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Preface

Artificial Intelligence XLI comprises the refereed papers presented at the 44 SGAI
International Conference on Innovative Techniques and Applications of Artificial Intel-
ligence, held in December 2024. It is published as two volumes containing papers for the
technical stream and the application stream, respectively. The conference was organised
by SGAI, the British Computer Society Specialist Group on Artificial Intelligence. This
year 80 papers were submitted and all were single-blind peer reviewed by either 2 or 3
reviewers plus the expert members of the Executive Program Committee for each stream
of the conference.

This year’s DonaldMichieMemorial Award for the best refereed technical paper was
won by a paper entitled ‘NER Explainability Framework: Utilizing LIME to Enhance
Clarity and Robustness in Named Entity Recognition’ byMorten Grundetjern, Per-Arne
Andersen, Morten Goodwin and Karl Audun Borgersen (University of Agder, Norway).

This year’s Rob Milne Memorial Award for the best refereed application paper was
won by a paper entitled ‘Adaptive CNN Method For Prostate MR Image Segmenta-
tion Using Ensemble Learning’ by Lars Jacobson, Mohamed Bader-El-Den, Adrian
Hopgood, Shamsul Masum, Vincenzo Tamma (University of Portsmouth, UK), David
Prendergast (Innovative Physics Ltd., UK) and Peter Osborn (Portsmouth Hospitals,
University NHS Trust, UK).

The other technical stream full papers included are divided into sections on Neural
Nets, Deep Learning, Large Language Models, Machine Learning, Evolutionary and
Genetic Algorithms, and Knowledge Management. The other application stream full
papers are divided into sections on Machine Vision, Evaluation of AI Systems, Appli-
cations of Machine Learning and Other AI Applications. Both volumes also include the
text of short papers presented as posters at the conference.

On behalf of the conference Organising Committee, we would like to thank all those
who contributed to the organisation of this year’s programme, in particular the Program
Committeemembers, the Executive ProgramCommittees and our administratorsMandy
Bauer and Bryony Bramer.

September 2024 Max Bramer
Frederic Stahl
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NER Explainability Framework: Utilizing
LIME to Enhance Clarity and Robustness

in Named Entity Recognition

Morten Grundetjern(B) , Per-Arne Andersen , Morten Goodwin ,
and Karl Audun Borgersen

University of Agder, Jon Lilletuns vei 9, Grimstad, Norway
post@uia.no

https://www.uia.no/

Abstract. Named Entity Recognition (NER) is crucial for many Natu-
ral Language Processing (NLP) applications, yet current models often
lack explainability and robustness, particularly against lexical varia-
tions. While methods like Local Interpretable Model-agnostic Explana-
tions (LIME) have enhanced explainability in text classification, their
application to sequence-based tasks like NER remains an open chal-
lenge. This paper introduces the NER Explainability Framework (NEF),
a novel approach that transforms the sequence-based NER task into a
multi-classification problem. This transformation enables the application
of LIME to any NER architecture. NEF provides precise, interpretable
insights into model decisions by highlighting which parts of the input text
most influence tagging decisions, significantly advancing explainability in
NER. To address the critical gap in assessing model resilience, we also
present the Misspelling Robustness Score (MRS), a new metric designed
to quantify NER model resilience against lexical variations, particularly
misspellings. MRS offers a comprehensive evaluation of model perfor-
mance in the face of spelling variations and errors. We apply NEF to four
widely used NER models (SpaCy, Flair, Stanza, and RoBERTa) using the
CoNLL-2003 dataset, revealing critical patterns and weaknesses in model
behavior. Our method enables targeted improvements, demonstrated by
fine-tuning the SpaCy model to achieve a significant 17.5% increase in
robustness against misspellings. These findings lay the groundwork for
developing more robust, accurate, and interpretable NER systems, pro-
viding practical strategies to address existing challenges in NLP. The
universal applicability of NEF across NER architectures and the insights
provided by MRS offers valuable tools for researchers and practitioners
in advancing the field of NER.

Keywords: NER · LIME · Explainability · NLP · Robustness

1 Introduction

NER stands at the forefront of natural language processing, critical in applica-
tions ranging from question-answering systems to machine translation [8]. By
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
M. Bramer and F. Stahl (Eds.): SGAI 2024, LNAI 15446, pp. 3–15, 2025.
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identifying and classifying key information elements in text, NER forms the
backbone of many AI-driven language understanding tasks.

Recent years have witnessed significant advancements in NER methodologies,
particularly with the advent of deep learning models. However, this progress has
come at a cost: increased model complexity has rendered these systems opaque,
making it virtually impossible to understand the reasoning behind their predic-
tions [18]. This “black-box” nature presents a significant challenge, especially
when models encounter the noisy, variable data typical of real-world scenarios.
Linguistic variations and misspellings, for instance, can substantially degrade
model performance [4].

While the importance of model explainability has gained recognition across
various AI domains [3,16], NER has received comparatively little attention in
terms of developing interpretable solutions. This oversight is particularly con-
cerning given NER’s fundamental role in NLP applications and its vulnerability
to real-world data variations.

To address these interconnected challenges, we introduce NEF. Our approach
transforms NER’s traditional sequence-labeling task into a classification prob-
lem, enabling the generation of accurate and interpretable explanations using
LIME. NEF operates independently of models’ underlying confidence scores,
ensuring its universal applicability across all NER architectures.

A key innovation of NEF is its integration of overall model performance met-
rics, including our newly developed MRS. Combining MRS’s global explanations
with LIME’s local explanations gives NEF a comprehensive view of model behav-
ior. It evaluates robustness against lexical variations, particularly misspellings,
and provides detailed insights into individual prediction decisions.

Our experiments with NEF have yielded promising results. For instance, we
discovered that misspellings have a surprisingly negative effect on model perfor-
mance. However, we also found that targeted fine-tuning guided by NEF insights
can mitigate this performance drop by as much as 17%. These findings demon-
strate the practical value of our framework and open new avenues for improving
the robustness and reliability of NER systems in real-world applications.

2 Related Work

Research on explainability in NER has primarily focused on model performance
at the dataset level, addressing biases such as the impact of sentence length or
capitalization [7,11]. While these studies provide valuable insights into overall
model behavior, they often lack granularity in explaining individual predictions.
A notable exception is the EXSEQREG framework by Güngör et al. [9], which
explores prediction-specific explanations for NER models in morphologically rich
languages. EXSEQREG combines NER and POS tagging models, dividing text
into regions for analysis. To the best of our knowledge, EXSEQREG and our
work are among the few approaches focusing on local explanations for NER pre-
dictions. However, our work differs in its aim to develop a more generalizable
method applicable to any NER model, regardless of the underlying architecture
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or language. The connection between NER model explainability and robustness
is well-established in the literature. Traditional evaluation metrics such as preci-
sion, recall, and F1-score have been extended to assess robustness by evaluating
model performance under perturbed conditions [20]. These metrics provide a
foundation for understanding model behavior, but they often lack specificity in
isolating particular types of perturbations. More specialized approaches have
emerged to address specific aspects of robustness. Adversarial robustness met-
rics evaluate a model’s ability to withstand malicious inputs [22], while metrics
measuring generalization across different domains assess the model’s adaptabil-
ity to domain shifts [21]. Interpretability metrics help identify weaknesses or
biases affecting robustness [6], and composite indices offer a holistic view of
model resilience [21]. However, existing measures often conflate various types of
input perturbations, making it challenging to isolate and address issues related
specifically to orthographic errors. This limitation is particularly crucial in NER
tasks, where entity names are prone to typographical errors. Our proposed MRS
addresses this gap by offering a focused evaluation of a model’s ability to handle
misspellings. The MRS complements existing robustness metrics by providing
a targeted measure for assessing the impact of orthographic variations on NER
performance. Our work thus contributes to the field by introducing a gener-
alizable explanation method for NER predictions and a specialized metric for
assessing robustness against misspellings, addressing key limitations in current
NER model evaluation and interpretation approaches.

3 Methodology

NEF is a novel approach that transforms the sequence-based NER task into a
multi-classification problem. This transformation enables the application of pow-
erful explainability techniques, such as LIME, to NER models—a capability pre-
viously limited by the sequential nature of NER tasks. Our study demonstrates
NEF’s effectiveness on four prominent NER models: Stanza, SpaCy, Flair, and
RoBERTa, using the CoNLL-03 dataset. NEF’s design ensures its applicability
to any NER model, regardless of its underlying architecture. Figure 1 provides
an overview of our framework.

The NEF process begins with an input text processed by an NER model.
NEF then transforms this NER task into a classification problem by generating
input perturbations, focusing on specific words. For example, “John Smith ate
pizza” might be perturbed to “0000 Smith ate pizza” or “John 0000 ate pizza”,
with each version classified by the model.

LIME is then applied to provide interpretative insights, analyzing how per-
turbations affect the model’s predictions. This analysis visualized using Sankey
diagrams, illustrates the flow from input words to their contributions and final
classifications, highlighting which parts of the input text most influence the tag-
ging decisions.

While our study uses MRS to evaluate model performance against lexical
variations and misspellings, NEF’s flexible design allows for integrating vari-
ous evaluation metrics tailored to specific research objectives. The MRS, in our
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case, assesses the model’s accuracy when confronted with misspellings, calculated
as the ratio of correct identifications on misspelled inputs to those on original
inputs.

The combined output of LIME explanations and the chosen evaluation met-
ric (MRS in our study) provides a comprehensive view of local predictions and
overall model behavior. These insights guide actionable steps for model improve-
ment, creating a feedback loop for continuous enhancement when the process is
rerun.

NEF: NER to Classification with LIME and MRS

Text Input
"John Smith ate pizza"

Focus: "John"
NER Model

NER to Classification
Original: "John Smith ate pizza"

Perturbations for "John":
1. "John Smith ate pizza" → PER

2. "0000 Smith ate pizza" → O

Model Resilience Score (MRS)
Evaluates performance on misspelled inputs

MRS = Correct (misspelled) / Correct (original)

Example MRS: 0.94

LIME Explanations

Combined Output

Simplified Sankey Diagram

"John"

"Smith"

"ate/pizza"

"PER"

"O"

MRS: 0.94
High resilience to misspellings

Evaluate

Explain

MRS

Interpret

Fig. 1. Overview of NEF. The diagram illustrates the transformation of NER tasks
into classification problems, the application of LIME for interpretability, and the use
of the MRS for performance evaluation. The framework creates a feedback loop to
improve NER model interpretability and robustness continuously.

3.1 Models

This study analyzes four NER models: Stanza, SpaCy, Flair, and RoBERTa.
These models were selected based on their distinct approaches to NER and their
extensive adoption within the NLP community [2,13,15], offering a comprehen-
sive overview of the state-of-the-art in NER technology. Stanza employs a neu-
ral network-based pipeline featuring a BiLSTM-CNNs-CRF architecture, which
combines bidirectional Long Short-Term Memory networks, Convolutional Neu-
ral Networks, and Conditional Random Fields to achieve high accuracy in NER
tasks [15]. SpaCy utilizes a transition-based parsing method with a Convolutional
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Neural Networks model for efficient and production-ready text processing. It is
renowned for its speed and integration with deep learning frameworks, making it
suitable for real-time applications [10]. Flair uses contextual string embeddings
derived from a character-level language model to capture nuanced contextual
information. Its framework integrates various embeddings, such as Flair embed-
dings, BERT, and ELMo, to enhance NER performance [2]. RoBERTa, an opti-
mized version of BERT, employs a transformer-based architecture to capture
intricate contextual dependencies. It improves on BERT by training with larger
mini-batches, longer sequences, and dynamic masking [13].

3.2 Data Acquisition and Preparation

The CoNLL-03 dataset [19] is a standard benchmark in NER, containing anno-
tated text for English, German, Spanish, and Dutch. Introduced in 2003 as a
shared task for NER, it has since become the most widely used dataset for
testing NER models. This study focuses on the English portion, with sentences
annotated for Person (PER), Organization (ORG), Location (LOC), and Mis-
cellaneous (MISC) entities in the IOB format. The dataset comprises:

– Training Set: 14,987 sentences with 203,621 tokens and 23,499 named enti-
ties.

– Validation Set: 3,466 sentences with 51,362 tokens and 5,942 named entities.
– Test Set: 3,684 sentences with 46,435 tokens and 5,648 named entities.

The samples used for data pattern analysis were taken from the test set of the
CoNLL-03 dataset, specifically where the NER models failed in their predictions.
The base dataset for MRS consists of all sentences in the test set of CoNLL-03
containing a PER entity, totaling 865 sentences. We focused on the PER label
due to its high precision and recall across datasets such as CoNLL-03, Wikipedia,
and MUC-6 [1,5,8].

3.3 Applying LIME to NER Tasks

Adapting LIME to explain NER models presents unique challenges due to the
sequential nature of NER tasks. Figure 2 illustrates our novel approach to trans-
form this sequence labeling problem into a classification task suitable for LIME
analysis. This transformation enables us to leverage LIME’s interpretability
power for NER models, providing insights that were previously difficult to obtain.

The key innovation in our approach lies in how we decompose the NER task
into localized classification problems. By focusing on individual tokens and their
contexts, we can apply LIME’s perturbation-based explanations to understand
the model’s decision-making process for each entity label.

Our method begins with sampling, creating perturbed versions of the input
text. This step is crucial as it allows us to explore the model’s behavior under
various input conditions, simulating different contexts for each word. The sub-
sequent feature representation stage translates these textual perturbations into
a numerical format, preserving the essence of word presence and absence.
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Transforming NER to Classification for LIME

1. Sampling
Generate perturbed versions:

Original: "John visited New York"

Perturbed 1: "John visited 0000 0000"

Perturbed 2: "0000 visited New York"

2. Feature Representation
Convert to numerical vectors:

Original: [1, 1, 1, 1]

Perturbed 1: [1, 1, 0, 0]

Perturbed 2: [0, 1, 1, 1]

3. Proximity Measure
Calculate cosine similarity:

Proximity = 1 - similarity

Proximity(Original, Perturbed1) = 0.29

Proximity(Original, Perturbed2) = 0.25

4. Model Prediction
Predict NER labels, focus on "John":

Original: [PER, O, LOC, LOC] → PER for "John"

Perturbed 1: [PER, O, O, O] → PER for "John"

Perturbed 2: [O, O, LOC, LOC] → O for "0000"

Convert to classification problem for "John"

5. Interpretable Model Fitting
Fit Ridge regression for coefficients:

Coefficients: [0.7, 0.4, 0.2, 0.2]

"John" (0.7) has highest impact on PER

Interpret: "John" strongly indicates PER

Other words have less impact

Fig. 2. Process of transforming NER to a classification problem for LIME explanation.

A critical component of our approach is the proximity measure, which quanti-
fies the similarity between perturbed samples and the original text. This measure
plays a vital role in weighing the importance of each perturbation, ensuring that
the final explanation is anchored close to the original input’s neighborhood in
the feature space.

The model prediction step bridges the gap between NER and classification.
By focusing on individual tokens and vectorizing their predicted labels, we effec-
tively transform the NER output into a format that LIME can interpret. This
localized view allows us to explain the model’s decisions for each word indepen-
dently while considering its context.

Finally, the interpretable model fitting stage generates local and faithful
explanations to the original NER model. Using Ridge regression, we balance
model fidelity and explanation simplicity, producing coefficients that quantify
each word’s impact on the prediction.

This approach allows us to explain individual NER decisions and provides
a framework for understanding the model’s overall behavior. It opens up new
possibilities for debugging NER models, identifying potential biases, and gaining
insights into the linguistic patterns the model has learned.

3.4 MRS Evaluation Methodology

The MRS evaluates NER models’ resilience to misspellings in entity names. The
process involves:

1. Data Preparation: Create two datasets:
– Set A: Entities with original spellings.
– Set B: Same entities with introduced misspellings.

2. Misspelling Generation: Apply the following techniques to Set B:
– Skip: Removes a character at a random position if the word length

exceeds one.



NER Explainability Framework 9

– Swap: Swaps a character with its subsequent character, ensuring there
is a character to swap with.

– Duplicate: Duplicates a character at a random position.
– Substitute: Replaces a character with a random letter.
– Insert: Inserts a random letter at a random position.
– Phonetic: Replaces parts of the word based on common phonetic sub-

stitutions.

The MRS is calculated as:

MRS =
Correct identifications in Set B
Correct identifications in Set A

(1)

MRS values range from 0 to 1, 1 indicating perfect resilience to misspellings.
MRS offers a targeted approach to identifying and addressing misspelling-related
vulnerabilities in NER systems by isolating misspelling effects, assessing contex-
tual understanding, and simulating real-world typographical errors. This com-
plements existing general input resilience metrics [12,14], enabling a more precise
evaluation of NER model robustness.

3.5 Analysis

We analyzed the models using the NEF framework, focusing on a series of sam-
ples where all models failed their predictions. This analysis revealed that the
CoNLL-03 dataset contained many documented errors [17]. A common finding
in our NEF analysis was that misspellings consistently negatively affected model
performance. Notably, the SpaCy model was selected for further investigation
because it was the most negatively affected by misspellings. In response, we fine-
tuned the SpaCy model on a subset of 5,000 sentences from the CoNLL training
dataset, in which all PER tags were intentionally misspelled. We then used the
NEF to compare the performance of the fine-tuned model against the original
model, specifically evaluating its resilience to misspellings.

4 Experiments and Results

This section presents our experimental findings on evaluating and improving
NER models’ robustness against misspellings. Our NEF framework, as shown in
Fig. 1, comprises three key components:

1. Metrics Evaluation: Assessing MRS effectiveness in evaluating NER model
robustness.

2. LIME Explanations: Generating visualizations to understand word influence
on predictions.

3. Actionable Insights: Implementing NEF insights to enhance model perfor-
mance, demonstrated through SpaCy model fine-tuning.
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4.1 MRS Evaluation

The following results highlight the effectiveness of the MRS in evaluating the
robustness of various NER models against misspellings, particularly in their
ability to identify PER tags correctly. As shown in Table 1, the performance of
different models varies significantly when faced with misspelled inputs. Accu-
racy loss indicates the percentage decrease in model accuracy when processing
misspelled inputs compared to correctly spelled inputs.

Table 1. MRS and Accuracy Loss for NLP Models

Model MRS Accuracy Loss

Stanza on PER tag 0.8968 10% loss

Spacy on PER tag 0.7634 24% loss

Spacy fine-tuned for misspellings 0.9358 6.5% loss

Flair on PER tag 0.9613 3.9% loss

Roberta on PER tag 0.9175 8.8% loss

The Stanza model demonstrates strong resilience with an MRS of 0.8968,
indicating it successfully maintains 89.68% of its accuracy in the presence of
misspelled inputs. The slight accuracy reduction by about 10.32% points to
potential areas for improvement in handling more complex misspelling scenarios.
Stanza’s architecture, which includes bidirectional LSTM networks, allows it to
use contextual information, contributing to its robustness effectively [15].

Conversely, the SpaCy model shows a more noticeable struggle with an MRS
of 0.7634, retaining only 76.34% of its accuracy when processing misspelled
inputs. This significant decrease by approximately 23.66% highlights a criti-
cal vulnerability to misspellings and underscores the need for enhanced training
or algorithmic adjustments to improve its robustness. SpaCy’s transition-based
parsing method may not leverage context as effectively as other models, con-
tributing to its lower resilience. However, the fine-tuned version of SpaCy shows
a marked improvement, achieving an MRS of 0.9358 and reducing the accuracy
loss to 6.5% [10].

The Flair model exhibits the highest resilience among the evaluated models,
with an MRS of 0.9613 and a minimal accuracy loss of 3.9%. Flair’s use of
contextual string embeddings and integration of various embeddings, such as
BERT and ELMo, allow it to capture nuanced contextual information, making
it highly effective at handling misspelled inputs and maintaining performance
despite orthographic errors [2].

Roberta also shows strong resilience, with an MRS of 0.9175 and an accuracy
loss of 8.8%. As a transformer-based model optimized from BERT, Roberta effec-
tively captures intricate contextual dependencies, contributing to its robustness
against misspellings [13]. However, it still has some room for improvement.
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4.2 Case Study: Effective Classification of Target Word

In a demonstration of effective entity recognition, we analyzed the influence
of contextual words on the classification of the target word “John” from the
sentence “John Smith ate Pizza.” This analysis was visualized using a Sankey
diagram, which illustrates the influence flow from the surrounding words toward
the classification decision for “John.” The text was tested on all the models
in this study and most showed a close variation to Sankey diagram shown in
Fig. 3. The diagram shows that the words “John” and “Smith” have a signifi-
cant impact on pulling the classification toward “Person” indicating that these
words collectively contribute to recognizing “Joh” as part of a person’s name.
Conversely, “at” and “Pizza” exert influence towards a classification of “None,”
suggesting that these words, when considered in isolation, do not support the
classification of “John” as a person entity.

This selective impact demonstrates the model’s nuanced ability to weigh
the relevance of contextual words in classifying a target word. While “John”
and “Smith” reinforce each other to strengthen the ‘Person’ category, the non-
relevant words “ate” and “Pizza” are correctly deemed inconsequential to the
entity recognition of “John,” highlighting NEF capacity to focus on contextual
cues for accurate classification.

Fig. 3. Sankey diagram illustrating the influence of contextual words on the classifi-
cation of the target word “John” in the sentence “John Smith ate pizza.” Dark gray
flows indicate positive influence, while light gray flows represent negative influence on
the model’s classification decision.

4.3 Case Study: ‘Lloyd’ vs. ‘Loyd’

In our experiments, we analyzed many samples where the models had failed on
the CoNLL-03 dataset. We chose the following example to illustrate the complex-
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ity of handling lexical variations that do not constitute typical misspellings. The
text we analyzed is: “Lloyd did not say what form the discipline would take.”
The name “Lloyd” is a variation of “Loyd” found in Welsh, further illustrating
the challenges NER systems face with such variations.

Using LIME to generate explanations and Sankey diagrams to visualize these
challenges, we observed that multiple models struggled to identify the target
words Lloyd and its variant Loyd. The models often classified Lloyd as an orga-
nization entity instead of a person. This is likely because there are organizations
named Lloyd. Still, the models should understand the difference from context,
as many organizations are named after persons.

Analyzing the models’ responses using LIME revealed interesting patterns.
A diagram (see Fig. 4) created using the Stanza model shows that the name
“Lloyd” predominantly impacts the classification towards the organization cate-
gory. However, the rest of the contextual words, represented on the right side of
the diagram by a black bar, positively influence the identification of “Lloyd” as
a person entity, except for the word “not”. Removing the word “not” or substi-
tuting “Lloyd” with “Loyd” leads the model to classify it as a person correctly.

Fig. 4. Sankey diagram illustrating the model’s predictions when ‘Lloyd’ is recognized.

4.4 Fine-Tuning Experiment on SpaCy for Improving MRS Scores

Following fine-tuning, the SpaCy model’s MRS improved markedly from 0.7634
to 0.9358. This enhanced MRS indicates that misspellings now reduce the
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model’s accuracy in entity recognition by only approximately 6.5%, a signifi-
cant improvement from the 24% accuracy loss observed in the pre-tuning perfor-
mance, resulting in a 17.5% improvement. This development highlights the effec-
tiveness of targeted improvements using the NEF to gain insights and enhance
model performance. The analysis utilizing LIME provided further insights into
this improvement. It indicated that the increase in MRS might not necessar-
ily be attributed to better utilization of contextual information. Instead, LIME
analysis suggests that the model’s improvement is primarily due to its enhanced
ability to recognize variations and misspellings of names directly. This points to
the model becoming more robust in identifying misspelled tokens as belonging to
the person category without necessarily relying more heavily on the surrounding
context.

5 Discussion

The analysis of NER models using our proposed NEF framework provides sig-
nificant insights into their behavior when faced with lexical variations. Our case
studies highlight the challenges and differences in how various models process
and weigh contextual information surrounding entity names.

1. Model Performance: NEF reveals notable differences in how each model
processes context:

– Stanza and SpaCy: These models show limitations in handling lexical
variations effectively, with SpaCy relying heavily on exact word matches.
Showing high vulnerability to lexical variations.

– Flair and RoBERTa: These models demonstrate higher resilience
to misspellings, likely due to their use of contextual embeddings and
transformer-based architectures.

Future research could expand the application of NEF to different languages
and pair it with different metrics that could provide more insights into model
behavior and robustness across diverse linguistic contexts. We should seek to
enhance models’ tolerance to input variations while carefully managing the trade-
off with increased model complexity. Our results indicate different paths for
increased robustness with specialized fine-tuning or expanding the model’s abil-
ity to utilize context.

6 Conclusion

This study presents advancements in the domain of NER by introducing the
method NEF, developing the metric MRS, and insightful findings on model
performance. NEF is a pioneering approach designed to enhance the explain-
ability and robustness of NER models. Uniquely, NEF transforms the sequence-
based NER task into a multi-class classification problem and integrates a version
of LIME using the ridge regression model, providing precise and interpretable
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insights into model decisions. One of the standout features of NEF is its ability
to operate independently of underlying confidence scores, making it one of the
few methods available for explaining NER in this manner and the only one to
our knowledge that offers this level of simplicity and broad applicability. Our
study tested NEF on various NER models, including Stanza, SpaCy, Flair, and
RoBERTa, demonstrating its universal applicability.

We introduce the MRS, a novel metric designed to evaluate NER models’
resilience to lexical variations, specifically misspellings in target words. MRS
measures a model’s ability to accurately identify entities despite orthographic
deviations, reflecting real-world challenges of typographical errors and enhancing
our understanding of model robustness.

Our experiments reveal that models like Flair and RoBERTa, which leverage
extensive contextual information, are more resilient to misspellings than SpaCy
and Stanza. This conclusion is based on a broad range of case studies and exper-
imental results, highlighting each model’s strengths and weaknesses.

Implementing NEF has enabled the identification of critical patterns in
model performance, particularly regarding how different NER models process
and respond to contextual cues and orthographic deviations. For example, fine-
tuning the SpaCy model on misspelled data significantly improved its robustness,
reducing accuracy loss from 24% to 6.5%. This finding underscores the practical
value of targeted model adjustments informed by NEF.

To build upon this study’s findings, future research could expand the appli-
cation of NEF to different languages and more complex entity recognition tasks.
Additionally, refining metrics like the MRS and extending fine-tuning strategies
to address other model weaknesses will be essential for capturing comprehensive
performance dynamics revealed through explainability studies.
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Abstract. Convolutional neural networks have become core parts of
many modern chess engines. CNNs with their ability to predict the next
move from the current board configuration can be utilized as a replace-
ment for heuristic functions intended to prune the game tree. This predic-
tion can however serve as a standalone chess engine. This paper studies
the ability to predict the best move by searching the game tree with a
comparison to CNN prediction. Particularly, this paper reveals some lim-
itations of CNNs, specifically ResNet models, to predict the best move
in certain scenarios. This paper also proposes a method for measuring
chessboard complexity, which can be very helpful for the identification
of board configurations, where CNNs struggle with prediction.

Keywords: Convolutional Neural Networks · ResNet · Searchless
Chess · Move Prediction

1 Introduction

The primary objectives of CNNs in chess engines are the evaluation of board
positions and the prediction of the next move. Using visible elements such as
piece count and their distribution across the board, CNNs can extract and uti-
lize features such as king safety, pawn structures, pawns near promotion, movable
rooks, or blocked bishops. While these features are highly correlated with the
probability of winning, when aiming for the most accurate evaluation or move
selection, it is important to take into account possible future gameplay from the
current configuration. Some kind of deeper chess understanding, which includes
future possibilities is very important for achieving a high Elo playing style. Elo
is a metric used to measure a player’s skill level in chess and is adjusted based on
the outcomes of the games. This described deeper understanding can have many
forms. Humans, for instance, switch perspectives and simulate gameplay men-
tally. Computers typically construct a game tree, evaluate it, and backpropagate
using the MiniMax or Monte Carlo tree search algorithm. There are, however,
chess engines that do not require to search a game tree. Its decision-making
process relies solely on a single forward pass of a CNN. Examples of these are
Li-Chess bots from the Maia chess project [1].
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M. Bramer and F. Stahl (Eds.): SGAI 2024, LNAI 15446, pp. 19–32, 2025.
https://doi.org/10.1007/978-3-031-77915-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-77915-2_2&domain=pdf
http://orcid.org/0009-0003-9917-6283
http://orcid.org/0000-0002-4029-5486
https://doi.org/10.1007/978-3-031-77915-2_2


20 J. Zeman and L. Smı́tková Jank̊u

2 Related Work

The game of chess has been extensively studied in the artificial intelligence
domain since the beginnings of computers. The first expert systems relied heav-
ily on a broad search of the game tree, expertly designed heuristic functions, and
a database of prior knowledge. However, this approach was not feasible for some
board games due to the enormous branching factor of the game tree and the
impossibility of algorithmically describing heuristic functions. A prime example
is the game Go.

With the use of neural networks, it is possible to overcome obstacles of the
game Go by reducing the demands on the search and generalizing heuristic func-
tions to learn complex patterns from data. This advancement made it possible
to create a framework that is easily transferable to different board games and
can be trained completely without human supervision by self-play even without
knowledge of the rules [2–5].

This progress also enhanced state-of-the-art engines like Stockfish, which
increased its performance through the use of neural networks [6]. Neural net-
works have not only improved performance but also enabled training systems
for entirely different tasks, such as predicting the moves a human player would
make and personalizing these moves [1,7].

Chess has long been a benchmark for AI, and very recently, there have been
numerous successful applications of language modeling by transformer architec-
tures at the scale of chess to test their capabilities [8–11].

An evident trend is the minimization of the search part of the algorithm. Or
even a complete replacement of the search with a single forward pass of the NN
[1,12]. This approach offers framework/model maximum flexibility but on the
other hand, has its limits. Estimating an architecture’s ability to model decisions
that require an understanding of the game tree structure is crucial for designing
such systems and thus is the core subject of study of this paper.

3 Hypothesis Formulation

The capabilities of CNNs to predict the best moves of human players or computer
engines with a high degree of accuracy and the fact, that a CNN with its single
forward pass can substitute the whole move selection process at the high Elo
rating lays a foundation for the main hypothesis of this paper:

Theorem 1. CNNs can serve as a viable alternative to the MiniMax or MCTS
algorithm for best move selection or board evaluation. Specifically, CNNs can
achieve this objective in consideration of possible future gameplay in a single
forward pass, without requiring a game tree.

This hypothesis is too inexplicit in order to reject it formally. Due to this reason,
another 2 supplementary hypotheses will be proposed for 2 experiments. Reject-
ing these supplementary hypotheses rejects indirectly the main hypothesis.
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3.1 More Detailed Explanation Using Example

To further illustrate the hypothesis, this section provides a practical example
explaining the issue with a complex board configuration.

Certain board configurations may appear visually similar but have significant
differences in evaluation due to information hidden in the game tree. An example
of such configuration can be seen in Fig. 1.

Fig. 1. Example (black on the move)

There are two possible outcomes of the game:

• Black can make Kxg6, has material advantage and ends with draw after Qg5+
• Alternatively, black can play Nxg4 and has a high chance of winning

Although these two positions can look very similar from the pixel-image
perspective and possible extracted features1, there is a significant difference in
the probability of winning. The key difference is hidden in the game tree.

This paper aims to study such examples and determine whether CNNs can
accurately select the best move and evaluate such configurations. The inability
of CNNs to predict moves like Nxg4, where impactful information is hidden in
the game tree, would contradict the mentioned hypothesis.

1 Similar pieces count, similar positions, similar space controlled, no pieces are under
attack.
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4 Technical Background for Experiments

In this paper, two experiments utilizing training a neural network for move
prediction and board evaluation on an algorithmically generated dataset are
evaluated. This section provides technical details covering dataset generation,
encoding, neural network architecture, and training process.

4.1 Board Configurations Generation

Board configurations for proposed experiments were algorithmically generated
by letting Stockfish play against itself at the depth of 6 with 20% of moves
randomly selected to diversify the dataset. The training set consists of 10 million
positions and the testing set consists of 640 positions.

4.2 Assigning Targets

Each board configuration has been evaluated by Stockfish at the required depth.
The suggested move has been one hot encoded into the move vector. The move
vector consists of 4096 positions. 64*64 for start and destination squares. The
board evaluation has been transformed into the continuous range of [−1, 1],
where the value 1 indicates that the player on the turn is winning.

4.3 Board Configuration Encoding

Firstly, the network needs information about the position of pieces. For that
purpose, the input to the CNN consists of several layers. There exist 6 types
of pieces for each player in the game of chess and the positions of each kind of
piece are represented in its own layer. Positions of pieces within a chess board
are represented by a 2D array of 8 ∗ 8 dimensions with the value 1 for a present
piece and 0 if this type of piece is not present. To represent all these pieces’
positions, a total of 12 2D layers is required. Additionally, the input includes
one additional layer for each player with values 1 on squares where the current
player can place any of its pieces had it been on the turn and 0 otherwise.

The perspective is switched on the opponent’s turn, eliminating the need for
an additional feature to indicate the current player.

4.4 Neural Network Architecture

Experiments employ training multiple ResNet neural networks [13]. Dual-head
ResNet architecture was utilized similarly as in the AlphaZero [2] project. Specif-
ically ResNet 18, 50, and 152 modified to take 14 color profiles as an input. The
feature extraction part is the same for both heads. The output is then split using
fully connected linear layers into both heads. The policy head predicts the prob-
abilities of the next moves, while the value head evaluates the board position.
No further modifications to standard ResNet architecture have been made.
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4.5 Training Process

The training process consisted of 10 thousand training steps. In each step, 40,960
board configurations were fed forward to the neural network in 10 batches of
4,096 board positions and backpropagated by utilizing the Adam optimizer. The
policy head was trained using cross-entropy loss. The value head was trained
using MSE. During each step, the training was conducted over three epochs,
with the learning rate being updated using a geometric sequence with a hyper-
parameter gamma = 0.9. After each epoch, all of the 40,960 positions were
randomly shuffled. After each step, half of these 40,960 positions were randomly
swapped with random positions in the training set. Finally, a small amount of
L2 regularization was applied to prevent overfitting.

5 Experiment 1

The first experiment aims to measure the ability of CNN to utilize information
extracted from deep tree searches. To measure this ability two training datasets
can be created with different depths. The dataset with greater depth contains
more information from deep search of the game tree. The initial intuition is that
a CNN trained on a deeper dataset may have the ability to comprehend and
utilize this information and might perform better. In case any performance gain
is not observed we may conclude that CNN is not able to utilize such information.
Thus, the hypothesis for this experiment can be formulated like this:

Theorem 2. Models trained on a dataset of depth 12 will have better perfor-
mance than models trained on a dataset of depth 6 when both evaluated on the
testing set of depth 12.

The proposed algorithm for rejecting or proving the hypothesis is stated as
follows:

1. Generate training and testing sets at the depth of 6 as well as at the depth
of 12.

2. Train ResNet 18, 50, and 152 on both training sets.
3. After each training step, evaluate the models’ ability to classify the correct

move and evaluate the board on the testing set of depth corresponding to the
training depth. Additionally, evaluate the models trained on depth 6 on the
testing set of depth 12.

Finally, the move classification results of the proposed experiment can be
seen in Fig. 2 and board evaluation results can be seen in Fig. 3. To smooth
fluctuations, the results were averaged over 1000 training steps.

5.1 Discussion

To begin with, the ResNet types show no significant differences from one another.
On the same dataset, ResNet18 can fit the data similarly to ResNet152. The only
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Fig. 2. Results for move classification

Fig. 3. Results for board evaluation
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difference is that ResNet18 learns faster from the beginning, which is expected
since ResNet18 is a much less complex model.

In case CNNs were able to approximate the result of the MiniMax algorithm,
then fitting evaluations yield by MiniMax run to higher depths would correspond
to approximating more complex functions. As a result, there would be a con-
nection between the depth of the generated dataset and the complexity of the
model used. The absence of this connection indicates that the selected models’
complexity is sufficient for the proposed task or that fitting MiniMax run to
higher depths is a fundamentally impossible task.

Overall, there are negligible differences between all models within the same
testing set, however, there is a significant gap between testing sets at differ-
ent depths, regardless of the complexity of the model applied to them. Depth
6 exhibits an average classification accuracy of around 50% over 1000 steps. In
contrast, depth 12 is correctly classified only around 30% on average over 1000
steps. A similar pattern can be seen in the board evaluation. Predicting lower
depths with higher accuracy is expected due to the reduced complexity of the
task. While it is possible to achieve accuracy over 99% in classic image recogni-
tion problems [14], such a task is not comparable to the complex classification
task of predicting chess moves, where saturation of around 50% in a single for-
ward pass is expected. This expectation is supported by empirical evidence from
the Maia chess project, which achieved similar accuracy [1], and is conceptually
grounded in the observation that, in many configurations, multiple moves are
either similarly powerful or present personal strategic choices.

The most important revelation is that incorporating additional depth in the
training data did not improve the performance on the testing data. Interestingly,
the final best move prediction performance on the depth 12 test set was achieved
by the ResNet18 model that was trained on the depth of 6, additionally all less
deeply trained models achieved slightly better final evaluation performance than
more deeply trained models on the deeper test set. This observation dismisses the
hypothesis proposed for this experiment as well as the main hypothesis of this
paper. This suggests that CNNs cannot select the best move or evaluate board
configuration in consideration of possible future gameplay, and thus cannot serve
as a viable alternative to algorithms with such capabilities.

6 Board Complexity

The results obtained from the previous experiments revealed that the ability
of CNNs to learn from higher-depth searches of the MiniMax algorithm was
severely limited, as the error rates remained similar to the models trained on
lower-depth searches.

6.1 Necessity of Measuring a Board Complexity

Nevertheless, CNNs were able to predict about 30% of moves correctly to
the Stockfish brute-force MiniMax algorithm implementation run to depth 12.
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Achieving such accuracy may seem impressive at first glance. However, the final
performance in the game of chess is determined by the sequence of moves leading
to a win or a loss. Therefore, assessing the ability of a subject to predict the
next move on a single position is inadequate without the consideration of the
complexity of the position and the difficulty of understanding and evaluating it
in order to select the next move. While some positions in a professional game
may be predicted by a beginner, such as the second move of a trade, others may
be much more complex.

To gain a deeper understanding of the relationship between the MiniMax
algorithm and the neural network’s forward pass, it is important to algorith-
mically measure the difficulty of the best move prediction for a given board
configuration. By doing so, it can be determined whether there are any special
cases in which the neural network can accurately predict the MiniMax algorithm
or whether this is fundamentally an impossible task.

6.2 Explaining the Board Complexity

Let us consider board positions in Fig. 4 and Fig. 5 to examine the impact of
board complexity on the ability to understand and evaluate the next move.

In the position 4, where black is on the turn, the optimal move is easily
recognizable by any player, regardless of their skill level or by any chess engine
used, regardless of the depth of search. It is evident that black should capture
the white queen with the king.

Fig. 4. Clear move (black on turn) Fig. 5. Surprising move (white on
turn)

In contrast, the position 5 is more challenging. While a beginner may choose
to capture the hanging pawn on a5 with his queen, a more sophisticated move,
which requires deeper analysis, is to move the rook to protected square f8.
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To further examine this position, we can analyze the probabilities of the next
moves at various depths for both positions.

Fig. 6. Move probabilities according to particular depths

In comparison to position 4, position 5 has a more complex game tree, with
various best moves as the search depth increases. Taking the hanging pawn is
the best move until the depth of 7, where f2f8+ suddenly arises as the best move
from an almost negligible initial evaluation. This implies that some important
information is hidden in the game tree, and to uncover it, a search up to depth 7
is required. Move probabilities according to particular depths for position 5 are
visualized in Fig. 6.

The main difference between the two positions is that in the first position,
the benefit of the optimal move is immediately apparent, while in the second
position, the advantage is hidden in the game tree.
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These examples illustrate how board complexity affects the ability to under-
stand and evaluate a chess position and highlight the importance of considering
the complexity level of each position in assessing the ability to predict the next
move.

6.3 Meassuring the Board Complexity Algorithmically

The proposed board complexity metric allows to measure these expertly observed
results algorithmically. The algorithm progressively searches deeper and deeper
until it finds a move satisfying the following conditions. The move was initially
evaluated with a probability below 5% but newly has the highest probability of
being played with a probability over 40%. The algorithm for obtaining probabil-
ity distribution is described in Subsect. 6.4 In case no such example was found in
the game tree of depth of 12, the complexity evaluation for that board position
is assigned as 0. If such a move was found, the value of the proposed metric is
the depth where the move was found.

