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Abstract

Data preprocessing plays a crucial role in the success of machine learning (ML) models,
particularly in the context of survival analysis, where the goal is to predict time-to-event
outcomes. Learn2Clean, a tool that utilizes Q-Learning to optimize data preprocessing
pipelines, has shown promise in improving ML model performance. However, its applica-
bility to survival analysis and its flexibility in handling different scenarios were limited.
This thesis presents an extension of Learn2Clean to address these limitations.

The extended Learn2Clean framework incorporates three prominent survival analysis
models: Cox Proportional Hazards, Random Survival Forest, and DeepHit Neural Net-
work. It adapts the reward structure and action space of the Q-Learning algorithm to
effectively optimize preprocessing pipelines for these models. Additionally, the framework
enhances categorical data handling through ordinal encoding and introduces a configu-
ration file for greater user customization. Dynamic reward matrices, defined using JSON
files, further increase the tool’s adaptability to diverse datasets and objectives.

To validate the effectiveness of the extended Learn2Clean tool, experiments were con-
ducted on various datasets. The results demonstrate that the tool successfully identifies
preprocessing pipelines that improve the performance of survival analysis models com-
pared to baseline approaches. The flexibility offered by the configuration file and dynamic
reward matrices allows users to tailor the tool’s behavior to their specific needs.

This research contributes to the field of survival analysis by introducing an extended
framework for automated data preprocessing. By adapting the Learn2Clean tool, this
work addresses the specific challenges posed by missing data in this domain, aiming to
improve the accuracy and robustness of survival models.

Keywords: Survival Analysis, Data Preprocessing, Q-Learning, Reinforcement Learn-
ing, Machine Learning, Cox Proportional Hazards, Random Survival Forest, DeepHit
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Chapter 1

Introduction

1.1 Motivation and Objectives

In the era of big data and machine learning (ML), the ability to extract meaningful
insights from complex datasets is paramount. A critical step in this process is data pre-
processing, which involves cleaning, transforming, and preparing raw data to be suitable
for analysis. The quality of data preprocessing significantly impacts the performance and
reliability of ML models. This is particularly crucial in the field of survival analysis,
where the goal is to predict the time until an event of interest occurs, such as patient
death or customer churn.

Learn2Clean[1], a tool developed by Berti et al. (2020), offers an innovative approach
to data preprocessing. It leverages Q-Learning, a reinforcement learning technique, to
dynamically select the optimal sequence of preprocessing tasks for a given dataset and
ML model. This optimization aims to maximize the quality of the ML model’s results.
However, the original Learn2Clean tool has limitations. It lacks built-in support for sur-
vival analysis, a vital area of ML with applications in various domains. Additionally, its
handling of categorical data is limited, and it lacks flexibility in terms of model hyperpa-
rameter tuning and reward function customization.

This thesis addresses these limitations by extending Learn2Clean into Learn2Clean4Events
or L2C4E for short, which will incorporate survival analysis capabilities. The primary
objectives are:

• Survival Analysis Integration: Enable Learn2Clean to perform survival analy-
sis using multiple models, including Cox Proportional Hazards, Random Survival
Forest, and Neural Networks.

• Improved Categorical Data Handling: Enhance the tool’s ability to handle
categorical data through ordinal encoding.

• Configuration File: Introduce a configuration file to allow users to easily cus-
tomize model hyperparameters and other settings.
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2 CHAPTER 1. INTRODUCTION

• Dynamic Reward Matrices: Implement dynamic reward matrices using JSON
files to provide greater flexibility in defining reward functions for Q-Learning.

1.2 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides background information on data preprocessing, survival analy-
sis, reinforcement learning, Q-Learning, and the Learn2Clean architecture.

• Chapter 3 details the methodology used to develop L2C4E, including the integration
of survival analysis models, handling of categorical data, and the implementation
of configuration files and dynamic reward matrices.

• Chapter 4 presents the results of experiments conducted to evaluate the effectiveness
of L2C4E tool, along with a discussion of its limitations.

