RNA), miRNA expression, copy num-

ber segment, protein expression, and DNA methylation available for each TCGA cohorts for

integration to construct multi-omics data. Because of very high dimensionality nature of omics

data, it can bequite overwhelming for anymodel to successfully analyzewhen all available omics

types are integrated tomake amulti-omics data. We construct twomulti-omics datasets by in-

tegrating 3 (RNA, miRNA, Proteome) omics type and 2 (RNA, miRNA) omics type to find out

the performance of different combinations of omics within the same cohorts. As before, first

we discuss models performance in terms of C-index and then in terms of IBS.

Both models achieve higher C-index for RNA and miRNA multi-omics data than RNA, miRNA

and Proteome for BRCA data. Unlike BRCA data, CoxPH and RSF both have higher C-index

for RNA, miRNA and Proteome multi-omics data than RNA and miRNA multi-omics data. For

COAD data, only CoxPH has higher C-index for RNA and miRNA data than RNA, miRNA and

Proteome data, while RSF output for RNA and miRNA data is lower than RNA, miRNA and Pro-

teome data. Both models achieve higher C-index for RNA and miRNA multi-omics data than

RNA, miRNA and Proteome multi-omics data of LIHC. On the other hand, both models have

lower C-index for RNA and miRNA multi-omics data than RNA, miRNA and Proteome multi-

omics data of PAAD. The performance of the models in C-index for different omics selection is

presented in Figure 5.3.

Looking at IBS we see that CoxPH and RSF both perform well for RNA and miRNAmulti-omics

data than RNA, miRNA and Proteome multi-omics data on BRCA cohorts. Unlike BRCA, both

models perform poorly for RNA and miRNA multi-omics than RNA, miRNA and Proteome on

LUADdata. While RSF IBS is lower for RNAandmiRNAmulti-omics onBLCAdata, CoxPH IBS is

higher for RNA,miRNA andProteomemulti-omics. Similar to BRCA, bothmodels achieve lower

IBS for RNA and miRNA multi-omics than RNA, miRNA and Proteome multi-omics dataset on

COAD data. For both LIHC and PAAD data, CoxPH and RSF both achieve lower IBS for RNA,

miRNA andProteomemulti-omics data than RNAandmiRNAmulti-omics data. Models perfor-

mance in IBS for RNA,miRNAandProteomemulti-omics data andRNAandmiRNAmulti-omics

data can be observed in Figure 5.4.

With respect to our second thesis question, we can see that the effects of selecting differ-

ent omics types vary among dataset and models, where sometimes selecting few omics types

perform better than selecting more omics types and sometimes the other way around.
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5 Discussion

(a) TCGA-BRCA (b) TCGA-LUAD

(c) TCGA-BLCA (d) TCGA-COAD

(e) TCGA-LIHC (f) TCGA-PAAD

Figure 5.3: Models performance in C-index for different omics selection.
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5 Discussion

(a) TCGA-BRCA (b) TCGA-LUAD

(c) TCGA-BLCA (d) TCGA-COAD

(e) TCGA-LIHC (f) TCGA-PAAD

Figure 5.4: Models performance in IBS for different omics selection.

Page 36



5 Discussion

5.3 Computation Time

Themodels’ computation times aremeasured in seconds based on the time required formodels

to train and test. Of course, the computation times heavily depend on the sample and features

size ofmulti-omics datasets. In general, bothmodels require huge amounts of time for full RNA,

miRNA and Proteome multi-omics dataset compared to the feature selected subsets.

CoxPHtakes roughly 11 to 15 timesmore time forRNA,miRNAandProteomemulti-omicsdataset

than the subsets. On the other hand, RSF takes around 33 to 39 times more time for RNA,

miRNA and Proteome multi-omics dataset than the subsets.

Moreover, require time for both models running on RNA, miRNA and Proteome multi-omics

dataset and RNA and miRNAmulti-omics dataset fluctuate among them and cannot be deter-

mined whether RNA, miRNA and Proteomemulti-omics will take more time or RNA and miRNA

multi-omics will take more time for the same TCGA cohorts. One reason for this fluctuation

may be that integrating more omics type increases the number of features, but can decrease

the number of samples and integrating less omics type decreases the number of features, but

can increase the number of samples.

Last but not least, RSF for multi-omics original dataset takes 4 to 6 times more time than

CoxPH. Figure 5.5 shows computation time required for eachmodel for full multi-omics dataset

and subsets of the full multi-omics dataset of different TCGA cohorts.
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5 Discussion

(a) TCGA-BRCA (b) TCGA-LUAD

(c) TCGA-BLCA (d) TCGA-COAD

(e) TCGA-LIHC (f) TCGA-PAAD

Figure 5.5: Models performance in computation time.
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6 Conclusion

This thesis explores the survival analysis in multi-omics settings with the aim to find out the ef-

fect of feature selection on multi-omics data for further survival analysis and whether integrat-

ing more available omics type to build a multi-omics dataset is a better approach than carefully

selecting few from available omics type to build a multi-omics dataset and vice versa.