Practical usage of this metric indeed assigns complexity 0 to the board in
the Fig. 4 and complexity 7 to the board in the Fig. 5.

6.4 Move Probability Prediction

This subsection provides a function estimating move probabilities from Stock-
fish’s centipawn evaluation, which was used to calculate board complexity.

The first step is to calculate the gain of every move in centipawns.

gain = evaluation before move − evaluation after move (1)

In the second step, 25% of weak outliers are removed as significantly sub-
optimal. This percentage is based on the practical observation that keeping these
moves skews the distribution over all the remaining moves.

The reduced data is then further transformed using MinMax scaler resulting
in a nearly uniform distribution.

However, the goal was achieving of more exponential-like distribution. To
accomplish this goal, each value was raised to the power of four, thus creating a
greater difference between high and low values.

Finally, the probabilities were then calculated by dividing each value by the
sum of all values of all moves. This process generated a target that closely
approximates an exponential probability distribution, with a sum equal to 1.
The algorithm’s pseudocode is as follows:
1: function move prob(board)
2: base ← eval board(board)
3: moves ← [(m, eval move(board,m) − base) for m in board.legal moves]
4: if len(moves) ≥ 4 then
5: moves ← Top75Percent(moves)
6: end if
7: probs ← MinMaxScaler(moves)
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8: probs ← [pow(x, 8) for x in probs]
9: return [x/sum(probs) for x in probs]

10: end function

7 Experiment 2

With the use of the board complexity metric, a straightforward experiment
has been proposed. The experiment involves comparing the best-move matching
accuracy on two sets of board positions, one with a complexity level of 0 and
the other with a complexity level of 6.

This experiment introduces a supplementary hypothesis. Rejecting this
supplementary hypothesis indirectly rejects the main hypothesis. Finally, the
hypothesis for the second experiment is stated as follows:

Theorem 3. The best move matching accuracy of CNN trained on the dataset
of depth 6 will be significantly higher when compared to random predictions. This
gain will be observable on both testing sets of complexity 0 and 6.

7.1 Experiment Execution

Testing sets of sizes of 100 board configurations for 0 and 6 were generated. Due
to some problems with board complexity mentioned in Sect. 8, the testing set for
complexity 6 has to be manually checked and cleaned. The ResNet152 model,
which exhibited the highest accuracy at the depth of 6 on the testing set during
the training process of experiment 1, was selected for testing purposes. This
model achieved an average accuracy of approximately 50% accuracy over 1000
training steps. To establish a solid baseline for comparison, random predictions
were averaged over 100 testing iterations. Finally, the results are shown in the
Fig. 7.

Fig. 7. Graphical representation of results
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7.2 Discussion

As expected, the results obtained on board positions with a complexity level of
0 were similar to those achieved on the whole testing set regardless of the com-
plexity split. The best move matching accuracy on the testing set of complexity
6 is, however, significantly lower and is comparable to random predictions. This
fact contradicts the supplementary hypothesis, and thus indirectly rejects the
main hypothesis.

8 Open Issues with Complexity Metric

Although the board complexity metric looks solid, it has certain weaknesses.
Firstly there are some special cases, where according to this metric, the board

has high complexity and the key information is hidden deep in the game tree,
however, in practice, the information is clearly visible. An example of such a
board configuration involves pushing the last pawn multiple squares to the pro-
motion. Technically, the information is hidden deep in the game tree, but it is
still obvious for any beginner.

Secondly, there is a huge problem with this specific complexity metric imple-
mentation using Stockfish that the metric relies on initial evaluation at the depth
of 1. The Stockfish chess engine is not intended and fine-tuned to run at the depth
of 1, so the results are sometimes very odd, even in quite simple cases.

This wasn’t a problem for this testing purpose, because expertly checking
one hundred boards wasn’t that difficult. Also, minor deviations from the actual
complexity shouldn’t hinder the experiment as this experiment was only a sup-
plementary experiment to the first one, which is algorithmically reproducible.
However, for autonomous deployment, this metric should be fine-tuned and prob-
ably use some more simple engine fine-tuned to run in shallow depths.

9 Possible Applications

Understanding the limitations of CNNs to predict moves selected based on deep
evaluation has possible applications in human move prediction in projects similar
to the Maia chess [1]. The newly discovered limitations indicate that there is a
limit to the performance that CNNs can achieve in one forward pass. Thus
when aiming to predict human moves at the high Elo rating, who are typically
capable of deep analysis, board complexity metrics, when properly implemented,
may help with the identification of board configurations that are easy enough
for players at the given Elo rating to predict, but too complex for CNN. In such
cases, a deep search is still necessary, either by completely replacing CNN or by
providing this information to CNN as an input. In the end, such steps may help
to improve human prediction models to surpass a performance limit and align
them to the higher-rated players not only by their game style but also by their
performance and ability to search the game tree.
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10 Conclusion

In conclusion, the experiments in this paper aimed to investigate the capabilities
of CNNs to predict moves based on deep evaluation of the game tree.

The first experiment utilized training multiple models at the depths of 6 and
12 of a game tree and testing them at the depth of 12. The results revealed
that providing additional depth in the training data did not improve perfor-
mance. This finding contradicts the hypothesis that CNNs can serve as a viable
alternative to the algorithms searching the game tree.

In the second experiment, the board complexity metric was introduced and
then used to generate deep and shallow testing sets. The resNet152 prediction
accuracy was compared to the random predictions on both testing sets. The
results of this experiment further demonstrate the inability of CNNs to deal
with higher-complexity board configurations and highlight the importance of
tree search.

Despite the promising accuracy of CNNs in the prediction of algorithmically
selected moves, the findings of this paper suggest that there are certain limita-
tions to their ability to predict moves where the key information is hidden in the
game tree. The importance of considering board complexity was proposed as a
viable factor when selecting an optimal prediction method. Future work could
explore more advanced models or hybrid approaches.

After we completed our research, a new paper in the field of chess without
search came out and had a huge impact on the searchless chess domain. The
authors of that paper trained multiple models of transformer architecture to
predict Stockfish moves with great success. In conclusion, the authors stated:
“that is possible to distill an approximation of Stockfish 16 into a feed-forward
transformer via standard supervised training. The resulting predictor generalizes
well to unseen board states, and, when used in a policy, leads to strong chess
play” [15]. This work showcases the capabilities of attention-based architectures
to serve not only as statistical pattern recognizers but also as general algorithm
approximations. Our work thus adds to this conclusion by highlighting the gap in
the capabilities of CNNs and transformers. In the end, as artificial intelligence
is constantly evolving, the limitations of current state-of-the-art models and
approaches are opportunities for future architectures.
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Abstract. This paper explores machine learning using adaptive spik-
ing neurons and spike timing dependent plasticity (STDP). This is
shown to work on two categorisation tasks. It is neuro-biologically flawed
but works with a small number of point neurons, and is much closer to
biology than multi layer perceptrons. The work is derived from mathe-
matical exploration and the portion of the parameter space where cate-
gorisation works is small. This is just a proof of concept that categori-
sation can be done by these spiking competitive nets with STDP. The
parameter space could be further explored to find better results, or how
to apply this to new categorisation tasks. This work provides support for
further exploration of neurobiologically plausible category learning.

Keywords: Spiking Neurons · Spike Timing Dependent Plasticity ·
Categorisation · MNIST

1 Introduction

The human brain is the basis of intelligent behaviour, including categorisation.
Many machine learning algorithms are used to categorise, but none accurately
duplicates the behaviour of the brain. Despite using neuron-like units, most
neural network learning algorithms do not attempt to duplicate the brain’s
behaviour. Part of the problem is that the academic community does not com-
pletely understand how the brain works in general, or how it learns to categorise
in particular.

None the less, things are known about the brain that are widely ignored in
machine learning. Neurons spike, as opposed to have continuous valued outputs;
the structure of the network of neurons is not layered, but instead is recurrently
connected; and learning is done by a Hebbian learning rule instead of gradient
descent to reduce an error gradient.

This paper presents a categorisation system using spiking neurons, with
recurrent connections, and learning using spike timing dependent plasticity [1],
a Hebbian learning rule. There are inconsistencies with biology (discussed in
Sect. 4), but the overall system is much closer to a biological system than typical
machine learning algorithms.
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In the brain, most if not all learning is Hebbian [2]. If the pre-synaptic neuron
tends to cause the post-synaptic neuron to spike, the weight of the excitatory
synapses will tend to increase. There are many variations of this rule, but a
great deal of biological evidence supports STDP [1]. Bi and Poo [1] have perhaps
the first published example that shows the performance of the changing efficiency
of biological synapses, and Song et al. [3] have developed an idealised curve that
fits the biological data.

The simulations described below are a modification of the work of Diehl and
Cook [4], described more fully in Sect. 2.2. The simulations use spiking neurons
with dynamic thresholds for some of the neurons. A three population topology is
used with plastic synapses (using STDP) between the Input and Categorisation
populations, and recurrent connections between the Categorisation and Inhibi-
tion populations.

The algorithm is unsupervised. A training, category setting and testing
regime is used to generate results that are reasonable on the Iris task and a
version of the MNIST digit recognition task (see Sect. 3).

Parameter and hyper parameter settings and exploration mechanisms are
described in the hopes that new categorisation tasks can be implemented rela-
tively easily using these mechanisms. Biological plausibility and future work are
discussed in Sect. 4.

2 Literature Review

The work reported in this paper is the fourth in a series of papers using bio-
logically motivated simulated neurons and learning rules. The first two papers
in the series [5,6] were based on simulations that used a feed forward topology
with input neurons connected to category neurons. The third was based on com-
petitive topology with three populations [7]. This topology and mechanism are
derived from work by Diehl and Cook [4]. This is the basic topology, shown in
Fig. 1, used by the simulations described below.

Input Population

Categorisation Inhibition

Fig. 1. The boxes represent populations of simulated neurons. The arrows represent
excitatory synapses from neurons in the pre-synaptic population to neurons in the
post-synaptic population. The fork represents inhibitory synapses from neurons in the
pre-synaptic population to neurons in the post-synaptic population. The recurrent
connections between the Categorisation population and the Inhibition population lead
the Categorisation neurons to compete for firing.
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2.1 The Story so Far

My colleagues and I have worked on spiking nets for decades, frequently work-
ing with learning, and almost always Hebbian learning. A paper [8] used leaky
integrate and fire neurons, and compensatory Hebbian learning, implemented in
a neural simulator I made, to categorise items. On the widely used Iris task, the
system got 93.67% (see Sect. 3.2). Work on the Human Brain Project and the
need for easier duplicability of results led the group to move to PyNN [9] and
Nest [10] instead of the groups’ own simulator (see Sect. 2.3).

I am on the faculty of a British University, and as such supervise many BSc
and MSc theses. Many of these students are interested in machine learning so
work was begun on learning systems with PyNN and Nest and standard synaptic
and neural models. This led to the first paper [5], which merely had a neuron
for each feature value and one neuron for each category. The results for the Iris
task here were 90.6% (again see Sect. 3.2).

The subsequent paper, including work from an MSc thesis, [6] extended the
prior work to a new task, and looked at feature combination. A third paper,
including work from an MSc thesis, [7] used competitive nets. Having read Diehl
and Cook [4] (see Sect. 2.2), it seemed that results were relatively straight forward
to generate. However, Diehl and Cook used a non-standard neural model with
a dynamic threshold. While new neural models can be added to Nest, and used
from PyNN, existing models were explored. The use of adaptive neurons was not
particularly successful, and a compensatory weight adjustment between training
runs was also not successful. A version of the MNIST digit categorisation task
was used (see Sect. 3.3). It had 64 inputs with each value between 0 and 16. One
of the benefits compared to Huyck [5] was the feature presentation mechanism,
which used 64 input neurons instead of 1088. It turned out that the competitive
nets did relatively well without learning, getting around 32% while chance is
10%. Merely randomly placing the categorisation neurons in the 64 dimensional
input space, then associating each with a category, led to results better than
chance.

This was not particularly satisfying. Another group using competitive spiking
nets, a version of the neurons with dynamic threshold [4], and STDP made the
code for their paper [11] available. This code was used to generate a result for
the Iris task (Sect. 3.2), getting 84% on the training set. It was clear that this
was a system that worked. However, this was written in PyNest, and translation
to PyNN and Nest led to a system that got 70%. Ostensibly, the same system
(considering randomness) was performing significantly worse. Moreover, on an
initial attempt at the digit task, it was not clear what parameter settings to use.

2.2 Unsupervised Learning Using STDP

Perhaps the best known example of spiking nets learning using Hebbian rules
is by Diehl and Cook [4]. Each input feature has one neuron, and the higher
the value of the feature, the more spikes are fired and the sooner they are fired.
These neurons are connected to two populations, excitatory neurons that are
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the categorisation neurons, and inhibitory neurons. These are in turn connected
to each other, an instance of the topology in Fig. 1.

The system is trained by presenting instances of the data items to the input
population, each for an epoch including a rest interval with no input between
epochs. The only plastic synapses are those from the Input population to the
Categorisation population. This is unsupervised behaviour, and to this point the
category labels have not been presented.

Once the training is complete, the plastic synapses are replaced by static
synapses with the synaptic weights that were learned from training. The test
items can be presented, and the spiking behaviour of the category neurons deter-
mines the category that is selected.

This behaviour resembles that of a self organising map (SOM) [12]. The
nodes of the SOM are like category neurons. The SOM nodes move to a place
that responds to particular inputs, and moves away from other nodes. When the
category neurons are learning properly, they also respond to particular inputs
and not others. If one wants to categorise with a SOM network, each of the nodes
can be assigned a particular category. (Unlike SOM nodes, the neurons can also
each give support to different categories and then spiking during a test can be
used to determine the category of the input features.) Novel input can then be
categorised by the category of the node (or nodes) that responds.

This work is derived from work on spiking networks for expectation maxi-
mization [13]. Here the networks have even fewer biological constraints with only
a two layer system, inputs to category neurons. The category neurons inhibit each
other to make a winner takes all network. There is instantaneous spiking, time is
continuous, and synaptic transfer is immediate. The homeostatic dynamics from
the title of that paper refers to the dynamic threshold. The mathematics describe
how neurons are forced to their own place in the input space so that they can
represent inputs, and thus successfully categorise.

There is a fair amount of work in extending the work of Habenschuss et al.
[13] towards more biological plausibility. Indeed Diehl and Cook [4] (and others
e.g. [11]) have extended this work to include neurons that are either excitatory
or inhibitory and a reasonable amount of time for synaptic transfer.

2.3 PyNN, Nest and PyNest

There are hundreds of published neural models, and the use of standard simula-
tors has increased reproducibility and reusability. Consequently, the simulations
below have been performed in Nest [10], a widely used simulator. Nest typi-
cally comes with many neural and synaptic models, but there is a mechanism
to include unsupported models. Moreover, it is often useful for topologies to run
in different simulators, or indeed in neuromorphic hardware. A middleware
package, PyNN [9], can be used to define a topology and runtime side effects,
and then use those on different backends (simulators or hardware). Somewhat
confusingly, Nest also comes with its own Python front end, PyNest [14].

The code that started the work in this paper (see Sect. 2.1) was in PyNest,
though it did use the Nest simulator. The modified code is in PyNN, also using
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the Nest simulator. Code can be found on https://cwa.mdx.ac.uk/spikeLearn/
spikeLearn.html.

2.4 Neurons and Synapses

The neural model used for the excitatory Categorisation neurons and the
inhibitory Inhibition neurons is a leaky integrate and fire (LIF) model with
a dynamic threshold, which is a form of adaptation. It extends a standard LIF
model [15], by making the threshold dynamic. When it spikes, the threshold is
increased, so it becomes more difficult to emit another spike.

Equations 1 to 3 are standard input mechanisms and Eq. 4 is the leak.
Together, these describe the leaky integrator component of the neuron. Equa-
tions 5 and 6 explain the synaptic transfer over time. Equations 7 and 8 explain
the firing and the dynamic threshold components of the neuron. Equations 9 and
10 explain the STDP rule.

The activation is the current voltage VM . Equation 1 describes the change in
voltage, VM is the membrane potential and CM is the membrane capacity. The
four currents are the leak current, the currents from excitatory and inhibitory
synapses, and the input current (from some external source). The variable cur-
rents are governed by Eqs. 2, 3 and 4. In Eqs. 2 and 3 Erev

Ex and Erev
In are the

reversal potentials; excitation and inhibition change respectively slow as the volt-
age approaches these reversal potentials. In Eq. 4, Vrest is the resting potential
of the neuron, and τM is the leak constant.

dVM

dt
=

(−ILeak − Isyn
Ex − Isyn

In + IExt)
CM

(1)

Isyn
Exc = GEx × (VM − Erev

Ex ) (2)

Isyn
Inh = GIn × (VM − Erev

In ) (3)

ILeak =
CM (VM − Vrest)

τM
(4)

GEx(t) = kEx × t × e
− t

τ
syn
Ex (5)

GIn(t) = kIn × t × e
− t

τ
syn
In (6)

In Eqs. 5 and 6, GEx and GIn are the conductance in mS/cm2 to scale the
post-synaptic potential amplitudes used in Eq. 2, and 3. t is the time step. The
constant kEx and kIn are chosen so that GEx(τsyn

Ex ) = 1 and GIn(τsyn
In ) = 1.

The τsyn
Ex and the τsyn

In are the decay rate of excitatory and inhibitory synaptic
current.

The dynamic threshold is implemented by increasing the threshold Vth by a
constant θ+, Eq. 7, when the neuron spikes. When it does not spike, the threshold
drifts back toward a constant θrest at a rate determined by another constant tθ,
as shown in Eq. 8.

https://cwa.mdx.ac.uk/spikeLearn/ spikeLearn.html
https://cwa.mdx.ac.uk/spikeLearn/ spikeLearn.html
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Vth = Vth + θ+ (7)

Vth = −1 ∗ (Vth − θrest)/tθ (8)

When the voltage reaches the threshold, there is a spike and the voltage is
reset. No current is transferred during the refractory period τref .

The synaptic plasticity model is spike timing dependent plasticity with a
symmetric nearest neighbour spike pairing scheme. As usual, the weight only
changes if both pre and post-synaptic neuron spike. When a presynaptic spike
occurs, the temporally nearest spike determines whether it causes depression
(Eq. 10) or potentiation (Eq. 9).

Equation 9 shows the weight increase when there is a potentiation event with
the initial weight w, the learning rate λ, the difference in time between the pre
and post-synaptic spikes Δ(t), the maximum synaptic weight Wmax, μ+ the
weight potentiation exponent, and the increase time constant τ+.

Δw+ = λ ∗ (1 − (w/Wmax))(μ+∗|Δ(t)|/τ+) (9)

Equation 10 shows the weight decrease when there is a depression event, with
α a constant that skews potentiation vs. depression, μ− the weight depression
exponent, and the decrease time constant τ−.

Δw− = α ∗ λ ∗ ((w/Wmax)(μ−∗|Δ(t)|/τ−) (10)

The only plastic synapses used in these simulations are those between the
input and Categorisation neurons. They are only plastic during the training
phase.

So, using simulated neurons, data is presented to the network one item at a
time. The synaptic weights change in response to neuron spikes using an STDP
rule to implement unsupervised learning. After training, the spiking net can be
used to categorise novel input.

3 Methods

Simulations are run in Ubuntu, with a Nest [10] simulator in this case Nest 3.5
[16], using PyNN [9] to develop the topology and interface with the simulator.
Calculations on spikes from the Categorisation neurons are used to determine the
categories in Python.

The topology works from input neurons (four in the case of the Iris task,
and 64 in the case of the digit task), stimulated by poisson sources. The input
neurons are parrot neurons, which merely forward the same spikes from the
poisson sources. Following Fig. 1, there are an equal number of Categorisation
neurons and Inhibition neurons. Both Categorisation and Inhibition neurons are
LIF neurons with dynamic thresholds.
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Both Categorisation and Inhibition neurons are stimulated directly from the
input via the parrot neurons, and these synapses are relatively sophisticated.
First, they are sparse, so that each input only connects to a (randomly selected)
portion of the Inhibition and Categorisation neurons. Secondly, the synaptic
delay varies randomly between synapses. Thirdly, the initial synaptic weights
are randomly selected. Finally, the synaptic weights from input to Categorisation
neurons are plastic during training.

Connectivity from Categorisation neurons to Inhibition neurons is one to
one. Those weights are all the same and the default delay and parameters are
used. The weights from Inhibition to Categorisation neurons are all to all except
to the neuron’s pair (the one it gets activated by). Again the weights are all
the same and the synaptic defaults for delay and synaptic parameters are used.
These two populations stand in for the categorisation neurons in the winner take
all network from Habenshcuss et al. [13], though they do not duplicate it.

Biological neuron simulations run for a period of simulated time with the neu-
ron behaving throughout the period. When a neuron spikes, activation spreads
from it to other neurons that have synapses from it. The initial topology has a
great deal of randomness, and the system is run for a considerable amount of
time. As the system runs, the LIF neurons with dynamic thresholds can come to
be quite different (due to stored variables Vm and Vth) than the original neurons.
During training, the input to Categorisation synapses can also change quite a
bit.

The systems learn via a Hebbian learning rule, and the simulations in this
paper use the STDP with nearest neighbour spike pairing describe in Sect. 2.4.
Synaptic weights change via STDP, increasing when pre-synaptic neurons spikes
before post-synaptic neurons, and decreasing when pre-synaptic neurons spikes
after the post-synaptic neurons.

Initial values for voltage used in both tasks are non-standard. The initial volt-
age variable for the Categorisation and Inhibition neurons are −50.0 and −40.0
respectively in all simulations. Parameter values for the neurons are described
below (mostly in Sect. 3.2).

3.1 Running the Categorisation System

The standard running mechanism presents the data via poisson sources, with
higher values having larger poisson median values. The parrot neurons then
convert these to spikes, and these send current to the Categorisation and Inhibi-
tion neurons. The data is presented in three types of phases, learning (training),
category setting, and testing.

In the first phase, learning, the system is presented with the data in a series of
epochs, one epoch for each input item. In this paper, all learning phases present
each training item exactly once. All of the epochs last 400 ms with the poisson
spike source being active for 350 ms followed by a rest period of 50 ms. (All
times are simulated times.) Spikes can occur in this rest period, due to residual
activity from spiking within the period. So, the duration of an Iris training phase
(or the other phases) is (400∗75) = 30000 ms as there are 75 training items. The
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synaptic weights between the parrot and the Categorisation neurons change, and
are saved.

In the category setting phase, the system loads the saved synaptic weights
from the parrot neurons to the Categorisation neurons onto the now static
synapses and reuses the rest of the topology. The data is again presented, but
this time the spikes from the Categorisation neurons are stored. These spikes are
then used to determine how often each neuron spikes for each category. Train-
ing is entirely unsupervised, but here the category values for each Categorisation
neuron is determined. Note that a neuron may not spike at all, or spike for any
number of categories.

The final phase is the testing phase. Again, the topology is exactly the same
as the final topology of the training phase (after learning), and the category
setting phase. The system is now presented with the test data, and the spikes
from the Categorisation neurons are stored. These spikes along with the amount
of spikes from the categorisation neurons during the category setting phase are
used to determine the category of each test item. This is the sum of the neurons
that spiked in the test epoch weighted by those neurons’ category weight ratios
and overall spiking in the categorisation phase.

3.2 Iris Categorisation

In the Iris simulations, the three phases are run in sequence. There is two fold
cross validation. Each phase takes 30000 ms., or 30 s, so each simulation is run
for 90 simulated seconds.

Initially, I explored the digit classifying system in PyNest but it quickly
became apparent that the laptop I was using was not powerful enough nor did
it have enough memory. So, I moved to the much smaller Iris task. I got this
running in PyNest, but was not getting a categorisation value. So, I switched
to PyNN, using the non-standard neuron with dynamic threshold, and the non-
standard STDP synapse. I spent a great deal of time exploring parameters and
hyperparameters before deciding to just figure out the PyNest system and follow
it.

It was clear from Habenshcuss et al. [13] and the spiking behaviour of the
PyNest system, that it was important that only one or a very few Categorisation
neurons spiked in each epoch. This, in collaboration with learning, prevents one
or a small number of neurons dominating, which would lead to poor categorisa-
tion. This was the problem in Huyck and Erekpaine [7].

I figured out the hyperparameters; in particular I found that sparse connec-
tivity between input and the Categorisation neurons, and input and the Inhi-
bition neurons was important. I also started using the 1 to 1 Categorisation to
Inhibition connections, along with 1 to all but one Inhibition to Categorisation
connections.

There are several hyperparameters. Input to inhibition synapses are allocated
randomly 10% of the time. The delay for each synapse is randomly allocated
between 0 and 5 ms., but greater than 0. The weight of the synapse is randomly
set between 0 and 0.0002.
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Input to categorisation synapses are allocated randomly 60% of the time. The
delay for each synapse is randomly allocated between 0 and 10, greater than 0.
The initial weight of the synapse is randomly set between 0 and 0.01.

There are 100 Inhibition neurons, and 100 Categorisation neurons. There are
four inputs. Note that the input values are not normalized.

An important hyperparameter is the time step. The original PyNest experi-
ments were run in .1 ms time steps. Unsurprisingly, this takes roughly 10 times
as long to run as with 1 ms time steps. Perhaps more surprisingly, the categori-
sation results are quite similar.

There are also system parameters. In particular, I could not find a straight
forward translation from the PyNest to Nest systems for weighting the input.
So, I introduced the really quite important parameter, Rate Multiplier. I set this
to 20.0 so that the parrot neurons spiked on all input values, though, obviously,
more for higher values. I also explored normalizing inputs, but found that it was
unnecessary.

Parameters for the Categorisation neurons and the Inhibition neurons dif-
fered. They are shown in Table 1. The parameters for the synapses, and the
system wide parameters are also shown in that table.

Table 1. System Parameters

Name Symbol Categorisation Neuron Inhibition Neuron

Neuron

Capacitance CM 100.0.0 10.0

Rest Threshold θrest −72.0 −40.0

Exc. Rev. Potential Erev
Ex 0.0 0.0

Inh. Rev. Porential Erev
In −100.0 −100.0

Rest Potential Vrest −65.0 −60.0

Leak Time τM 100.0 10.0

Exc. Current Rate τsyn
Ex 1.0 1.0

Inh. Current Rate τsyn
In 2.0 2.0

Threshold Increase θplus 0.2 0.0

Refractory Period τref 5.0 2.0

Plastic Synapse

Potentiation Time τ+ 20.0

Potentiation Exponent μ+ 0.0

Depression Exponent μ− 0.0

Learning Rate λ 0.01

Potentiation Depression Skew α 0.55

System

Rate Multiplier 20.0

Input to Inhib 0.0002

Cat to Inhib 0.0104
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Once a reasonably successful parameter set was found, hill climbing was used
on one paramater at a time to find improvements. This was directed by the firing
behaviour as individual category neurons should not fire in most training epochs.

When the system was run in PyNest, it got 84% on the training set. It was
awkward to manage, but a direct translation to PyNN led to a system with
70.67% on the training set a 67.3% on the test set, both in a two fold test. A
minor change in the system parameters, Input to Inhib to 0.0005 and Cat to
Inhib to 0.03 led to a system with 75.33% on the training set a 76% on the test
set. See Table 2 for a comparison. A different spiking net achieves 93.67% on the
test set, again with two fold cross validation. It is not that the system developed
here is superior, but that it performs reasonably well. These results are from one
value of the random seed. Other seeds give other, but similar, results.

Table 2. Selected Iris Results

System Train Test

PyNest 84%

Orig Params 70.67% 67.33%

Orig Params .1 ms 68% 71.33%

Novel Params 75.33% 76%

[5] 92% 90.6%

[8] 93.67%

3.3 Digit Categorisation

The digit categorisation task is a smaller version of the common task [17]. It
has 5620 instances each with 64 input integer valued features between 0 and 16.
This has been used over the last several years as a task for an undergraduate
AI class, and a standard result on a two fold test using nearest neighbour gets
98.25% correct (see Table 3).

With no advice on how to set parameters for a new categorisation task, the
parameters from the Iris task were initially used. It was clear that what was
needed was to have one or a few categorisation neurons spiking once in each
training epoch. So an initial modification to the Rate Multiplier was set to 10.0,
and the Input to Inhibition median was left at 0.0002. In the initial simulations
100 Categorisation and 100 Inhibition neurons were used.

The initial simulation ran the training phase, categorisation setting phase,
and testing phase all in one simulation. Unfortunately, the computer was not able
to cope with the 2810 inputs for a two fold test, so initially a 20 fold test, with
1 training and 19 tests, was used. The average test result over the 20 training
runs was 50.11% (see Table 3).

The training data set was used as a test both during training, and then
during testing. Table 3 reports the train results during the testing phase, 59.84%.
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The result during the training run in testing phase was 57.69%. As this lower
result was with the neurons retaining the voltage and threshold values from the
training and category setting phases, it was expected that it would do better.
So, this result is somewhat surprising.

This led to simulations on a 10 fold test with each phase running separately,
yielding the 10 fold result in Table 3. Both of these results had 100 Categorisa-
tion and Inhibition neurons. This was changed to 200 of each, and run for the
final system result. Unsurprisingly, the 10 fold test was better than the 20 fold
test, influenced by more training. Similarly, unsurprisingly, the 200 neuron test
did better than the 100 neuron test.

Though better than chance, the MNIST results are poor. Part of problem is
that it takes a few days to simulate a 10 fold test, which trains on one data set
and tests on nine. A better machine or neuromorphic system should help here.
It would also allow more neurons to be used, which should improve results.

Table 3. Selected MNIST Results

System Train Test

20 Fold 59.84% 50.11%

10 Fold 60.05% 52.98%

10 Fold 200 Neurons 69.62% 59.34%

Nearest Neighbour 98.25%

4 Discussion

The brain is a poorly understood organ, but it is clear that its 65 billion neurons
[18] are used to, for instance, classify digits. All of the neurons are not critical
to the task, but as it involves the primary visual cortex, billions of neurons are.
With 264 neurons, the digit categorisation system described above is clearly not
a complete model of the human neural network for solving the task.

The work described here and the work it is derived from [4,13] notes that the
biology is important, and to some degree tries to model it. For categorisation,
it is important that none of the categorisation neurons win very often. This is
a main point of Habenshcuss [13] and is the reason for the use of the dynamic
threshold neurons.

Some things are obviously biologically inaccurate; for example, in the brain
input is not via poisson sources but from complex sensory organs and a complex
neural interpretation mechanism. The neurons are not devoted to a single task.
Learning is not turned off, at least easily.

Other biological inaccuracies can be more readily addressed. Output of the
category is not by calculating spike ratios of Categorisation neurons on the train-
ing set, and then using those ratios on spikes from the same neurons during a
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test. However, it is reasonably easy to imagine a system that uses those spikes,
connects to other neurons, which in turn yield a category decision, which is then
conveyed to the environment. Indeed this is largely what has been done by Huyck
and Mitchell [8].

The neural models, even though they spike, are poor models of biological
neurons. For computational simplicity this seems like a reasonable assumption.
However, the parameters for the neural models are not aligned with biological
parameters. In Huyck and Erekpaine [7], neurons with adaptation [15] were used,
but an effective parameter set for categorisation was not found. It is not clear
that there is one. The model used in this paper, with a dynamic threshold, is a
type of adaptive neuron. However, the adaptation lasts for much longer than the
adaptation and adaptation recovery values allowed by the Brette neurons used
in Huyck and Erekpaine [7]. I am unaware of any mapping between the dynamic
threshold neuron models and biological neurons, unlike the Brette neurons.

So, my group’s earlier system [8] for categorisation, though also flawed as a
biological model, is closer to biology. It uses something like cell assemblies [2].
Learning remains on.

A more biologically plausible circuit could involve at least three different
types of cell assembly based topologies. The first, like Huyck and Mitchell
[8], would have persistently firing cell assemblies; these could overlap between
the three categories with some neurons in both or even all three. The second
could involve thalamacoritcal circuits [19] or circuits through other areas. Here
the neurons do not need to fire at such a high rate, but are reactivated as waves
of firing flow through the neural net. A third system would be in between the
other two in localization, involving laminar architecture [20]. Here projections
between the different layers of a small section of cortex could, at least initially,
be wired in a biologically plausible way. The weights could then be modified by
STDP; structural plasticity could also be used. All three of these mechanisms
could lead to improved categories over time.

Despite these simulations using few neurons it is surprising that it is so slow
to simulate. This might be fixed by caching the input spikes away and removing
the poisson source from the simulation. It could also be fixed using a better
simulator or neuromorophic hardware.

There are several things that could easily be explored as future work. For
instance, can the dynamic threshold neurons be replaced by simple leaky inte-
grate and fire neurons, at least in the Inhibition neurons? What happens when
the number of Categorisation neurons and Inhibition neurons do not match?
Will different STDP rules work, particularly those that are in the default Nest
build? How will it work on different tasks? What is the relationship between
tasks and parameters? Can this be improved by training on multiple passes of
the training input? The portion of the parameter space where it works is small. Is
there a mathematical solution to support parameter selection? Can this be inte-
grated with the work of Huyck and Mitechell [8]? This integration might include
modifying the learning rule to make it compensatory, running continuously with
learning on, and integrating with input and output systems.
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5 Conclusion

So, it is clear that these adaptive spiking neuron systems learning with STDP
can be used for categorisation. This is not novel, but the basics of this mechanism
have been described above and it has been extended to a novel digit recognition
task. As a machine learning mechanism, it is initially an unsupervised system.
It does not need to normalize inputs. Theoretically [13], this type of system can
be used to optimize the internal model of the environment.

The novelty of this paper, particularly as compared to Diehl and Cook [4],
is that the parameters are shown. The translation from Habenschuss et al. [13]
to neurons makes mathematically determining parameters difficult. This paper,
and associated code, show these values for two novel tasks.

The origin of this mechanism has come from mathematical proof, but it has
matured to include a more biologically plausible system. Though this system is
not fully neurobiologically plausible, it does provide support for further explo-
ration of biologically plausible learning topologies; exploration can be done both
in simulation and from neurobiology to see how it is done in brains and in petri
dishes. It is quasi-neurobiologically plausible learning.
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Abstract. This paper presents the development of a pixel-wise plastic waste iden-
tification system for multispectral remote sensing data, based on artificial intel-
ligence methods. The system will be used as part of a two stage approach to
identify and quantify plastic waste in waterways and onshore utilizing airborne
based remote sensing andArtificial Intelligence. This work investigates the perfor-
mance and generalization capabilities of Artificial Neural Networks (ANN), Ran-
dom Forests (RF), Support Vector Machines (SVM), Logistic Regression (LR),
and Decision Trees (DT) on two different multispectral datasets. All models are
trained and tested on a dataset with artificial plastic waste targets, covering three
different undergrounds, i.e. sand, grass and water. To investigate the generaliza-
tion capabilities of the models, further tests on a dataset from a real landfill are
conducted without retraining. On dataset #1, ANN and RF demonstrated superior
performance, both achieving 98.4% accuracy, followed closely by DT at 97.4%.
SVM and LR showed lower but comparable accuracies of 87.7% and 87.4%,
respectively. RF exhibited the best generalization with 90.4% accuracy, while
SVM showed improved relative performance at 88.1% on dataset #2. Further-
more, it was shown that an ensemble of all five methods achieved 91.3% accuracy
on dataset #2 without retraining, demonstrating a clear trade-off between false
positives and false negatives.

Keywords: PlasticObs+ · Plastic Pollution · Machine Learning · Plastic Waste
Classification · Ensemble Methods

1 Introduction

Marine plastic pollution poses a significant environmental threat, with rivers annually
depositing millions of metric tons of plastic waste into oceans globally [1]. To address
this issue, it’s essential to implement innovative and cost-effective monitoring strategies
that enhance waste and plastic management in marine environments. These approaches
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should enable the identification of litter sources and quantities across various localities,
regions, and nations. Furthermore, data on plastic litter types, including polymer classi-
fications, is crucial for developing targeted policies and legislation aimed at collecting
and recycling priority plastic items. These efforts align with major political initiatives
such as the EUMarine Strategy Framework Directive’s descriptor 10 [2], the Single-use
Plastics Directive 2019 [3], UN Sustainable Development Goal 14 (target 14.1), and the
UN Decade of Ocean Science for Sustainable Development (2021–2030), all of which
strive to mitigate marine pollution and enhance ocean health [4]. Detecting pollution on
the ocean surface is vital for preserving marine ecosystems and ensuring the safety of
human activities. While previous studies have explored plastic detection using remote
sensing techniques [5, 6], continuous monitoring of extensive, contiguous marine areas
remains unestablished. Consequently, current models and estimates of plastic waste are
primarily based on temporally and spatially limited measurements. The highly hetero-
geneous distribution of plastic makes it challenging to draw comprehensive conclusions
about its sources, distribution patterns, accumulation sites, and temporal evolution.

In recentwork differentArtificial Intelligence (AI)methods, likeLinearDiscriminant
Analysis [7], Support Vector Machines [8, 9], Random Forests [9, 10], Feed-Forward
Neural Networks [11, 12] or Convolutional Neural Networks [13], were used for plastic
waste assessment in remote sensing applications. In most studies CNNs were used for
the identification and quantification of plastic waste in marine environments [14], espe-
cially on high resolution images [13, 15]. However, for the analysis of low resolution
images pixelwise classification methods, i.e. treating each single individually, might be
advisable since spatial information like shape of small objects cannot be retrieved from
low resolution images.

In this research, five different models were built, based onArtificial Neural Networks
(ANNs), Logistic Regression (LR), Random Forest (RF), Support Vector Machines
(SVM) and Decision Trees (DTs). ANNs are computational models inspired by the
structure and function of biological neural networks in the brain. They consist of inter-
connected nodes or artificial neurons that can learn from data and capture complex
non-linear relationships between inputs and outputs [16]. LR accomplishes binary clas-
sification tasks by predicting the probability of an outcome, event, or observation. It
analyzes the relationship between one or more independent variables and classifies data
into discrete classes, extensively used in predictive modeling, where a model estimates
the mathematical probability of whether an instance belongs to a specific category or not
[17]. Support Vector Machines (SVMs) generate a linear model used for classification
and regression tasks, effectively addressing both linear and non-linear problems. The
fundamental idea behind SVMs is to construct a line or hyperplane that separates the data
into distinct classes. The algorithm seeks to identify the Maximum Margin Hyperplane
that optimally divides the classes, with the closest data points to this hyperplane being
termed support vectors [18]. Top-Down Induction of Decision Trees is a heuristic for
constructing DTmodels. It places the most influential variable at the root and recursively
builds subtrees based on the subfunctions. The goal is to create an approximation of a
target function [19].
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2 System Overview

The long-term goal of the project is to develop an airborne method for monitoring plastic
waste on the water surface. The system, developed in the PlasticObs+ project, is based
on an overview sensor (VIS-Line scanner), a fast VIS-AI for anomaly detection, an AI
based system for candidate selection [20] and a detail sensor, i.e. adjustable camera
(EOIR), to further investigate candidates selected. The images taken by the EOIR are
further analysed after the flight using AI methods. The concept of the system, together
with the block diagram of the different components is shown in Fig. 1. This paper will
focus on the development of the VIS-AI system.

Fig. 1. PlasticObs+ Concept including VIS line scanner and EOIR mounted on the aircraft and
indicating different AI systems developed in PlasticObs+, beneath showing the system overview
as a block diagram.

3 VIS-AI System

In general, the output of the VIS-Line scanner are single lines of pixels, i.e. 1 × n pix-
els. During the survey, subsequent lines can be combined to images used for anomaly
detection. Convolutional Neural Networks or Auto Encoder models could be used for
anomaly detection in those images. However, to align the different lines requires addi-
tionally precise real-time information about themovement of the aircraft in all six degrees
of freedom, which is a challenge. Therefore, to avoid processing the images, a pixel-
wise classification approach will be discussed in this research. However, a pixel-wise
classification approach cannot make use of context information, for example contour
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information, and needs to rely on the information of each pixel only. Here, multispectral
information can provide additional information for the identification of plastic waste
items. In this research, a multispectral camera system with five bands is used for data
acquisition. This data acquisition and processing is described in the next section.