• Chapter 5 concludes the thesis with a summary of the findings and suggestions for
future work.



Chapter 2

Background

2.1 Automated Data Preprocessing

The ever-increasing volume and complexity of data in today’s world necessitate efficient
and effective data preprocessing techniques. Data preprocessing, which involves cleaning,
transforming, and organizing raw data into a suitable format for analysis, is a crucial step
in the machine learning pipeline. The quality of the preprocessed data significantly im-
pacts the performance and reliability of machine learning models. However, manual data
preprocessing can be time-consuming, error-prone, and often requires domain expertise.

To address these challenges, automated data preprocessing techniques have emerged as
a promising solution. These techniques leverage algorithms and heuristics to automate
various data cleaning and transformation tasks, reducing the need for manual interven-
tion and potentially improving the efficiency and effectiveness of the preprocessing stage.

Existing approaches to automated data preprocessing encompass a wide range of tech-
niques, including:

• Imputation: This involves handling missing values by estimating or replacing
them based on observed data.

• Outlier Detection and Removal: This involves identifying and addressing data
points that deviate significantly from the norm, which can skew analysis results.

• Feature Selection and Engineering: This involves selecting the most relevant
features for analysis and creating new features that capture meaningful patterns in
the data.

• Data Transformation This involves converting data into a more appropriate for-
mat. This can include scaling or normalizing numerical features, encoding categor-
ical features (e.g., one-hot encoding, label encoding), and applying mathematical
transformations (e.g., logarithmic or exponential transformations).

3



4 CHAPTER 2. BACKGROUND

While these techniques offer significant advantages in terms of efficiency and automation,
they also face challenges. The selection of appropriate preprocessing techniques often
requires domain knowledge and experimentation. Additionally, the effectiveness of au-
tomated methods can vary depending on the characteristics of the data and the specific
analysis task.

2.2 AutoML Pipelines

Automated Machine Learning (AutoML) pipelines aim to streamline the entire machine
learning process, from data preprocessing to model selection and hyperparameter tuning.
These pipelines leverage various algorithms and techniques to automate the traditionally
manual and iterative steps involved in building machine learning models. The goal of
AutoML is to make machine learning more accessible to non-experts and to accelerate
the development and deployment of machine learning solutions.

Several AutoML pipelines have been developed in recent years, each with its own strengths
and weaknesses. Some popular examples include:

• Auto-WEKA: An early AutoML system that uses Bayesian optimization to search
for the best combination of preprocessing steps and machine learning algorithms.

• TPOT: A tree-based pipeline optimization tool that uses genetic programming to
evolve pipelines of data cleaning and machine learning operations.

• Auto-Sklearn: An extension of Auto-WEKA that incorporates more recent ad-
vancements in machine learning and hyperparameter optimization.

These AutoML pipelines have demonstrated promising results in various domains, includ-
ing image classification, natural language processing, and tabular data analysis. However,
they often focus on general machine learning tasks and may not be specifically tailored
to the challenges of survival analysis, particularly in the presence of missing data.

2.3 Survival Analysis

Survival analysis is a statistical method for analyzing time-to event data. It is widely
used in various fields, including medicine, engineering, and social sciences. In survival
analysis, the primary goal is to model the time until an event of interest occurs, such as
death, disease progression, or customer churn.

Key concepts in survival analysis include:

• Survival Function: This function represents the probability that an individual
survives beyond a certain time point.
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• Hazard Function: This function represents the instantaneous rate of experiencing
the event of interest at a given time, given that the individual has survived up to
that time.

• Censoring: This refers to situations where the event of interest is not observed
for some individuals within the study period. Censoring can be right-censored (the
event occurs after the study period), left-censored (the event occurs before the study
period), or interval-censored (the event occurs within a known interval).

Various models are used for survival analysis, including:

• Kaplan–Meier: This model is a cornerstone of survival analysis, serving as a
non-parametric method for estimating the survival function from lifetime data. It
provides a visual representation of the probability of surviving beyond a given time
point.