To answer the first question of the thesis, this study evaluate six dataset from TCGA using two

survival analysis methods such as CoxPH, a state-of-the-art classical survival model, and RSF,

a state-of-the-art machine learning survival model [37]. RNA, miRNA and Proteome omics

type are chosen from every TCGA dataset and integrate them using early integration (EI) and

intermediate integration (II) techniques from five multi-omics integration techniques as other

techniques either transform the original data to make a multi-omics dataset or analyze single

omics to later integrate for multi-omics that cannot technically be called multi-omics dataset

[5]. Variance filter method is adopted to select features tomake three subsets of the full multi-

omics dataset because variance filter method is proved to be affective when selecting features

of omics data for independently analyze using survival models [10].

Among the three subsets, two are constructed when II is applied with different number of fea-

tures such as 130 and 70. Tomake the subset constructed when EI is applied comparable to the

subset constructed when II is applied, the features of the subset of EI are kept around 130 as

well. Applying both survival models to the full multi-omics dataset and it’s three subsets reveal

the effect of feature selection on multi-omics data for further survival analysis.

Two of the six selected TCGA data perform better when feature selection is applied in terms

of C-index for the CoxPH model. Additionally, in terms of IBS two TCGA data performs better

for the subsets compared to the full multi-omics data when CoxPH is applied. Only one TCGA

data are common for both C-index and IBS and other two data either performed well in terms

of C-index or IBS. On the other hand, four among six TCGA data perform better on feature

selected subsets in terms of C-index when RSF is applied with the exception of II Subset 2 of

BLCA and EI Subset of COAD. In terms of IBS, three TCGA data perform better on all subsets

than the full multi-omics dataset. Although, one more dataset, COAD produce the same IBS

for II Subset 2 and II Subset 2. It is to be noted that, three of the performant TCGAdata in terms

of IBS are also among the four data in terms of C-index which indicates that RSF is more robust

than CoxPH when dealing with multi-omics data.

Survival analysis is also done with RNA and miRNA multi-omics data to compare it with RNA,
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6 Conclusion

miRNA and Proteome multi-omics data to observe and answer the second thesis question re-

garding the effect of multi-omics data integrated with different omics type.

Here, three of the six TCGA data performed better in terms of C-index and two of the six TCGA

data performed better in terms of IBS for RNA and miRNA multi-omics data compared to its

counterpart RNA, miRNA and Proteome multi-omics data when survival analysis is done with

CoxPH. Two of the TCGA data are found in both C-index and IBS evaluation measure metric.

Additionally, when RSFmodel is applied, two of the six TCGAdata are performant in terms of C-

index and three of the six are performant in terms of IBS for RNA and miRNA multi-omics than

RNA, miRNA and Proteomemulti-omics data. One of the data is common for both C-index and

IBS, while rest of them are for either C-index or IBS.

In addition to the above output, it can be observed that CoxPH takes roughly 11 to 15 times

more time for RNA, miRNA and Proteomemulti-omics dataset than the subsets and RSF takes

around 33 to 39 times more time for RNA, miRNA and Proteome multi-omics dataset than the

subsets. Moreover, require time for both models running on RNA, miRNA and Proteome multi-

omics dataset and RNA and miRNA multi-omics dataset fluctuate among them.

It is evident that survival analysis prediction performance heavily depends on the chosenmulti-

omics dataset, integration technique of creatingmulti-omics dataset, selected survival analysis

model and it’s configuration and the consideredprediction performancemeasure [7]. Our study

also supports this claim as it cannot definitely be said whether or not feature selected subset

perform better than the full multi-omics dataset and whether or not integrating more available

omics type to build amulti-omics dataset is a better approach than carefully selecting few from

available omics type to build a multi-omics dataset.

In general, survival performance depends on the selected dataset, analysis model and perfor-

mancemeasure metric. As it is observed that analysis of smaller feature selected subsets takes

significantly less time than analysis of full multi-omics dataset irrespective of chosenmodel and

the performance difference for both settings are not that statistically significant, researchers

can apply feature selection before applying survival model when lower computation time is the

primary concern. On the other hand, if the prediction performance is the primary goal, then

researchers are advised to try with and without feature selection to see which works better for

their chosen dataset and survival models.

Unlike feature selection, it is not definitive of computation time to confirm whether selecting

more or less omics type from all available omics type to construct multi-omics dataset takes

more or less time to finish the survival analysis as selecting different omics type can influence
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6 Conclusion

the computation time in both negative and positive way depending on both the number of sam-

ple and the number of features. Here, researchers are advised to try out different settings

for integrating omics to construct multi-omics dataset depending on the dataset and survival

model and see which one works best for them.

By providing comprehensive answers through rigorous analysis and evidence to the research

questions the thesis set out to address, we can conclude that it has successfully achieved its

goal. One limitation of this study is that only two survival models are implemented on six TCGA

dataset. In future, more dataset from TCGA, NCI Genomics Data Commons (GDC) and the

Gene Expression Omnibus (GEO) can be included with other survival analysis models. More-

over, different numbers of features can be considered while building the multi-omics subsets

and different type of omics can be included to observe the different predictive performance

based on selected omics types.
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