4 Dataset Preparation

This work is based on data collected during three different field tests, covering different
kinds of undergrounds and setups. The data was recorded using a DJI Mavic M210
equipped with aMicasense Altummultispectral camera. The camera covers six different
spectral bands, i.e. blue, green, red, red edge, near infrared and thermal infrared. In
this research, the thermal infrared information is not used, due to the different spatial
resolution of this band, compared to the others [21]. Property information of the different
bands is summarised in Table 1. The drone was operated in an altitude of 75 m and the
single images, ensuring a front and side overlap higher than 80%, were used to create
an orthomosaic, employing Pix4Dmapper V.4.6.4 [22], for further processing.

Table 1. Summary of spectral information of Micasense Altum AL04 after [21].

Band# Name Center wavelength (nm) Bandwith (nm)

1 Blue 475 nm 20 nm

2 Green 560 nm 20 nm

3 Red 668 nm 10 nm

4 Red edge 717 nm 10 nm

5 Near Infrared (NIR) 840 nm 40 nm

6 Thermal Infrared 11 µm 6 µm

In the first and second field tests artificial plastic waste targets were used. Five
different kinds of plastic i.e. LDPE blue (low density Polyethylene), LDPE transparent,
PS white (Polystyrene), PS cream and PP black (Polypropylene), were used to form
artificial targets. The use of artificial targets to determine the limits of detectability of
remote sensing applications was also applied by Topouzelis et al. [5]. The targets were
placed on three different surface types, i.e. grass, sand and water. The experimental setup
on the three different undergrounds are shown in Fig. 2.

The third field test was conducted on a German land fill, and therefore contains
different, but unknown types of plastic waste (Fig. 3). The data was captured following
the same procedure as for the first two experiments using the same equipment.

The data from the first two experiments are combined to one dataset, while the data
from the third experiment is used as a second dataset. For both datasets, the ground truth
with the corresponding class is also required. For this purpose, the images are labelled
using the CVAT tool [23]. This tool can be used to export an image mask, where each
pixel is coloured according to its assigned class. The labelling process is summarised in
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Fig. 2. Experimental set-up of the field tests on grass and sand soil and on the water surface.

Fig. 4. From this mask and the five orthomosaics, vectors for each pixel can be created.
As the dataset generated in this way is unbalanced (there are significantly more pixels
that do not contain plastic), random undersampling is used [24]. In the labelling process
different classes were used, including the different kinds of plastic, meadow, water and
beach. For each of these classes, a random selection of up to 1,000 pixels per image
are used for dataset #1. Due to the smaller number of pixels containing plastic, for
dataset #2 a maximum of 300 pixels per class are used. The dataset is then normalised
and converted to the binary plastic/no plastic classification dataset. The final dataset #1
contains 58,245 elements, where 41.6% of the instances belong to the category plastic,
and 58.4% to the category no plastic. The second dataset is comprised of 1,026 elements
where 41.5% belong to the category plastic and 58.5% to the no plastic category.

Fig. 3. Experimental setup at German landfill.

5 Experiments

In this research five differentAImodels, i.e. an artificial neural network (ANN), a logistic
regression (LR), a Random Forest (RF), a support vector machine (SVM) and a Decision
Tree (DT) are used to address the pixel-wise classification of plastic waste identification.
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Fig. 4. Labelling process block diagram.

All experiments, except of the training of the ANN was undertaken using the KNIME
Analytics platform [25, 26].

Most AI-models require fine-tuning of control parameters to maximise their capabil-
ity of solving the problem at hand [27]. Therefore, the models used in this research were
fine tuned to maximise the classification accuracy of the models. For the ANN network
architecture, i.e. number of hidden layers and number of neurons per layer were opti-
mised using the pytorch library [28]. The results of the optimisation are shown in Fig. 5.
As it can be observed from the figure, networks with 100 nodes per layer achieve the best
results. In the associated table, the p-values were calculated using the t-test, which can
be used to show that there is no significant change with more than three hidden layers.
A network with three hidden layers containing 100 neurons each is therefore suitable.
This network architecture is used in KNIME for the experiments during this research.

Fig. 5. Accuracy of the trained neural networks with associated table for analysing significant
changes between the network sizes.

The optimisation of the RF and the DT were conducted in KNIME. For the RF,
two parameters, i.e. tree depth (dtree) and number of trees (ntrees), were optimised. The
ranges for both parameters are given as follows:

{dtree ∈ N|1 ≤ dtree ≤ 100} (1)
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{ntrees ∈ N|1 ≤ ntrees ≤ 500} (2)

For the DT one parameter, i.e. minimum number of samples (nsamples), was optimised.
The parameter was optimised in the range:

{
nsamples ∈ N|1 ≤ nsamples ≤ 5,000

}
(3)

Tree-structured Parzen Estimator (TPE) [29] was used for both optimisations. The
number of iterations was set to 1,000, while the number of warm-up-rounds was chosen
to be 100. The best performance was found for a RFwith a depth dtree = 73 and a number
of trees ntrees = 196. The best performance was found for a DT with a minimum number
of samples nsamples = 2.

No optimisation was undertaken for the SVM and the LR model, i.e. standard
parameter settings given by KNIME were used in this research.

In the first set of experiments, dataset 1 is used to train the different models used,
i.e. ANN, RF, SVM, LR, and DT. The dataset is split into 70% for training and 30% for
testing, using random sampling without replacement. The VIS-AI system will be used
in different environments; thus, a good generalisation ability of the system is required.
To test the generalisation ability of the different models, a second set of experiments was
conducted, applying the trained models on dataset 2 without retraining or modification
of the models. The modelling approach is visualised in Fig. 6.

Fig. 6. Block diagram of the modelling approach.

In this work, five different models with different strengths and weaknesses are used.
Potentially not a single model can achieve a good result for the generalization, but an
ensemble of the models can. Therefore, a third set of experiments is carried out, using
a combination of all five models trained on dataset 1. In the first step, a data tuple
is evaluated by each model separately. Afterwards, the number of predictions of class
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plastic are summarized and compared to the threshold a. The threshold a is chosen as
follows:

{a ∈ N|1 ≤ a ≤ 5} (4)

If the sum is higher than the threshold a, the current input is classified as plastic,
otherwise it is classified as no plastic. The process is visualized in Fig. 7.

Fig. 7. Block diagram of ensemble evaluation process.

The results of the three sets of experiments are presented in the next section.

6 Results

As shown in Fig. 6, the five models are trained with 70% of the data contained in
dataset 1. Afterwards the models are applied to predict the remaining 30% of dataset 1.
The results of this prediction are summarized in Table 2. One can see that ANN and
RF performed best, both with an accuracy of 0.984, followed by DT with an accuracy
of 0.974. SVM accuracy was 0.877, while LR showed a comparable performance, i.e.
accuracy of 0.874. In Fig. 8 accuracy, precision, recall and F1-score of the different
models trained are given.

Table 2. Summarized Results for the different models on the test data from dataset #1.

Model True
Positives

False
Positives

True
Negatives

False
Negatives

Accuracy

ANN 7151 146 10047 130 0.984

RF 7109 172 10085 108 0.984

SVM 6170 1039 9154 1111 0.877

LR 6194 1118 9075 1087 0.874

DT 7016 195 9998 265 0.974

In the second step of experiments, the models trained on dataset 1 are applied on
dataset 2 without retraining or adaptation of the models (Fig. 6). The results of this set
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Fig. 8. Accuracy, Precision, Recall and F1-score for the different models on dataset #1.

of experiments are summarized in Table 3. It can be observed that the best performance,
i.e. with an accuracy of 0.904, was achieved by the RF, followed by the SVM achieving
an accuracy of 0.881. In Fig. 9 performance indicators for the second set of experiments
are visualized. It can be observed from the figure that the SVM and the DT showed the
highest precision.

Table 3. Summarized results for the different models on dataset #2.

Model True
Positives

False
Positives

True
Negatives

False
Negatives

Accuracy

ANN 311 60 540 115 0.829

RF 351 75 576 24 0.904

SVM 365 61 539 61 0.881

LR 370 122 478 56 0.827

DT 341 61 539 85 0.858

The results of the third set of experiments are given in Table 4. The highest accuracy
of 0.913 is achieved for a threshold of a = 3. For smaller and higher values of a, the
accuracy is lower. However, it can be noted that the number of false positives decreases
with higher values of a, while the number of false negatives increases with higher values
of a. This behavior can be expected, due to the direct influence of a on the prediction
outcome of the ensemble. In Fig. 10 performance indicators of the ensemble experiments
are given. It can be observed from the figure that the precision increases with increasing
threshold a, while recall decreases with increasing threshold a.
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Fig. 9. Accuracy, Precision, Recall and F1-score for the different models on dataset #2.

Table 4. Summarized results for different values of threshold a on dataset #2.

Threshold a True
Positives

False
Positives

True
Negatives

False
Negatives

Accuracy

1 391 204 396 35 0.767

2 377 87 513 49 0.867

3 359 22 578 67 0.913

4 333 10 590 93 0.900

5 278 5 595 148 0.851

Fig. 10. Accuracy, Precision, Recall and F1-score for the ensemble for different thresholds a on
dataset #2.
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7 Discussion

The first set of experiments, conducted on dataset #1, revealed notable differences in
model performance. The ANN and RF demonstrated superior accuracy, both achieving
98.4% on the test set. This high performance suggests that these models were partic-
ularly well-suited to capture the underlying patterns in dataset #1. The DT model also
performed admirably, with an accuracy of 97.4%, indicating that even a simpler model
could effectively learn from this dataset. In contrast, the SVM and LR models showed
significantly lower, but similar accuracies, i.e. 87.7% and 87.4%, respectively. This per-
formance gap might indicate that the decision boundary in this dataset is more complex
than what these models can efficiently capture, or that the feature space may benefit
from additional preprocessing or feature engineering for these algorithms.

For the second set of experiments, the models trained on dataset 1 were applied to the
unseen dataset #2, providing crucial insights into themodels’ generalization capabilities.
Interestingly, the RF demonstrated the best generalization, maintaining a high accuracy
of 90.4% on the new dataset. This robustness suggests that RF might be capturing more
universal features of the problem space, making it a strong candidate for deployment in
varied conditions. The SVM model showed improved relative performance on dataset
#2, achieving 88.1% accuracy and outperforming the ANN. This result highlights the
importance of testing models on diverse datasets, as relative performance can shift in
new contexts. The ANN’s more significant drop in performance when applied to dataset
#2 warrants further investigation. It may indicate a degree of overfitting to dataset #1
or a sensitivity to differences between the two datasets that the other models were more
robust against.

The third set of experiments explored the effect of varying the threshold in an ensem-
ble approach. The results demonstrate a clear trade-off between false positives and false
negatives as the threshold changes. An optimal threshold of a = 3 was identified, yield-
ing the highest accuracy of 91.3%. This finding underscores the importance of threshold
tuning in ensemblemethods to balance precision and recall according to specific applica-
tion requirements. As the threshold increased, a decrease in false positives accompanied
by an increase in false negatives can be observed. This behavior aligns with theoretical
expectations and provides a practical lever for adjusting model performance based on
the relative costs of different types of errors in a given application.

The varying performance and generalization capabilities of the models suggest dif-
ferent potential use cases. The Random Forest model, with its high accuracy and strong
generalization, appears to be a robust choice for deployment across varied conditions.
The SVM improved performance on the new dataset makes it an interesting candidate
for applications where adaptability to new data is crucial.

It’s important to note that this study is limited to two specific datasets. While this
provides valuable insights, further testing on a more diverse range of datasets would be
beneficial to fully assess the generalization capabilities of these models. Additionally,
exploring the impact of feature selection and engineering on model performance could
yield further improvements and insights.
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8 Conclusion and Future Work

In this work five different AI-models were trained for pixel-wise plastic waste detection
utilizing multispectral information. The models are trained on a dataset containing artifi-
cial plastic targets in three different natural environments. The generalization capabilities
of the models are examined by applying the trained models on a second dataset recorded
on a German landfill. The RF model showed the best generalization capabilities, while
the accuracy of the ANN decreases by 15.5%. It is worth noted that the accuracy of the
SVM increases by 0.4% when applied on dataset #2 compared to dataset #1.

This work does not review which input channel mostly influences the decision-
making process of the fivemodels. Hence explainable AImethods like SHapleyAdditive
exPlanations (SHAP) [30] will be used to enhance the model interpretability. Further-
more, the trained models will be further fine-tuned using data from additional field tests.
In addition, it will be examined, if a combination of pixel-wise classification and image-
based classification can further improve the classification accuracy. In the final step, the
system will be deployed on the surveillance aircraft as part of the PlasticObs+ system.
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Abstract. Text classification tasks require a reduction from a sequence
of tokens down to a single token. State-of-the-art Transformer models
usually employ a class (CLS)-token to represent the entire sequence or
pool all output token representations into a single token. In both schemes,
the sequences are reduced in a single step. Although these approaches
yield commendably high performance, we propose an integration of pool-
ing operations into the scaled dot product mechanism that would facili-
tate a more nuanced reduction of sequence length. This article introduces
a competitive and innovative pooling attention mechanism that is com-
paratively efficient and utilizes 2-dimensional pooling operations on the
attention map generated in the scaled dot-product calculation. We fur-
ther devise a sequence classification model that uses pooling attention
to gradually reduce the input sequence to a single token within 8 or
4 attention steps. Our model performs comparably to well-established
non-attention classification models while offering a promising new app-
roach to nuanced sequence reduction in smaller pure attention models.
A more nuanced approach to sequence reduction can aid explainabil-
ity in attention models by examining sequences at different granularities
across attention layers and extending the reduction process to multiple
steps. Additionally, the computational cost is saved by processing shorter
sequences in subsequent attention layers, improving overall efficiency.
Our results show a significant speed-up in training time when compar-
ing pooling attention with standard attention approaches. This work
establishes a foundation for future exploration into sequence-reducing
attention models.

Keywords: Deep Learning · Sequence classification · Attention models

1 Introduction

Transformer models have been part of state-of-the-art natural language process-
ing since their inception in 2017 [19]. Transformer-based large language models
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M. Bramer and F. Stahl (Eds.): SGAI 2024, LNAI 15446, pp. 61–73, 2025.
https://doi.org/10.1007/978-3-031-77915-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-77915-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-77915-2_5


62 D. Biermann et al.

such as BERT models [5,12,17] or XLNet [22] all made significant improvements
on the respective state-of-the-art and all current cutting edge chatbot systems
such as OpenAI’s GPT4 [1], Google’s Gemini [18] or the recent Claude 3.5 by
Anthropic [2] are based on Transformer systems.

Their power is rooted in the attention mechanism at the heart of the Trans-
former. The scaled dot-product attention and multi-head attention allow for
easy parallel processing while retaining the ability to capture contextual infor-
mation in sequential data. Typically, state-of-the-art Transformer models are
large models trained on vast unlabelled text corpora via a masking pretext task.
[5,14]. Using relatively small labeled datasets, the pretrained model can then be
fine-tuned for specific tasks. This semi-supervised pretraining-finetuning method
surmises the core success of Transformer models.

One unique and necessary core challenge in text—or-sequence classification
is reducing a sequence of tokens to a single token. As Transformer-like atten-
tion models process all tokens of a sequence in parallel and yield an output for
every token, this sequence length reduction is not an inherent part of attention
models. Usually, Transformer models rely on two different approaches to reduce
a sequence to a single token: A class-token approach and a token pooling app-
roach. In the class-token approach, a specific token, usually denoted as CLS, is
added or designated to represent the entire sequence. The sequence containing
the CLS-token is then processed, and the CLS-token is used for subsequent clas-
sification tasks. On the other hand, the pooling approach usually averages all
output tokens of the attention process to yield a single token. For further details
see Sect. 2.

Both approaches perform well, and models utilizing them were able to push
performance beyond the state-of-the-art of their time. However, while performing
satisfactorily, these two approaches do not allow for a more nuanced and stepwise
reduction process, which is essential for refining the granularity of information
retention during reduction and enhancing the interpretability of results.

Widening the reduction process from a single to multiple steps naturally
allows for more fine-grained processing of information and allows the model to
evaluate the importance and contribution of single tokens at different stages of
the reduction process.

Aligning this multi-step reduction process directly with the attention step
has the added benefit of offering a potential increase in explainability. For exam-
ple, earlier attention layers might better capture the relations between single
words on a token-level while later layers, due to handling of fewer tokens, are
encouraged to capture the relations between different larger parts of a sentence.

Additionally, the explainability of the reduction process itself is aided by
simply being able to look at which reduction step the importance of a feature
might have dropped off. Assuming that less important features are discarded
earlier in the reduction process, the importance of features could intuitively be
measured by how much overall attention is paid to them in later layers.

Recent work started to explore utilizing the ability of the scaled dot-product
to manipulate the length of a sequence directly. In Biermann et al. [4], a train-
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able scaling matrix is added to the scaled dot-product attention mechanism to
manipulate the number of output tokens by rescaling the query matrix.

In this work, we extend our exploration of the reduction capabilities inher-
ent to the scaled dot-product attention mechanism. Specifically, we propose an
innovative pooling attention mechanism that achieves output token reduction
by employing pooling functions on the two-dimensional attention weight matrix.
This novel approach is then applied to a text classification task, where sequences
are efficiently reduced to a single token through multiple iterations of pooling
attention.

We posit that a more refined, gradient-based approach to sequence reduc-
tion in attention models will offer a compelling and fruitful research trajectory.
Such models hold the promise of providing enhanced explainability over the
prevailing standard of single-step sequence reduction. In particular, classifica-
tion attention models stand to gain from reduced computational cost, given
that Transformer-like architectures scale quadratically with sequence length. By
incrementally reducing sequences through successive attention steps, subsequent
attention layers naturally become more compact, resulting in a streamlined and
efficient overall model. This approach not only optimizes computational effi-
ciency but also paves the way for a more interpretable understanding of the
attention mechanism’s internal dynamics.

2 Related Work

Attention models have been used in text classification tasks with great success.
Usually, two different approaches are used to achieve the necessary reduction in
sequence length.

The first approach is the common CLS-token method that adds or establishes
a designated token that is trained to capture the context of the entire sequence
for the purposes of classification tasks. BERT [5], a used Transformer model,
adds a CLS-token in the preprocessing step and subsequently uses the output
token at the position of the CLS-token as a contextual representation for the
entire sequence. The T5 model [15] uses the ‘target’-token in classification
setups as an equivalent to BERTs CLS-token. Further, Gao et al. [8], Hou et al.
[9] and Wang et al. [20] use the CLS-token in a contrastive learning scheme to
create sentence embeddings while Feng et al. [7] create sentence embeddings by
�2 normalizing the CLS-token of the last encoder attention block.

The second approach pools all output tokens of the attention model. Reimers
and Gurevych [16] create sentence embeddings in a siamese model setup by
averaging over the tokens of the last Transformer block. Similarly, Li et al.
[11] averaged over the last two Transformer blocks and observed an improved
performance compared to a CLS-token approach. The Sentence T5 model [13]
uses both approaches and generates sentence embeddings by either using the
first token of the encoder output or the average of the encoder outputs.

Deviating from the two more common approaches, Fang et al. [6] reduce a
sequence to a single token by introducing a single learnable query vector. In the
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scaled dot-product attention calculation, the number of query vectors dictates
the number of output vectors and, thus, output tokens. Usually, the query vectors
are generated from the input sequence, which makes changing the number of
query vectors practically challenging. By using a single learnable query vector,
Fang et al. are able to reduce the sequence within an attention step. Similarly,
recent work by Biermann et al. [4] manipulates the query matrix by introducing
a scaling matrix into the scaled dot-product calculation. Specifically, the query
matrix is generated from the input sequence and then rescaled via the scaling
matrix to subsequently yield fewer output tokens.

This work builds on using the attention mechanism directly to reduce the
number of output tokens of the processed sequence. In contrast to Biermann
et al. [4], we do not reduce the sequence by manipulating the effective number
of query vectors but by employing 2-dimensional pooling functions directly on
the attention weight map. To our knowledge, no previous work has investigated
manipulating the attention weight map dimension for sequence reduction.

Fig. 1. The general architecture of the reducing classifier. The sequence is reduced
by the application of the reducing pooling attention layer. Depending on the desired
number of steps, denoted as N , in which the sequence is to be reduced, the reducing
pooling attention layer is applied repeatedly.

3 Model

The proposed architecture builds on the fundamental principles of Transformer
models, exchanging the scaled dot-product with the novel, reducing pooling
attention. The sequences are embedded using a pre-trained BERT tokenizer
from Huggingface [21], and a positional encoding is added onto the embedding.
Subsequently, the sequences are given to a reducing pooling attention layer. Sim-
ilar to other Transformer models, repeated application of the attention layers is
employed. Figure 1 depicts the overall architecture of the reducing classifier. In
this work, the number of attention layers is chosen to be N = 4 or N = 8.
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This corresponds to reducing the input sequence length to one token in 4 or 8
attention steps (see Sect. 3.2).

In a departure from standard Transformer models, residual connections have
been omitted due to technical constraints arising from the disparity in sequence
lengths before and after each attention step. Finally, after the input sequence
is distilled into a single output token, it is passed through a linear layer to a
softmax classifier for final prediction.

Fig. 2. Structure of the pooling attention layer. The Sequence is reduced from N to
M tokens by pooling over the N × N -dimensional attention weight matrix to yield a
M ×N -dimensional matrix. The two boxes drawn over the attention weight matrices
depict an example kernel of kernel=[2,1] and the affected value in the pooled matrix.

3.1 Reducing Pooling Attention Layer

The reducing pooling attention builds on the scaled dot-product [19]. Figure 2
depicts the reducing pooling attention architecture. First, query, key, and value
vectors are generated from the input. The query and key vectors are used to
calculate the attention weight map. If the original sequence has N tokens, the
attention weight map has dimension N × N . Because the attention weight map
is a 2-dimensional structure, 2D pooling operations can be applied as is standard
in convolution models. We use the common max- and average pooling functions
to pool the attention weight map and change its shape.
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The subsequent matrix multiplication of the value vector and the pooled
attention weight map yields the new sequence representation consisting of fewer
tokens. This last step also enforces restrictions on the allowed kernel and stride
shapes of the pooling process. The width of the pooled attention weight map
needs to match the value vector dimension, and thus, the kernel and stride are of
the form: kernel=[k,1] and stride=[s,1]. k and s can be arbitrarily chosen,
depending on the desired reduction dynamics and used data.

In addition, layer normalization [3] and dropout are applied after the atten-
tion step.

Fig. 3. Visualization of the token reduction process using pooling attention. When
choosing kernel=[2,1] and stride=[2,1], each attention step combines the atten-
tion weights of neighbouring pairs. Each output token is thus a combination of two
neighbouring input tokens. The different background shades are a visual aid to better
distinguish the single tokens.

Figure 3 illustrates an example reduction process for a sentence. In regular
scaled dot-product attention, the output representation of the “He” token is
in essence a weighted sum of how much attention the “He” token pays to all
other tokens in the sequence. However, using a kernel and stride of [2,1], the
attention weights of neighbouring words are combined, effectively combining the
weighted sums of neighbouring tokens. In our example, the first output token
would be the combination of how much attention the tokens “He” and “went”
spent on all other single tokens (including themselves). The reduced token is
thus a representation of both input tokens. When reducing sequences in multiple
pooling attention steps, we successively go from capturing information by paying
attention to tokens representing single words to capturing information by paying
attention to tokens representing groups of words.

3.2 4-Step and 8-Step Setup

The input is fixed to the common upper limit in Transformer models of 512
tokens. Sequences exceeding this limit are cut off after 512 tokens, while smaller
sequences are padded respectively. The chosen fixed input arises from the chosen
reduction dynamics of the classifier. The classifier is designed to reduce the
sequence to a single token in a specific number of steps. Biermann et al. were able
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to reduce sequences down to 50% in a single attention step without significant
loss of information. With a fixed input length of 512 tokens, halving the sequence
in every attention step will require 8 attention steps to reduce it down to 1 token,
while quartering the sequence length necessitates only 4 attention steps. Thus,
the reducing classifier is designed to operate in two reduction setups:

8-Step Reduction: To effectively halve a sequence in a single attention step,
we must halve the number of rows of the attention weight map. Choosing
kernel=[2,1] and stride=[2,1] yields the desired reduction by pooling two
subsequent rows into a single row. As 512 = 29, 512 tokens cannot be halved to
a single token in 8 steps. Thus, the last attention step uses kernel=[4,1] and
stride=[4,1] instead of an additional ninth step, as the additional step would
only reduce two tokens down to one.

4-Step Reduction: Reducing the sequence to a quarter of its length in each
attention step corresponds to pooling 4 subsequent rows of the attention weight
map into a single row. This corresponds to kernel=[4,1] and stride=[4,1] in
the first 3 layers, and kernel=[8,1] and stride=[8,1] in the last layer.

This direct relation between the input dimension and the number of reduc-
tion steps imposes a limitation in flexibility regarding the dimensions of the
input. In its current form, the model requires a fixed input that is compatible
with the chosen number of steps. Meaning that changing one will require chang-
ing the other as well. Adding more flexibility to the input dimension that the
model can process will prove to be an exciting future direction in this area of
research. We argue that this drawback will not significantly hinder applicability
in more specific classification tasks, especially cases with more uniformly shaped
sequential data.

3.3 Dataset and Hyperparameters

In this work, we use the open-source Web of Science (WOS) dataset [10] for text
classification. While the WOS dataset was created and intended for hierarchical
document classification, we use it for standard text classification as it comple-
ments the fixed input length requirement of the reducing classifier model. The
WOS dataset contains abstracts of scientific articles, favoring longer text sample
sizes. In fact, the average text length is around 300 tokens with the majority of
samples containing more than 200 tokens.

Specifically, we use the WOS-5736 subset containing 5736 text samples cate-
gorized into 11 classes. The samples are split into a 80%–20% train-test split. The
chosen hyperparameters are depicted in Table 1. We observed that the model
required very low learning rates (order of e−5) to effectively learn. The chosen
hyperparameters yield from a hyperparameter search, maximizing accuracy.
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Table 1. Hyperparameters

Learning rate 1e−5

Attention dimension 512

Embedding dimension 512

Max length 512

Dropout 0.1

Loss function CrossEntropyLoss

4 Results and Discussion

Table 2 summarizes the text classification performance on the WOS-5736
dataset. We trained the classifier for both 4-step and 8-step reduction setups
with average or max pooling, respectively. Each simulation ran with a patience
of 10 epochs regarding the test loss. The classification accuracy reports the aver-
age achieved highest test accuracy across five different model initializations. In
addition, we adapt the scaling matrix approach from Biermann et al. [4] and
apply it to likewise reduce the sequence in 4 or 8 steps. Further, the table lists
the accuracies of other standard models for comparison. We include DNN, RNN,
and CNN baseline models, as well as the best-performing HDLTex model from
Kowsari et al. [10]. We further show the performances of a BERT and XLNet
model. For this, we finetuned Huggingface’s pretrained BERT and XLNet mod-
els [21] for 3 epochs on the WOS-5736 dataset, each. When compared with these
models, our model achieves comparable performances to the non-Transformer
models while retaining the potential of the full parallelizability of Transformer
models.

Our approach shows similar performances across reduction steps and pool-
ing setups. Overall, for both max and average pooling, reducing the sequence in
eight steps yields slightly higher accuracies: 88.75% for max pooling and 88.33%
for average pooling compared to their 4-step counterparts of 87.80% and 87.63%.
Additionally, max pooling achieved slightly higher performances in both reduc-
tion setups with the highest performance achieved in the 8-step max pooling
setup.

As reducing the sequence in 4 steps corresponds to quartering the sequence in
every attention step, we observe that, on average, it leads to a minor increase in
information loss compared to halving the sequence. This agrees with the findings
in Biermann et al., where sequences could be reduced down to 50% of the initial
length without significant loss in information.

The difference in performance between the different step sizes is especially
visible in the scaling matrix approach, with a performance difference of almost
2%. This shows that the scaling matrix approach favors smaller but more steps,
while the pooling attention shows a similar but less pronounced inclination.

Interestingly, max pooling demonstrates a slightly higher performance dif-
ference between the two reduction step sizes while reaching overall higher accu-
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racy than average pooling. Average pooling, on the other hand, shows a slightly
smaller discrepancy in performance regarding the different reduction steps. These
findings suggest that the choice of pooling function could be further optimized
depending on the specific requirements and characteristics of the application,
thus offering valuable insights into the design of more effective attention models.

The higher robustness of average pooling with regard to the reduction steps
is likely rooted in the averaging process. When pooling via averaging, we effec-
tively average over 2 or 4 rows for each column in the attention weight map
matrix. Here, the averaging process considers information from all reduced rows.
In contrast, max pooling only considers the row with the highest value, and the
other values are discarded. Thus, increasing the number of reduced rows also
increases the number of discarded rows and, thus, the potential amount of lost
information.

Table 2. Classification Accuracies

Model Accuracy

DNN [10] 86.15

CNN [10] 88.68

RNN [10] 89.46

HDLTex-CNN [10] 90.93

XLNet 93.21

BERT 93.12

Our Model 4-steps 8-steps

max pooling 87.80 88.75

average pooling 87.63 88.33

scaling matrix 85.57 87.49

Our reducing pooling classifier performs comparatively to other well-estab-
lished text classification models. Comparing with standard DNNs, pooling atten-
tion reaches higher accuracy in all reduction setups. Furthermore, the 8-step
setup demonstrates equivalent effectiveness with regards to CNN models. How-
ever, when pitted against RNN models, the reducing pooling attention exhibits
a minor lag in performance. This gap becomes more pronounced when juxta-
posed with more complex models like XLNet and BERT. Given the substantial
difference in size and extensive pretraining of BERT and XLNet models, it is
unsurprising that our more streamlined reducing pooling attention classifier is
unable to match their performance levels. BERT and XLNet typically consist of
more than 100 million trainable parameters while our pooling attention mod-
els reach 18 to 22 million trainable parameters. We are confident that further
work into finding suitable pretraining tasks and adding pretraining to pooling
attention will significantly lower this mismatch.
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Despite these differences, the fact that our approach attains performance
levels comparable to established non-transformer models is a testament to the
potential of the pooling attention mechanism. Especially, when taking into con-
sideration that while the RNN models show a higher performance, it is to be
leveraged against the fully parallelizable nature of the pooling attention app-
roach, a core feature that makes large Transformer models so powerful.

Table 3. Comparison of training times with and without pooling attention

Model Training time [s]

Parameters [106] per epoch per batch [10−3] norm. per batch [10−9] Speed-up factor

4-step

pooling 18.8 2.014 6.536 0.348 0.60

no reduction 18.8 3.785 10.887 0.579

8-step

pooling 21.9 2.764 9.932 0.454 0.559

no reduction 21.9 6.353 17.779 0.812

speed-up factor =
pooling train time

standard train time
(1)

We further evaluate the effect of pooling attention on computational effi-
ciency by measuring and comparing the training times observed in our 4- and
8-step pooling attention models. As a direct comparison with BERT and XLNet
would not provide any meaningful insight due to the large discrepancy in com-
plexity and trainable parameters, we compare the pooling attention models with
test attention models that have an identical architecture to the pooling attention
models apart from removing the pooling operation on the attention weights. By
removing the pooling attention from the model, it no longer reduces the sequence
along its layers and behaves like a standard attention model. Constructing the
test attention models in this way ensures models of equal size and complexity.
Thus, any change in training time observed can be attributed to the presence or
absence of token reduction in-between layers.

Table 3 summarizes the training times observed with and without reduction
in-between layers. We are able to observe a significant difference in training time
between the pooling attention and the standard attention models. Normalizing
the training time with respect to the number of trainable parameters, we see that
the 4-step pooling attention model has the lowest normalized per batch training
time when compared to its 8-step counterpart. This is due to the fact that a
reduction in four steps introduces a more aggressive reduction with a kernel of
[4,1] instead of [2,1].

On the other hand, calculating the speed-up factor as the ratio between
pooling and reduced training time (Eq. 1) shows that the 8-step pooling model
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yields the highest overall speed-up, where each training batch only takes about
half as long to process compared to the non-reducing counterpart.

This is likely due to the increased number of layers in the 8-step approach
resulting in a higher cumulative effect overall. Both pooling models show signif-
icant improvements regarding training time with speed-up factors of 0.559 and
0.600, respectively. This speed-up is not caused by a change in model size but
by the fact that computational cost scales quadratically with sequence length in
attention models. By reducing the sequence with each pooling attention layer,
subsequent layers are presented with shorter sequences, thus saving computa-
tional cost. This ultimately results in the observed shorter training times.

This underscores the value of our approach as a promising new direction in
the field of attention models, offering a more nuanced way of reducing sequence
length while maintaining effective and efficient classification capabilities.

5 Conclusion

In this paper, we introduced a novel pooling attention mechanism. We leverage
a two-dimensional pooling function on the scaled dot-product attention weight
map to facilitate a direct, stepwise reduction of sequence lengths. This innovative
approach enhances the reduction capabilities of attention models, offering an
efficient and structured means of condensing sequences.

We further demonstrate the utility of this pooling attention mechanism with
the introduction of a novel reducing pooling classifier. This classifier compresses
sequences down to a single token over the course of four or eight steps, corre-
sponding to halving or quartering the sequence length in every attention step.
We reach comparable performance with non-transformer standard classification
models while retaining the inherent parallelizable nature of pure attention mod-
els.

In additional we are able to observe a significant speed-up in training time
when comparing the pooling attention classifier with standard attention models
of similar size and complexity.

Future research will aim to bridge the performance gap between this approach
and larger Transformer models like BERT or XLNet. It is likely that the perfor-
mance gap may be attributed to the large difference in model sizes and extensive
amount of pretraining. At the same time, the natural reduction in model size
when using pooling attention could make attention models more attainable for
smaller, more specialized tasks that might not benefit from the large overhead
of full LLMs.

A first next step could be to try and pretrain the reducing classifier model
with established pretext tasks to gain access to the vast amount of unlabelled
data and make use of the powerful pretraining-finetuning approach. Further
investigations might go more in-depth and aim to devise suitable pretext tasks
for sequence reduction and pooling attention models. Another direction might
be the investigation into better pooling functions that capture the underlying
contextual data in attention weight maps better than the chosen max- or average
pooling functions as well as alleviating the input flexibility limitations observed.
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Overall, this work successfully establishes a purely attention-based classifi-
cation model using pooling attention to reduce sequences in multiple steps, lay-
ing a solid foundation for future explorations into sequence-reducing attention
models. Our innovative framework not only provides a compelling alternative
to traditional attention mechanisms but also opens new doors for research into
compact, efficient, and highly parallelizable attention-based architectures and
more nuanced approaches to reducing sequences.
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Abstract. This paper presents the use of Long Short-Term Memory
(LSTM) networks as models for prediction in the Model Predictive Con-
trol (MPC) algorithm. LSTMs are recurrent neural networks often used
to model dynamical processes. MPC is an advanced control technique
using a process model to calculate online predictions. MPC sets the con-
trol policy for the process by solving an optimisation problem to min-
imise the prediction error and not violate the constraints. This paper
compares two LSTM model architectures for MPC in a process with
Multiple Inputs and Multiple Outputs (MIMO): a single LSTM model
with multiple inputs and multiple outputs (LSTM MIMO) and several
parallel LSTM models, each with Multiple Inputs and Single Output
(LSTM MISO). The quality of modelling using these two architectures is
analysed. Next, the selected MIMO and MISO LSTM models are imple-
mented in the MPC algorithm. Finally, the control quality and execu-
tion time are investigated. It is concluded that both MIMO and MISO
approaches offer distinct advantages; however, for the benchmark neu-
tralisation reactor, MIMO models provide a more efficient solution for
MPC implementation.

Keywords: LSTM · Model Predictive Control · Process Modelling

1 Introduction

Model Predictive Control (MPC) [17] is an advanced control technique used
when classical techniques fail, i.e., linear control methods. In particular, MPC
is recommended for multivariable processes with multiple inputs and multiple
outputs or for processes with highly nonlinear dynamics. The MPC control tech-
nique requires a dynamical model of the controlled process to predict future
signals of the controlled variables. Various types of models are used, including
polynomial structures [13] and fuzzy systems [12]. Additionally, neural networks,
such as multilayer perceptrons [10] and radial basis function networks [2], are
commonly employed.

Long Short-Term Memory (LSTM) [6] is a type of recurrent neural net-
work frequently used in tasks requiring the analysis, processing, classification, or
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prediction of time-series data. Namely, LSTMs are used in applications such as
speech recognition [5] and machine translation [19]. They also prove very efficient
for modelling various dynamic processes, making them suitable for MPC con-
trollers. Applications are mainly limited to Single Input Single Output (SISO)
systems, e.g., chemical reactors [14,20], artificial pancreas systems [1], or Heat-
ing, Ventilation and Air Conditioning (HVAC) systems [11]. Implementations of
MPC controllers relying on LSTMs for predictions are also possible for dynami-
cal systems with Multiple Inputs and Multiple Outputs (MIMO), e.g., multiple
tanks systems [7], continuously stirred reactors [18], underwater vehicles [4],
vehicle fuel cells [15], or cardiovascular systems [3]. Unfortunately, to the best
of the authors’ knowledge, the existing literature does not address the selection
of the internal structure of MIMO models in relation to the modeling accuracy
and control quality possible in MPC.

This paper compares two approaches to modelling dynamic processes using
LSTM models. The first approach utilises a single MIMO network. The second
approach involves using several LSTM networks with Multiple Inputs and Single
Output (MISO), operating in parallel and independently of each other. Three
primary objectives are set for this study:

a) determining which approach helps to achieve the lowest possible modelling
errors,

b) implementation of the trained LSTM models in the MPC algorithm,
c) analysis of the control errors and average calculation times in the controller

with LSTM MIMO and LSTM MISO models.

2 LSTM Models of Dynamical Processes

The LSTM is a recurrent neural network resistant to the vanishing gradient
phenomenon, enabling it to retain information over long periods [6]. Two internal
states characterise the LSTM network: the cell state, c, and the hidden state, h.
The cell state corresponds to the network’s long-term memory, while the hidden
state corresponds to short-term memory. Figure 1 depicts the architecture of the
neuron itself, also known as the cell. It is complex compared to simple Multi-
Layer Perceptron (MLP) networks. Four gates inside of each cell control the
flow of information through the network: an input gate i adds new relevant
information, a forget gate f removes unnecessary data, a state candidate gate
g determines the cell’s state and an output gate o determines the hidden state.
Let X(k) be the input vector of the LSTM network. The following equations can
be used to calculate the outputs of the LSTM network gates in a discrete-time
instant k

i(k) = σ(W iX(k) + Rih(k − 1) + bi) (1)
f(k) = σ(WfX(k) + Rfh(k − 1) + bf) (2)
g(k) = τ(W gX(k) + Rgh(k − 1) + bg) (3)
o(k) = σ(W oX(k) + Roh(k − 1) + bo) (4)
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Fig. 1. LSTM cell

where σ and τ represent sigmoid and hyperbolic tangent functions, respectively,
W denotes the weights associated with the input vector X, R denotes the recur-
sive weights associated with the hidden state h(k), and b denotes the bias. The
cell state c(k) is then determined by removing unnecessary information from the
state c(k − 1) and adding new information from the candidate state g(k).

c(k) = f(k) ◦ c(k − 1) + i(k) ◦ g(k) (5)

where the symbol ◦ denotes the Hadamard product [16]. Next, the hidden state
is calculated based on the current cell state c(k) by the output gate o(k)

h(k) = o(k) ◦ τ(c(k)) (6)

Finally, the fully connected layer of the network determines the model’s output
yLSTM(k) based on the current hidden LSTM state h(k)

yLSTM(k) = W yh(k) + by (7)

Let us present two possible approaches to modelling MIMO systems. We
use the following notation: nu stands for the number of process inputs, i.e.,
the manipulated variables, ny defines the number of process outputs, i.e., the
controlled variables. The symbols ui and yj stand for the input and output
signals, where i = 1, . . . , nu and j = 1, . . . , ny, respectively.