• Cox Proportional Hazards: This model assumes that the hazard ratio between
two individuals is constant over time. It is widely used due to its interpretability
and ability to handle multiple predictors.

• Random Survival Forest: This model is an extension of random forests to sur-
vival analysis. It uses multiple decision trees to estimate survival probabilities and
can handle complex relationships between predictors and survival time.

2.4 Reinforcement Learning and Q-Learning

Reinforcement learning (RL) is a type of machine learning where an agent learns to in-
teract with an environment by taking actions and receiving rewards or penalties based on
its actions. The agent’s goal is to maximize its cumulative reward over time by learning
the optimal policy, which is a mapping from states to actions.

Q-Learning is a model-free RL algorithm that uses a Q-table to store the expected cumu-
lative reward for each state-action pair. The agent updates the Q-table iteratively based
on its experiences and learns the optimal policy by choosing actions that maximize the
expected cumulative reward.

2.5 Learn2Clean Architecture

Learn2Clean is a tool for automating data preprocessing tasks using Q-Learning. It
selects the optimal sequence of preprocessing tasks for a given dataset and ML model to
maximize the quality of the ML model’s results. The architecture of Learn2Clean consists
of the following components:
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• Q-Learner: This is the core component that implements the Q-Learning algorithm.
It learns the optimal policy for selecting preprocessing tasks.

• Environment: This represents the dataset and ML model that the Q-Learner
interacts with. It provides feedback to the Q-Learner in the form of rewards based
on the quality of the ML model’s results after each preprocessing task.

• Actions: These are the preprocessing tasks that the Q-Learner can choose from.
They can include imputation, encoding, scaling, and feature engineering tasks.

• States: These represent the current state of the data after each preprocessing task.
The Q-Learner uses the state information to select the next action.

• Rewards: These are numerical values that the environment provides to the Q-
Learner based on the quality of the ML model’s results. The Q-Learner uses the
rewards to update its Q-table and learn the optimal policy.

2.6 Related Work

This thesis builds upon the Learn2Clean framework, which utilizes reinforcement learning
to automate the data cleaning process. While the original Learn2Clean focused on general
data preparation tasks, this work extends its capabilities to the specific domain of survival
analysis with missing data.

Several AutoML pipelines have been developed in recent years, but most of them do
not explicitly address the challenges of missing data in survival analysis. Some notable
examples include:

• Auto-WEKA: This system focuses on automating the selection of machine learn-
ing algorithms and hyperparameters but does not explicitly address data cleaning
or missing value imputation.

• TPOT: While TPOT includes some data cleaning operations in its pipeline, it does
not specifically target the unique characteristics of survival data or the complexities
of missingness mechanisms.

• Auto-Sklearn: Similar to Auto-WEKA, Auto-Sklearn primarily focuses on algo-
rithm selection and hyperparameter optimization, with limited support for data
cleaning and missing value handling.

In contrast to these general AutoML pipelines, L2C4E offers a more targeted approach
to data cleaning in survival analysis. By leveraging reinforcement learning, it can learn
adaptive cleaning strategies that optimize the performance of survival models in the pres-
ence of missing data. Furthermore, the extensions implemented in this thesis, such as the
customizable reward function, selective preprocessing, and edge weight editing, provide
additional flexibility and control over the cleaning process, making it more adaptable to
diverse datasets and analysis tasks.



Chapter 3

Methodology

The original Learn2Clean[1] framework, while powerful in its ability to optimize pre-
processing pipelines for traditional machine learning models, lacked the capacity to ad-
dress survival analysis tasks. Additionally, its handling of categorical data and reward
mechanisms presented opportunities for improvement. In the following sections, these
improvements will be discussed.

3.1 L2C4E for Survival Analysis

This section details the core contribution of integrating survival analysis models into
the framework, along with the necessary adaptations to the reward structure and action
space.

3.1.1 Survival Model Selection and Integration

Three survival analysis models were carefully selected to integrate into L2C4E, each
chosen for its unique strengths and applicability to a variety of survival analysis scenarios:

• Cox Proportional Hazards (Cox PH) Model:[2] This widely-used model is
valued for its interpretability, allowing researchers to quantify the impact of dif-
ferent factors on the hazard rate. Its assumption of proportional hazards, while a
limitation in some cases, makes it a valuable tool for many applications.

• Random Survival Forest (RSF):[6] The RSF model, an ensemble method based
on decision trees, offers robustness to nonlinearities and interactions in the data. Its
non-parametric nature makes it a flexible choice when the underlying relationships
are not well understood.

7
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• DeepHit Neural Network:[4] This deep learning model leverages the power of
neural networks to capture complex patterns and interactions in survival data.
Its ability to model multiple competing risks makes it particularly well-suited for
scenarios where individuals may experience different types of events.

Integrating these models required some important modifications to the Q-learner’s action
space. Actions were defined for selecting and configuring each model, ensuring seamless
compatibility with the existing Learn2Clean architecture. Additionally, the TensorFlow
backend of the DeepHit model was migrated from version 1 to version 2 to ensure smooth
operation within the Python 3.8 environment of Learn2Clean.

3.1.2 Adapting the Reward Structure

To guide the Q-learner effectively in the context of survival analysis, the reward structure
was adapted. C-Index[5] metric from survival analysis was incorporated:

• Concordance Index (C-index): The C-index evaluates the model’s ability to
correctly rank individuals based on their risk of experiencing the event. A higher
C-index indicates better discriminatory power.

By incorporating the C-index into the reward function, the Q-learner was incentivized
to select preprocessing actions that improved the performance of the survival models
according to this metric. This involved striking a balance between rewarding imme-
diate improvements and encouraging exploration of potentially beneficial preprocessing
sequences in the long run.

3.1.3 Modifying the Action Space

The action space of the Q-learner, representing the set of possible preprocessing actions,
was expanded to accommodate specific requirements of survival analysis. New actions
were introduced for handling censored data, which is common in survival analysis, as well
as for encoding time-varying covariates, which change over the course of the observation
period.

3.2 Enhancing Flexibility and Customization

3.2.1 Configuration File

To enhance the usability and adaptability of L2C4E, a JSON-based configuration file was
implemented. This file allows users to customize various aspects of the tool’s behavior,
including:
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• Model Hyperparameters: Users can specify values for the hyperparameters of
each survival analysis model, tailoring them to specific datasets or preferences.

• Data Preprocessing Options: The configuration file enables the selection and
configuration of preprocessing techniques, such as imputation methods or scaling
options.

• Q-Learning Settings: Parameters related to the Q-learning algorithm, such as
the learning rate and exploration rate, can be adjusted through the configuration
file.

L2C4E is designed to read and parse the configuration file, providing clear error messages
if any invalid settings are encountered.

3.2.2 Dynamic Reward Matrices

Dynamic reward matrices, defined in JSON format, offer a powerful mechanism for cus-
tomizing the reward function. This approach allows users to define rewards that are
specific to the dataset, the chosen survival model, or the particular analysis goals. The
Q-learner dynamically loads and utilizes these reward matrices during the learning pro-
cess, enabling more efficient exploration and optimization of preprocessing sequences.
Users can also import a JSON file defining a custom reward graph instead of editing
the default file, allowing for tailored optimization based on specific domain knowledge
or evaluation criteria. Moreover, the framework supports the ability to disable specific
preprocessing methods (e.g., Median imputation) or entire preprocessing steps (e.g., im-
putation altogether). This enables users to fine-tune the cleaning process and exclude
techniques that might not be suitable for their data or analysis goals. Furthermore, users
can directly modify the weights of individual edges connecting preprocessing steps within
the L2C4E reward graph. This allows for more granular control over the transition prob-
abilities between steps, enabling the exploration of alternative cleaning sequences or the
exclusion of specific transitions.