2.1 LSTM MIMO Models

The structure of the MIMO model configuration is shown in Fig. 2. In this case,
one single LSTM network is used to model the multivariable MIMO dynamic
process. Namely, the network calculates values of all ny process output signals.
The LSTM input vector, next used in Eqs. (1)–(4), takes into account a set of
past measurements of all nu process inputs and ny outputs

X(k) = [u1(k − 1), . . . , u1(k − nB), . . . , unu(k − 1), . . . , unu(k − nB),

y1(k − 1), . . . , y1(k − nA), . . . , yny(k − 1), . . . , yny(k − nA)]T (8)

where the parameters nA and nB describe the dynamic order of the model.
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Fig. 2. LSTM MIMO model structure

2.2 LSTM MISO Models

The structure of the MISO model is shown in the Fig. 3. We use ny independent
MISO models with only one scalar output variable in this approach. In contrast
to the MIMO structure, each submodel has a different input vector. Namely, each
submodel takes as the input vector a set of past signals of all process inputs and
only past values of the modelled output

Xm(k) = [u1(k − 1), . . . , u1(k − nm
B ), . . . , unu(k − 1) . . . , unu(k − nm

B ),

ym(k − 1), . . . , ym(k − nm
A )]T (9)

where m = 1, . . . , ny is the submodel number. Let us note that the second
structure allows the utilisation of different orders of dynamics for the consecutive
submodels, which is impossible in the first model structure.

LSTM layer
Fully connected

layer

LSTM layer
Fully connected

layer

LSTM layer
Fully connected

layer

Fig. 3. LSTM MISO model structure

3 Model Predictive Control

In this paper, we utilise a general form of the MPC task. At each discrete time
instant k, the controller performs online calculations to determine a vector of
optimal control increments.
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�u(k) =[�u1(k|k), . . . ,�unu(k|k), . . . ,

�u1(k + Nu − 1|k), . . . ,�unu(k + Nu − 1|k)]T (10)

The notation can be interpreted as follows: �un(k|k) is the n–th control incre-
ment at time instant k, determined at time instant k; �un(k + 1|k) is the n–th
increment at time instant k + 1, determined at time instant k. The symbol Nu

denotes the MPC control horizon. The MPC optimisation task is

min
�u(k)

J(k) =
N∑

p=1

nu∑

m=1

μm (ysp
m (k + p|k) − ŷm(k + p|k))2

+
Nu−1∑

p=0

nu∑

n=1

λn (�un(k + p|k))2

subject to
un ≤ un(k + i|k) ≤ un, i = 0, . . . , Nu − 1, n = 1, . . . , nu

Δun ≤ Δun(k + i|k) ≤ Δun, i = 0, . . . , Nu − 1, n = 1, . . . , nu

y
m

≤ ŷm(k + i|k) ≤ ym, i = 1, . . . , N,m = 1, . . . , ny (11)

where ysp
m (k + p|k) is the set-point for the m–th output at future time k + p,

known at time k; ŷ(k + p|k) is the prediction for time k + p, determined at time
k; N is the length of the control horizon; and μm is the penalty factor. The first
component of the minimised function can thus be interpreted as a prediction of
future control error. Its second component relates to minimising the n–th control
signal increments, with λn denoting the penalty coefficient. The input signals,
their increments, and the predicted output are constrained. The constraints are
defined by the quantities un, un, �un, �un, y

m
, ym respectively. Predictions

for the LSTM model are defined as

ŷm(k + p|k) = yLSTM
m (k + p|k) + dm(k) (12)

yLSTM
m (k) denotes the model output for a future time sample k and the prediction

error dm(k) is determined as the difference between the measured value of the
output and its estimate from the model.

The MPC task (11) is solved online at each time sample, resulting in a vector
of optimal control increments (10). It is important that only the optimal values of
the manipulated variables for the current discrete time k are sent to the process.
The above-described procedure is repeated at subsequent sampling moments.

4 Simulation Results

Simulation experiments have been conducted in MATLAB using a PC with
a Geforce GTX970 graphics card, an Intel i5-3450 processor, and 16 GB of
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RAM. MATLAB’s Deep Learning Toolbox package has been used to train the
LSTM models. Different numbers of LSTM neurons nN have been considered:
2, 4, 6, 8, 10. The models have been categorised based on the order of model
dynamics. The parameter nA is 0 in the first category; the values of nB are 1, 2, 3.
In the second category, nA = nB; the following dynamics order is considered:
1, 2, 3. Five models have been trained for each set of parameters (nN, nA, nB),
and the model with the best performance on the validation set has been selected.
Only the best-performing models for each parameter set are considered in the
following analysis. The Adam optimisation algorithm [8], with an initial learning
rate of 0.01, has been used to train the LSTM network. The dataset used during
training has been divided into training and validation sets in a 70:30 ratio.
The training takes a maximum of 2000 epochs, although it is terminated early
if no improvement in model quality on the validation set is observed for ten
consecutive epochs.

4.1 Benchmark Process: Neutralisation Reactor

MIMO Neutralisation reactor benchmark [9] has been chosen to test the trained
neural models and the implemented MPC control algorithm. The base (NaOH)
(q1) and acid (HNO3) (q3) streams are the inputs of the process. The process
outputs are the product’s pH value and the liquid column’s height in the reactor,
denoted as h. The process is characterised by nonlinearity; its static and dynamic
properties depend on the operating point. A first-principle model of the reactor
in the form of a system of nonlinear differential equations [9] (solved using the
Runge-Kutta method) is used to simulate the process and collect training and
validation data sets. The sampling time is 10 s.

4.2 Model Structure Comparison: The Number of Parameters

In the context of MPC control, prediction calculation is performed multiple times
at each sampling instant online and must be computationally simple. The model
should have as few internal parameters as possible. For the LSTM MIMO model
structure, consisting of only one neural network, the internal parameters are:

– four W weights matrices of the LSTM layer, each with dimensions nN×(ny×
nA + nu × nB),

– four R recurrent weights matrices of the LSTM layer, each with dimensions
nN × nN,

– four bias vectors b of the LSTM layer, each with dimensions nN × 1,
– Wy weights matrix and a bias vector of the fully connected layer by, with

dimensions ny × nN and nN × 1, respectively.

Hence, the number of parameters of the LSTM MIMO model can thus be
expressed as

N = 4(nN(nynA + nunB) + n2
N + nN) + nNny + ny (13)

In the case of the LSTM MISO model consisting of ny MISO networks, the
internal parameters are:
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Fig. 4. The number of internal parameters of LSTM MIMO model and two MISO
models when nu = ny = 2. For displaying clarity, we assume that both MISO models
have the same values of nN, nA, and nB

– ny models are used, in each model, the W matrices of the LSTM layer have
dimensions nN × (nA + nu × nB),

– the R matrices and b vectors remain unchanged compared to the MIMO
model,

– the weight matrix Wy has dimensions 1 × nN and the bias by is a scalar.

Hence, the number of parameters of the LSTM MISO models is

N = 4ny((nA + nunB)nN + n2
N + nN) + nNny + ny (14)

A comparison of the number of internal model parameters for LSTM MIMO
and LSTM MISO structures for a process with two inputs and two outputs, i.e.,
when nu = ny = 2, is shown in Fig. 4. It is evident that MIMO models have
fewer parameters than MISO models. This disproportion is particularly evident
as nN increases.

4.3 Model Structure Comparison: Modelling Accuracy

The modelling results are presented in Tables 1 and 2. The Mean Squared Errors
(MSE) for the pH and h variables from the validation dataset are denoted as
EpH

val and Eh
val, respectively. P denotes the number of parameters of LSTM MIMO

models, while P1 and P2 denote the number of parameters of the first and the
second MISO submodels comprising the LSTM MISO structure, respectively.

Based on the obtained results, the following conclusions can be drawn:
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Table 1. LSTM MIMO model structure: comparison of errors and the number of
internal parameters

nB nN nA = 0 nA = nB

EpH
val Eh

val P EpH
val Eh

val P

1 2 0.111 0.075 46 0.182 0.140 62

4 0.068 0.050 122 0.074 0.460 154

6 0.047 0.066 230 0.064 0.075 278

8 0.031 0.027 370 0.063 0.082 434

10 0.030 0.035 542 0.016 0.061 622

2 2 0.098 0.061 62 0.274 0.400 94

4 0.079 0.118 154 0.080 0.200 218

6 0.045 0.078 278 0.080 0.190 374

8 0.030 0.061 434 0.027 0.060 562

3 2 0.103 0.077 78 0.111 0.067 126

4 0.046 0.041 186 0.055 0.094 282

6 0.043 0.096 326 0.053 0.064 470

8 0.036 0.047 498 0.047 0.068 690

10 0.027 0.093 702 0.029 0.052 942

Table 2. LSTM MISO model structure: comparison of errors and the number of inter-
nal parameters

nB nN nA = 0 nA = nB

EpH
val P1 Eh

val P2 EpH
val P2 Eh

val P2

1 2 0.143 43 0.0099 43 0.177 51 0.1641 51

4 0.062 117 0.0062 117 0.035 133 0.0034 133

6 0.034 233 0.0053 233 0.096 247 0.0044 247

8 0.034 361 0.0039 361 0.011 393 0.0034 393

10 0.026 531 0.0053 531 0.021 571 0.0015 571

2 2 0.094 59 0.0147 59 0.179 75 0.0091 75

4 0.117 149 0.0096 149 0.094 181 0.0137 181

6 0.038 271 0.0081 271 0.057 319 0.0129 319

8 0.032 426 0.0070 426 0.032 489 0.0032 489

10 0.026 611 0.0045 611 0.033 691 0.0036 691

3 2 0.101 75 0.0177 75 0.138 99 0.0068 99

4 0.031 181 0.0095 181 0.096 229 0.0049 229

6 0.030 319 0.0123 319 0.053 391 0.0081 391

8 0.039 489 0.0088 489 0.046 585 0.0049 585

10 0.056 691 0.0054 691 0.045 811 0.0027 811

1. Unsurprisingly, the modelling error for both LSTM MIMO and LSTM
MISO model structures decreases significantly as the number of neurons nN

increases.
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2. However, the LSTM MISO structure allows for excellent modelling quality
even with fewer neurons. It is especially evident for the h output where LSTM
MISO models outperformed LSTM MIMO models significantly.

3. Increasing the order of dynamics, defined by nA and nB, often helps to reduce
modelling errors. However, its influence is much milder compared to the effect
of increasing the value of nN.

4. Models with nA = nB in general have smaller errors than models with nA = 0.

The LSTM MIMO models with the smallest weighted error for both output
signals are selected. In the case of the LSTM MISO models, modelling of h
and pH variables is performed independently. Therefore, selection is based on
individual errors of the sub-models. We select the best-performing models:

1. MIMO structure v. 1: nN = 8, nA = 0, nB = 1; the model has P = 370
parameters,

2. MISO structure v. 1: npH
N = 10, npH

A = 0, npH
B = 1, nh

N = 8, nh
A = 0, nh

B = 1;
the model has P = P1 + P2 = 892 parameters,

3. MIMO structure v. 2: nN = 10, nA = 1, nB = 1; the model has P = 622
parameters,

4. MISO structure v. 2: npH
N = 8, npH

A = 1, npH
B = 1, nh

N = 10, nh
A = 1, nh

B = 1;
the model has P = P1 + P2 = 1060 parameters.

Figure 5 shows the relationship between the models’ pH output and the val-
idation data set for 3,000 samples. All four models exhibit small but frequent
errors, especially in the range of greatest process nonlinearity when the pH value
is between 6 and 9. These errors are least frequent for the MIMO v. 2 model.

Figure 6 shows a similar relationship for the h signal. The LSTM MIMO
structures display infrequent minor errors, while the LSTM MISO structures
model this signal excellently.

Figure 7 compares the outputs of the selected models vs. the first 500 samples
of the validation data set. All four models achieve acceptable modelling quality.
However, it is noticeable that both models with nA = 0 have larger errors for
the pH signal and the MIMO structure v. 1 deviates slightly for the h output.
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Fig. 5. The relation between the models’ pH output and the validation data set



LSTM for Modelling and Predictive Control of Multivariable Processes 83

0 10 20 30
0

10

20

30

(a) MIMO v. 1

0 10 20 30
0

10

20

30

(b) MIMO v. 2

0 10 20 30
0

10

20

30

(c) MISO v. 1

0 10 20 30
0

10

20

30

(d) MISO v. 2

Fig. 6. The relation between the models’ h output and the validation data set
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Fig. 7. Best performing model outputs vs. the first 500 samples of validation data.

4.4 Model Structure Comparison: MPC Control Quality

All models presented in Tables 1 and 2 have been implemented into the MPC
algorithm. The conditions of the experiments are as follows: the simulation lasts
120 discrete time steps, corresponding to 1200 s. The process is initially at its
operating point. At time instant 3, the set-point for the pH value is changed.
The set-point is then changed five more times for every 20-time steps. The set-
point for h remains constant throughout the simulation. MPC controllers with all
models have the same settings, i.e.: N = 10, Nu = 3, μ1 = μ2 = 1, λ1 = λ2 = 0.1.
The average cumulative control errors for pH and h controlled variables are
determined for each model configuration.

Figure 8 shows the control errors determined for all four categories of models.
We can observe the following:

– In Fig. 8a, it can be observed that LSTM MIMO structures with a low number
of neurons result in high control error, especially when the order of dynamics
is high. As the number of neurons increases, the error decreases rapidly, and
for nN = 10, most models reach an error close to 5.
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Fig. 8. Control errors for different LSTM structures used in the MPC algorithm

– Figure 8c shows the error for LSTM MIMO structures and the h output.
Models with nA = 0, small nB dynamics, and an average (6–8) value of nB

perform better.
– Figure 8b indicates that for the LSTM MISO structures, the error for pH is

about 5–6, even for models with fewer internal parameters. As the number of
neurons increases, the error decreases, but not rapidly. Models with nA = 0
perform slightly better in MPC.

– Figure 8d shows the error for LSTM MISO structures and the h output. The
lowest error is obtained when nB is low, nA = 0, and the number of neurons
is nN = 8 − 10.

Figure 9 shows the average execution time of one iteration of the MPC algo-
rithm with LSTM models. The Sequential Quadratic Programming (SQP) opti-
misation algorithm is used. The time increases sharply with the increasing order
of dynamics. It is also significant that the LSTM MISO structures (Fig. 9b), con-
sisting of two LSTM models with more internal parameters, have a much higher
computational cost than the LSTM MIMO structures (Fig. 9a).

In summary, different models perform better in MPC than in the modelling
task. It may be counter-intuitive, but in the MPC controller, a merely correct
model can yield better regulation quality than a perfect one. This is due to
the feedback mechanism in the MPC controller. A model with slightly larger
prediction errors causes the controller to generate larger control values, which
helps the set-point to be reached faster and reduces control errors. However, the
model must be good enough; if the prediction errors are too high, the controller
may generate control signals that are too rapid, leading to large oscillations in
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Fig. 9. The average execution time of one iteration of the MPC algorithm for different
LSTM structures

the process output signals. Additionally, the computational cost of the model is
important. Predictions from LSTM models with fewer parameters are computed
faster. Given that predictions are determined repeatedly by the solver in each
iteration of the MPC algorithm, small models should be preferred.
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Fig. 10. MPC performance using two selected LSTM structures for prediction

Figure 10 shows the controller’s performance during simulation with two
selected models that exhibit low control errors:

1. MIMO, nN = 8, nA = 0, nB = 1, P = 434,
2. MISO, npH

N = 8, npH
A = 0, npH

B = 3, nh
N = 10, nh

A = 3, nh
B = 0, P = 1018.

Both MPCs work correctly, with the pH value following the changes in the
set-point. The controller with the LSTM MIMO structure demonstrates slightly
less overshoot and a shorter control time compared to the one with the structure
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MISO structure. For both controllers, the value of h does not deviate from the
set-point by more than 0.3. Additionally, the control signals q1 and q3 have
similar shapes. Given that the LSTM MIMO structure model has almost three
times fewer internal parameters, it can be concluded that it is the preferred
choice.

5 Conclusion

This work demonstrates two types of LSTM model architectures that can be
used for modelling and predictive control of multidimensional processes. Using
a representative highly nonlinear multidimensional process example, it is shown
that the LSTM MISO structure comprised of a set of sub-models running in par-
allel can achieve excellent modelling quality. On the other hand, LSTM MIMO
structures, which use a single neural network with multiple inputs and out-
puts, are better suited for implementation in the MPC algorithm due to their
lower number of parameters and computational cost. While both approaches
have advantages, the LSTM MIMO models provide a more efficient and effective
implementation solution in MPC for controlling complex processes.
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Abstract. Multi-modal problems can be effectively addressed using
multiple hypothesis frameworks, but integrating these frameworks into
learning models poses significant challenges. This paper introduces a
Structured Radial Basis Function Network (s-RBFN) as an ensemble
of multiple hypothesis predictors for regression. During the training of
the predictors, first the centroidal Voronoi tessellations are formed based
on their losses and the true labels, representing geometrically the set
of multiple hypotheses. Then, the trained predictors are used to com-
pute a structured dataset with their predictions, including centers and
scales for the basis functions. A radial basis function network, with each
basis function focused on a particular hypothesis, is subsequently trained
using this structured dataset for multiple hypotheses prediction. The s-
RBFN is designed to train efficiently while controlling diversity in ensem-
ble learning parametrically. The least-squares approach for training the
structured ensemble model provides a closed-form solution for multi-
ple hypotheses and structured predictions. During the formation of the
structured dataset, a parameter is employed to avoid mode collapse by
controlling tessellation shapes. This parameter provides a mechanism to
balance diversity and generalization performance for the s-RBFN. The
empirical validation on two multivariate prediction datasets—air qual-
ity and energy appliance predictions—demonstrates the superior gen-
eralization performance and computational efficiency of the structured
ensemble model compared to other models and their single-hypothesis
counterparts.

Keywords: diversity · ensemble learning · multiple hypotheses
prediction · radial basis functions · Voronoi tessellations

1 Introduction

Multi-modality focuses on perception with a set of hypotheses instead of a single
output to learn processes. Notable existing approaches include Multiple Choice
Learning (MCL) [8,9], Multiple Hypotheses Prediction (MHP) [16], Mixture-Of-
Experts [21], Bagging [2], Boosting [7], and Meta-Learning [20]. Among them,
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MCL differs in that it uses the output of different models or hypotheses as inputs
to a structured ensemble model (or multiple structured prediction/classification
task models), which are heterogeneous ensemble predictors that can vary in size,
parameters, and architecture [8]. Diverse Multiple Choice Learning (DivMCL), is
an extension proposed for diverse multi-output structured prediction by includ-
ing a diversity encouraging term in the loss function used for training the models
[9]. While DivMCL provides diversity, it trains separate networks which makes
information exchange between individual predictors harder. To cope with this,
the DivMCL ideas are extended by instead of training separate networks for
each choice, the individual hypotheses are combined with Voronoi tessellations
formed by the predictors’ losses in a shared architecture. This allows sharing of
information among predictors during training [16]. But, it is not clear how to
optimally combine these predictors into an ensemble. To the best of the authors’
knowledge, there is no existing method that optimally combines structured pre-
dictions from multiple hypotheses prediction with an ensemble learning model
that can be trained with a closed-form solution [8,9,16].

Another important aspect in enhancing generalization of ensembles is the
diversity of individual predictors. Diversity in this context has been extensively
researched in literature, e.g., using Bias-Variance-Covariance decomposition [18],
ambiguity decomposition [10], and their hybrid extensions [3]. However, there
is also not a unifying framework for diversity in ensemble learning. Moreover,
there is no clear connection in the literature between geometric properties of loss
functions for individual predictors and diversity in ensemble learning [19]. This
work focuses on the definition of diversity in ensemble learning as the variety of
outputs from base learners that can improve the generalization performance of
ensemble models [19].

Building on previous aspects [9,16,19], a new approach for multiple hypothe-
ses prediction using a structured ensemble model is presented. In this approach,
predictions from a set of base learners or individual predictors are used as inputs
for a radial basis function network, with each predictor or hypothesis focusing on
a specific basis function. The model is referred to as the Structured Radial Basis
Function Network (s-RBFN). During training, the base learners form centroidal
Voronoi tessellations (CVT), with each hypothesis or base learner assigned to
a particular tessellation. A parametric formula from multiple hypotheses frame-
work [16] is used to weight the updates of the base learner parameters in each
iteration of gradient descent, preventing mode collapse and ensuring that all
predictions fall within their respective tessellations. In this work, this strategy
is applied to control diversity in ensemble learning similar to DivMCL [9] with
the mechanism from MHP [16], enhancing generalization performance. The pro-
posed s-RBFN can then be optimized using least squares, providing faster train-
ing compared to other existing structured models that rely on gradient descent
or non-convex methods [8,9,16].

The paper is organized as follows: Sect. 2 presents a revision of the previous
work in structured ensemble learning and diversity; Sect. 3 presents the proposed
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model; Sect. 4 presents the experimental results and discussions; and finally,
Sect. 5 provides the concluding remarks and outlook.

2 Literature Review

Multiple hypotheses prediction (MHP) methods extend semi-supervised ensem-
bles and other single-loss, single-output systems to multiple outputs providing a
piece-wise constant approximation of the conditional output space. They differ
from mixture density networks by representing the uncertainty through a dis-
crete set of hypotheses [16]. These models initially employed training techniques
from multiple choice learning [1,9] and later exploited the geometric proper-
ties from Voronoi tessellations formed by losses of the individual predictors as
multiple hypothesis [16]. These approaches tend to be based on Winner-Takes-
it-All (WTA) loss, meaning that the best base learner among all predictors gets
updated during their training. A partial solution is a relaxed version of WTA [16]
where in addition to the winner predictor, the other predictors also get updated
for each iteration. It alleviates the convergence problem of the WTA, but still
leads to hypotheses with incorrect modes. Moreover, when optimizing for a mix-
ture distribution, the issues of numerical instabilities and mode collapsing arise.
For this purpose, the evolving WTA loss was proposed [13] which addresses these
issues by preserving the distribution, yielding regularly distributed hypotheses.
Although this somewhat mitigates the issue but still the problem of how to com-
bine the multiple hypothesis efficiently in a structured ensemble model persists.

Another aspect of MHP is the use of diversity which can serve as effective
regularization - leading to possibly worse performance on training data, but
better generalization on unseen test data [9]. Traditional diversity measures
often assess the correlation or discrepancy between predictions of two mod-
els and their collective performance [11]. Recent innovations have introduced
the Bias-Variance-Diversity decomposition, a nuanced framework that integrates
various functional forms for each loss and directly links diversity to the expec-
tation of ensemble ambiguity [19]. This approach goes beyond the traditional
Ambiguity and Bias-Variance-Covariance decompositions, limited to squared-
loss and arithmetic-mean combiners [10,18]. In practice, strategies like bagging
and boosting facilitate diversity among base learners by manipulating data, thus
introducing structural and data diversity. Additional methods quantify diversity
through non-maximal predictions and employ metrics such as the logarithm of
ensemble diversity (LED) and ensemble entropy [15,20]. More recently, MCL and
DivMCL demonstrate superior test accuracy and better generalization compared
to traditional multi-output prediction methods [8,9]. These approaches empha-
size minimizing oracle loss by focusing on specific hypothesis, contrasting with
broader Mixture-of-Expert models [8,9,12,15,20]. Ultimately, the strategic inte-
gration of diversity not only serves as an effective regularization mechanism
but also critically enhances the predictive accuracy and reliability of ensemble
models, especially in managing out-of-distribution data. By optimizing ensem-
ble diversity through sophisticated decomposition models and diverse ensemble
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strategies, researchers can effectively balance error components to minimize over-
all mean-squared error, resulting in significantly improved predictions [4,18].

3 Proposed Methodology

In this section, first the multiple hypotheses prediction with Voronoi Tessella-
tions is presented. Later, it is explained how this could be scaled to operate in
a structured setting for regression applications. This is done by generating the
structured dataset using the MHP base learners’ predictions. Finally the opti-
mization of the s-RBFN using the structured dataset is efficiently carried out by
least squares approach.

In the supervised learning setting, given training instances {xi}N
i=1 and

ground-truth labels {yi}N
i=1, the multiple hypotheses case involves a set of predic-

tion functions {fθj (x)}M
j=1 with corresponding model parameters Θ = {θj}M

j=1.
Assuming the training samples follow the distribution p(x, y), the expected error
for a loss function L is expressed as:

∫
X

M∑
j=1

∫
Yj(fθ j

(x))

L(fθj
(x), y) p(x, y) dy dx (1)

During training, the Voronoi tessellation of the label space is induced by the
losses computed from M predictors and given as Y =

⋃M
j=1 Yj(fθj (x)) where

Yj(fθj
(xi)) represents the j th cell with fθj

(xi) being the closest of the M pre-
dictions to the label data for each training iteration [16]:

Yj(fθj
(xi)) =

{
yi ∈ Yj : L(fθj

(xi), yi) < L(fθk
(xi), yi)∀k �= j

}
(2)

While implementing (2), a typical approach adopted to avoid mode collapse
is to relax the best-of-M approach by updating all predictors in each iteration
[8,9]. Existing works either focus on multi-output prediction or does not provide
an efficient way to combine the base learners or multiple hypotheses, often relying
on numerical methods [8,9,14]. To this end, the aim of this work is to efficiently
combine, in a structured model, the set of hypotheses that form the centroidal
Voronoi tessellations. Additionally, the hypothesis that manipulating the shape
of the tessellations formed during the training of the predictors, that has direct
implications in generalization performance, is validated in the experiments. This
is due to the diversity in ensemble learning induced by the predictors.

3.1 Structured Dataset Formation

Two step approach have been taken for structured dataset formation. Firstly,
the set of predictors {fθj

(x)}M
j=1 are trained with stochastic gradient descent

with randomly initialised weights. Secondly, these learned models are used to
generate the predictions that form the structured dataset.
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In each ith iteration, using the j th prediction fθj (xi) and the true label yi,
the predictors’ parameters are updated using the stochastic gradient descent as
follows:

θj = θj − ηj

(
∂L(fθj (xi), yi)

∂θj
+

λp

N
θj

)
δ
(Yj

(
fθj (xi)

))
(3)

where ηj denotes the learning rate for the j th predictor and the norm loss is
computed as L(fθj

(xi), yi) = ‖fθj
(xi)− yi‖22 + λp

2N

∑M
j=1 θ2

j with the regulariza-
tion parameter λp. The function δ (Yj (fθj(xi))) serves as an indicator with a
parameter 0 < ε < 1 that can alter the shape of the tessellation during training
[16]. This parameter enhances diversity in the structured dataset for ensemble
generalization by regulating the extent to which non-top predictors’ parameters
are updated in each training iteration. It is defined as:

δ(y ∈ Yj(fθj
(x))) =

{
1 − ε if is true

ε
M−1 otherwise (4)

When the training of the predictors is completed, the same set of training
instances {xi}N

i=1 are used to generate structured dataset. To elaborate, if the
prediction obtained after the forward pass for j th predictor on a particular train-
ing instance xi is denoted as fθj

(xi), then the resulting predictions for the entire
structured dataset can be written in the matrix form as:

D(ε) =

⎡
⎢⎣

fθ1 (x1) . . . fθM
(x1)

...
. . .

...
fθ1 (xN ) . . . fθM

(xN )

⎤
⎥⎦ (5)

with D(ε) ∈ R
N×M being the matrix of predictions for a particular diversity

parameter 0 ≤ ε ≤ 1. Similarly, for any test set with test instances {x′
i}n

i=1, the
structured test set D(ε)′ ∈ R

n×M is given by the predictions {fθj
(x′

i)}n
i=1. For

any structured test dataset, the predictors use the same set of parameters Θ
obtained after training using stochastic gradient descent.

3.2 s-RBFN Optimisation

The structured dataset is used as input for the radial basis function network,
with each j th predictor or hypothesis fθj (x) associated to a particular basis
function φ

(
fθj

(x) , μj , σj

)
, i.e., a map Φ (D(ε)) : RN×M → R

N×M is obtained
by applying the basis function φ (·) to each element of D(ε), transforming it
into:

Φ (D(ε)) =

⎡
⎢⎣

φ(fθ1(x1), μ1, σ1) . . . φ(fθM
(x1), μM , σM )

...
. . .

...
φ(fθ1(xN ), μ1, σ1) . . . φ(fθM

(xN ), μM , σM )

⎤
⎥⎦
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In this work, the Gaussian basis function φ (·) = exp
(

−1
2σ2

j

∣∣fθj (xi) − μj

∣∣2)
have been used where the centers cj and scales Sj parameters for the basis func-
tions are computed from each column j of the structured training dataset D(ε)

and are computed by μj = 1
N

∑N
i=1 fθj

(xi), and σj =

√∑N
i=1

(fθ j
(xi )−μj)2
(N−1) .

The s-RBFN formulation can now be expressed in matrix form as follows:

ŷ = Φ (D(ε)) w =

⎡
⎢⎣

φ (fθ1 (x1) , μ1, σ1) . . . φ (fθM
(x1) , μM , σM )

...
. . .

...
φ (fθ1 (xN ) , μ1, σ1) . . . φ (fθM

(xN ) , μM , σM )

⎤
⎥⎦

⎡
⎢⎣

w1

...
wM

⎤
⎥⎦
(6)

The optimal weights {wi}M
j=1 in (6) can now be simply obtained by least-

squares with regularization parameter λs for the structured model using:

w =
(
Φ (D(ε))T Φ (D(ε)) + λs ∗ I(mxm)

)−1

Φ (D(ε))T y (7)

Fig. 1. Model architecture with structured data obtained from neural networks’ predic-
tions and the ground-truth labels y forming centroidal Voronoi tessellations based on
the neural networks’ losses (Left box). The s-RBFN uses these predictions to estimate
the ground-truth labels ŷ, with L representing the s-RBFN norm loss (Right Box).

The whole approach presented above has been summarized in the Fig. 1 where
the model is shown with the structured data obtained in the left box, using
neural networks as predictors. The label data is assigned to a particular Voronoi
tessellations depending on how far it is from the predictions of the base learners.
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This tessellation represents the multiple hypotheses prediction target values,
y (Left box in Fig. 1). Once training is completed, the predictions from the
trained predictors, using all training instances as input, are used as input data
for training a radial basis function network (s-RBFN) via least-squares. The
estimates ŷ in Fig. 1 of the multiple hypotheses prediction ground-truth labels
y are given by the output from the s-RBFN (Right box in Fig. 1). L represents
the L2 norm loss between the ground-truth labels and their estimates.

4 Experiments

4.1 Datasets

An Air Quality dataset [6] and the Appliances Energy Prediction dataset [5] are
have been employed in this study. The first dataset consists of 9358 instances of
hourly averaged responses from five metal oxide chemical sensors embedded in
an air quality chemical multisensor device. The data was recorded from March
2004 to February 2005, and represents the longest freely available recordings of
on-field responses from deployed air quality chemical sensor devices [6]. The goal
is to predict absolute humidity values with the rest of variables in a multivariate
regression problem. The second dataset consist of 10 min timestamps for 4.5
months making up over 20 thousand instances from 29 features. The goal is to
predict energy appliances in a low energy building [5].

4.2 Models Performance and Comparisons

For the individual predictors, a 2-layer multi-layer perceptron (MLP) have been
used with the number of neurons in each layer as κ, learning rates η, multiplica-
tive factor of the initial weights χ, and regularization parameters λp. For the
s-RBFN model, the number of predictors or hypotheses is given by M , diversity
parameter ε, and s-RBFN regularization parameters λs. All values used for the
hyper-parameters are displayed in Table 1.

For the experiments, the top performing models’ versions from the origi-
nal papers of the two used datasets [5,6,17], are replicated for comparison (top
competitors). These are the Linear Model (LM), Random Forest (RF), Gradient-
Boost (Gboost), and Support Vector Machine Radial Basis Function (SVM-
RBF). To elaborate, for the s-RBFN, the experiments are performed with 10
simulations for each combination of hyper-parameters from Table 1. The mean
and standard deviations of the RMSE for each of the 10-folds are recorded as per-
formance measures. In total, the experiments have been performed with 80 differ-
ent model hyper-parameters’ configurations (also including the single hypothesis
M = 1). Additionally, for further comparison, the bench-marking results using
the baseline multiple hypothesis prediction (arithmetic combiner) model [16] are
also included, in which the ensemble of individual predictors forming Voronoi
Tessellations as their arithmetic mean are employed.
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Table 1. Sets of values for the s-RBFN hyperparameters

(a) M number of hypotheses, κ number of neurons per layer,
η learning rates for the predictors, χ is a multiplicative factor
for random initial predictors’ weights Θ.

M κ η χ

[2, 5, 10, 20, 35] [20, 200, 2000] [0.03, 0.3] [0.0001, 0.01, 0.1, 1]

(b) ε is the diversity parameter, λp is the regularization
parameter for the predictors, λs is the regularization param-
eter for the s-RBFN.

ε λp λs

[0, 0.1, 0.35, 0.5] [0, 0.0001, 0.01, 0.07] [0, 3, 5]

Absolute Humidity Prediction. In Table 2, the 10 cross-folds mean and
standard deviation RMSE values for the top performing versions of all models
on the test set are presented. The RMSE for the 80 different hyper-parameter
configurations are computed and its first and third quartiles are shown in this
table. For the rest of the models, 80 different hyper-parameters are applied for
comparison.

The best model by generalization performance is the s-RBFN when the
hyper-parameters are optimized. The SVM-RBF is the second best performing
model. The arithmetic combiner has the lowest standard deviation and con-
sequently has the smallest variation of the mean RMSE for all quartiles. The
s-RBFN has a quarter of the 80 different hyper-parameter configurations’ mean
RMSE values lower than all other models except for the SVM-RBF, due to its
higher standard deviation.

Table 2. Absolute humidity prediction: Mean and standard deviation of the 10-fold
cross-validation RMSE for the models with the top-performing hyper-parameters con-
figuration in generalization performance. First and third quartiles are shown for all
models from 80 different hyper-parameter configurations.

Models Top Model std dev First Quartile Third Quartile

Linear Model 7692.78 1657.53 8189.84 10488.35

SVM-RBF 29.83 1.99 34.80 37.65

Random Forest 55.66 15.47 69.00 91.55

Gradient Boosting 55.76 38.73 93.92 151.58

Arithmetic Combiner 39.19 0.15 41.75 43.93

s-RBFN 22.46 9.14 38.98 54.71
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Table 3. Energy appliance prediction: Mean and standard deviation of the 10-fold
cross-validation RMSE for the models with the top-performing hyper-parameters con-
figuration in generalization performance. First and third quartiles are shown for all
models from 80 different hyper-parameter configurations.

Models Top Model std dev First Quartile Third Quartile

Linear Model 281.76 297.69 321.39 803.31

SVM-RBF 104.68 1.27 107.26 109.01

Random Forest 298.46 29.35 328.48 373.81

Gradient Boosting 292.08 67.26 389.10 476.89

Arithmetic Combiner 115.17 0.11 128.54 144.83

s-RBFN 101.12 2.42 102.36 109.96

Energy Appliance Prediction. For the energy appliance dataset the same
set of experiments are performed as for the air quality dataset. In line with the
results displayed in Table 2, in Table 3 it can be seen how the s-RBFN is the best
performing model with less standard deviation than in the previous dataset. This
makes the model best performer in the first and third quartiles. The arithmetic
combiner is the model with lowest standard deviation and the SVM-RBFN is the
second best performing model, in line with the air absolute humidity prediction
experiments.

Thus, both the dataset, it has been validated empirically that the s-RBFN
is the best performing model in terms of generalization performance and for a
range of different hyper-parameters.

4.3 Diversity and Generalization Performance

In this section, the hypothesis of the improvement in generalization performance
of the s-RBFN for different values of the diversity parameter ε and the number
of hypotheses M is verified. Figures 2 and 3 show, for the air quality and energy
appliances test sets respectively, the mean RMSE and 90% confidence interval
using 10-fold cross-validation for each hyper-parameter configuration, and for
different values of the number of hypotheses M and diversity parameter ε. The
horizontal axis represents the pairs of hyper-parameters M and ε.

The results in Fig. 2 indicate, for the absolute humidity prediction experi-
ments with the air quality test set, that the generalization performance increases
with the diversity parameter up to a certain number of hypotheses, but decreases
if the number of hypotheses is too large. In this set of experiments the optimal
pair for M = 10 and ε = 0.35 is well defined. For this pair of hyper-parameters
the s-RBFN achieves the best performance, equal to the shown in Table 2. It can
be shown that increasing ε for two hypotheses worsen the generalization perfor-
mance, meaning that a minimum number of hypotheses is needed for diversity
to improve generalization capabilities.
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In Fig. 3, the energy appliances prediction dataset shows the same conclusion
with some different results. For relatively large number of hypotheses (M =
10, 20) the s-RBFN achieves the best performance in generalization for relatively
large ε = 0.35. However, this improvement is not observed for M = 2 and M = 5,
as for five hypotheses the best model has ε = 0.1, with the case of ε = 0.35 being
worse than for the case of ε = 0. It is reasonable to believe that for each number
of hypotheses there is an optimal level of diversity, or ε, for the s-RBFN model. In
the case of two hypotheses (M = 2), there is no impact of diversity due to the low
number of individual predictors. Moreover, for this case, the performance is very
good, suggesting that while diversity can enhance generalization performance
for a given number of hypotheses, there may be cases in which the individual
predictor alone is good enough for prediction in the test set.

Fig. 2. Air quality test set: Mean RMSE and 90% confidence interval from 10-fold
cross-validation for different configurations for hyper-parameters M and ε.

4.4 Impact of Regularization

In this section, the purpose is to understand the contribution of the regular-
ization parameter for the s-RBFN in generalization performance. The regu-
larization parameter λs has a clear effect in reducing the uncertainty of the
hyper-parameters in the prediction of the structured ensemble model. For the
air quality test set, in Fig. 4a, it can be seen that for greater values of the regular-
ization parameter, the mean RMSE for different hyper-parameter configurations
remain more constant. Additionally, the standard deviation is lower for greater
values of λs, as shown in Fig. 4b. The same pattern is observed in the energy
appliances test set with Figs. 5a and 5b. It can be concluded that the regular-
ization parameter reduces the uncertainty of the s-RBFN hyper-parameters. It
also improves the s-RBFN generalization performance, on average, for any value
of the hyper-parameters.
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Fig. 3. Energy appliances test set: Mean RMSE and 90% confidence interval from
10-fold cross-validation for different configurations for hyper-parameters M and ε.

(a) Mean RMSE (b) Standard deviation RMSE

Fig. 4. Air quality test set: (a) Mean and (b) Standard deviation RMSE for 10-Fold
cross-validation for different s-RBFN regularization parameters and hyper-parameter
configurations.

(a) Mean RMSE (b) Standard deviation RMSE

Fig. 5. Energy Appliance test set: (a) Mean and (b) Standard deviation RMSE for
10-Fold cross-validation for different s-RBFN regularization parameters and hyper-
parameter configurations.
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In summary, the experiments demonstrate that diversity in structured ensem-
ble models, particularly in the s-RBFN, is a distinctive feature of these architec-
tures. There are instances where a single-hypothesis model may perform opti-
mally. This indicates that diversity is not universally beneficial for enhancing
generalization performance but rather improves performance contingent on a
specific number of hypotheses. The experiments suggest there is indeed an opti-
mal level of diversity, ε, for each number of hypotheses. Conversely, there exists a
maximum number of hypotheses beyond which the performance of the ensemble
model deteriorates, regardless of the ε level, indicating limits to the benefits of
diversification. Similarly, for ε values exceeding 0.35, there is a noticeable decline
in overall generalization capabilities.

5 Conclusion

This work introduces a novel structured ensemble model for single-output mul-
tiple hypotheses prediction. The presented model incorporates geometric prop-
erties of centroidal Voronoi tessellations with the individual predictors’ losses
during training. By altering the shape of the tessellations through a parametric
mechanism, the diversity is introduced to the structured dataset for the s-RBFN
model. It has been validated through experiments that the s-RBFN model sur-
passes other models in generalization performance across a range of hypotheses
numbers and diversity parameters. This model is the fastest to train once the
structured dataset is prepared using its closed-form expression. Additionally, it
facilitates easy control over diversity in structured ensemble learning and mul-
tiple hypotheses prediction for single-output regression problems through the
diversity parameter. It is crucial to analyze the appropriate number of hypothe-
ses and diversity hyper-parameters for a specific dataset, as these are highly
correlated with the generalization performance capabilities of the s-RBFN.

For future work, several areas can be explored to enhance structured ensemble
models in multiple hypotheses prediction. For instance, this work uses tabular
data for regression with a simple 2-layer network as individual predictors. It
would be interesting to employ more datasets from other modalities, e.g., visual
or text datasets and use deeper architectures. This would allow to further investi-
gate the relationship between model diversity, complexity and the generalization
performance.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. This research investigates Bitcoin price prediction by reviewing the
current state of the art, comparing Time Series and Deep Learning models, evalu-
ating their performance on a range of metrics, and assessing the selected model’s
real-world applicability. It reviewed existing studies on Deep Learning, Time
Series, and Bitcoin, and utilised 44,419 hourly Bitcoin data points for data visu-
alization and mining. The findings showed that ensemble models, particularly
stacked ensemble, outperformed other models in predictive accuracy, with the
lowest error metrics and highest R2 value. Deep learning models also performed
well, but with slightly higher errors. Time Series models were inadequate for
Bitcoin price prediction, as evidenced by their negative R2 values. These results
contribute to our understanding of effective modelling approaches for Bitcoin
price prediction. The study also suggests promising avenues for future research,
such as fine-tuning ensemble models, incorporating advanced feature engineering
techniques, and exploring volatility forecasting. Thus, the study offers a valu-
able contribution to the field of cryptocurrency research, advancing knowledge on
Bitcoin price prediction and fostering a deeper comprehension of the intricacies
underlying cryptocurrency markets.

Keywords: Blockchain · Deep Learning · Time Series

1 Introduction

1.1 Background

The inherently volatile nature of the cryptocurrency market necessitates the develop-
ment of more accurate Bitcoin price prediction models to facilitate informed investment
decisions and robust risk management strategies. This study seeks to contribute to the
existing body of research by constructing and evaluating a series of enhanced models for
Bitcoin price forecasting. This will be achieved through a comparative analysis employ-
ing both Time Series and Deep Learning methodologies. Data visualization techniques
and performance evaluationmetrics will be utilized to assess the efficacy of thesemodels
in predicting future Bitcoin prices. Furthermore, the investigation will delve into various
model architectures and ensemble methods with the objective of identifying the most
effective approach for Bitcoin price prediction.
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1.2 The Evolution of Bitcoin Price Models

The journey of Bitcoin price prediction models has shifted dramatically, from relying on
established time series analysis to embracing the power of deep learning for untangling
its complexities. Early studies leaned onARIMAmodels, as evidenced byMcNally et al.
(2018), Shin et al. (2021), and Akyildirim et al. (2021) [2, 14, 18]. The integration of
machine learning introduced neural networks and support vector regression (SVR) by
Liu et al. (2020) [13]. A significant leap came with deep learning. Pioneering research
by Aggarwal et al. (2019) [1] showcased the effectiveness of Convolutional Neural Net-
works (CNNs), Long Short-TermMemory (LSTM), and Gated Recurrent Units (GRUs)
in analysing Bitcoin prices. Lamothe-Fernández et al. (2020) [12] further propelled
innovation with Deep Support Vector Regression (DSVR), Deep Neural Decision Trees
(DNDTs), and Deep Recurrent Convolutional Neural Networks (DRCNNs).

LSTM models have become dominant due to their ability to capture long-term
dependencies. This is supported by research from Aggarwal et al. (2019), Tandon et al.
(2019),Liu et al. (2020), and others (Sebastião and Godinho, 2021; Saadah and Whafa,
2020; Derbentsev et al., 2020; Politis et al., 2021) [1, 6, 13, 16, 17, 19].

Despite advancements, challenges such as limited historical data, inherent volatility,
and incorporating external factors persist. The current landscape highlights the domi-
nance of deep learning models, particularly LSTMs and CNNs, in deciphering the intri-
cate patterns within Bitcoin price data. However, the need to include explanatory vari-
ables beyond historical prices and address overfitting in deep learning models remains
crucial.

While deep learning architectures like LSTMs and CNNs have proven superior to
traditional time series models in capturing the complexities of Bitcoin price data, achiev-
ing accurate predictions requires a comprehensive approach. Incorporating explanatory
variables beyond just historical prices is crucial. Macroeconomic indicators and social
media sentiment analysis can provide valuable insights into the broader market forces
influencing Bitcoin. Finally, addressing overfitting in deep learning models is impor-
tant. Techniques like dropout layers and regularization help models learn general trends,
not just memorize specific patterns, ultimately improving their ability to predict future
prices.

Thus, the evolution of Bitcoin price prediction models mirrors the dynamic nature of
the cryptocurrency landscape. As artificial intelligence and machine learning technolo-
gies progress, further refinements and breakthroughs are expected. Overcoming chal-
lenges like data scarcity,model complexity, and rapidmarket changes is vital for develop-
ing robust and accurate models in this ever-evolving financial domain. Researchers and
practitioners remain dedicated to enhancing the reliability of Bitcoin price predictions
and deepening our understanding of the factors influencing Bitcoin’s market behaviour.
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2 Time Series Models

The analysis of historical Bitcoin price data is presented, with a focus on modelling and
predicting Bitcoin price returns using three statistical methods: ARIMA (Autoregres-
sive Integrated Moving Average), GARCH (Generalized Autoregressive Conditional
Heteroskedasticity), and ARCH (Autoregressive Conditional Heteroskedasticity).

In first analysis, we select models like ARCH, GARCH, and ARIMA because they
are good at helping us comprehend various aspects of financial data, like how prices
change, trends, and seasonal patterns. This assists us gain useful insights. As posited by
Engle (1982) [8], ARCH and GARCH models have been instrumental in the spheres of
risk management, asset pricing, and an array of financial applications, owing to their
proficiency in modelling the dynamics of volatility.

Conversely, ARIMA models, as explained by Wilson (2016) [20], provide a useful
way to predict financial data that have trends and patterns that repeat over time. These
models use a technique called differencing to make the data easier to work with, and
they are effective at making forecasts for the short to medium term. Because of this,
ARIMA models are widely used in finance and economics to make better predictions
and smarter financial decisions.

To sum up, the choice among ARCH, GARCH, or ARIMA models within financial
time series analysis is contingent upon the specific data characteristics and analytical
objectives at hand. These models, often employed in tandem, contribute synergistically
to the comprehensive understanding and forecasting of financial market behaviour, risk
management, and judicious investment decisions.

2.1 Data Preprocessing

In the first stage of data preparation, we focus on selecting the most relevant information
for our analysis. Typically, the “close” price column is chosen, as it represents the final
trading price of the asset for each hour. This data then undergoes a transformation
to capture price fluctuations. We calculate the percentage change between consecutive
hours, providing valuable insights intomarketmovements. Finally, to ensure the integrity
of our analysis, we address any missing data points or invalid entries, such as “Not-a-
Number” values. This meticulous cleaning process results in a high-quality dataset ready
for further exploration.
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2.2 Model Specifications

ARIMA model (p,d,q) with drift was employed to forecast Bitcoin return series. This
model captures the inherent trend in the data by incorporatingpast values (p), differencing
terms (d), a constant term (drift), and past errors (q) into a linear regression framework.
In this study, an ARIMA (1,1,1) model was specified for Bitcoin returns. To account
for the well-documented phenomenon of volatility clustering in financial time series, a
GARCH (1,1)model with a zero-mean assumptionwas implemented for Bitcoin returns.
This model effectively captures the dynamic behaviour of conditional variance, allowing
for the generation of volatility forecasts. Similar to GARCH, an ARCH(1) model with a
zero-mean assumption was also utilized for Bitcoin returns. While both models address
conditional heteroskedasticity, GARCH offers a more comprehensive framework by
incorporating past conditional variances into the model.

2.3 Interpretation of Results

Evaluation metrics presented in Table 1, including Mean Squared Error (MSE), Mean
Absolute Error (MAE), and RootMean Squared Error (RMSE), all favoured the ARIMA
(1,1,1) model for Bitcoin return forecasting. ARIMA achieved the lowest MSE (6.068),
MAE (0.046), and RMSE (0.078) compared to GARCH and ARCHmodels, suggesting
its superior ability to capture overall variability, accuracy of error direction, and closeness
of forecasts to actual errors. However, QQ plots and histograms of the residuals (Fig. 1)
indicate that ARIMA residuals are closer to a normal distribution, while ARCH and
GARCH residuals exhibit non-normality, as expected due to their focus on modelling
heteroskedasticity.

While the GARCH model displayed promising characteristics in capturing long-
range dependence in volatility through ACF and PACF plots (Fig. 2), these findings also
suggest potential limitations in the current model structure for Bitcoin price prediction.
ThenegativeR-squaredvalues (Table 1) and thenon-normal residuals ofARCH/GARCH
models highlight the need for further exploration. Alternative modelling approaches or
parameter adjustments might be necessary to achieve a more suitable model for Bitcoin
return forecasting.

Table 1. Performance Metrics for ARIMA, ARCH and GARCH.

Model MSE (×10−5) MAE RMSE (×10−5) R2

ARIMA 6.068 0.046 0.078 −0.0139

GARCH 11.66 0.79 1.08 −0.9482

ARCH 11.73 0.82 1.08 −0.9606
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Fig. 1. Graphs showing normal Q-Q plots and histograms for ARIMA, ARCH and GARCH.

3 Deep Learning Models

This section investigated the selection of neural network architectures for predicting
Bitcoin’s hourly closing price. To achieve a balance between predictive power and com-
putational efficiency, a combination of complex and simple models was chosen. Long
Short-TermMemory (LSTM) and Gated Recurrent Unit (GRU) networks were included
due to their ability to capture sequential patterns in time series data (Tandon et al., 2019)
[19]. These recurrent architectures leverage gating mechanisms specifically designed to
remember past data points, making them well-suited for tasks like Bitcoin price pre-
diction (Hochreiter and Schmidhuber, 1997) [10]. The Transformer model was chosen
for its effectiveness in modelling long-range dependencies within sequences, employ-
ing a self-attention mechanism. In contrast, a Feedforward Neural Network (FNN) was
included for its efficient computation, offering a simpler alternative (Chen and Guestrin,
2016) [4].
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Fig. 2. Graphs illustrating ACF plots and PACF plots for ARIMA, GARCH, and ARCH models.

3.1 Model Specifications

Fourmodels were chosen, offering a balance between complexity and efficiency: LSTM,
GRU, Transformer, and FNN. All models utilized a common dropout rate of 0.2 to
mitigate overfitting, the Adam optimizer for training, and MSE as the loss function.
Training employed a batch size of 32 for 10 epochs.

In short, LSTMs and GRUs, both recurrent architectures known for their ability to
capture sequential patterns, employed 3 layers with 50 units per layer. The Transformer
model, designed for capturing long-range dependencies, utilized a multi-head attention
mechanism with key_dim = 128 within an attention layer followed by a dense layer.
The FNN, the simplest model, consisted of two dense layers with 128 and 64 units,
respectively.

3.2 Interpretation of Results from Deep Learning Models

Further evaluation examined the effectiveness of various deep learning architectures for
Bitcoin price prediction. We compared LSTM, GRU, FNN, and Transformer models.
Examining both performancemetrics (Table 2) and loss curves (Fig. 3), the LSTMmodel
emerged as the clear winner. LSTM achieved the lowest Mean Squared Error (MSE) and
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RootMean Squared Error (RMSE) in Table 2, indicating the closest predictions to actual
prices. Its high R-squared value further strengthens this, signifying a strong correlation
between predicted and actual prices.

Figure 3 reinforces this. The LSTMmodel consistently exhibited the lowest training
and validation loss throughout the training process. This demonstrates its superior ability
to learn the patterns within Bitcoin price data compared to the other models. While the
Transformer model initially reduced loss faster, it ultimately achieved a higher loss
than LSTM and GRU. The FNN architecture displayed the slowest learning and highest
overall loss.

Therefore, this analysis suggests that the LSTMmodel is the most effective for time
series prediction of Bitcoin prices among the models considered in this study (ARIMA,
ARCH, GARCH, LSTM, GRU, FNN, and Transformer).

Table 2. Performance Metrics for the Selected Deep Learning Models.

Model MSE (×10−5) MAE RMSE (×10−5) R2

LSTM 4.7156 0.0047 0.0069 0.9993

GRU 8.8245 0.0065 0.0094 0.9986

FNN 71.5386 0.0216 0.0267 0.9889

Transformer 516.4715 0.0612 0.0719 0.9201

Fig. 3. Reveals the model loss over epoch for different neural network architectures.
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3.3 Rationale for Three Ensemble Methodologies

To enhance the robustness and reliability of Bitcoin price predictions, this section
explores three ensemble methodologies: Weighted Average Ensemble, Stacked Ensem-
ble, and Simple Average Ensemble.

First approach, Weighted Average Ensemble assigns varying weights to individual
model predictions, prioritizing models with demonstrably superior accuracy. In cryp-
tocurrency forecasting, where precision is crucial, this method can significantly improve
overall ensemble performance.

Second ones, Stacked Ensemble methodology leverages the strengths of individual
models hierarchically. A meta-model is trained on the predictions of the base models
[21]. This approach captures complex relationships and interactions between different
models’ outputs, particularly valuable when dealing with diverse model architectures.

Next, simple Average Ensemble method combines predictions by assigning equal
weight to all models [11]. It effectively provides an ensemble prediction that is the
average of the individual model outputs. This approach helps mitigate the impact of
outliers or extreme predictions, common challenges in cryptocurrency price forecasting
[5].

By incorporating these ensemble methodologies, the subsequent section aims to pro-
vide amore comprehensive analysis of ensemblemodeling’s potential in overcoming the
inherent challenges of cryptocurrency price forecasting. The Weighted Average Ensem-
ble emphasizes model performance, the Stacked Ensemble captures complex interac-
tions, and the Simple Average Ensemble offers a balanced approach. This combination
allows for a deeper understanding of how ensemble techniques can improve Bitcoin
price prediction accuracy.

3.4 Interpretation of Results from Ensemble Models

Anevaluationof the ensemblemodels’ performancemetrics (Table 3) revealedpromising
results. The Stacked Ensemble achieved the lowest MSE (0.0069) and RMSE (0.0083),
demonstrating superior predictive accuracy compared to the other ensemble methods.
This finding is further corroborated by the Stacked Ensemble’s low MAE (0.0057),
suggesting minimal individual prediction errors, and its exceptionally high R-squared
value (0.9989), signifying a very strong correlation between predicted and actual Bitcoin
prices. The Weighted Average Ensemble exhibited a balance between achieving accept-
able accuracy (moderate MSE and RMSE) and mitigating the influence of potentially
large individual errors (relatively high MAE). However, the Simple Average Ensemble,
while boasting the lowest reported MSE (0.0007), necessitates cautious interpretation
due to the possibility of error cancellation. This is further supported by its highest MAE
(0.0220), indicating larger individual prediction errors. The Simple Average Ensem-
ble’s R-squared value (0.9895) suggests a strong correlation, but not as pronounced as
the Stacked Ensemble. In conclusion, these findings underscore the efficacy of ensem-
ble methodologies, particularly the Stacked Ensemble in this study, in significantly
enhancing Bitcoin price prediction accuracy compared to individual models.



Bitcoin Forecasting Using Deep Learning and Time Series Ensemble Techniques 113

Table 3. Performance Metrics for Ensemble Models

Model MSE (×10−5) MAE RMSE (×10−5) R2

Weighted Average 4.179507967 0.5506143208 0.646491142 0.9353310157

Stacked Ensemble 0.0069 0.005652837375 0.008305204384 0.9989327368

Simple Average 0.0006779639791 0.02195876228 0.02603774144 0.9895099513

4 Conclusion

This study investigated the effectiveness of various machine learning models in predict-
ing Bitcoin closing prices. The Stacked Ensemble model emerged as the most optimal
choice, achieving demonstrably superior performance metrics. It exhibited the lowest
MSR, MAE, and RMSE, signifying exceptional accuracy and resilience to outliers.

The Weighted Average model presented a favourable alternative, offering a well-
balanced approach between precise prediction and outlier resistance. The Simple Aver-
age model, however, prioritized outlier resistance with a slight trade-off in predictive
accuracy, reflected by its marginally lower R2. Traditional models (LSTM, GRU, FNN)
displayed the least favourable performance, highlighting their limitations in this specific
context.

It is crucial to acknowledge that ideal benchmarks (zero MSE/MAE and R2 of 1) are
not achievable in practice. However, the Stacked Ensemble model achieved remarkable
proximity to these benchmarks. Ultimately, the selection of the most suitable model
should be driven by the specific needs and objectives of the prediction task.

This study provides valuable insights for businesses seeking to leverage Bitcoin
price prediction. The findings demonstrate the efficacy of ensemble models, particularly
during economic uncertainties where such capabilities can provide significant guidance.
Notably, ensemble models outperform traditional models in Bitcoin price prediction,
offering a clear advantage.

Our exploration has illuminated the strengths andweaknesses of variousBitcoin price
predictionmodels.While challenges like negative R2 values in Time SeriesModels exist,
they pave the way for innovation in advanced modelling techniques.

As the cryptocurrency market matures, accurate price prediction becomes increas-
ingly important. This study underscores the significance of selecting appropriatemodels,
particularly ensemble approaches, to enhance predictive accuracy. Additionally, ethi-
cal considerations and real-time adaptability are paramount for developing robust and
dependable models for practical business applications.

Future research has the potential to not only refine Bitcoin price prediction but also
to delve deeper into the interplay between external factors, such as socio-political influ-
ences, and the evolving financial landscape of cryptocurrencies. By prioritizing innova-
tion, ethical practices, and a comprehensive understanding of these markets, researchers
can contribute to the development of highly accurate forecastingmodels for crypto assets,
empowering businesses to make informed decisions.
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Abstract. We introduce TRAPL, a Transformer-based Patch Learning
technique that enhances semantic representations in segmentation mod-
els. TRAPL leverages aggregated features for precise patch-class distribu-
tion estimation, gathering features at key layers in the Transformer archi-
tecture. The method integrates an auxiliary objective with a convolution-
based classifier, enabling robust semantic learning at the patch level. Our
experiments demonstrate significant improvements in Intersection-over-
Union (IoU) performance across models and datasets. TRAPL is compat-
ible with both flat and hierarchical Transformers, ensuring minimal com-
putational load during training and no extra overhead during inference.
Our evaluations across state-of-the-art models and benchmarks demon-
strate TRAPL’s effectiveness for improving Transformer-based semantic
segmentation.

Keywords: Semantic Segmentation · Representation Learning ·
Transformer

1 Introduction

Semantic segmentation, a cornerstone in computer vision, enables pixel-level
class label assignment within images. Its applications span diverse tasks, from
building detection [9,10] to autonomous driving [18]. Effective semantic segmen-
tation requires robust and discriminative representations for each class, allowing
for better generalization and improved segmentation masks.

Traditional segmentation techniques focus on supervised learning from
labeled datasets, while supervised contrastive learning directly targets semantic
understanding by comparing similarities between image pairs. However, con-
trastive learning can be hyperparameter-sensitive and challenging to implement
successfully [13].
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In response to these challenges, this paper introduces TRAPL, a novel, end-
to-end method designed to learn complex image semantics without relying on
elaborate learning objectives. Our approach adopts a supervised objective aiming
to estimate patch class distribution, utilizing aggregated patch representations
derived at multiple stages within the transformer model. We complement this
with a lightweight, convolution-based classification head implemented during the
training phase to estimate class distribution at the individual patch level.

The paper’s main contributions include an intuitive yet impactful method
composed of an auxiliary objective for the aggregated features in the vision
transformer architectures. The combination results in enhanced model perfor-
mance in semantic segmentation tasks, a claim substantiated by our empirical
data. The enhancements in IoU scores across various datasets, encoders, and
decoders attest to the effectiveness and robustness of TRAPL.

2 Related Work

Vision transformers (ViTs) [3,8,15–17] have become popular due to their suc-
cess in various vision tasks. Unlike convolutional neural networks (CNNs), ViTs
flatten images into non-overlapping patches, a technique central to our proposed
approach.

Transformers have proven to be highly effective in semantic vision tasks, yet
they encounter notable scalability challenges due to their self-attention mech-
anisms, as discussed in [4]. Thereby, research in recent years has witnessed a
surge in efforts to mitigate this computational intensity, all while preserving,
if not enhancing, accuracy. A notable contribution in this direction is by the
authors of [16], who introduced a hierarchical transformer model that employs
shifted windows to reduce the scope of the self-attention mechanism. This strat-
egy substantially reduces the computational demands of self-attention. Other
works, such as [17], critique the vision-specific additions in many state-of-the-
art ViTs. These scholars argue that while the innovations might boost accuracy
and present appealing FLOP counts, they inadvertently introduce complexities
that render these models slower than their vanilla ViT counterparts. Further-
more, empirical evaluation demonstrates that when armed with a strong visual
pretext task like MAE [5], there is no real imperative for adding extra complex-
ities.

In the quest to enhance semantic representations of images, many research
initiatives have tapped into the power of an auxiliary objective known as con-
trastive learning [6,11,12,14,21,25]. A common approach in this field involves
two-phase training. Initially, the model is pre-trained with contrastive learning
and then finetuned for segmentation. This method, showcased in [24] and [25],
uses auxiliary labels in tandem with ground truth for contrastive purposes. How-
ever, this method requires substantial memory resources, which can be a limiting
factor. Our methodology diverges from the two-phase paradigm using an end-to-
end training approach, sidestepping the memory-intensive stages. Notably, other
works such as [20] and [1] employ an end-to-end training strategy, but they use a
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memory bank to store features during training. This storage and retrieval process
reduces their efficiency, which our method sidesteps by processing the features
in real-time, eliminating the need for temporary storage.

Additional innovative approaches emerge from [14], which integrates end-
to-end training with active sampling, guided by a class relationship graph and
confidence map-driven key pixel and hard query selection. Meanwhile, [11] har-
nesses the intrinsic patch structure of ViT, directing contrastive learning towards
projected patch features. Our approach differs from the latter in two key ways.
First, rather than using a contrastive objective, we introduce an objective focused
on evaluating class distribution within patches, directly utilizing the patch fea-
tures. Second, we consolidate the features and compute the loss once instead of
computing the loss at each transformer stage. Moreover, a distinct advantage of
our TRAPL approach is its capability to train on the entire batch without the
need for selective sampling. This comprehensive batch training ensures consis-
tent exposure to a diverse range of patch features, enhancing the generalizability
and robustness of the model.

3 Method

Fig. 1. Schematic representation of the TRAPL technique, which employs Vision
Transformers (ViTs) for enhanced patch-based learning. Patches are extracted from
different output stages of the ViT, followed by their aggregation to form a comprehen-
sive patch feature. The framework can be adapted to both flat and hierarchical ViT
architectures.

ViT has emerged as a dominant architecture for numerous tasks in computer
vision. They are primarily characterized by their patch-based design, where an
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image is divided into non-overlapping patches to process the image. Within this
context, the Transformer-based Patch Learning (TRAPL) technique emerges as
an innovative learning paradigm. It harnesses the patch-centric design of ViTs to
improve the semantic representation of classes for segmentation tasks. A visual
summary of TRAPL is provided in Fig. 1. In essence, TRAPL extracts patch
features from strategic output indices or stages in a ViT and consolidates them
into a single, enriched patch feature. Subsequently, a convolutional layer uses
the aggregated features to estimate the class distribution for each patch.

There are mainly two predominant types of ViT architectures. The first is the
flat architecture, where both spatial and feature dimensions remain consistent
throughout, as exemplified by the original ViT model [3]. The second type is the
hierarchical architecture, such as the Swin model [16], characterized by changing
spatial and feature dimensions through four distinct stages in the Transformer.
This process begins with the highest granularity, and with each subsequent stage,
the granularity reduces while the feature dimension is augmented. Given these
architectural differences, adapting the feature aggregation process to accommo-
date both flat and hierarchical ViTs effectively becomes imperative.

For flat architectures, we introduce the Flat TRAPL (F-TRAPL). This app-
roach aggregates representations from four distinct output indices into a single,
comprehensive representation. Each feature from the output indices is denoted
by (B,C,H,W ), where B signifies the batch count, C represents the feature
dimension, and H and W indicate the height and width, respectively. After
aggregation, the resulting feature has the dimensions (B, 4C,H,W ), visualized
in Fig. 2.

For hierarchical architectures, we propose the Hierarchical TRAPL (H-
TRAPL). This approach systematically interpolates between spatial stages, tran-
sitioning from the largest to the smallest patch size. In typical hierarchical trans-
former models like the Swin Transformer, the feature dimensions for each stage
are S0(B,C,H,W ), S1(B, 2C, H

2 ,
W
2 ), S2(B, 4C, H

4 ,
W
4 ), and S3(B, 8C, H

8 ,
W
8 ).

Where Sn is the stage number, B signifies the batch count, C represents the
feature dimension, and H and W indicate the height and width, respectively. To
aggregate these features, we implement a bilinear stepwise interpolation between
the stages. Starting with the last stage S3, the output is interpolated to match the
size of the preceding stage S2 and then concatenated with its features, resulting
in a tensor with dimensions (B, 12C, H

4 ,
W
4 ). This tensor is further interpolated

to match the shape of S1, where it is concatenated with the output of that stage.
Finally, the result is interpolated to match the shape of S0, and concatenated
once again. Through this step-by-step process, the final tensor attains a shape
of (B, 15C,H,W ), as visualized in Fig. 3. The aggregation of these features is
then used for class-distribution estimation.

TRAPL’s design centers on using aggregated features to accurately estimate
the patch-class distribution of each unique patch. To achieve this, TRAPL incor-
porates a single convolution layer with a kernel and step size of 1. This config-
uration relies on the premise that each patch’s internal representation is rich in
semantic information, enabling TRAPL to determine the class distribution inde-
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Fig. 2. Illustrative overview of the Flat TRAPL (F-TRAPL) process tailored for flat
architectures. Multiple feature representations with identical spatial dimensions are
concatenated into a unified representation. Following the concatenation is a convolution
layer with a kernel and step size of 1.

Fig. 3. Diagrammatic representation of the Hierarchical TRAPL (H-TRAPL) method
designed for hierarchical architectures. Features from varying spatial stages are inter-
polated to achieve uniform spatial dimensions, followed by sequential concatenation.
The process concludes with the utilization of a convolution layer with a kernel and step
size of 1.
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pendently without relying on features from adjacent patches. For the auxiliary
objective of estimating this distribution for every patch, TRAPL employs the
cross-entropy loss function. This function utilizes floating target values, which
are directly derived from the actual patch-class distributions in the ground truth
data.

Another characteristic of TRAPL is that it is only used during training and
thereby does not affect the inference speed of the model. While TRAPL intro-
duces certain modifications during the training phase by leveraging an enriched
set of aggregated patch features with the auxiliary objective, it only adds a tiny
amount of parameters to the original transformer architecture. This ensures that
the computational overhead is kept minimal and does not impact the inference
time. As a result, the enhanced semantic understanding achieved with TRAPL
does not come at the cost of increased computational complexity for model
deployment.

4 Experiments

In this section, we delve into a comprehensive evaluation of our proposed method.
Through rigorous experiments conducted across diverse datasets, we aim to
underscore the robustness and versatility of our approach. Our results not only
validate the efficacy of the method in varied scenarios but also position it in
comparison to existing benchmarks and standards.

4.1 Experimental Setup

We assessed the efficacy of the TRAPL technique across three ViTs, namely the
Swin Transformer [16], Hiera [17], and vanilla ViT [22]. Each of these transform-
ers was evaluated using the tiny, small, and base versions.

In evaluating the performance of the models, we utilized Intersection over
Union (IoU), a widely adopted metric in segmentation tasks. IoU quantifies the
overlap between the predicted segmentation and the ground truth by calculating
the ratio of their intersection to their union. It provides an intuitive measure of
how accurately a model delineates objects in an image, with higher IoU values
indicating more precise segmentations. The use of IoU ensures a robust com-
parison of model efficacy, particularly in scenarios where pixel-level accuracy is
paramount, such as the datasets used in our experiments.

To demonstrate the broad applicability of our technique, experiments were
conducted on three diverse datasets, namely ADE20K [26], Cityscapes [2], and
ISPRS Potsdam [7]. Each model was tested using the UPerNet [23] decoder,
with the Hiera and Swin transformers undergoing additional evaluations with
the multistage DC [19] decoder.

For consistent and reliable results, every experiment was performed using
three distinct seeds, 12, 25, and 42, with the results averaged across these runs.
All models commenced their training from pretrained weights. By maintaining a
uniform learning rate of 1e−4 and restricting the training duration to 50 epochs,
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we ensured that any observed performance disparities arose from intrinsic model
variations and not from training inconsistencies.

4.2 ADE20K Dataset

In the initial experiment, the acclaimed ADE20K dataset [26], a benchmark
standard for semantic segmentation, was utilized. As illustrated in Table 1, our
method showcased significant improvements in IoU and accuracy across all eval-
uated models. Moreover, Fig. 4 suggests that the TRAPL method imparts a sta-
bilizing effect on model training, contributing to a more consistent and reliable
convergence. While these preliminary observations are promising, they under-
score the necessity for further systematic investigation to robustly determine the
stabilizing dynamics introduced by the TRAPL methodology. Lastly, in Fig. 5
we see a line graph showing the results for all models on the ADE20K dataset,
clearly indicating the performance gain for each model by using the TRAPL
method compared to the baselines. There are some cases where the validation
IoU drops for the base models, which are mainly caused by unstable training
runs, as exemplified in Fig. 4 with the HieraDC model.

Fig. 4. The plot illustrates the validation IoU scores for HieraDC models on the
ADE20K dataset, with TRAPL-enhanced models showing notably higher and stead-
ier IoU trajectories compared to the baseline, indicating enhanced performance and
stability.

4.3 Cityscapes Dataset

For our subsequent experiment, we turned to the Cityscapes [2] segmenta-
tion benchmark. Similar to ADE20K, Cityscapes is another widely recognized



TRAPL 123

Table 1. Evaluation scores for all models on the ADE20K dataset, indicating the
effectiveness of our learning technique on IoU and accuracy measures.

Backbone Decoder Size Technique Mean IoU Δ (%) Accuracy Δ (%)

Hiera

UPerNet

Base
- 0.4169

+3.31
0.6740

+3.83
H-TRAPL 0.4500 0.7123

Small
- 0.4044

+3.61
0.7217

+2.99
H-TRAPL 0.4405 0.7516

Tiny
- 0.3935

+3.49
0.6988

+3.23
H-TRAPL 0.4284 0.7311

DC

Base
- 0.3021

+14.77
0.5761

+16.93
H-TRAPL 0.4498 0.7454

Small
- 0.3745

+6.12
0.6733

+6.15
H-TRAPL 0.4357 0.7348

Tiny
- 0.3472

+7.86
0.6420

+8.29
H-TRAPL 0.4258 0.7249

ViT UPerNet

Base
- 0.4599

+2.73
0.7583

+1.77
F-TRAPL 0.4872 0.776

Small
- 0.4329

+2.46
0.7361

+2.05
F-TRAPL 0.4575 0.7566

Tiny
- 0.4061

+1.09
0.7135

+1.10
F-TRAPL 0.4170 0.7245

Swin

UPerNet

Base
- 0.4730

+2.82
0.7670

+2.11
H-TRAPL 0.5012 0.7881

Small
- 0.4435

+2.15
0.7476

+1.57
H-TRAPL 0.4650 0.7633

Tiny
- 0.4347

+1.48
0.7371

+1.29
H-TRAPL 0.4495 0.7500

DC

Base
- 0.4468

+5.73
0.7395

+4.67
H-TRAPL 0.5041 0.7862

Small
- 0.4432

+1.84
0.7380

+1.75
H-TRAPL 0.4616 0.7555

Tiny
- 0.4065

+3.43
0.7060

+3.47
H-TRAPL 0.4408 0.7407

standard for assessing segmentation models. The evaluation scores detailed in
Table 2 underscore the potency of our learning scheme, registering an improve-
ment across all models.
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Table 2. Evaluation scores for all models on the Cityscapes dataset, showcasing the
effectiveness of our learning technique in IoU and accuracy measures.

Backbone Decoder Size Technique Mean IoU Δ (%)Accuracy Δ (%)

Hiera

UPerNet

Base
- 0.6613

+1.15
0.9110

+1.51
H-TRAPL 0.6728 0.9261

Small
- 0.3689

+2.30
0.9087

+1.48
H-TRAPL 0.6830 0.9235

Tiny
- 0.6722

+0.59
0.9054

+1.53
H-TRAPL 0.6781 0.9207

DC

Base
- 0.5897

+3.55
0.8775

+4.77
H-TRAPL 0.6252 0.9252

Small
- 0.3689

+3.11
0.8816

+4.04
H-TRAPL 0.6257 0.9220

Tiny
- 0.5769

+4.65
0.8717

+4.72
H-TRAPL 0.6234 0.9189

ViT UPerNet

Base
- 0.6697

+1.68
0.8877

+2.14
F-TRAPL 0.6865 0.9091

Small
- 0.6701

+1.22
0.9035

+1.41
F-TRAPL 0.6823 0.9176

Tiny
- 0.6755

+4.05
0.9003

+1.25
F-TRAPL 0.7160 0.9128

Swin

UPerNet

Base
- 0.6419

+1.42
0.9313

+0.89
H-TRAPL 0.6561 0.9402

Small
- 0.3689

+2.11
0.9273

+0.83
H-TRAPL 0.6583 0.9356

Tiny
- 0.6398

+3.21
0.9272

+0.71
H-TRAPL 0.6719 0.9343

DC

Base
- 0.6243

+1.23
0.9071

+3.30
H-TRAPL 0.6366 0.9401

Small
- 0.6210

+0.65
0.9119

+2.14
H-TRAPL 0.6275 0.9333

Tiny
- 0.6089

+2.28
0.9016

+3.04
H-TRAPL 0.6317 0.9320

4.4 Potsdam Dataset

In our third evaluation, we tested our model using the ISPRS Potsdam [7]
dataset, a benchmark specifically designed to segment aerial images featuring
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objects like buildings, cars, and roads. The results presented in Table 3 further
affirm the efficacy of our approach. We observed a consistent uptick in the IoU
across all models.

Table 3. Evaluation scores for all models on the Potsdam dataset, showcasing the
effectiveness of our learning technique in IoU and accuracy measures.

Backbone Decoder Size Technique Mean IoU Δ (%)Accuracy Δ (%)

Hiera

UPerNet

Base
- 0.7370

+1.53
0.8805

+1.51
H-TRAPL 0.7523 0.8956

Small
- 0.7345

+1.60
0.8789

+1.56
H-TRAPL 0.7505 0.8945

Tiny
- 0.7336

+1.50
0.8775

+1.53
H-TRAPL 0.7486 0.8928

DC

Base
- 0.6932

+5.70
0.8023

+9.19
H-TRAPL 0.7502 0.8942

Small
- 0.6912

+5.68
0.8171

+7.52
H-TRAPL 0.7480 0.8923

Tiny
- 0.6947

+5.21
0.8092

+8.22
H-TRAPL 0.7468 0.8914

ViT UPerNet

Base
- 0.7168

+2.32
0.8622

+2.18
F-TRAPL 0.7400 0.8840

Small
- 0.7376

+1.11
0.8824

+1.06
F-TRAPL 0.7487 0.8930

Tiny
- 0.7325

+0.88
0.8782

+0.84
F-TRAPL 0.7413 0.8866

Swin

UPerNet

Base
- 0.7641

+0.60
0.9060

+0.51
H-TRAPL 0.7701 0.9111

Small
- 0.7597

+0.38
0.9018

+0.42
H-TRAPL 0.7635 0.906

Tiny
- 0.7585

+0.48
0.9008

+0.55
H-TRAPL 0.7633 0.9063

DC

Base
- 0.7436

+2.71
0.8865

+2.45
H-TRAPL 0.7707 0.9110

Small
- 0.7526

+0.93
0.8959

+0.84
H-TRAPL 0.7619 0.9043

Tiny
- 0.7374

+2.48
0.8798

+2.48
H-TRAPL 0.7622 0.9046
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Fig. 5. A visualization of the validation IoU for all models and model sizes evaluated
on the ADE20K dataset. Each color represents a model, where the solid lines represent
the baseline version, and the dotted lines represent the TRAPL-enhanced models. All
of the TRAPL-enhanced models outperform their respective baseline models.

5 Discussion

Our proposed method represents a significant advancement in Transformer-based
semantic segmentation, consistently delivering performance enhancements across
various architectures and datasets. Our approach’s universal applicability stands
out, effectively boosting the capabilities of all models in the experiments. For
instance, our comprehensive evaluations reveal that the enhancements are espe-
cially pronounced when employing the DC decoder with the ADE20K dataset.
The TRAPL-enhanced models using the DC decoder not only show marked
improvements in IoU scores but also exhibit a notable stabilization of the training
process, underscoring the method’s potential for real-world application robust-
ness.

By focusing on precise patch-class distribution estimation, our method offers
substantial improvements in semantic accuracy, as evidenced by marked gains
in IoU metrics. This positions our approach as a vital enhancement to the state-
of-the-art, underlining its potential as a universal upgrade for semantic segmen-
tation tasks.

While our method may not set new benchmarks in terms of absolute per-
formance metrics, the enhancements it brings to transformer-based semantic
segmentation are significant and cannot be overlooked. It’s imperative to under-
stand that many of the top-performing methods, particularly those backed by
large-scale industry players, are often reinforced by enormous computational
resources and infrastructure that are not readily available to all research enti-
ties. The scale of their computational capacity has the potential to train their
models and achieve record-breaking evaluation metrics. However, the merit of
a method should not be judged solely by its peak performance but also by its
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ability to demonstrate relative improvements under consistent conditions, which
our method exhibits.

A vital aspect of our method’s efficiency is its design philosophy. During
training, TRAPL introduces a minimal increase in parameters. Additionally, an
auxiliary objective is incorporated, which has a slight impact on the training
speed. In contrast, during inference, there’s no computational overhead. This
ensures that the models remain fast and efficient in real-world applications.

Furthermore, the efficacy of our approach on small- and medium-scale mod-
els provides a promising indication of its scalability. If it can boost performance
metrics on a limited number of parameters, there is a compelling argument to
be made that, given sufficient computational resources akin to those available
to the aforementioned large-scale players, it could very well replicate or even
amplify these improvements on larger models. In essence, the relative improve-
ments in small-to-medium models demonstrate consistent, scalable, and, most
importantly, replicable enhancements in performance across a spectrum of mod-
els and datasets.

6 Conclusion

In this paper, we have introduced TRAPL, an end-to-end approach that sig-
nificantly enhances semantic representations in transformer-based segmenta-
tion models, demonstrating remarkable improvements across various datasets
and marking a notable advancement in the field. TRAPL’s wide applicability
and robustness underscore its potential to advance semantic segmentation tech-
niques. Although TRAPL has not achieved absolute state-of-the-art results, its
consistent relative improvements on multiple models and datasets indicate its
effectiveness. Our findings pave the way for future research and applications in
semantic segmentation, suggesting that continued exploration and refinement of
patch-level semantic integration could yield even more significant advancements.

6.1 Future Work

As we look into the future, the potential for scaling and further optimization
is apparent. The promise shown on smaller scales indicates that, with more
substantial resources, TRAPL could potentially challenge or even surpass cur-
rent benchmarks. We hope our contributions invigorate further research in this
area, pushing the boundaries of what’s possible with transformer architectures
in computer vision.

Further exploration in the scaling of TRAPL for larger datasets and more
intricate scenarios is a promising direction. Investigating how TRAPL adapts to
increased data variability and its performance in diverse, real-world applications
could provide deeper insights into its scalability and robustness. Additionally,
future work could focus on algorithmic enhancements to TRAPL. Optimizing
the transformer architecture for increased efficiency and integrating advanced
learning techniques may lead to significant performance improvements. Lastly,
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a crucial area of future research is examining the robustness and generalization
capabilities of TRAPL. Further, exploring how well TRAPL generalizes across
various visual styles and unstructured environments could significantly broaden
its application scope and utility in real-world scenarios.