3.2.3 Working Modes

To provide users with a range of options for data preprocessing and analysis, four distinct
working modes were implemented in L2C4E:

1. Main L2C4E Algorithm: This mode utilizes the core Q-Learning algorithm to
identify the optimal sequence of preprocessing steps that maximize the performance
of the chosen survival analysis model. This is the primary mode for automated
pipeline optimization.
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2. Random Cleaning Mode: In this mode, users can specify a desired number of
random experiments. The tool generates random preprocessing pipelines and evalu-
ates their performance, providing insights into the impact of different preprocessing
choices. This mode can serve as a baseline for comparison with the optimized
pipeline.

3. Custom Pipeline Mode: This mode allows users to define their own preprocess-
ing pipelines using a simple text file format. Each line in the file specifies a sequence
of preprocessing methods, providing flexibility for testing specific hypotheses or do-
main knowledge.

4. No Preparation Mode: This mode bypasses all preprocessing steps, directly
passing the raw dataset to the chosen survival analysis model. This can be useful
for establishing a baseline performance without any preprocessing.

The inclusion of these working modes significantly enhances the utility of the framework.
Modes 2, 3, and 4, in particular, offer valuable baseline comparisons for evaluating the
effectiveness of the optimized pipeline generated by the Q-learning algorithm.



Chapter 4

Results & Limitations

4.1 Experiments Setup

To evaluate the effectiveness of L2C4E, a series of experiments were conducted. The
core approach involved simulating missingness in a real-world dataset and comparing the
performance of the framework to baseline pipelines. Missingness was simulated using the
Jenga framework[8], a tool designed to introduce missing values in a controlled manner.
Three missingness mechanisms were employed:

1. Missing Completely at Random (MCAR): The probability of a value being
missing is independent of both observed and unobserved data.

2. Missing at Random (MAR): The probability of a value being missing depends
on observed data but not on the missing value itself.

3. Missing Not at Random (MNAR): The probability of a value being missing
depends on the unobserved missing value itself.

For each mechanism, five datasets were generated with varying degrees of missingness:
10%, 20%, 30%, 40%, and 50%.

The performance of three distinct pipelines was evaluated on each dataset:

1. L2C4E: The reinforcement learning-based pipeline under investigation, designed
to learn the optimal sequence of data cleaning operations.

2. Custom Pipeline: A baseline pipeline incorporating established techniques for im-
putation (MICE)[10], feature selection (LASSO with Cox Proportional Hazards)[9],
deduplication, and outlier removal (Martingale Residuals method).

3. Random Pipelines: Ten random pipelines were generated for each dataset, each
with a random combination of cleaning operations. The average performance of
these pipelines served as an additional baseline.

The primary evaluation metric was the C-Index, a well-established measure for assessing
the discriminatory power of survival models.

11
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4.2 Dataset Description

The experiments utilized the Rotterdam (breast cancer) dataset which is part of the sur-
vival package in R, as well as the FLCHAIN dataset which studies a type of cancer called
multiple myeloma. Rotterdam comprises 2982 records and 14 features, while FLCHAIN
comprises 7874 records and 11 features. Rotterdam dataset was chosen due to its rele-
vance in survival analysis and its lack of inherent missing values, allowing for controlled
simulation of missingness while the choice of FLCHAIN is because of its fame in survival
analysis and unlike Rotterdam, it contains missing values by default so no missingness
simulation is needed.

4.3 Experiment 1

The initial experiment was conducted on the Rotterdam dataset. To assess the impact
of different missingness patterns, five variations of the dataset were generated for each
missingness mechanism (MCAR, MAR, and MNAR), each with increasing percentages
of missing values. The performance of L2C4E, the custom pipeline, and the random
pipelines was evaluated on these datasets, and the results are presented in the following
line graphs.