References

1. Alonso, I., Sabater, A., Ferstl, D., Montesano, L., Murillo, A.C.: Semi-supervised
semantic segmentation with pixel-level contrastive learning from a class-wise mem-
ory bank. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8219–8228 (2021)

2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016). https://doi.org/10.1109/CVPR.2016.350

3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. In: Proceedings of the 9th International Conference on Learn-
ing Representations (ICLR), pp. 1–21 (2021). https://doi.org/10.48550/arxiv.2010.
11929

4. Duman Keles, F., Mahesakya Wijewardena, P., Hegde, C., Agrawal, S., Orabona,
F.: On the computational complexity of self-attention. In: Proceedings of Machine
Learning Research, vol. 201, pp. 597–619 (2023)

5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 16000–16009 (2022)

6. Huang, L., et al.: A two-stage contrastive learning framework for imbalanced
aerial scene recognition. In: ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings, pp. 3518–3522 (2022). https://
doi.org/10.1109/ICASSP43922.2022.9746248

7. International Society for Photogrammetry and Remote Sensing: 2D Semantic
Labeling Contest - Potsdam

8. Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: OneFormer: one trans-
former to rule universal image segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2989–2998
(2023)

9. Jyhne, S., et al.: MapAI: precision in building segmentation. Nordic Mach. Intell.
2(3), 1–3 (2022). https://doi.org/10.5617/NMI.9849

10. Jyhne, S., Jacobsen, J.R., Goodwin, M., Andersen, P.A.: DeNISE: deep networks
for improved segmentation edges. In: Artificial Intelligence Applications and Inno-
vations, pp. 81–89 (2023). https://doi.org/10.1007/978-3-031-34111-3 8

11. Jyhne, S.R., Andersen, P.A., Goodwin, M., Oveland, I.: A contrastive learning
scheme with transformer innate patches. In: Bramer, M., Stahl, F. (eds.) SGAI
2023. LNCS, vol. 14381, pp. 103–114. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-47994-6 8

12. Li, T., Roy, S., Zhou, H., Lu, H., Lathuilière, S.: Contrast, stylize and adapt:
unsupervised contrastive learning framework for domain adaptive semantic seg-
mentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pp. 4869–4879 (2023)

13. Liu, B., Ravikumar, P., Risteski, A.: Contrastive learning of strong-mixing
continuous-time stochastic processes. In: International Conference on Artificial
Intelligence and Statistics (2021)

https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.48550/arxiv.2010.11929
https://doi.org/10.48550/arxiv.2010.11929
https://doi.org/10.1109/ICASSP43922.2022.9746248
https://doi.org/10.1109/ICASSP43922.2022.9746248
https://doi.org/10.5617/NMI.9849
https://doi.org/10.1007/978-3-031-34111-3_8
https://doi.org/10.1007/978-3-031-47994-6_8
https://doi.org/10.1007/978-3-031-47994-6_8


TRAPL 129

14. Liu, S., Zhi, S., Johns, E., Davison, A.J.: Bootstrapping semantic segmentation
with regional contrast. In: International Conference on Learning Representations
(2022). https://doi.org/10.48550/arxiv.2104.04465

15. Liu, X., Peng, H., Zheng, N., Yang, Y., Hu, H., Yuan, Y.: EfficientViT: memory
efficient vision transformer with cascaded group attention. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 14420–14430 (2023)

16. Liu, Z., et al.: Swin transformer V2: scaling up capacity and resolution. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12009–12019 (2022)

17. Ryali, C., et al.: Hiera: a hierarchical vision transformer without the bells-and-
whistles. In: ICML (2023)
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Abstract. In this work we introduce DATE (Derivative Alignment
Training for Extrapolation), a method to improve the extrapolation
behaviour of neural networks (NN) with Rectified Linear Unit activation
(ReLU) on univariate regression tasks. ReLU NNs naturally lend them-
selves to linear extrapolation beyond the training data range. However,
there are two known limitations of extrapolation properties of trained
ReLU NNs, that we address in this paper. When minimising the error
of the prediction, the derivative of the NN model function can still show
high variation, which can cause variable extrapolation. Non-linearities of
the model function outside the training data range can lead to incon-
sistent extrapolation behaviour. In prior work, the extrapolation issue
has been addressed with a set of regularisation functions, called ReLEx.
To improve extrapolation and interpolation, we introduce two new reg-
ularisation terms: D1-loss and IR-loss. The D1-loss directly penalises
the deviation of the model derivative from a target derivative as esti-
mated from the data by interpolating between neighbouring data points.
The IR-loss penalises positions of the non-linearities of the ReLU units
outside a given range. Optimising the combination of D1 with IR loss
and/or some of the ReLEx functions constitutes the DATE method. We
evaluate DATE on regression tasks with noiseless data generated from
analytic functions. We test different DATE configurations and find that
training with DATE can reduce the variability of the model slope, pre-
vent non-linearities outside the training data range, and improve extrap-
olation consistency as measured by different metrics. The most effective
DATE variants also have reduced complexity compared to ReLEx.

Keywords: Extrapolation · Regression · Neural Networks · Derivative

1 Introduction

In supervised machine learning the immediate objective is to fit the model func-
tion to the training data by minimising a loss function. This loss function is
typically defined in terms of the values of the data and the model, and for
regression the error metric is typically the mean squared error (MSE). The most
popular machine learning models in recent years have been neural networks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
M. Bramer and F. Stahl (Eds.): SGAI 2024, LNAI 15446, pp. 130–143, 2025.
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(a) 5 trained NNs (b) Value and slope of a single NN

Fig. 1. (a) Extrapolation in the range [−4,4] of a quadratic function with data trained
in the range [−2,2] with a ReLU NN trained with MSE loss only. b) we display the
interpolation range [−2,2] true function (solid), the model function (dashed), the slope
of the target function (dashdotted) and the slope of the model function (dotted).

(NN). In particular, NNs with rectified linear unit (ReLU) activation have desir-
able properties in terms of computational efficiency and conceptual simplicity so
that ReLU has become the standard activation function [6].

Here, we are concerned with the extrapolation of the model beyond the
range of the training data. We explore specifically linear extrapolation behaviour,
which is made possible by the ReLU activation function as opposed to previously
more common sigmoid functions (logistic function and tanh). When training
ReLU NNs to minimise the MSE, there are two problems that can be observed
in Fig. 1: (a) shows predictions inside and outside of the training data range
[−2,2] of five separately trained NNs with one hidden layer of 10 neurons, and
we observe a wide variation of behaviour outside the training data range, at least
for some models; (b) shows the value and slope of the model vs the target func-
tion in the training data range, where the slope of the model function deviates in
some places far from the true slope value. A solution to the extrapolation prob-
lem (a) has been proposed in the ReLEx method [10], which, however, increases
the computational complexity of the training and exacerbates the derivative
deviations (b).

The goal of this work is extend and improve over ReLEx with a method
that achieves desirable linear extrapolation as well as interpolation behaviour in
standard ReLU neural networks more effectively, more efficiently and with fewer
changes compared to standard neural network learning.

Our contributions are as follows: 1) we introduce improved extrapolation of
NN models through derivative alignment; 2) we propose DATE, a new method
to improve extrapolation in regression task with ReLU neural networks including
two new regularisation terms, LD1 and LIR; and 3) we provide an implemen-
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tation of DATE in PyTorch and an evaluation of learning five different target
functions with simple NNs using DATE.

2 Related Work

In supervised machine learning, over the last decade, neural networks (NN) have
been adopted for many machine learning problems [4,6]. However, neural net-
works display differences in behaviour when predicting a function between data
points and predicting a function for points outside the range of the training data.
We refer to prediction in the training data range as interpolation and outside the
training data range as extrapolation, (see, e.g., [1]). Some methods to address the
extrapolation problems for mathematical functions have been proposed by [15]
and [12], who introduce non-standard NN models with activation functions such
as identity and multiplication functions and achieve improved extrapolation.

A lack of extrapolation has also been observed in the context of linguistic
structures, where rules are not generalised between different words or syllables
[7,8,14,16], or when we need to extrapolate from even to odd numbers [13], or
when extrapolating Dyck language recognition to long sequences [3].

2.1 Extrapolation with ReLU NNs

The rectified linear unit (ReLU) function is the most popular activation func-
tion in modern neural networks [6], firstly introduced by [5] to the best of our
knowledge. The ReLU activation offers the possibility of performing unbounded
linear extrapolation that is not possible with bounded activation function like
the logistic sigmoid or tanh functions. However, NNs trained with MSE using
ReLU show high variability in the extrapolation, as illustrated above.

There is no single ideal extrapolation behaviour in the absence of a known
function outside the training data range. As we have decided to limit ourselves
to linear extrapolation, a possible target is the tangent line at the data point or
points. In addition, there are considerations with respect to the learning process
of NNs, where we adopt the desiderata from [10]:

– the NN should learn how to extrapolate from the training data;
– the NN should adapt the learning process making as little changes to the

network structure, activation functions and training process as possible;
– the method and implementation should be easy for practitioners to replicate

and use.

We also adopt the design decision of [10] to address the problem by changing
only the loss functions and not the structure of the NN itself.

2.2 Simple ReLU NNs and dying ReLUs

From here on, we consider a simple feed-forward ReLU neural network with a
single input, a single hidden layer (comprising H neurons), and a single output
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that calculates the function f(x,β) = bo +
∑H

h=1 who · ReLU(whx + bh), where
wh and bh are the weight and bias value of hidden neuron h, respectively. The
weight between hidden neuron h and the output neuron is who, while bo is the
bias of the output neuron. All these weights and biases make up the vector β.
We will also write ŷ in short for f(x,β).

The ReLU function, ReLU : R → R = max(x, 0), has two parts, for negative
arguments the output is constant 0, we call this the constant part of the ReLU.
For positive inputs x, the output is x and we call this the linear part of the
ReLU. At input 0, the ReLU is not differentiable, this is often referred to as the
non-linearity of the ReLU or the 0-point as defined below.

A known problem in NN learning is a dying ReLU, as described in [2,11].
This refers to a situation where all training data points lead to a negative input
to the ReLU function, so that it operates only in its constant part, where its
output is 0 and its derivative is 0. In this situation, the input weights of that
neuron will not be changed during learning by gradient descent. The linear part
of that neuron will therefore not depend on the data but only on the initialisation
of the weights. Examples of this are the observed variation of slopes outside the
data range in Fig. 1(a), where we plot the output over the range [−8,8] of the 5
NN training runs with different random initialisation. The specifics of the data,
networks and training are described below in Sect. 4. In (b), we plot the output
value and slope of a single trained NN and of the target function.

2.3 ReLEx and 0-Points

ReLEx, introduced in [10], is a method that aims to control extrapolation
behaviour by introducing additional loss functions, which mainly control the
position and orientation of the ReLU function in the hidden neurons. The results
show that the usage of the proposed loss functions improves the extrapolation
behaviour, but the method has limitations and requires tuning of several param-
eters. In addition, these loss terms increase the computational complexity com-
pared to training with MSE alone.

The ReLEx method, is focused on 0-points, i.e., the points in the input space
where the ReLU’s constant and linear parts meet and where the ReLU function
is non-linear. Formally, the 0-points are the input values xh0 that lead to input 0
for a hidden neuron h: 0 = wh ·xh0 + bh, so that the 0-point for hidden neuron h
is xh0 = −bh/wh.

The ReLEx regularisation introduces four individual loss terms Ll with asso-
ciated scaling parameters θl. They serve different purposes which we describe
here briefly. The formal definitions are listed in Table 1. The Centripetal loss
(LCP ) pulls all the 0-points inside the training data range; the Mutually
Repellent loss (LMR) is responsible for counter balancing the LCP force by
distributing the 0-points inside the training data range; the Weight Orienta-
tion loss (LWO) moves the 0-point for each ReLU so that the constant part
covers most of the data points and only data points close to the margins of the
training data range determine the slope of the extrapolation; lastly, the Weight
Sign loss (LWS) recovers from the degenerate case when all the weights have
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Table 1. The loss terms used in ReLEx improve extrapolation. K is the number of
data points. H is the number of hidden neurons. xh0 is the 0-point of hidden neuron
h (dependent only on the network weights wh and bh). x̄ is the average of the training
data. The complexity refers to a single calculation of the loss value.

Loss Name Symbol Definition Complexity

Centripetal LCP

∑H
h=1

∑K
k=1(xh0 − xk)2 O(HK)

Mutually RepellentLMR

∑H
h=1

∑H
j>i

1
(xh0−xj0)2+ε

O(H2)

Weight OrientationLWO −∑H
h=1 ReLU((xh0 − x̄) · wh + ε) O(H)

Weight Sign LWS (
∑H

h=1 wh)2 O(H)

the same sign (occurring on average only in 1 out of 2H−1 random initialisation
of a network with H hidden neurons).

3 DATE—Derivative Alignment Training
for Extrapolation

In this work, we explore a new approach to improve extrapolation, which involves
directly controlling the slope of the model function, and also a new approach to
avoid 0-points outside the data range. This helps to solve the two issues of NNs
for extrapolation illustrated previously (Fig. 1). To avoid the 0-points outside
the training data range, i.e. dying ReLUs, as shown in 1(a), we introduce a new
efficient loss term LIR. To improve the alignment of the slope of the target and
model, as shown in 1(b), we introduce a new loss term LD1. Optimising the
combination of D1 and IR losses constitute the DATE method.

3.1 LD1

The concept of derivative alignment has been introduced in [9] with a special
regularisation term, the DLoss. Here, we introduce D1-loss – LD1 – a univari-
ate version of DLoss. Like DLoss, LD1, penalises the deviation of the model’s
derivative from the target function derivative estimated from the training data
points. More formally, it is the sum of the squared differences between the model
derivative f̂ ′ – the first derivative of the model function f̂ – and an estimate of
the target derivative y′, based on the training data.

While DLoss uses sampling in the multi-dimensional case, there is a total
order of the input data in the univariate real case, so we can define the data
vector XY = [(x1, y1), . . . , (xK , yK)] ordered by the values of x.

Then, we estimate the first derivative of the target function y′ at k−1 points
x′ as the vector of pairs

XY ′ := [(x′
1, y

′
1, ), . . . , (x

′
k−1, y

′
k−1)] (1)
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where

(x′
k, y

′
k) =

(

(xk+1 + xk)/2, (yk+1 − yk)/(xk+1 − xk)
)

, (2)

i.e., we take y′
k, the slope of the line between two data consecutive points, as

the derivative value for argument x′
k, the mid-point between two consecutive

x-values.
Without additional assumptions, we do not know anything about the true

target function except for the provided data and, thus, cannot give any guar-
antees on how far the estimated derivative y′ may be from the true derivative.
However, if the true function f is differentiable, we do know that y′

k+1 is the
derivative value f ′(x) for some x ∈ [xk, xk+1] by the mean value theorem.

We calculate the model derivative f̂ ′ using the finite difference method with
a parameter ε as

f̂ ′(x) =
f̂(x + ε) − f̂(x − ε)

2ε
. (3)

We use ε = 0.05 as it is large enough to avoid numerical issues and suitable for
the curvature of the functions that we use in our experiments here. LD1 is then
defined as

LD1 =
∑

(x′,y′)∈XY ′

(
y′ − f̂ ′(x′)

)2 (4)

and with it we are able to approximate the local slope of the model function to
the local slope of the data with complexity of O(HK).

3.2 LIR

In Fig. 1(a) we saw undesired behaviour outside the data range. We are interested
in making sure that at least two data points are covered by the linear part of
every ReLU, so that the slope of the model in the extrapolation range will be
determined by the data.

To do so, in ReLEx, LCP tries to pull the 0-points inside the training range.
For higher θCP values, however, we have observed that all 0-points cluster around
the data mean. To counterbalance this effect LMR was introduced to equally
distribute the 0-points over the range.

To avoid 0-points outside the training data range, we introduce the Internal
Range loss LIR defined as:

LIR =
K∑

k=1

(
ReLU(−xk0 + L − τ) + ReLU(xk0 − R + τ)

)2
, (5)

where K is the number of hidden neurons, L and R are the most left point and
right point of the training data range respectively and τ defines the margin from
where data points within the training data range are covered. This loss pulls the
0-points outside the training data range toward the inside with margin τ .

Only hidden neurons where the 0-points fall outside of the training data
range with a margin τ are affected by LIR as opposed to LCP , where stronger
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weight drives 0-points toward the mean of the data set and LMR distributes
them, making the calibration of their relative weights necessary.

Another benefit of using LIR is that it has computational complexity O(K).
It fulfils the same function as LCP combined with LMR complexity is O(H2).
While the O(HK) complexity of LCP could be reduced to O(H) by using the
mean of the data instead of the individual points), LMR has complexity O(H2)
that cannot be reduced directly.

4 Experiments

We evaluate the effect of three different DATE configurations by training a
small ReLU NN on data sampled from analytical functions. The baselines are
standard NNs with MSE = 1

n

∑
y∈Y (y − ŷ)2 and ReLEx losses (as described

above). We run different experiments with settings described below.

Method. We chose ReLU-based NN with a single input, single output, and one
hidden linear layer with 10 neurons. To train it we use the Adam optimiser.

Data Generation. For this paper, we only consider noise-free data points
sampled from a specific mathematical function f(x). The training data range
of the input x is [−2, 2] with a fixed grid of 200 equidistant points. We use
five different functions lin f(x) = x, abs f(x) = |x|), pow f(x) = 1

5x2, sigm
f(x) = 1/(1 + e−x)), and (sin f(x) = sin(x)).

Hyper-Parameters. We use the following hyper-parameters for the training:
learning rate ε = 0.007; momentum ν = 0.9; and 700 epochs with mini-batch size
20. These parameters have shown in preliminary experiments to reliably achieve
convergence without major instabilities during the training process. We varied
θD1 = {0.1, 0.3, 0.5, 0.7, 0.9} to explore the effect of DATE. For the other losses
the parameters that we use in the experiments are those found in [10] to work
well, specifically θCP = 0.3, θMR = 10, θWO = 0.3, θWS = 0.1 and θIR = 5.

4.1 Evaluation Metrics

We use two types of metrics: interpolation and extrapolation metrics.

Interpolation metrics are calculated on the training data range [−2,2] where we
use 200 equidistant samples:

– MSEint: MSE of prediction against true value on a 200 feature points sampled
from a uniform distribution in the training data range;

– MSED1: MSE of model derivative against y′ on a 200 feature points sampled
from a uniform distribution in the training data range.
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Extrapolation metrics are calculated on the extrapolation set, which consists of
200 points, 100 sampled from a uniform distribution in the left [−10,−2] and 100
from the right [2, 10] extrapolation range. We calculate these metrics individually
for the right and left extrapolation set and their average.

The ranges of values the margins that determine the interpolation can make
a difference both for the extrapolation and the measurement. We can use a wider
range from the margin or use more local information. Less local extrapolations
will be more robust against noise in the data, but further away from the tangent
at the last data point. Therefore we use a spectrum of targets to measure the
precision of extrapolation. This is reflected in the different metrics calculated on
the extrapolation data range:

– Tanex: MSE of prediction against the tangent lines to the target function at
the margins of the training data range.

– WLRex: MSE of the model prediction against a weighted linear regression
(WLR) over the data points near the margin. In the WLR, we over-weight
data closer to the margins of the training data range. The weighting scheme
used is as per [10] Sect. 5.1, defined by a exponential function which allocates
weights rising exponentially toward the margin L and R of the training data
range. The weights are normalised to sum up to 1.

– D1ex: MSE of the model prediction against the line of the last two point with
slopes y′

1 for and y′
k−1.

The metrics reported are the average values obtained from 10 runs for each
experiment. In addition, we measure extrapolation consistency with the stan-
dard deviation of the slope of the linear regression over the (x, ŷ) points in the
extrapolation set. We do this, as before, separately on the negative and positive
extrapolation ranges.

– σS : is the extrapolation variability over 10 runs. It is calculated as the stan-
dard deviation of the slope resulting from the linear fitting over the predicted
values in the portion S of the extrapolation range, i.e. [−10,−2] for left and
[2, 10] for right.

4.2 DATE Configurations

We compare different configurations of DATE in order to evaluate the effects
of LD1 and LIR. We test MSE and ReLEx and three other different variants of
DATE. Below we describe each configuration.

DATE1: Full ReLEx + LD1. Here, we add LD1 to all ReLEx loss terms. We
hypothesise that LD1 will improve the derivative alignment and, thus, lead to
better extrapolation. The total loss function L is defined as:

L = ReLEx + θD1 LD1 +MSE (6)

DATE2: LWO + LWS + LIR + LD1. In this loss configuration, we replace the
LCP and LMR terms that are part of ReLEx with LIR. We hypothesise that
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this configuration should improve the adaptability within the training data range
compared to the ReLEx and DATE1. The total loss function L is defined as:

L = θWO LWO +θWS LWS +θIR LIR +θD1 LD1 +MSE (7)

DATE3: LWS + LIR + LD1. We hypothesise that LWO might not be needed,
as we do not have a strong theoretical justification for it. The total loss function
L is defined as:

L = θWS LWS +θIR LIR +θD1 LD1 +MSE (8)

While DATE1 includes LMR, its complexity is quadratic in terms of H,
O(H2), DATE2 and DATE3 use only LIR, with complexity O(K), i.e., lower
than the complexity of standard back-propagation (greater than O(HK)), so
that the overall complexity of DATE1 is reduced compared to DATE2 and
DATE3.

5 Results

We report the metrics as explained in previous section when applying different
loss configurations in Table 2. We show how each individual analytical function
behaves with the best parameters in Table 3.

In Table 2, we report results depending on different θD1for LD1. DATE2 is
the configuration which offers the best results (in bold) for MSEint and major-
ity of the extrapolation metrics. Using DATE1 provides the best result w.r.t.
WLRex and DATE3 provide the best MSED1 result.

In Table 3 we report results for each individual function obtained with the
best θD1 configuration for each function – selected to achieve the lowest MSED1

and make all the 0-points are inside the data range. We observe how linear
function lin and abs achieve best results across the interpolation metrics and
Tanex and D1ex with DATE1. For pow, sigm and sin the best results for
interpolation, Tanex and D1ex are obtained with DATE2 and DATE3. WLRex

remains the metric to be minimised by ReLEx.

6 Discussion

With the DATE approach, MSEint is in most cases improved. In DATE2

and DATE3, LIR is responsible for pulling 0-points toward the margins of the
training data range. We observe that using LIR is at least as effective as using
LCP+LMR. In DATE2, the LWO is apparently still useful because its results
show less variable extrapolation than DATE3.

Depending on the portion of the data range close to the margins that we con-
sider local, we can arbitrarily decide how much locally determined the extrapo-
lation target is. The Tanex and WLRex metrics for DATE1,2,3 are lower than
MSE and ReLEx training for all functions considered. We expect Tanex to be
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Table 2. Results with all θD1 settings as average across all analytic functions by
loss configuration. We report MSEint, MSED1 and Tanex, WLRex, D1ex metrics for
interpolation and extrapolation respectively. Results as average across all the functions
lin, pow, abs, sigm, sin.

Loss θD1 MSEint MSED1 Tanex WLRex D1ex

MSE 0.0 0.026 0.330 8.641 7.797 8.641

ReLEx 0.0 0.013 0.501 0.636 0.170 0.630

DATE1 0.1 0.009 0.192 0.583 0.166 0.578

0.3 0.008 0.141 0.548 0.164 0.544

0.5 0.008 0.126 0.507 0.179 0.503

0.7 0.011 0.127 0.497 0.172 0.494

0.9 0.011 0.128 0.483 0.187 0.479

DATE2 0.1 0.010 0.072 0.106 0.719 0.107

0.3 0.016 0.071 0.185 0.832 0.186

0.5 0.010 0.088 0.036 0.816 0.035

0.7 0.008 0.081 0.056 0.747 0.055

0.9 0.005 0.059 0.074 0.755 0.074

DATE3 0.1 0.014 0.118 0.782 1.263 0.782

0.3 0.020 0.065 0.195 0.737 0.190

0.5 0.020 0.081 0.183 0.755 0.182

0.7 0.011 0.053 0.114 0.806 0.114

0.9 0.012 0.068 0.101 0.748 0.100

lower for DATE2 and DATE3, because the slope modelled with these methods
will match more closely the one at the marginal of the data range. This is indeed
the case as shown in Table 2.

Figure 2 shows the convergence of the predicted function to the true function
in the range [−2, 2] on 5 runs DATE1, DATE2 and DATE3. These are obtained
with each of the models trained over 700 epochs with batch size of 20 and Adam
optimiser. In Fig. 2 we note that the slope of the model prediction in the training
data range for DATE1 (subfigure a) is not matching the slope of the target
function as well as to DATE2 and DATE3 (subfigures b and c).

Lastly, Fig. 3 shows the learning curves for DATE1, DATE2 and DATE3.
Compared to DATE1, MSED1 seems to reduce faster and be less variable across
multiple runs for DATE2 and DATE3. With DATE1 we have a more stable met-
rics toward the ends of the training, but at higher loss levels. With DATE2 and
DATE3, we observe more fluctuations toward the end of training for MSEint,
but at lower error levels. We also observe that the Tanex error is more controlled
at earlier stages for DATE1 but reaches lower error with DATE2 and DATE3.

Limitations. One of the fundamental assumption in DATE method is the con-
tinuation of the local linear trend at the boundary regions. The linear extrap-
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Table 3. Results with the best model parameters for each function. We report results
with MSEint and MSED1 metrics for interpolation: MSE on training set and D1-Loss,
respectively. We report results with Tanex, WLRex and D1ex metrics for extrapolation
with respect to tangent, weighted linear regression and slope respectively. We display
σR and σL, the extrapolation variability on the left and right side, separately because
certain functions are not symmetric. θD1 reported is the one which minimises the
MSED1.

f(x) Loss θD1 σR σL MSEint MSED1 Tanex WLRex D1ex

abs MSE - 0.047 0.134 0.004 0.347 2.268 2.341 2.282

ReLEx - 0.004 0.001 0.020 1.389 0.021 0.599 0.016

DATE1 0.5 0.000 0.001 0.001 0.080 0.001 0.432 0.000

DATE2 0.5 0.002 0.003 0.007 0.115 0.005 0.417 0.004

DATE3 0.5 0.004 0.010 0.023 0.100 0.016 0.417 0.016

lin MSE - 0.399 0.745 0.019 0.138 13.219 13.227 13.227

ReLEx - 0.003 0.003 0.002 0.152 0.005 0.002 0.002

DATE1 0.7 0.002 0.002 0.001 0.002 0.002 0.001 0.001

DATE2 0.7 0.002 0.003 0.004 0.073 0.007 0.007 0.007

DATE3 0.7 0.005 0.027 0.009 0.019 0.053 0.055 0.055

pow MSE - 0.490 0.459 0.081 0.808 8.974 5.317 8.958

ReLEx - 0.004 0.024 0.036 0.673 2.970 0.244 2.955

DATE1 0.5 0.027 0.008 0.038 0.511 2.376 0.460 2.362

DATE2 0.5 0.021 0.022 0.007 0.108 0.141 3.463 0.138

DATE3 0.7 0.055 0.024 0.011 0.097 0.206 3.272 0.202

sigm MSE - 1.873 1.527 0.006 0.219 5.522 4.874 5.511

ReLEx - 0.052 0.142 0.005 0.137 0.180 0.002 0.175

DATE1 0.3 0.014 0.045 0.002 0.034 0.154 0.003 0.149

DATE2 0.7 0.088 0.246 0.002 0.006 0.005 0.152 0.005

DATE3 0.7 0.074 1.527 0.017 0.021 0.020 0.139 0.019

sin MSE - 1.895 0.511 0.096 4.040 22.916 34.459 23.270

ReLEx - 0.016 0.010 0.499 8.972 0.605 14.676 0.879

DATE1 0.5 0.004 0.007 0.184 3.633 0.313 25.968 0.170

DATE2 0.7 0.004 0.034 0.023 0.796 2.924 37.808 2.448

DATE3 0.7 0.095 0.024 0.031 0.874 1.050 28.014 0.857

olation is a popular choice in many applications because of its simplicity. The
choice of loss function would need to be reconsidered under a non-linear assump-
tion. This would involve using non-linear activation functions and higher order
derivatives. The DATE method is so far only defined for univariate situation and
only for a single hidden layer. These are obviously severe limitation in practice
and will need to be addressed. However, as the goal extrapolation is already not
uniquely defined in the univariate case, in the multi-dimensional feature space,
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(a) DATE1 (b) DATE2 (c) DATE3

Fig. 2. Various models trained with DATE variations in (a)–(c) to approximate
a quadratic function. For presentation purposes, only the output range [−1, 1] is
accounted for.

DATE1

DATE2

DATE3

(a) MSEint (b) MSED1 (c) Tanex

Fig. 3. Learning curves from training on scaled quadratic function for DATE1, DATE2

and DATE3 respectively. The learning represented is the average over 5 runs with 700
epochs, batch size 20. The solid black line represents the average and the dotted lines
represents the percentile interval [20, 80].
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both, appropriate loss functions and metrics will be even more complex. The
DATE method assumes that the slope at the margins of the data range is most
important for the extrapolation. The reliance on slope at the margins will need
more attention in the case of real data, as is may amplify noise.

7 Conclusions

We propose DATE, a method which introduces two new loss terms to regularise
the behaviour of a ReLU network, such that it produces desirable linear extrap-
olations beyond the margins of the training data range. We have implemented
DATE in PyTorch and we have applied it to a network with a single hidden
layer of 10 neurons, single input, and single output. We have proposed different
metrics to measure the extrapolation, as well as interpolation, performance.

In ReLEx we observed that better extrapolation results were coming at the
cost of higher interpolation instability. We observe now with DATE how, in
general, consistent linear extrapolations paired with low interpolation error is
achieved. DATE has shown some preliminary benefits in the NN case and we
expect that DATE can be extended to other regression methods.

Although with DATE we have improved the complexity of the regularisation,
we have still some limitations to overcome with future work. Future work will
include the formulation of higher order derivative, extrapolation applied to mul-
tiple dimensions, different network structures and/or other regression methods
as well as working with classification problems.

References

1. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad,
H.: State-of-the-art in artificial neural network applications: a survey. Heliyon
4(11), e00938 (2018)

2. Douglas, S.C., Yu, J.: Why relu units sometimes die: analysis of single-unit error
backpropagation in neural networks. In: 2018 52nd Asilomar Conference on Signals,
Systems, and Computers, pp. 864–868. IEEE (2018)

3. El-Naggar, N., Madhyastha, P.S., Weyde, T.: Theoretical conditions and empirical
failure of bracket counting on long sequences with linear recurrent networks. In:
Conference of the European Chapter of the Association for Computational Lin-
guistics (2023)

4. Fan, J., Ma, C., Zhong, Y.: A selective overview of deep learning. Stat. Sci. A Rev.
J. Inst. Math. Stat. 36(2), 264–290 (2019)

5. Fukushima, K.: Cognitron: a self-organizing multilayer neural network. Biol.
Cybern. 20, 121–136 (1975)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

7. Lake, B., Baroni, M.: Generalization without systematicity: on the compositional
skills of sequence-to-sequence recurrent networks. In: International Conference on
Machine Learning, pp. 2873–2882. PMLR (2018)

8. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning
for domain generalization. In: AAAI Conference on Artificial Intelligence (2018)



DATE 143

9. Lopedoto, E., Shekhunov, M., Aksenov, V., Salako, K., Weyde, T.: Derivative-
based regularization for regression (2024)

10. Lopedoto, E., Weyde, T.: ReLEx: regularisation for linear extrapolation in neural
networks with rectified linear units. In: Bramer, M., Ellis, R. (eds.) SGAI 2020.
LNCS (LNAI), vol. 12498, pp. 159–165. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-63799-6 13

11. Lu, L., YeonjongSu, Y., Em Karniadakis, G.: Dying relu and initialization: theory
and numerical examples. Commun. Comput. Phys. 28(5), 1671–1706 (2020)

12. Madsen, A., Johansen, A.R.: Neural arithmetic units. In: International Conference
on Learning Representations (2020)

13. Marcus, G.F., Vijayan, S., Rao, S.B., Vishton, P.M.: Rule learning in 7-month-old
infants. Science 283, 77–80 (1999)

14. Mitchell, J., Stenetorp, P., Minervini, P., Riedel, S.: Extrapolation in NLP. In: Bisk,
Y., Levy, O., Yatskar, M. (eds.) Proceedings of the Workshop on Generalization
in the Age of Deep Learning, New Orleans, Louisiana, pp. 28–33. Association for
Computational Linguistics (2018)

15. Sahoo, S., Lampert, C., Martius, G.: Learning equations for extrapolation and
control. volume 80 of. Proceedings of Machine Learning Research, pp. 4442–4450

16. Suzgun, M., Belinkov, Y., Shieber, S.M.: On evaluating the generalization of LSTM
models in formal languages. In: Jarosz, G., Nelson, M., O’Connor, B., Pater, J.
(eds.) Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pp.
277–286 (2019)

https://doi.org/10.1007/978-3-030-63799-6_13
https://doi.org/10.1007/978-3-030-63799-6_13


Interactive Simulator Framework for XAI
Applications in Aquatic Environments

Ahmed H. Elsayed1(B) , Tarek A. El-Mihoub1 , Christoph Manss1 ,
Andre Miedtank1 , Lars Nolle1,2, and Frederic Stahl1

1 German Research Center for Artificial Intelligence GmbH (DFKI),
26129 Oldenburg, Lower Saxony, Germany

ahmed.elsayed@dfki.de
2 Department of Engineering Science, Jade University of Applied Sciences,

Wilhelmshaven, Germany

Abstract. Trust in Artificial Intelligence (AI) systems is essential for
their lasting success, and methods for understanding and justifying their
results are of paramount importance. This paper addresses this need by
presenting a simulation framework, where an interacting user is prompted
through an interface to describe and explain their actions depending on
different situations. This simulation framework can generate a dataset
annotated with explanations for training explainable AI models for mis-
sion planning. Firstly, This paper presents the development of a simula-
tor built with Unity3D. The simulator recreates an aquatic use case that
involves aquatic vessel mission planning for lake maintenance. There-
fore, the simulator randomises environmental conditions and simulates
various interactions with simulated boats on the lake. Secondly, the
paper introduces an annotation interface integrated into the simula-
tor to collect textual actions and their explanations. Here, a skipper
of a boat in the lake can describe and explain actions, which are then
captured together with the boat camera’s current view. In addition to
the captured image, instance and semantic segmentation of the boat’s
current view can be recorded as ground truth, along with bounding
box annotations of the objects in the simulator. The dataset is then
used to pinpoint these explanations in a visual context, i.e. generate
grounding visual explanations, through a multi-modal object detector,
i.e. MDETR or YOLO-World. The source code and the dataset for
explaining the skipper’s actions collected using the simulator is avail-
able at github.com/dfki-ni/aqua-sim-xai.

Keywords: XAI · Textual Explanation · Interactive Simulator ·
Unity3D

1 Introduction

In high-stakes domains, Artificial Intelligence (AI) models must provide reliable
estimations; otherwise, human end-users might make decisions based on inaccu-
rate or wrong predictions. Aquatic navigation is one of these domains, where AI
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models are being utilised [30]. Even though there are AI systems, which offer
explainability by design, e.g. rule-based AI systems [1], others operate as black
boxes, where reasoning is complicated [11]. 0Therefore, the prevalent black box
models have to be developed and aligned with methods for explainability such
that they eventually might transform into glass box models. Moreover, explain-
ability helps end-users to gain trust in the developed AI models.

Here, simulations might be of help. Simulations can mimic real-world scenar-
ios, especially in high-cost/less safe environments such as aquatic environments.
For example, in a simulator, visual reasoning of outputs of an AI model can
help build trust in a developed system. Additionally, visual reasoning provides
better comprehension for end-users who are less familiar with technical concepts
of the used models and algorithms [8]. Domain experts can also use these visual
aids to verify whether the outputs of the AI models are reasonable and helpful.
Thus, simulators can serve as a visualisation tool of aquatic environments that
enable the rapid development of applications and help verify complex algorithms’
outputs. The use of synthetic datasets to train AI models is becoming more com-
mon in the industry [28]. For instance, synthetic datasets are employed in the
autonomous car industry to train models and validate developed algorithms [29].
The paper contributes in two interconnected aspects:

1. A simulator framework is developed in Unity 3D to replicate a real-world lake
environment. First, this simulator provides a testing and evaluation environ-
ment for AI models and algorithms. Moreover, this framework can be used to
explain the behaviour of AI algorithms in the aquatic environment by visualis-
ing the different actions and decisions in various situations. Furthermore, the
simulator enables exploring the behaviour of various aquatic vehicles under
different conditions and scenarios. This framework can therefore help build
trust in the developed algorithms in a controlled environment before real-
world deployment.

2. The developed simulator also provides an interface for collecting textual
explanations, which function as ground truth explanations for future algo-
rithms [15]. The paper presents how a textual dataset can be generated, and
applied to train AI models to be explainable. In the end, an example scenario
is presented, where a human user manually steers a boat in the simulation
or can switch to autonomous navigation, and pauses to provide action justi-
fications through this interface to generate a dataset. The generated dataset
compares two multi-modal object detectors and grounds the textual explana-
tions visually using these detectors.

The paper is structured as follows. Section 2 shows related work with a focus on
textual explanations. Section 3 presents the developed simulator with the func-
tionality of domain randomisation. Section 4 explains how datasets for textual
annotations can be generated. Section 5 evaluates the collected dataset with two
open-world models for grounded explanations. Section 6 concludes the paper and
shows the future work.
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2 Related Work

In the context of eXplainable AI (XAI), the idea of explainability embodies
a flexible philosophical notion of ‘satisfying the subjective curiosity for causal
information’ [20]. The essence of explainability lies in facilitating comprehension
of the comprehensive attributes and limitations of AI models, thereby enabling
the anticipation of their behaviours and implementing corrective measures [32].
XAI often shares a common goal, which is making AI models’ behaviours under-
standable for users. It is broadly conceived as encompassing various techniques
aimed at enhancing the understandability of AI, including direct interpretabil-
ity, the generation of explanations or justifications, provision of transparency
information, behaviour visualisation, and more [21]. XAI has diverse techniques
that depend on the end-user’s level of expertise [9].

Visualisation techniques have been employed to reason decision processes
in AI models. Instead of presenting complex algorithms or abstract representa-
tions, visual explanations can provide instant and interpretable insights into the
decision process. Heatmaps and attention maps are the most common forms of
visual interpretations [6]. Through visualising the interactions between AI mod-
els and their environment, understanding of their functionality can be enhanced,
enabling the prediction of their behaviours.

For example, visualising the optimal path within a search environment can
serve as a good means of interpretation to justify different decisions taken during
path optimisation to achieve diverse objectives within the search constraints, e.g.
time constraints, fuel consumption, etc.

The combination of simulation and visualisation can help to provide counter-
factual explanations [7] and conduct what-if-analysis in visual forms. This can
help to build trust in AI models by revealing reasons for their estimations. Also,
it can help in acquiring deeper knowledge about the problem domain, which in
turn contributes to the development of more efficient and effective AI models.
Thus, visual simulation is a technique that can be considered as an approach
towards more interpretability for deep learning algorithms.

Visual simulation has been utilised for AI task planning explanation [26].
AI, particularly Deep Reinforcement Learning (DRL), has been utilised in path
planning for various case scenarios. In the domain of autonomous ship docking,
DRL with different XAI approaches was conducted [23]. However, these explana-
tions were found to be shallow, because they focus only on the technical aspects
such as the forces and the torques exerted by the ship’s thrusters, rather than
providing descriptive textual explanation. For example, in [12], an explainable
DRL algorithm has been developed for navigating an Unmanned Aerial Vehicle
(UAV) autonomously. This DRL algorithm generates both visual and textual
explanations to justify the actions of the UAV. Its visual explanation method
relies on feature attribution [27]. The textual explanations justify the UAV’s
actions by analysing the differences between the UAV’s current and previous
states.

Textual explainability has been investigated in the context of self-driving cars
as a method to increase trust and reliability by justifying the AI model’s decisions
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[18]. Several datasets were created and annotated to provide textual justification
of a car driver’s actions built on top of Berkely Deep Drive (BDD) datasets such
as [15] and [33]. These datasets served as ground truth for training an AI model
to generate textual explanations to explicitly explain its output [5,33].