Figure 4.1: C-Index Comparison for MCAR Missingness on the Rotterdam Dataset
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Figure 4.2: C-Index Comparison for MAR Missingness on the Rotterdam Dataset

Figure 4.3: C-Index Comparison for MNAR Missingness on the Rotterdam Dataset
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4.4 Experiment 2

On the FLCHAIN dataset with inherent missing values, L2C4E achieved a C-Index score
of 0.66, outperforming the custom pipeline (C-Index = 0.58) and the average of ran-
dom pipelines (C-Index = 0.61). This further demonstrates the practical applicability of
L2C4E in real-world scenarios where data cleaning is crucial for accurate survival analysis.

4.5 Results Analysis and Discussion

The experimental results consistently demonstrate the superior performance of L2C4E
in handling missing data for survival analysis. It outperformed both the custom pipeline
and the random pipelines across different missingness mechanisms, rates, and datasets.
This suggests that L2C4E’s ability to learn adaptive cleaning strategies is effective in
improving the quality of data and, consequently, the performance of survival models.

The superior performance on the FLCHAIN dataset, which inherently contains missing
values, further highlights the practical relevance of the framework. It showcases its po-
tential to address the challenges posed by missing data in real-world settings, where data
cleaning is often a critical step in the analysis process.

However, it is important to acknowledge certain limitations of the experiments. The
evaluation was conducted on a limited number of datasets, and further research is needed
to assess the generalizability of the findings to other domains and data characteristics.
Additionally, the focus on C-Index as the primary evaluation metric might not capture
all aspects of model performance. Future work could explore the impact of L2C4E on
other evaluation metrics and different types of survival models.

Despite these limitations, the results provide strong evidence for the effectiveness of
L2C4E in handling missing data for survival analysis. The framework’s ability to learn
adaptive cleaning strategies has the potential to improve the accuracy and reliability of
survival models, ultimately leading to better decision-making in various fields, including
healthcare and clinical research.



Chapter 5

Conclusion & Future Work

5.1 Conclusion

This thesis investigated the application of reinforcement learning, through the L2C4E
framework, to address the challenge of missing data in survival analysis. The experi-
ments demonstrated the effectiveness of the framework in learning optimal data cleaning
strategies, leading to improved performance of survival models compared to traditional
and random pipeline approaches. The consistent superiority of the framework across dif-
ferent missingness mechanisms, rates, and datasets, including both simulated and real-
world scenarios, highlights its potential to enhance the accuracy and reliability of survival
analysis in various domains.

5.2 Future Work

While this research provides promising results, there are several avenues for future explo-
ration to further advance the capabilities of L2C4E and its applications:

• Investigate the performance of L2C4E on datasets with more complex or mixed
missingness mechanisms, beyond the traditional MCAR, MAR, and MNAR sce-
narios.

• Evaluate the scalability and generalizability of the framework by testing it on larger
and more diverse datasets from various domains.

• Explore the use of additional evaluation metrics beyond C-Index to gain a more
comprehensive understanding of the impact of the algorithm on model performance.

• Investigate the integration of domain-specific knowledge instead of the Q-learning
algorithm to enhance the performance in specific applications where expert insights
can guide the data cleaning process.

15
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• Develop a user-friendly interface for the framework, in order to make it more ac-
cessible to researchers and practitioners who may not have extensive expertise in
reinforcement learning.

• Explore the potential of meta-reinforcement learning techniques to enable the adap-
tation of reward functions in L2C4E, allowing it to generalize better to new datasets
and tasks. Additionally, investigate the use of other reinforcement learning al-
gorithms beyond Q-learning to potentially discover even more effective cleaning
strategies.

By pursuing these future research directions, we can further unlock the potential of L2C4E
and contribute to the development of more robust and reliable survival analysis methods
in the face of missing data.
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Appendix A

List of Abbreviations

C-Index Concordance Index

CoxPH Cox Proportional Hazards Model

DFKI German Research Center for Artificial Intelligence

GUC German University in Cairo

KNN K-Nearest Neighbors

LASSO Least Absolute Shrinkage and Selection Operator

MAR Missing at Random

MCAR Missing Completely at Random

MICE Multiple Imputation by Chained Equations

MNAR Missing Not at Random

RSF Random Survival Forest
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