For creating a textual explanation dataset for AI models, simulators can be
used to save time and cost by utilising synthetic data. To build realistic simula-
tors for the robotics industry, Game engines, such as Unreal Engine and Unity
3D can be utilised. Marine robotics is an example of using realistic simulators
such as HoloOcean [25] and Marus [22] for simulating harsh marine environ-
ments. These engines, originally designed for creating immersive game worlds
and utilised for enhanced graphical experience, are proving to be adaptable to
real-world applications. Since game engines are optimized for games and realistic
scene creation, their physics engines are reliable for achieving complex physics
simulations. On the other side, there are simulators such as Gazebo, which offers
better integration with robotics systems and a more capable physics engine but
lacks realistic visualisation when compared to game engines [4]. In this paper, we
leverage the capabilities of game engines to develop a simulator that recreates
an aquatic case scenario for testing and evaluating AI models in the following
section.

3 Framework Overview

Fig. 1. System overview of the explainable simulation framework.

The interactive explainable framework, illustrated in Fig. 1, can be separated into
the backend and the frontend. The backend utilises the Robot Operating System
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(ROS) 2 framework as middleware for communication. The frontend consists of
a Unity3D simulator with an eXplainability User Interface (XUI) integrated.1

In the simulation environment, an operator controls an integrated aquatic
vehicle. The operator can generate textual annotations detailing the actions
performed. Additionally, explanations for these actions can be provided. These
annotations and explanations are captured across various navigation scenarios
using the XUI. They are stored in a database to serve later as a dataset, which
comprises an image, an action, and an action justification.

The following sections provide a more detailed description of the frontend and
the backend together with their key features. This is followed by a description
of the domain randomisation and how the dataset is generated through this
simulation.

(a) (b)

Fig. 2. Lake Maschsee in a) Open Street Maps, and b) the simulation in Unity3D.

(a) (b)

Fig. 3. a) Berky Weed Harvester in operation at Lake Maschsee. b) Simulation of the
Berky weed harvester in a virtual Lake Maschsee environment.

1 https://www.unity.com, accessed on: 19-06-2024.

https://www.unity.com


Interactive Simulator Framework for XAI Applications 149

3.1 Frontend: Unity3D

The simulator is implemented in the Unity3D game engine, selected for its ease
of use and the availability of open-source packages for integration with ROS. The
simulator replicates the lake Maschsee in Hanover, Germany, with the coordi-
nates from Open Street Maps2 (see Fig. 2). The simulator models the water main-
tenance scene scenario using a weed harvester from Berky3 as shown in Fig. 3.
Leveraging Unity’s High Definition Render Pipeline (HDRP), high-fidelity ren-
dering of water features is achieved, providing a realistic simulation environment.
The simulator’s modularity enables modifying obstacles’ location and environ-
mental conditions, such as weather, to evaluate diverse scenarios. Additionally,
the simulator includes dynamic obstacles, such as moving boats on the lake,
providing a means to demonstrate the credibility and reliability necessary for
aquatic surface vehicles to operate under various conditions.

3.2 Backend: Robot Operating System

The backend features a connection to the simulation through ROS 2, a meta-
framework where software, denoted as nodes, communicates through messages.
This makes ROS 2 programming language agnostic. Moreover, many algorithms
and sensors provide a ROS 2 interface, which facilitates the development and
users can test their algorithms without the need for extensive coding. ROS 2
is selected over ROS 1 as the main middleware for Unity3D, as ROS 2 can be
used in distributed real-time applications due to the Data Distributed Service
(DDS) [24]. Moreover, ROS 2 has a better Quality of Service (QoS), which
allows for more reliable messages. Compatibility with ROS 1 is achieved via a
ROS 1/2 bridge, which enables seamless integration between these two versions.
The communication between the frontend and the backend is carried out through
a ROS TCP connector.4 This way, Machine Learning (ML) algorithms and AI
models can be tested, implemented, and observed in the Unity3D simulator while
using the ROS 2 environment.

3.3 Domain Randomisation

To address the reality gap between synthetic data generated from the presented
simulator and the real-world data, domain randomisation is utilised to create
variability in the output data [31]. This requires the simulator to incorporate
different scenarios, e.g. different weather conditions as illustrated in Fig. 4. Addi-
tionally, users can adjust the visibility of the lake directly within the simulator
settings.

2 https://www.openstreetmap.org, accessed on: 19-06-2024.
3 https://www.berky.de/en/mowing-boats-and-weed-harvester, accessed on: 19-06-

2024.
4 https://github.com/Unity-Technologies/ROS-TCP-Endpoint, accessed on: 19-06-

2024.

https://www.openstreetmap.org
https://www.berky.de/en/mowing-boats-and-weed-harvester
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
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(a) (b)

Fig. 4. Example of different weather conditions in the simulator [a] Foggy night [b]
Full moon night.

To mimic real-world scenarios and enhance domain randomisation, various
situations can be introduced within the simulated environment. For instance,
autonomous patrol boats equipped with collision avoidance systems could navi-
gate the lake using the Unity AI Navigation package.5 These patrol boats dynam-
ically avoid collisions with other vehicles, leading to unpredictable scenarios.
Some of these autonomous boats deliberately operate without collision avoid-
ance, forcing the simulator’s user to react to potential collisions. This approach
ensures a diverse dataset with a range of challenging situations.

4 Dataset Generation

This section presents the workflow of the annotation process as well as the result-
ing dataset. The dataset is aimed at textual explainability of the aquatic vehicle’s
actions.

Fig. 5. Simulation output using Unity Perception Package. Images from left to right:
original, instance segmentation, and semantic segmentation.

5 https://docs.unity3d.com/Packages/com.unity.ai.navigation@2.0, accessed on: 19-
06-2024.

https://docs.unity3d.com/Packages/com.unity.ai.navigation@2.0
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4.1 Annotation Process

The open-source Unity perception package (see Fig. 1) is used for extracting
ground truth data from the simulation environment [2]. The ground truth images
dataset consists of Instance Segmentation, Semantic Segmentation, and the orig-
inal image as shown in Fig. 5. Semantic segmentation classifies the image pixels
and assigns them to the object class (category). Instance Segmentation assigns
each pixel in the image to the specific object it belongs, aiming to delineate
individual objects [10]. Combining information about object categories and indi-
vidual object instances from panoptic segmentation [16]. All these segmentation
techniques aim to aid computer vision techniques for better scene understanding.

To generate a dataset, an operator controls an aquatic vehicle and can add
justifications for the action taken through an interface - the XUI. The XUI is
overlaid on top of the running simulation, as visualised in Fig. 6.

Fig. 6. eXplainability User Interface (XUI) in Unity, where users can type the action
and the justification in the corresponding fields, see on the right of the figure.

To provide more freedom and ease of use of the simulator to the operator,
two modes are implemented. In the first mode, Free Roaming, the operator
controls the aquatic vessel and roams freely through the simulation. Here, the
operator can pause the simulation and annotate the current view with actions
and justifications for their decisions. The second mode is Autonomous Navi-
gation, where the vehicle navigates autonomously, utilising the Unity AI Navi-
gation system. This mode saves the operator’s effort to navigate and annotate.
Thus, this eliminates the need for manual navigation. The operator may leave
the autonomous option set to ‘ON’, pause the simulation, and annotate at their
convenience. To narrow down the options for the user, 7 actions, 7 justifications,
and 3 weather conditions are predefined, as shown in Table 1. This approach is
adopted due to the possibility of multiple ways to describe the same scenario.
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Table 1. Predefined list of actions and justifications with weather conditions

Justification Action Weather Condition

To avoid collision with underwater rocks Forward (F) Day

To avoid the boat coming from the northeast Right (R) Night

To avoid the boat coming from the northwest Left (L) Fog

To avoid collision with crossing boat(s) Stop (S) -

Shore on the left Move (R, L, F) -

Shore on the right Move (R, F) -

Nothing in the way Move (L, F) -

Table 2. Sample of the resulting dataset

4.2 The Resulting Dataset

To assess the outcomes of the textual ground truth dataset generation, a qual-
itative methodology was employed (see Sect. 5). Exemplary pairings of image,
action, and justification were used for evaluation. These pairings include vari-
ous scenarios and diverse weather conditions, contributing to a comprehensive
analysis. Given the complexity of AI systems, it is beneficial for these systems
to describe their actions in a human-understandable way. Explanations can be
provided through methods like question answering [19] or situation descriptions
[15]. There are already some datasets that aim at textual explanations, but often
they are not for aquatic use cases [15,33]. This work provides a possibility to
generate a dataset for textual explanation in aquatic environments. This dataset
could build the foundation for systems that explain the behaviour of an AI path
planning. Table 2 shows a sample of the resulting dataset. Each entry includes an
image identifier, the image path, the corresponding action taken, the justification
for that action, and the weather conditions during the scenario.
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5 Dataset Evaluation for XAI Applications

The collected dataset can be used as an example for grounding visual expla-
nations for the current situation [13]. For instance, an AI multi-modal object
detector can be trained to provide useful justifications to the end-users for their
actions. The dataset used in this context is evaluated by using YOLO-World
[3] and MDETR [14]. YOLO-World is a real-time open-vocabulary object detec-
tor, that we utilise to ground visual explanations based on the collected dataset.
MDETR is a deep learning model that processes both text and image data simul-
taneously, allowing it to relate descriptions in the text to corresponding elements
in the image. Both object detectors use the information from the text input to
guide the detection process. Through this, the detectors focus on objects relevant
to the text to improve their accuracy. They effectively combine and analyse the
information from the image and the text. These algorithms are valuable tools
for tasks that require understanding the interplay between language and vision.

In this work, multi-modal object detectors are used as referring expression
comprehension models to detect the objects mentioned in justifying the action
taken. To assess the accuracy and reliability of these models in grounding visual
explanations, a subset of 68 images were selected from the dataset, providing
each model with text justifications corresponding to the actions depicted in the
images. MDETR achieved a higher Precision of 91.25% and Recall of 89.02%,
outperforming YOLO-World, which achieved 57.14% and 51.28%, respectively.
Table 3 presents qualitative results comparing MDETR and YOLO-World to
assess the visually grounded explanations.

Our evaluation shows that both models can pinpoint the justifications that
explain the actions to different degrees. For instance, YOLO-World can detect
weather conditions, unlike MDETR. On the other hand, MDETR’s pre-trained
model cannot detect instances of ‘nothing in the way’, as it is not trained on
negative samples, unlike YOLO-World. Moreover, YOLO-World provides a com-
prehensive explanation of the action, while MDETR highlights part of the expla-
nation. Notably, MDETR pre-trained model confidence scores may not reliably
indicate detection accuracy; for instance, it mistakenly identifies a lake with
underwater rocks with 99% confidence. This means we cannot rely on the con-
fidence score of the MDETR pre-trained model to judge the correctness of the
detection. In the case of ‘Collision with crossing boats’, YOLO-World detected
only two boats, while MDETR detected six boats. However, not all the detected
boats might pose a collision risk. These findings show that these multi-modal
object detectors can serve as preliminary verification tools for evaluating the cor-
rectness of the collected dataset. However, we cannot completely rely on them;
a human would need to approve these verifications and select the main cause of
the action’s justification.
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Table 3. Grounded Visual Explanations for the resulting dataset using MDETR and
YOLO-World
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6 Conclusion and Future Work

This paper presented an interactive simulator framework based on Unity3D,
which recreates an aquatic scenario of a real lake. Users can drive a boat and
provide textual justifications for their driving actions. This way, the users gen-
erate a synthetic dataset consisting of images, actions, and actions’ justification.
The resulting dataset is evaluated through a qualitative analysis using multi-
modal object detectors such as MDETR and YOLO-World. Without further
training on our dataset, these models provided grounded visual explanations,
allowing for a comparison.

While the simulator is currently operational, further refinement is necessary
to enhance its user interface. Future enhancements include adding diverse scenar-
ios for different lakes and open seas. Additionally, integrating microphone input
will enable real-time audio explanations, reducing user interruptions compared
to typed input [17]. An important feature for future development is to ground
the explanations visually using bounding boxes and pinpoint the justification to
that bounding box. For instance, if a crossing boat is the cause of why the boat
has stopped, then, in the ground truth dataset in addition to the image, a bound-
ing box is drawn around that specific crossing boat. This will facilitate deeper
comparisons between different multi-modal detectors that provide a grounded
explanation.

This framework could serve as a benchmark for explainability in larger ship
vessels, addressing real-world scenarios and enhancing trust in AI-driven autopi-
lot systems. The generated dataset will be used to develop the HAI-X system,
focusing on explainability in path planning for weeding boats on Lake Maschsee
to gain trust in the developed AI models.
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the BMBF (Funding number: 01IW23003). We acknowledge the creators of the ‘Rock
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Abstract. Artificial intelligence (AI) has seen a significant surge in pop-
ularity, particularly in its application to medicine. This study explores
AI’s role in diagnosing leukoencephalopathy, a small vessel disease of the
brain, and a leading cause of vascular dementia and hemorrhagic strokes.
We utilized a dataset of approximately 1200 patients with axial brain CT
scans to train convolutional neural networks (CNNs) for binary disease
classification. Addressing the challenge of varying scan dimensions due
to different patient physiologies, we processed the data to a uniform size
and applied three preprocessing methods to improve model accuracy.
We compared four neural network architectures: ResNet50, ResNet50
3D, ConvNext, and Densenet. The ConvNext model achieved the high-
est accuracy of 98.5% without any preprocessing, outperforming models
with 3D convolutions. To gain insights into model decision-making, we
implemented Grad-CAM heatmaps, which highlighted the focus areas of
the models on the scans. Our results demonstrate that AI, particularly
the ConvNext architecture, can significantly enhance diagnostic accu-
racy for leukoencephalopathy. This study underscores AI’s potential in
advancing diagnostic methodologies for brain diseases and highlights the
effectiveness of CNNs in medical imaging applications.

Keywords: CNN · Leukoencephalopathy · CT scans · Grad-CAM

1 Introduction

The rapid advancement and integration of artificial intelligence (AI) in various
fields have notably impacted medicine. AI technologies are transforming diag-
nostic approaches and patient care, offering new insights into complex medical
conditions. One such condition is leukoencephalopathy, a disease of small brain
vessels also known as cerebral microangiopathy. This condition is the most com-
mon cause of vascular dementia and a major contributor to hemorrhagic strokes,
necessitating effective diagnostic tools. Figure 1 illustrates two CT brain scans:
one with marked leukoencephalopathy and a comparative slice without it.

Current diagnostic methods for leukoencephalopathy rely heavily on brain
imaging techniques such as computed tomography (CT) scans. However, the
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Fig. 1. Leukoencephalopathy on a CT scan - the left image shows a brain slice with
leukoencephalopathy marked in a white circle; the right image shows a brain slice
without leukoencephalopathy

interpretation of these scans requires significant expertise and can be time-
consuming. AI, particularly convolutional neural networks (CNNs), offers a pro-
mising solution by automating and potentially improving the accuracy of such
diagnoses.

In this study, we leverage a dataset of approximately 1200 patients with axial
brain CT scans to train CNN models for the binary classification of leukoen-
cephalopathy. We address challenges such as varying scan dimensions due to
different patient physiologies by preprocessing the data to a uniform size. Fur-
thermore, we employ three different preprocessing methods to enhance model
accuracy and compare the performance of four neural network architectures:
ResNet50 [8], ResNet50 3D, ConvNext [11], and Densenet [9].

Our findings indicate that the ConvNext architecture achieved the high-
est classification accuracy of 98.6% without any preprocessing. We also utilized
Grad-CAM to generate heatmaps, providing insights into the regions of the scans
that the models focused on during classification. This research underscores the
potential of AI in advancing diagnostic methodologies for brain diseases, par-
ticularly leukoencephalopathy, and sets the stage for further exploration and
refinement of AI-driven diagnostic tools in clinical settings.

2 Related Work

Leukoencephalopathy is an active research area. Recent 2024 studies include
neurosurgical perspectives on cerebral calcifications and cysts [16], atypical MRI
features in progressive multifocal leukoencephalopathy, and advanced imaging
techniques for chemoradiotherapy-induced leukoencephalopathy [4].
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2.1 Medical Image Processing

In this section, we review previous approaches and studies in the field of artificial
intelligence that have influenced our work. The article [6] addresses the classi-
fication of brain CT scans into hemorrhagic, ischemic, and normal categories.
It tackles two main areas: image preprocessing and image classification using
neural networks.

The proposed approach for medical image preprocessing (CT slices) focuses
on removing contrast abnormalities to improve classification accuracy. This
involves creating two copies of input images, performing contrast adjustments
for better visualization on the first copy, and applying average filtering on the
second. The preprocessed images are then merged together to form a single
image.

Regarding model architectures, the article introduces a newly proposed archi-
tecture of convolutional neural networks called P CNN. Unlike other deep learn-
ing architectures, P CNN can process CT scan images without resizing them,
which is crucial for preserving image quality. The architecture includes the use
of 96 filters in the second layer, convolution with the input layer, ReLU acti-
vation, and max pooling. The article also compares P CNN with other CNN
architectures such as AlexNet and ResNet50.

Overall, this approach involves a detailed algorithm for image preprocessing
and the use of the P CNN framework for image classification.

In article [17], the authors described a model for lung cancer classification
trained on CT scans. They outlined the process of working with CT scans in
DICOM format and their conversion into Hounsfield units.

Article [15] focuses on developing deep convolutional neural networks for
detecting COVID-19 from medical images, proposing a single architecture for
both CT scans and X-ray images simultaneously. The authors discuss the impor-
tance of rapid and reliable COVID-19 detection, emphasizing the need for effec-
tive tools for the diagnosis and monitoring of this disease. They highlight the
significance of comparing COVID-19 with other coronavirus diseases to bet-
ter understand its characteristics and spread. The article describes a proposed
deep neural network, experimentation methods, and achieved results, focusing
on optimizing parameters for the best model performance.

The proposed neural network in the article consists of 3 alternating convolu-
tional and pooling layers. The convolutional layers had 32, 16, and 8 filters with
sizes of 5 × 5, 4 × 4, and 3 × 3, respectively, using ReLU activation.

Within the article, the authors compared their proposed model with other
architectures like InceptionV3, MobileNet, and ResNet, where their model out-
performed all others with an accuracy of 96.28%. Additionally, their proposed
model had significantly fewer parameters compared to other model architectures.

In further research [19], a convolutional neural network was proposed for
the binary classification of chest CT scans into COVID-19 positive and negative
cases. The dataset used in the article consisted of 746 CT scans collected from 216
patients, including 349 images from COVID-19-infected patients and 397 from
non-infected patients. The images varied in dimensions, with heights ranging
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from 153 to 1853 and widths from 153 to 1485. These images were collected by
a radiologist in Wuhan during the COVID-19 outbreak from January to April
2020 and are publicly available for research.

For model training, all images were resized to a uniform size of 150 × 150
pixels and labeled according to classes 0 (negative) and 1 (positive). The entire
dataset was then split into a training subset comprising 80% of the total dataset
and a testing subset comprising 20%. Both divided datasets were normalized
between values of 0–1.

The authors employed algorithms for binary classification using CNNs with
hyperparameters to achieve higher accuracy in detecting COVID-19. The algo-
rithm involved tuning hyperparameters such as different numbers of epochs,
batch sizes, and various optimizers. The trained model with the best parameters
achieved an accuracy of 86.9%.

3 Dataset

We have acquired a dataset of CT scans from the hospital of St. Cyril and
Methodius in Bratislava. The dataset consisted of 1244 folders, each named
with a numerical identifier (ID) representing anonymized patients. Each patient’s
folder contained .DCM (DICOM) files for individual scan slices and a .json file
with the same numerical identifier, which included metadata such as medical
findings, examination number, and the doctor’s name. This study focused exclu-
sively on brain slices in a specific plane, filtering out other body parts or planes.

Medical imaging data, particularly CT scans, are usually stored in DICOM
(Digital Imaging and Communications in Medicine) format. This standard is
widely used in modern medical imaging devices due to its ease of integration
and continuous development. DICOM files, represented as “.dcm”, consist of
a header and image data encapsulated in one file. The header contains patient
demographics, acquisition parameters, image dimensions, and intensity data nec-
essary for proper image display. This encapsulation ensures that image data can-
not be separated from the header, maintaining the integrity and context of the
image.

CT scan data are expressed in Hounsfield Units (HU), which are linear trans-
formations of measured X-ray absorption coefficients relative to water. These
units serve as gray levels in the voxels of CT images. A voxel, or volumetric
pixel, is a data point on a three-dimensional grid. In CT imaging, voxels rep-
resent the varying densities within the scanned volume, providing a detailed
three-dimensional representation of the scanned area. Bones appear lighter on
CT images due to their higher density and greater radiation absorption, while
water and air appear darker. The standard conversion formula for calculating
HU for any material is:

HU =
µ − µwater

µwater − µair
× 1000 (1)

where µ is the absorption coefficient of the examined region.
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Fig. 2. Example of Hounsfield Unit values in different brain regions. From top to
bottom, the values are for bone, white matter, muscle, gray matter, hemorrhage, water,
fat, and air [10].

4 CNN Architectures

Convolutional Neural Networks (CNNs) are the cornerstone of many successful
applications in image processing. Among the most well-known architectures are
ResNet50, DenseNet, VGGNet, and ConvNeXt, all of which have significantly
advanced the field of computer vision. Below, we briefly describe the architec-
tures utilized in this work.

ResNet50 is a foundational CNN architecture that employs residual blocks
to enhance the efficiency of deep learning. This architecture includes 50 lay-
ers, comprising convolutional and fully connected layers. Residual blocks enable
information to be transmitted through multiple layers of the network without
loss or learning difficulties. This approach helps address the vanishing gradient
problem in deep neural networks, where adding more layers can lead to poorer
performance due to learning issues [7].

DenseNet is another prominent CNN architecture consisting of transition
layers and dense blocks. Each convolutional layer in a dense block is connected
to all other layers within the block. This unique mechanism enhances the net-
work’s learning capacity by repeatedly leveraging features and reducing param-
eter requirements, thereby improving gradient flow during training [20].

ConvNeXt (Convolutional Neural Network eXtended) represents an inno-
vative architecture that significantly pushes the boundaries of CNNs. ConvNeXt
combines CNNs and transformers to leverage the strengths of both architec-
tures. It employs bottleneck layers inspired by transformer architecture, where
the number of elements is downsampled and upsampled, along with deep convo-
lutions and residual blocks. Unlike traditional CNNs that heavily use Rectified
Linear Units (ReLU), ConvNeXt replaces ReLU with Gaussian Error Linear
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Units (GeLU). The hybrid nature of ConvNeXt allows it to achieve superior
results in various computer vision tasks [2,12].

These architectures represent a fundamental part of the rich spectrum of
CNNs that have a significant impact on the field of computer vision. Each has
unique features and advantages tailored to different tasks and application needs
in image processing.

All the mentioned architectures are typically designed with 2D convolutional
layers; however, in our work, we also explored their 3D convolutional counter-
parts. CNN architectures may have specific requirements for minimum image
size due to their configuration and filter schemes, which are critical for their
efficiency and performance. Filtering local parts of an image with small ker-
nels in convolutional layers can be more challenging with smaller dimensions,
potentially degrading the network’s ability to capture relevant patterns [1].

5 Data Preprocessing

In this session, we will describe data preprocessing done before training the
CNN model. Data preprocessing is essential in preparing medical imaging data
for machine learning models. This process ensures that the data is standardized
and optimized for effective model training and analysis. In our study, we adopted
several preprocessing steps to enhance the quality and consistency of the input
data.

5.1 Depth Normalization

Initially, all brain images of each patient were standardized to a uniform depth,
which represents the number of stacked 2D slices in the final 3D image. The
variation in depth is due to differences in head sizes among patients and varia-
tions in the determination of scan start/end points by technicians before each
CT scan (initial images typically show only air-black).

The central slice and the surrounding slices were chosen based on the depth
and center position parameters as follows: We set the center position of the
new volume to 3

5 of the total number of slices n from the start of the skull to the
neck. Therefore, the central p-th slice is calculated as p = n × center position.
We then select p± depth

2 slices from this central slice. In our settings, depth was
set to 30 slices.

5.2 Resizing Scans

Then we resize the images to ensure uniform dimensions, a crucial step for
machine learning models requiring fixed-size inputs. In our study, most patient
scan slices had dimensions of 512 × 512 × depth, with depth varying per patient
due to physiological differences. However, we encountered instances where scan
dimensions were 512×600×depth. These outliers needed to be resized to match
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the majority dimension to facilitate their inclusion in tensors for further pro-
cessing.

Beyond ensuring uniform dimensions, resizing images is crucial for computa-
tional efficiency. Reducing the size of large images can significantly decrease the
computational resources required for training and inference in machine learning
models. Smaller images typically lead to faster training times and lower memory
consumption, which is especially beneficial when working with large datasets.
Therefore, we reduced the image size to 256 × 256, optimizing for consistency
and computational efficiency.

5.3 Pixel Value Rescaling

We selected only the pixel values (x) from the interval < 0, 100 > and normalized
them to the range < 0, 1 > using the formula

x =

⎧
⎪⎨

⎪⎩

1 if x >= 100
0 if x < 0
x/100 else

(2)

5.4 Preprocessing A

In our study, we utilized different combinations of preprocessing methods. In
the first approach, we applied only the common preprocessing steps mentioned
above.

5.5 Preprocessing B - with Filtering and Morphological Operations

In the second approach, we added the following image processing steps in addi-
tion to the common preprocessing steps:

– Filtering: We removed pixels that represented calcifications, skull, and water,
following the formula:

x =

⎧
⎪⎨

⎪⎩

0 if x ≥ 0.8
0 if x ≤ 0.18
x otherwise

(3)

– Morphological operation: We applied the morphological opening operation
with a structuring element of size 4× 4. This operation helps reduce noise by
performing erosion followed by dilation, thus enhancing the target areas.

5.6 Preprocessing C - with Mean Filtering and Contrast
Adjustment

In the third approach, we applied mean filtering and contrast adjustment in
addition to the common preprocessing steps.
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– Mean filtering: We applied a mean filter with a kernel size of 3 × 3 to reduce
noise and smooth the images.

– Contrast adjustment: We adjusted the image contrast by stretching the inten-
sity range between the darker regions (pixel values around low = 0.15) and the
lighter regions (pixel values around high = 0.65). This technique, inspired by
skimage’s rescale intensity function, enhances the visibility of critical struc-
tures within the scans.

– Filtering: We removed all pixels with a value of x = 1 to eliminate irrelevant
areas such as the skull.

5.7 Data Augmentation

Data augmentation is a crucial technique in training convolutional neural net-
works (CNNs), which are known for their high data requirements. It involves
applying diverse transformations to existing images to enhance the diversity of
the training dataset. This helps CNNs generalize better to different variations
in input data and improves their performance on unseen test data. Augmenta-
tion is especially beneficial when the training dataset is limited in size, effectively
increasing its size and reducing overfitting. Common augmentations include rota-
tion, scaling, flipping, and adding noise [5,13].

In our study, we applied rotation to simulate variations in patient position-
ing during scans, ensuring our models learn robust features. We also used hor-
izontal flipping to account for the absence of statistically dominant findings of
leukoencephalopathy on a specific side of the brain. These augmentations aimed
to enhance the model’s ability to generalize across different orientations and
conditions encountered in medical imaging analysis.

6 Training Details and Obtained Results

We divided the data into three subsets without further modifications: training,
validation, and testing in the ratios 70 : 15 : 15. Class balance was maintained
naturally as the dataset contained a near 1:1 ratio of patients with leukoen-
cephalopathy (633) and without (611). No additional class weighting was applied
during training, but we ensured an equal distribution across the training, vali-
dation, and test sets.

The architectures we compared were ResNet50, ResNet50 3D, ConvNext
DenseNet. For training 2D models, we identified the following optimal hyper-
parameters: a learning rate of 10−5, the Adam optimizer, a batch size of 64, and
50 epochs.

For training the 3D model, the optimal hyperparameters were a learning
rate of 10−5, the Adam optimizer, a batch size of 2, and 50 epochs.

During each training session, we utilized early stopping when the model’s
performance ceased to improve after several epochs.

For our training, we used pre-trained models with weights from the ImageNet
dataset, which consists of color images with 3 channels. To match this format,
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we replicated our grayscale data three times to create the necessary number of
channels.

A significant issue encountered was overfitting during the training of 3D
models. Approximately 1000 data samples were used for training, and the model
struggled to generalize well on new data.

6.1 Evaluation

In this section, we evaluate the performance of model architectures on the pre-
processed data. We used binary accuracy as our accuracy metric, which measures
how often the predicted values ypred match the actual values ytrue. Mathemati-
cally, it is defined as:

binaryaccuracy =
count(ypred == ytrue)

n
(4)

where n is the total number of elements in the test set. We used binary cross-
entropy (BCE) as the loss function, which is commonly used in binary classifi-
cation problems. BCE measures the dissimilarity between the true classes and
the predicted ones.

It is important to note that we evaluated the classification accuracy of the
models on individual slices in the case of 2D models and on selected slices for
the 3D models. The slice selection method is described in Sect. 5.1. This means
we did not evaluate the accuracy of classifying individual patients based on their
CT scans.

It is important to clarify that our evaluation focused on the classification
accuracy of individual CT slices rather than entire patient scans. For 2D models,
we assessed accuracy on each slice separately, while for 3D models, only a selected
subset of slices was evaluated, as described in Sect. 5.1. This approach means that
patients could be represented by multiple slices, potentially leading to multiple
evaluations for a single patient. Thus, the reported accuracy reflects slice-level
performance, not patient-level diagnosis.

The results of training various model architectures using data preprocessing
type A, B, and C are shown in Table 1.

Table 1. Results on validation data set preprocessed using methods A, B and C

Model ResNet50 ResNet50 3D ConvNeXt DenseNet

preprocessing A AVG 92.5% 75.7% 95.9% 93.3%

BEST 95.7% 79.0% 98.6% 94.5%

preprocessing B AVG 85.5% 74.4% 87.3% 84.0%

BEST 86.0% 79.0% 88.2% 85.9%

preprocessing C AVG 90.9% 74.4% 86.4% 89.4%

BEST 92.5% 76.6% 89.6% 90.3%
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The recorded results were obtained from the classification accuracy on the
validation set, which matched the accuracy on the test data within a deviation
of ±3%. The evaluation of the models consisted of more than 8 trained models
in each case, meaning that the AVG row in the tables represents the average
accuracy results of the models on the validation data from more than 8 different
training sessions of the same model and training parameters. The BEST row
indicates the best results among these training sessions.

Table 2. Results on test data set preprocessed using methods A, B and C

Model ResNet50 ResNet50 3D ConvNeXt

preprocessing A AVG 94.1% 71.7% 92.6%

BEST 94,7% 77.6% 98.5%

preprocessing B AVG 88.8% 75.2% 87.3%

BEST 91.4% 75.8% 88.1%

preprocessing C AVG 87.2% 74.8% 87.2%

BEST 88.2% 78.3% 89.3%

The results on the test set are shown in Table 2. Models of all architec-
tures achieved the best results without any data preprocessing. The overall best-
performing model, with an accuracy of 98.5% on the test set, was the ConvNeXt
architecture.

A few words on model accuracy. The trained models aim not to replace
doctors but to provide an objective tool for aiding diagnosis. Therefore, the
model should ideally have as few false negatives as possible, even at the cost of
higher false positives, which a doctor can then review. The problem arises when
the model fails to identify a patient who should be classified as positive.

6.2 Discussion

The main issue in this study was the small dataset specific to the problem.
Training models with architectures using 3D convolutional layers often led to
overfitting, even with increased regularization or data augmentation.

Another significant challenge was the selection of slices (images) for train-
ing the neural network. Only a few slices from the entire scan contain areas of
leukoencephalopathy. Finding a general rule for selecting these slices is difficult
due to different brain physiologies and associated conditions (e.g., brain atro-
phy). Strict rules often eliminate useful slices, resulting in a very small trained
set. Looser rules included slices without leukoencephalopathy, potentially skew-
ing model accuracy.
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In 2D models, a voting system could be introduced to determine the final
classification of a patient, mitigating the issue of “poorly” selected slices men-
tioned above. The voting would involve dividing the entire CT scan into k 2D
slices, classifying each, and setting a threshold t ∈< 1, k >. If the number of
positively classified slices p exceeds t, the patient would be classified as positive.

7 Grad-CAM

Grad-CAM, short for Gradient-weighted Class Activation Mapping, is a tech-
nique used to visualize which parts of an image are most important for a convo-
lutional neural network (CNN) to make predictions about the class. Grad-CAM
operates by computing gradients of the score (the network assigns a score to
each class - a probability) concerning the last convolutional layer. These gra-
dients are then used to generate a heatmap that highlights the regions of the
image contributing the most to the prediction of a specific class. In other words,
it projects a heatmap onto the image indicating where the model is “looking”
when making its prediction.

Grad-CAM is used to enhance the interpretability of CNN models by help-
ing understand the decisions made by the model during prediction through the
visualization of regions of interest.

In medical practice, the advantages of Grad-CAM can provide an objective
tool to obtain a second opinion on medical data. It assists doctors in highlighting
important areas, thereby increasing diagnostic accuracy. Moreover, it supports
medical education by illustrating how CNNs analyze images, aiding students in
understanding diagnostic thinking [3,14,18].

In the case of leukoencephalopathy, the model must focus primarily on the
areas of the brain’s ventricles, where the problem is located, rather than on
the periphery of the brain. This is because an estimated 80–90% of patients
exhibit associated brain atrophy alongside leukoencephalopathy. By utilizing
Grad-CAM, it is possible to evaluate the model more comprehensively from
a different perspective beyond just classification accuracy on test data. In Figs.
3 and 4 we can observe that the networks focus on the regions where leukoen-
cephalopathy typically appears.
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Fig. 3. Grad-CAM on test data for a ConvNeXt model trained on preprocessed Type
C data is visualized in four columns. The first column displays the test data with their
respective classes in the header (0 - negative, 1 - positive). The second column overlays
the image with a heatmap (darker areas indicate higher attention), highlighting the
regions the model focuses on. The header of this column states the predicted class of
the image by the trained network. The same format applies to the third and fourth
columns.

Fig. 4. Grad-CAM on test data for a ResNet50 model trained on preprocessed Type
A data is visualized in four columns. The first column displays the test data with their
respective classes in the header (0 - negative, 1 - positive). The second column overlays
the image with a heatmap (darker areas indicate higher attention), highlighting the
regions the model focuses on. The header of this column states the predicted class of
the image by the trained network. The same format applies to the third and fourth
columns.
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8 Conclusion and Future Work

This study aimed to explore methods for processing medical data, specifically
CT scans, and to train an AI model capable of accurately classifying CT slices
containing leukoencephalopathy. Developing well-annotated datasets is crucial
for training models that can effectively integrate AI into daily medical prac-
tice, potentially saving time for healthcare professionals and improving patient
outcomes.

We tested three different preprocessing approaches for CT scans, finding
that the approach with minimal preprocessing was the most effective. We
employed four different model architectures: ResNet50, DenseNet, ConvNeXt,
and ResNet50 with 3D convolutional layers. ConvNeXt achieved the highest
accuracy of 98.5% on the test set. Although several trained models demonstrated
satisfactory accuracy, the limited dataset size was a constraint, particularly for
models with 3D convolutional layers, which frequently encountered overfitting
issues. The ResNet50 variant with 3D layers showed lower accuracy, but it holds
the potential for better capturing the deeper connections between CT scan slices
with further data and refinement.

In our dataset, an estimated 80–90% of patients had comorbid brain atro-
phy, visible on CT scans as dark protrusions around the brain’s perimeter. We
used Grad-CAM heatmaps to highlight the regions where the model focused
during classification, providing an additional layer of verification for the model’s
accuracy.

Future research should focus on expanding the dataset to improve the robust-
ness and generalizability of the models, particularly those utilizing 3D convolu-
tional layers. Investigating advanced preprocessing techniques and their impact
on model performance will be essential. Additionally, developing methods for
better slice selection and classification, including the use of ensemble techniques
and voting mechanisms, could enhance model accuracy and reliability.
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Abstract. Text embedding models trained on vast web-scraped corpus
generalize well to daily language. However, they often fall short when
applied in specialized domains that require precise language and for-
eign terms, like law and medicine. This gap highlights the necessity
for data-efficient methodologies to fine-tune these models for narrow-
domain applications. This paper introduces PlanBERT, a new approach
for enabling data-efficient domain adaptation and fine-tuning of embed-
ding models. The approach builds on self-supervised contrastive pre-
training, synthetic training data generated by large language models
(LLMs), and decorrelation of embedding features. The paper also intro-
duces the term “informative vector embeddings” to adjust the training
objectives to incentivise more analytics-friendly embeddings and demon-
strate that PlanBERT can learn the domain language of zonal plans and
outperform larger and more complex state-of-the-art models in challeng-
ing real-world zonal plan tasks.

Keywords: Text embedding · Feature decorrelation ·
Domain-adaptation

1 Introduction

In 2022, Norwegian municipalities faced the challenge of processing over 69,000
building permit applications, with each application taking an average of 28 days,
[16] largely due to caseworker overload. This inefficiency not only strains public
resources but also causes significant delays and economic repercussions for cit-
izens awaiting permit approvals. The long process times are related to finding
and reading zonal plans, which are a substantial part of the legal basis for build-
ing permits. The zonal plans, often outdated, contradictory, and inconsistently
digitized, require historical knowledge, leading to distractions and sub-optimal
workflows for caseworkers.

Recent advances in natural language processing (NLP) with the usage of
large transformer architectures have led to language models with great con-
textual understanding [31]. This has resulted in significant improvements in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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text embedding [7,18] and text retrieval [32] thus making traditional domain-
adaptable methods like TF-IDF and word2vec outdated [18]. The models pro-
duced by recent research are developed for broad domains and are tested on a
wide variety of downstream tasks on large benchmarks like MTEB [14]. These
benchmarks are feasible for pushing the state-of-the-art but do not accurately
measure the performance of narrow domains like law, medicine, building appli-
cations and others that contain precise terms not found in daily language. These
narrow domains often lack the vast data sources needed to train customized lan-
guage models. There is, therefore, a need to develop methods for the efficient
adoption of embedding models to work on narrow domains, as this will enable the
usage of popular technologies like retrieval-augmented generation and complex
domain-specific semantic information retrieval tasks. Embedding vectors that
represent real-world concepts are useful for downstream analysis tasks and the
term “informative vector embeddings” is therefore introduced. This work lays
the foundation for future efforts in computationally processing zonal plans and
developing tools for more efficient case handling as part of the KartAi project1.

Key Contributions. This paper presents a new approach for training domain-
adapted text embedding models to work on narrow domains where annotated
training data is scarce. The proposed methodology utilizes the concepts of self-
supervised learning and synthetic data generation to overcome the lack of anno-
tated data. Early results show significant improvements in downstream tasks
within the zonal plan domain.

Article Outline. Section 2 provides an insight into terminology and related work
that forms the basis for the proposed approach, which is described in detail
in Sect. 3, including design choices and architecture. In Sect. 4, the data foun-
dation and test results are presented, and in Sect. 5, the results are discussed,
and the proposed method is evaluated. The findings and future work are then
summarized in Sect. 6 and 7, respectively.

2 Related Work

The field of natural language processing has seen significant advancements
in recent years, primarily driven by the development and broader impact of
large language models [31]. These advancements have transformed the way text
embedding models are constructed and trained, leading to substantial improve-
ments in performance across various downstream NLP tasks [18]. This section
reviews the progress in text embedding models, the challenges of dimensional
collapse, the utilization of synthetic training data, and the current state of Nor-
wegian pre-trained language models, concluding with strategies for domain adap-
tation.

1 The KartAi project page: https://kartai.no/. Co-funded by the Research Council of
Norway project 341319.

https://kartai.no/
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2.1 Text Embedding

Embedding models produce low-dimensional vector representations of data while
minimizing the loss of semantic information. In a vector space, each data point
xi is represented with a corresponding m-dimensional vector zi ∈ R

m, represents
semantic similarity by some distance metric σ(·), commonly the cosine distance2.
If x0 and x1 have similar semantic meanings, then σ(z0, z1) will yield a small
value. The formation of text embeddings is a well-studied area [7] as it has been
an essential component in the field of information retrieval.

It becomes more challenging to incorporate semantic relations for long texts
like paragraphs and documents as these can be far apart in the text. Pre-trained
language models have shown great abilities in capturing longer contextual rela-
tions in text [31] and are therefore often used when producing document embed-
dings [27]. LSTM-based language models pre-trained on machine translation
have been a popular way to acquire context-aware embedding models [18], but
these fall short when compared to the transformer-based language models [18].
With their attention mechanism, the transformer-based language models have
allowed for even greater contextual representations and are the current standard
for text embedding [18]. The BERT model [3] and its variants have seen wide
adoption in text embedding [18], but recent studies have seen the adoption of
LLMs for producing text embeddings [1,27], with the Mistral-7B [8] model being
a prominent choice for the base model.

Dimensional collapse is a phenomenon in self-supervised representation learn-
ing where the embedding vectors disproportionately utilize certain dimensions
of the embedding space. The collapsed dimensions can potentially lead to col-
lapsed solutions or constant features [6], which are shown to negatively affect
the performance of downstream tasks [25]. Additionally, feature collapse and
feature decorrelation are closely related to the “alignment” and “uniformity”
of the embedding space which is also shown to correlate with performance on
downstream tasks [4,29].

Correlated embedding features are the cause of dimensional collapses, thus
providing an incentive for enforcing feature decorrelation [6]. He & Ozay pro-
posed the NESum [5] (normalized eigenvalue sum) metric that compares the
eigenvalues λ in the covariance matrix M ∈ R

m×m for a sample of n embed-
dings vectors Z ∈ R

m×n = (z0, z1, ..., zn−1) as shown in Eq. 1.

NESum(M) =
m∑

i=1

λi

λ1
, M = cov(Z) (1)

The NESum metric produces values in the interval 〈0,m] where a value
approaching 0 indicates a total collapse of all dimensions (also referred to as
complete collapse [6]), and a value of m corresponds to complete feature de-
correlation, addressed as whitened features by the original authors [5]. The
NESum metric correlates better with performance on downstream tasks when

2 Vector space is also referred to as latent space or embedding space in literature.
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compared to other metrics for evaluating the quality of embedding models
trained in unsupervised fashion [25].

2.2 Synthetic Training Data

Acquiring sufficient training data is often a challenge due to scarcity, cost, or
ethical issues [10]. Synthetic data can replace real data in such cases [12]. Tang et
al. [24] show that synthetic data from LLMs improves NLP task performance and
that accurate prompts are crucial. Wang et al. [27] use GPT-4 [17] to create syn-
thetic document-query pairs for training text embedding models, demonstrating
the effectiveness of this approach with a Mistral-7B model [8].

2.3 Norwegian Pre-trained Language Models

Table 1. An overview of architec-
tures with one or more language
models pre-trained from scratch on
Norwegian text.

Architecture Parameters Self-attention

BERT [3] 15 - 323M Bi-directional

Mistral [8] 7B Directions

T5 [19] 32 - 808M Bi-directional

BLOOM [2] 7B Directional

The zonal plans and related questions are
formulated in Norwegian, thus the under-
lying language model should be developed
for the Norwegian language. This includes a
tokenizer that produces tokens in line with
the structures found in the Norwegian lan-
guage and a language model pre-training on
a corpus consisting primarily of sources in
Norwegian. There are few language mod-
els fully pre-trained on a Norwegian corpus
due to the extensive data and computational
infrastructure required. In addition, multi-
lingual LLMs have a respectful level when working in Norwegian, thus reducing
the need for Norwegian-based language models. Nevertheless, two main initia-
tives have trained Norwegian-based language models: The NORA.LLM project3

developed BERT [3], T5 [15], Mistral-7B [8] and BLOOM-7B [2] models. And
the NorwAI project4 developed Mistral-7B [8] models.

2.4 Domain Adaptation of Language Models

Domain adaptations enhance language models’ performance in specific tasks.
Ling et al. [11] classify these into three types based on access to the model:
“External Augmentation” (limited access via interfaces), “Prompt Crafting”
(modifiable prompts via API), and “Model Fine-tuning” (full access to model
weights). External augmentation offers minimal adaptation. Prompt crafting
involves using task-specific prompts to guide model responses. Model fine-tuning
adapts pre-trained models to specific domains by training on relevant data [31].

3 The project details can be found at https://hf.co/norallm.
4 The project details can be found at https://hf.co/NorwAI.

https://hf.co/norallm
https://hf.co/NorwAI
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3 Approach

We introduce the concept of “informative vector embeddings,” which refers to
embedding vectors that are rich in information and accurately reflect the real-
world properties of the original data. Unlike traditional embeddings, which often
optimize abstract axes for data separation, informative vector embeddings aim
to retain meaningful attributes that can be directly utilized in downstream anal-
ysis tasks. These embeddings are characterized by a broader distribution of
attributes, enhancing the interpretability and utility of the embedding space. In
a conventional embedding space correlated attributes in the data points will be
represented with the same embedding feature, while informative vector embed-
dings attempt to decorrelate the attributes to make them easier to tell apart in
the vector space.

To address data scarcity and domain adaptation challenges, we present Plan-
BERT, an approach for domain-adapting text embedding models to create infor-
mative vector embeddings. PlanBERT focuses on not requiring annotated data
due to annotation costs and lack of labelled data in narrow domains. Previous
approaches include weakly supervised contrastive learning [4,15,26] and super-
vised training on synthetic data [1,27]. PlanBERT employs a two-step training
process: contrastive pre-training with a feature decorrelation regulator to cre-
ate an information-rich embedding space, followed by fine-tuning with synthetic
data in a dual-encoder setup as seen in Fig. 1. Detailed steps are discussed in
Subsects. 3.2 and 3.3.

Step 1 - Contras�ve pre-  training

BERTP

N

Zonal 
plans

P

Step 2 - Supervised training with synthe�c data

P

N

LLM
Q

BERT-  D

BERT-  Q

Zonal 
plans

Genera�ng synthe�c query

Fig. 1. An illustration of the workings of the two training steps. “N” and “P” refer
to negative and positive samples, while “Q” refers to queries generated from positive
samples.

3.1 Base Model and Embedding Construction

Due to the success of transformer-based language models pre-trained on NLP
tasks in text embedding applications, PlanBERT should follow a similar archi-
tecture. When comparing the options listed in Table 1, BERT is selected as
the base model due to its wide adaptation within the field and bi-directional
attention mechanism. Nevertheless, larger language models will likely yield bet-
ter results based on their dominance on the MTEB benchmark [14], especially
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the Mistral model. However, these larger languages are more data-hungry due
to their need for extensive pre-training to convert to bi-directional attention [1]
and their severe increase in the number of parameters. Additionally, Ghader et
al. [1] show that their proposed training method, which has similarities to the
one proposed in this paper, has a positive effect on both the BERT and Mistral
models. Therefore, It is assumed that this paper’s findings will be transferable
to a Mistral architecture.

NorBERT3 [22], the newest Norwegian pre-trained BERT model, is dis-
tributed in four different sizes NorBERT3xs (15M), NorBERT3small (40M),
NorBERT3base (123M) and NorBERT3large (323M). The NorBERT3large ver-
sion is chosen due to being the best-performing model when tested on a variety
of Norwegian language modelling tasks [22], although none of the tested tasks is
retrieval-based.

As a part of the BERT architecture, a dedicated class token [cls] is always the
first in the sequence of input tokens. This class token of the BERT architecture
can serve as the text representation, as suggested by Devlin et al. [21], because
of the bi-directional attention mechanisms in BERT that allow the vector rep-
resentation of the class token to be influenced by the rest of the input tokens.
The alternative is a mean pooling of all output tokens as done by Ghader et al.
[1]. However, since PlanBERT is based on the BERT architecture, it is apparent
to utilize the in-built class token for text representation since this approach has
previously proven to work well [4,21].

3.2 Contrastive Pre-training (Step 1)

A model pre-trained on general language will have a vector space optimized for
distinguishing a varied set of concepts where only a smaller subset is relevant
for the narrow target domain (zonal plans). As shown in Fig. 1, the first step
of PlanBERT, therefore, intends to adapt to domain language by having the
models gradually adjust the axis of the embedding space to incorporate domain-
specific terms. Self-supervised contrastive training is consequently applied as the
first step to adapt the model to the domain language, and to learn ways to best
separate data.

How to augment a data point d to from a data pair {d, d̄} is an important
factor in contrastive learning. Regardless of modality, the applied augmentation
must only work on the noise, not the information, as the intent is to learn
the distinction between essential and excessive features in the data. It is more
straightforward for image applications as camera properties like expositor and
colour balance can be altered during training with simple matrix operations. It
is less obvious how to augment text data, especially in a self-supervised fashion.
Modern LLMs and their recent popularity as components in a training loop
[13,27] would be feasible for augmentation. An LLM like GPT-4 [17] can rewrite
text by altering words and changing the sentence structure. As PlanBERT is
meant for domain-specific text with precise wording, this is viewed as too error-
pruned as LLMs do not have a clear understanding of the underlying domain, and
essential terms could, therefore, be incorrectly translated, and the essence of the
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text would then be altered. In addition, in an LLM-based rewriting augmentation
strategy, the level of augmentation is given by the prompting, making it difficult
to scale the intensity of augmentation and acquire an appropriate dissimilarity.

Gao et al. [4] proposed to utilize the dropout functionality of neural networks
to perform the necessary augmentation of the input data. The data is then
augmented during the forward pass as the affected dropout nodes are changed
between the first and second forward passes. The level of augmentation is then
regulated by the dropout probability parameter α.

Loss Function. The triplet loss function (Eq. 2) and variant are extensively
used in training of embedding models [1,4,21,23,27]. The challenge is to form
good triplets where the models have difficulty distinguishing the anchor a from
the positive sample p and the negative sample n. The margin δ is added to
prevent a collapsed solution.

Ltriplet(a, p, n) = max
(
σ(a, p) − σ(a, n) + δ, 0

)
(2)

In the earlier stages, the samples can be more random as the model will focus
on separating different topics, but for later stages, the text should optimally
be more semantically alike. An adequate sampling strategy that progressively
samples harder negative samples is therefore important to acquire strong results.
GISTEmbed [23] use a pre-trained embedding model to sample the in-batch
hardest negatives for the triplet loss.

Similar to GISTEmbed, PlanBERT also uses a “model-in-the-loop” approach
to acquire hard triplets. PlanBERT generates an in-memory vector database for
the entire training set used for sampling hard negatives by conducting similarity
searches at runtime. The database is updated at regular intervals to incorporate
the new knowledge of the model and ensure that the negative samples always
stay relevant to the knowledge gap of the model.

Feature Decorrelation. INES, short for Inverse-exponential Normalized
Eigenvalue Sum, is introduced as a complementary loss function to regulate the
features correlation of the embedding vectors Z, thus creating more informative
vector embeddings. As shown in Eq. 3, INES build upon the NESum metric (Eq.
1) to work directly on the covariance of the embedding features. The regula-
tor operates on a batch level, thus providing the optimizer with a secondary
objective, namely to even out the eigenvalues of the in-batch covariance matrix.

LINES(Z) = γ · e−τ
(
NESum(M)

)
, M = cov(Z) (3)

The scale factor γ is introduced to adjust the impact of INES compared to the
main objective, while the exponent τ regulates how aggressively INES punishes
correlated features. INES optimizes for in-batch embedding space, thus its effect
is tied to the batch size and the data shuffling in the same way as gradient descent
[9]. A small batch size or poor data shuffling, thus large varieties between the
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batches, will make the regularization term useless since the covariance for each
batch should be a good approximation of the overall covariance of the training
set.

3.3 Supervised Training (Step 2)

The text embedding model is duplicated to form a dual encoder architecture
with a dedicated model for document chunks (BERT-D) and queries (BERT-
Q) as shown in Fig. 1. Both models work towards the same embedding space
and are trained by the same optimizer, thus forming a symbiosis where each
model can focus on a separate aspect of the data while still guiding each other
during training by having a shared optimizer. The loss function from step 1
(Subsect. 3.2) is used, but the anchor is now a query q, thus the forming triplets
of {qi, ci, cj} where j = argmin

x, x �=i
σ(ci, cx).

Synthetic Data Generation. Data pairs {qi, ci} are acquired by an LLM
generating a query qi that can be answered with the content of a randomly
sampled chunk ci. The chunk and query are semantically linked as the LLM
is instructed to generate queries that can only be answered with the chunk
content. These data pairs serve as a replacement for or a complement to real-
world training data, as the model learns their semantic relations.

Zero-shot data generation fails to generate high-quality data, thus promot-
ing strategies with examples is essential for acquiring good results [12,13,24]. A
prompt template containing examples ensures high-quality and relevant ques-
tions. Inspired by the “Persona” prompt pattern by White et al. [30], the Plan-
BERT template samples a role from a pre-defined collection to account for the
linguistic difference between users of downstream applications. The LLM is also
instructed to use synonyms and paraphrases, and only produce questions rele-
vant to the provided chunk.

4 Results

4.1 Data

The data foundation consists of 70.000 publicly available zonal plans5 from
the past four decades collected from various geographically spread Norwegian
municipalities, thus representing the diversity in language across the nation and
throughout time. Only the textual descriptions of the plans were used, while the
geographical information was neglected for PlanBERT’s training. Nevertheless,
the textual contents are often outdated, lack formal structure, and are incon-
sistently digitized, similar to legal documents like juristic contacts and medical
records. The zonal plans were further split into 500.000 document chunks that
form the data points used in contrastive pertaining (step 1, see Subsect. 3.2).
5 Zonal plans are collected from https://arealplaner.no.

https://arealplaner.no
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The KartAi project gathegray an expert-annotated test set6 of 91 retrieval pairs
(q,Dq) with a query q and a collection Dq = {d0q, d

1
q, ...} consisting of one to four

document chunks dq. These expert-annotated pairs alone form the test set used
to calculate metrics for both training steps (see Subsects. 3.2 and 3.3).

The synthetic data generation yielded 150.000 unique data points that alone
form the training and validation sets for the second training step (see Sub-
sect. 3.3). The GPT-4 model [17] was chosen as the LLM for the data gener-
ation because of the model’s good performance in diverse tasks across several
languages. 46 hand-crafted instructions were created to reflect the identity of
different user groups like citizens, case workers, and politicians when generating
the data (see examples in the box below). GPT-4’s temperature parameter is
set to 1.0 to acquire a wider variety of wording in the generated questions. This
combination of a high value for the temperature parameter and injection of ran-
domly sampled roles into the system prompt ensures diversity in the generated
synthetic data.

Hand-crafted instructions

6: Du er en politisk aktiv innbygger som har engasjert deg i

planarbeidet. Formuler sp{\o}rsm{\aa}lene med politisk vinkling.

21: Du er en milj{\o}konsulenter som skal lage en milj{\o}rapport.

Formuler sp{\o}rsm{\aa}lene med fokus p{\aa} milj{\o}. Bruk faguttrykk.

4.2 Training Output

Various variants of PlanBERT are trained to isolate and evaluate the effect
of the proposed architectural components. The first training step (described in
Subsect. 3.2), denoted PlanBERTContrastive, is trained with and without the
INES regulator. For the second training step (described in Subsect. 3.3), both
the usage of a single (PlanBERTSingle) or dual (PlanBERTDual) encoder are
tested with NorBERT weights, weights from PlanBERTContrastive and with the
INES regulator. All training was done using the Adams optimizer, a batch size
of 256, and the triplet-loss margin set to δ = 0.5. The learning rates used are
all in the magnitude of 10−4 to 10−3, and the models are trained for one epoch.
For the INES regulator the exponent is set to τ = 0.05 and the scaling factor
to γ = 20. All versions of PlanBERT and other selected models are tested
on the expert-annotated dataset. Information retrieval and retrieval-augmented
generation (RAG) are the most imminent applications for a domain-adapted
embedding model, thus, the retriever-related metrics nDCG and Recall were
chosen for model comparison. The nDCG and Recall are calculated from the
test set and are shown in Table 2 for all variants of PlanBERT. The relation
between the nDCG and Recall metrics and the NESum (see Subsect. 2.1) value
for the models is plotted in Fig. 2.

6 The test set is published at https://hf.co/datasets/kartai/NorPlanQA.

https://hf.co/datasets/kartai/NorPlanQA
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Table 2. Test results for variants of PlanBERT compagray to the results of selected
generally-purpose pre-trained multi-lingual models and the TF-IDF algorithm on the
expert annotated test dataset. The parameter k indicates the number of retrieved
elements.

Model nDCG Recall NESum

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

PlanBERTContrastive 0.24 0.32 0.40 0.19 0.41 0.64 11.46

+ INES 0.24 0.34 0.42 0.22 0.43 0.68 57.73

PlanBERTDual 0.33 0.52 0.57 0.26 0.70 0.84 8.17

+ INES 0.34 0.49 0.57 0.27 0.63 0.84 22.58

+ Contrastive pre-training 0.46 0.59 0.63 0.38 0.72 0.84 26.75

PlanBERTSingle 0.38 0.52 0.57 0.29 0.68 0.80 9.06

+ INES 0.42 0.57 0.63 0.36 0.71 0.87 29.96

+ Contrastive pre-training 0.45 0.59 0.64 0.36 0.72 0.87 36.76

text-embedding-ada-002a 0.37 0.53 0.61 0.26 0.67 0.88 -

distiluse-base-multilingual-cased-v2b 0.24 0.39 0.46 0.18 0.52 0.72 -

multilingual-e5-largec 0.47 0.57 0.64 0.39 0.67 0.86 -

TF-IDF 0.33 0.46 0.52 0.23 0.60 0.76 -
ahttps://openai.com/index/new-and-improved-embedding-model/
bhttps://hf.co/sentence-transformers/distiluse-base-multilingual-cased-v2
chttps://hf.co/intfloat/multilingual-e5-large

5 Discussion

Three selected multi-lingual general-purpose models are also tested on the test
set to form a test reference. Although the reference models are not domain-
specific, they are still trained on extensive amounts of data and are all multi-
lingual, thus they are expected to perform well. The TF-IDF [20] is included to
compare results with those of a naive approach. All the results for the reference
models and TF-IDF are added to Table 2.

Feature Decorrelation as Secondary Objective. The secondary training objective
provided by the INES regulator shows a significant gain in NESum values for
pre-training and fine-tuning without negatively affecting the primary objective
as shown in Table 2. The INES regulator appears to be more impactful for the
contrastive pre-training as the NESum values have five folded, while the single-
encoder fine-tuning benefits the most from the secondary objective as all metrics
have a significant gain. As visualized in Fig. 2 there is a positive correlation
between the NESum values and metrics, especially nDCG, for all tested values
of k, thus further supporting feature decorrelation as a useful secondary objective
in the training of embedding models. By increasing the NESum values, the vector
embeddings utilize more of the vector space, thus they are more in line with the

https://openai.com/index/new-and-improved-embedding-model/
https://hf.co/sentence-transformers/distiluse-base-multilingual-cased-v2
https://hf.co/intfloat/multilingual-e5-large
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Fig. 2. The relation between the NESum and the performance metrics nDCG and
Recall for the PlanBERT models presented in Table 2. The k-values indicate the num-
ber of retrieved elements used when calculating the metrics. Markers without fill result
from the contrastive pre-training, while filled markers result from fine-tuning on syn-
thetic data.

definition of informative vector embeddings in Sect. 3. In other words, the INES
regulator is the first step in forming more informative vector embeddings.

Table 3. Comparison of prereq-
uisites for PlanBERT and mE5
(multilingual-e5-large [28]).

PlanBERT mE5

Model parameters 323M 560M

Contrastive data 500K 1B

Fine-tuning data 150K 1.6M

Dual vs Single Encoder. Based on the results
presented in Table 2 there is no evident effect
on the downstream performance when train-
ing a dual encoder network versus a sin-
gle encoder network. This indicates that the
performance limitations are unaffected by
the horizontal scaling of the model as both
setups appear to have learned equally good
data representations although the dual setup
has twice the amount of parameters as the single setup. On the other hand, the
single encoder utilizes the embedding space better than the dual encoder as indi-
cated by the roughly 35% larger NESum values. This is likely caused by the single
encoder being exposed to both queries and chunks, thus more varied inputs, com-
pared to the encoders in the dual setup. In another way, the dual encoder learns
a more compact information flow by relying on fewer vector elements to reach
the same embedding quality as the single encoder. This is likely also why the
performance gained by introducing the INES regulator is significantly higher for
the single encoder compared to the dual encoder. These differences in utilization
of the embedding space indicate that implicit information, like whether a data
point is a query or a chunk, is not learned for the dual encoder, thus supporting
the original claim that the dual encoder allows each encoder to learn specific
aspects of the data.
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The Value of Synthetic Data. The results show that training on synthetic data
generated with simple prompting strategies can, without including any real-
world data, push the performance of BERT models beyond that of the industry-
wise widely adopted text-embedding-ada-002 model. PlanBERT also performs
comparably to the multilingual model multilingual-e5-large [28] (Table 2)
although PlanBERT has significantly fewer parameters and is trained on a vastly
smaller corpus as shown in Table 3. These results strengthen the findings of
others [1,27] claiming that training on synthetic data yields strong embedding
qualities, but also demonstrates that strong domain-specific embedding models
can be trained without the need for annotated data. Nevertheless, PlanBERT’s
synthetic data-generating approach assumes that there is a one-to-one mapping
from query to document chunk, while in reality, there are often several document
chunks that are relevant. This assumption can explain why results stagnate as
a maximal recall@5 of 0.72 is insufficient for some applications. Also, the true
semantics of the chunks are not intrinsic properties as the content of a chunk at
the start of a document can affect the meaning of later chunks.

6 Conclusion

In this study, we proposed PlanBERT for domain adaptation of text embed-
ding models based on recent trends within the field. The test results show that
PlanBERT performs well when compared with larger proprietor models trained
on vast datasets like OpenAI’s Ada model and the mutlilingual − e5 − large
model. PlanBERT also demonstrates that efficient embedding models can be
developed for narrow domains without costly annotated data simply by using a
combination of contrastive pre-training and fine-tuning on fully synthetic data.
The study also highlights the importance of feature decorrelation and shows
how the INES regulator positively affects the embedding quality when used as
a secondary training objective.

7 Future Work

The chunking strategy is not focused on in PlanBERT but is likely essential in
reaching more informative vector embeddings for the zonal plans domain. The
naive chunking strategy in PlanBERT does not allow for optimal embedding
as the semantics of chunks are not guaranteed to be intrinsic properties. Also,
the map part of the zonal plans is excluded in PlanBERT, although it carries
essential information for understanding the written part. We therefore intend to
continue the research by exploring new ways of chunking zonal plans where the
semantics of a chunk becomes an intrinsic property and where the geospatial
information from the map is included in the embedding process. In addition,
there is a need to develop better metrics for scoring the “informativeness” of
vector embeddings concerning the definition carried out in this paper.
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Abstract. Structured arguments are a valuable resource for analyz-
ing and understanding complex topics. However, manual annotation is
time-consuming and often not feasible for large datasets, and automated
approaches are less accurate. To address this issue, we propose an inter-
active argument mining system that takes advantage of generative lan-
guage models to support humans in the creation of argument graphs. We
present the open source ArgueMapper Assistant featuring two prompt-
ing strategies and evaluate it on a real-world news dataset. The resulting
corpus containing 88 argument graphs is publicly available as well. With
generative models, the annotation time is reduced by about 20% while
the number of errors is slightly increased (mostly due to missing argu-
mentative units and wrong relation types). A survey provides insights
into the usefulness and reliability of the assistant features and shows
that participants prefer to use the assistant in the future.

Keywords: Argument Mining · Argument Graphs · Large Language
Models · Interactive Systems · Data Annotation

1 Introduction

Argumentation is available in many forms and plays a crucial role in various
domains such as law, politics, and science. A common way to represent it is using
natural language texts—for instance, in the form of news articles or scientific
papers. Although these texts contain valuable information that can be under-
stood by humans, they are not directly usable by machines. To bridge this gap,
Argument Mining (AM) [16] aims to extract structured argumentative elements
from natural language text. This may be done manually by trained annotators—
leading to high-quality structures—or automatically—which is often less accu-
rate. Consequently, a major challenge in AM is the time-consuming nature of
manual annotation, leading to the lack of high-quality datasets for many top-
ics/domains. Research in this field typically focuses on improving automated
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approaches or interfaces for manual annotation, but to the best of our knowl-
edge, no work has been done to bring together both worlds.

In this paper, our aim is to bridge this gap through an interactive argu-
ment mining system that assists human annotators in the process of converting
plain text arguments to a structured graph-based representation. With recent
advances in Natural Language Processing (NLP) [2], AM has seen a shift toward
the use of transformer-based language models—either in the form of end-to-end
models [15] or as part of a pipeline [18]. Although these supervised approaches
reach State of the Art (SOTA) performance, large amounts of labeled data is
needed for training—which is scarce for certain domains—and their predictions
cannot be adjusted on the fly. In contrast, Large Language Models (LLMs)
work in an unsupervised manner and can easily be adjusted to the user’s needs
through prompting. We leverage this capability to create an interactive system
that allows human annotators to hand over parts of the annotation process to
the model, reducing the manual effort. Consequently, we seek to answer the fol-
lowing research question: How to decrease the manual annotation time of argu-
ment graphs while maintaining the output quality through LLM-based assistance?
We make the following contributions to answer this question: (i) Two prompting
strategies to convert plain text arguments to graphs via LLMs, (ii) a ready-to-use
and open-source application enabling interactive argument mining (see Fig. 1),
(iii) a qualitative evaluation of the system on a real-world news dataset, and (iv)
a publicly available corpus containing 88 argument graphs for future research.

Fig. 1. Screenshot of the interactive mining system with a graph excerpt from the
News Articles dataset [8]. The assistant button (lightning bolt) contains the actions
and the inspector (right sidebar) the explanations.



ArgueMapper Assistant 191

2 Foundations

In the following section, we first provide an overview of Computational Argu-
mentation (CA) with a focus on AM, followed by a brief introduction to LLMs.

Computational Argumentation. A structured argument typically consists of one
claim and a set of premises that either support or attack the claim [22]. Being
the smallest units of argumentation, they are also commonly called Argumen-
tative Discourse Units (ADUs) [20]. Claims may also be used as premises in
other arguments, enabling the creation of complex argumentative structures.
Such chains of arguments often have one central conclusion, the major claim. A
common way to represent these structures is to use a directed graph G = (V,E)
with the set of nodes V and the set of edges E. The Argument Interchange For-
mat (AIF) [7] defines two types of nodes: (i) Information or atom nodes being
the ADUs, and (ii) scheme nodes being the relationships between the ADUs.
An example of this format is shown in the screenshot of our annotation tool
in Fig. 1. Multiple argumentation microstructures have been proposed to rep-
resent the relationships between ADUs in a graph, such as serial, linked, and
convergent arguments [23]. This distinction has been subject to discussion in
the literature—for instance, Goddu [14] argues that there “is no good reason to
bother making the distinction” between linked and convergent arguments. Con-
sequently, we focus on linked arguments in our work—that is, a scheme node
may only have one premise and one conclusion. AM is concerned with extract-
ing these argumentative elements from natural language text. The term AM
comprises a variety of tasks, including (but not limited to) ADU extraction,
claim/premise classification, and relation prediction [5]. They may be combined
to form a pipeline, allowing the extraction of complete argumentative structures,
including argument graphs [18,19]. We refer the interested reader to the study
conducted by Lawrence and Reed [16] for a complete overview of the available
approaches.

Large Language Models. Arguments are expressed mainly in natural language,
which means that there is a strong connection between AM and NLP. Pro-
viding a proper introduction to the topic is beyond the scope of this paper,
but we briefly introduce the concept of LLMs. They are based on the trans-
former architecture and its attention mechanism, allowing the model to consider
the entire input sequence at once [24]. OpenAI’s Generative Pre-trained Trans-
former (GPT) family of LLMs popularized by ChatGPT uses a decoder-only
variant that predicts the next token given only the previous sequence as input.
Instead of fine-tuning the model for a specific task, prompting can be used to
guide the model towards the desired output via few-shot learning (i.e., giving
examples of user input and the desired model output) or even zero-shot learning
(i.e., providing only user input without output samples) [4].
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3 Related Work

To the best of our knowledge, there is no prior work combining manual and
automated approaches to AM. In Sect. 5, we analyze several existing software
tools to manually create argument graphs, while in this section we focus on the
use of LLMs in text annotation and AM tasks.

Text Annotation with LLMs. ChatGPT has been used in various annotation
tasks in the field of NLP. For stance and topic detection, it has been found to
outperform humans by 25% while being about 30 times cheaper than crowd-
sourced labor [13]. In another study, the model has been used to reproduce
human labels for sentiment analysis and stance detection tasks, achieving an
average accuracy of 0.6 [26]. In addition, ChatGPT has been proposed as an
annotation metric for Natural Language Generation (NLG) tasks, showing com-
petitive performance with human ratings [25].

Argument Mining with LLMs. AM tasks have also been investigated with LLMs.
When applied for common tasks such as claim detection and summarization,
ChatGPT achieved average accuracy values of 0.6 for binary classification and 0.5
for multi-class classification with performance varying depending on the number
of shots used for prompting [6]. Another study investigated two prompt settings
for AM tasks with GPT-4, achieving F metrics of up to 0.7 for ADU detection
and 0.5 for relation detection [10]. Compared to a specialized model, GPT-4 was
found to be competitive in predicting discourse markers in argumentative texts,
even exceeding the specialized model in one metric [21]. Unlike these results,
small domain-specific models have been found to outperform GPT-4 for ADU
classification in the legal domain—possibly due to its structural complexity [1].
AM has also been treated as an end-to-end text generation task where ADUs
and their relations are generated in a single step [9,15].

4 Mining Argument Graphs Using Prompts

Through our literature review in the previous section, we know that LLMs like
ChatGPT are capable of performing AM tasks with a certain degree of accu-
racy, sometimes even outperforming specialized models. Anticipating the use
of our strategy in an interactive setting, we developed (i) an end-to-end app-
roach and (ii) a pipeline-based one. While the former makes the annotation rather
straightforward by returning a complete graph, the latter allows the annotator
to fix wrong predictions and/or add missing elements. The pipeline has the addi-
tional advantage of letting the annotator decide which subtasks to perform—for
instance, they may choose to identify ADUs manually and let the model predict
the relations afterwards. In both scenarios, the model is asked for its reasoning
in the form of a textual explanation, allowing the annotator to better understand
the model’s decision when reviewing the results. To ensure reproducibility, we
provide the prompt template along with each task.
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Prompting Strategy. A critical aspect in designing the prompts is the balance
between zero-shot and few-shot learning. The creation of argument graphs is
a rather subjective task where multiple different solutions may be equally cor-
rect [12], so few-shot learning may lead to a situation where the model leans
towards a different annotation style than the human. To mitigate the issue of
unpredictable output when using zero-shot learning, we use function calling as
offered by OpenAI’s recent ChatGPT models. The core idea is to express a func-
tion and its parameters as a JSON-Schema object, pass this information to a
model specifically trained, and execute some function locally using the gener-
ated arguments. JSON-Schema allows the definition of complex structures: for
each parameter, it may include additional information such as a description,
expected data types, and constraints. As its name suggests, this feature was
originally built to call functions, but we found it to work equally well to extract
structured data such as ADUs from a free-form text.

Implementation. In addition to the interactive system, we provide a Python
implementation1 of the pipeline-based approach to allow batch processing of
large datasets. It contains a server component to easily integrate the LLM-based
mining to existing systems and an example client to demonstrate its usage.

4.1 Pipeline-Based Graph Generation

Our approach is loosely based on the pipeline described by Lenz et al. [18], con-
sisting of four main steps: (i) Argument extraction, (ii) relation type classifica-
tion, (iii) major claim detection, and (iv) graph construction. When developing
our interactive system, we found steps (ii) and (iv) to be closely related and
therefore merged them into a single step to simplify the process. Step (iii) could
also be merged into this step (i.e., by inferring the most important claim from
the predicted relations), but we decided to keep it separate to allow for more
flexibility and control. The three remaining steps are described below.

ADU Detection. Given the original text of the resource to be annotated, the
model is prompted to extract all ADUs to be used as atom nodes. We do not
differentiate between claims and premises here since a claim may also play a
double role as a premise in another argument in graphs. The LLM is instructed
to extract only ADUs and not modify the text in the process—otherwise, it
will not be possible to locate ADUs in the original text. For the time being,
we ignore any kind of reconstruction—for instance, replacing pronouns with the
correct entities—and leave this to the annotator.

Prompt: The user will provide a long text that contains a set of arguments.
Your task is to identify all argumentative discourse units (ADUs) in the
text. They will subsequently be used to construct a graph. The user will
have the chance to correct the graph, so DO NOT change any text during
this step. You shall only EXTRACT the ADUs from the text.

1 https://github.com/recap-utr/arg-services-llm.

https://github.com/recap-utr/arg-services-llm
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Major Claim Identification. Given the ADUs extracted from the original text
and their IDs, the model is prompted to identify the major claim among them.
In case a non-existent ID is returned by the LLM, the response is discarded, and
the annotator will either need to retry or manually select the major claim. In
this step, we assume that the major claim is part of the ADUs sent to the model.
If it is not part of the original text—and thus not automatically extracted—the
annotator may choose to add it manually before executing this step.

Prompt: The user will provide a list of argumentative discourse units
(ADUs). Your task is to identify the major claim/conclusion of the argu-
ment. This node will subsequently be used as the root node of an argument
graph. Please provide the ID of the ADU that you consider to be the major
claim.

Relation Prediction. Given the extracted ADUs and the major claim, the model
is prompted to predict relations and their type (i.e., support or attack) between
them. Each relation is used as a scheme node in the graph with edges connecting
it to the source and target ADUs. As in the previous step, the LLM shall return
the IDs of the source and target ADUs. If one of them is not part of the ADU set,
the predicted relation is discarded. To simplify the graph construction process,
we treat the major claim as the root node of the graph—an assumption that has
been made in previous work as well [18].

Prompt: The user will provide a list of argumentative discourse units
(ADUs) and the ID of the major claim. Your task is to predict sensible
relations in the form of support/attack between them. You shall produce a
valid argument graph with the major claim being the root node. You shall
create a hierarchical graph with the major claim being the root node (i.e.,
it should have no outgoing relations, only incoming ones). Flat graphs (i.e.,
all ADUs directly connected to the major claim directly) are discouraged.
There should be no cycles in the graph and no orphaned ADUs.

4.2 End-to-End Graph Generation

The overall goal of this strategy is to perform all three tasks in a single step
and thus better utilize the large context window of recent LLMs such as GPT-4
Turbo. Bundling them together should make the generation faster due to the
reduced number of requests—we only need one request instead of three. At the
same time, the costs should also be lower, since we do not need to feed the output
of the model back into the system multiple times. As with the pipeline-based
approach, here is the procedure: Given the original text of the resource to be
annotated, the model is prompted to perform all three tasks simultaneously and
return the complete argument graph.

Prompt: The user will provide a long text that contains a set of arguments.
Your task is to generate a complete argument graph containing all ADUs,
the major claim, and the relations between the ADUs. ADUs shall only be
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EXTRACTED from the text, not changed. Relations can either be of type
support or attack. You shall create a hierarchical graph with the major
claim being the root node (i.e., it should have no outgoing relations, only
incoming ones). Flat graphs (i.e., all ADUs directly connected to the major
claim directly) are discouraged. There should be no cycles in the graph and
no orphaned ADUs.

5 Interactive Argument Mining System

With the prompting strategy for the AM tasks in place, we now discuss their
integration into a user-friendly annotation interface. Instead of writing a new tool
from scratch, we decided to build on an existing tool to manually build argument
graphs from a plain text source. When investigating the available options, we
set the following three constraints: (i) The tool should be open-source so that
our extensions can be used by other researchers, (ii) its graph representation
should be compatible with AIF, and (iii) it should be well-maintained to avoid
building on abandoned software. Among options such as Online Visualization
of Arguments (OVA) [3] and MonkeyPuzzle [11], we settled on ArgueMapper
[17] as the foundation for our AM system. While OVA has a larger user base
and is capable of dealing with dialogical arguments, ArgueMapper was easier to
extend due to its modern technology stack—for instance, it uses React for state
management and TypeScript for type safety. The Argument Buffers (Arguebuf)
[17] format used by ArgueMapper is also compatible with AIF, allowing easy
integration with existing tools and datasets.

The following modifications were made to ArgueMapper: (i) The Plus button
to create new elements is replaced with an Assistant button allowing the anno-
tator to invoke the four prompts described in Sect. 4. Clicking on one of them
opens a dialog where the user can add custom instructions to the built-in prompt
(e.g., to specify the ADU segmentation level). (ii) A field for nodes containing
the textual explanation generated by the model. (iii) Settings to provide an API
key, select the model (GPT-3.5 Turbo or GPT-4 Turbo), and specify a custom
endpoint. (iv) In case an error occurs during the generation, a bottom bar with
details for the user (since the model output is probabilistic, the annotator is
encouraged to try it again and/or modify the custom instructions). All changes
have been merged into the upstream project2 under the same MIT license to
ensure that the community can benefit from them.

Like the rest of ArgueMapper, our assistant features do not require running
a backend component on a server—instead, all requests to the LLM are sent
directly from the browser. By setting a custom API endpoint, the assistant
features can be used with any LLM that offers an OpenAI compatible API (e.g.,
using ollama.com). As such, our system is compatible not only with proprietary
ChatGPT, but also with open models such as Llama.

2 https://github.com/recap-utr/arguemapper.

https://github.com/recap-utr/arguemapper
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6 User Study

Having presented both our prompting strategy and its integration in ArgueMap-
per, in the following we evaluate the feasibility of LLM assisted AM through
a user study. Returning to our research question formulated in Sect. 1, there
are two main dimensions that we investigate by formulating two hypotheses:
speed (H1) and quality (H2). While the former can be evaluated using quanti-
tative measures, the latter one is more difficult to assess because of the inherent
subjectivity—two completely different graphs may be of equal quality. We there-
fore combine quantitative and qualitative measures to check H2.

H1 (Annotation Time): When given access to the ArgueMapper assistant, anno-
tators are faster than not having access to LLM-based generations.

H2 (Annotation Quality): The availability of an LLM assistant does not cause
a decrease in the quality of the resulting argument graphs.

6.1 Experimental Setup

The following section highlights the dataset, the annotation procedure, and the
evaluation metrics used in our study. We focus on the pipeline-based approach
described in Sect. 4.1, leaving the end-to-end approach for future work.

Dataset Selection. We refrained from re-annotating an existing argument
graph corpus, since that could lead the annotators to look up the “reference”
solutions and thus biasing the results. Instead, we decided to annotate a new
one from scratch. We settled on the News Articles dataset compiled by [8] and
released under the public domain license CC0 1.0. It consists of 3,824 texts
collected between December 2016 and March 2017 from multiple media sources
without a specific focus on certain topics. Due to the broad coverage, annotators
were not required to have prior knowledge about the dataset. The articles differed
greatly w.r.t. the overall length and the dataset exhibited encoding issues with
Chinese characters—we therefore removed all articles from “China Daily”. To
ensure a consistent annotation process covering arguments of comparable length,
we also filtered out articles with fewer than 1000 or more than 5000 characters,
leaving us with a total of 2335 candidates for annotation.

Annotation Procedure. To perform the annotation, we relied on three male
computer science students who were familiar with CA and had prior experience
in annotating argument graphs using tools such as the aforementioned OVA and
ArgueMapper. They had a regular contract with our institution and received a
salary above the minimum wage. To get them on the same page about this anno-
tation task, we provided them with guidelines developed by Dumani et al. [12]
for a similar type of dataset. Each student annotated a total of 15 articles with-
out the LLMs assistant and 15 with it, selected at random from the preprocessed
dataset. Each of them worked with the regular ArgueMapper application for the



ArgueMapper Assistant 197

first 15 articles and only was given access to the assistant for the remaining 15.
Two of the students were then asked to identify and fix any errors in the graphs
not created by themselves (the articles of the third student were randomly split
between the other two), meaning that for each article, two graphs are available
in the final corpus. Theoretically, one could compute the Inter-Annotator Agree-
ment (IAA) between the annotators, but the values would be meaningless since
the annotators fixed each other’s errors instead of creating distinct graphs. Also,
computing IAA values for graphs is challenging due to potential differences in
the graph structure and potential propagation of errors—for example, if two
annotators do not identify the same set of ADUs, the set of relations that can
be compared is different as well.

Evaluation Methodology. To assess H1, we measure the time from the start of
the annotation—that is, loading the article into the tool—to the last edit made to
any element of the graph. Furthermore, each annotator recorded the time needed
for the annotations in an effort to verify the scores obtained from ArgueMapper.
To verify H2, we compare the number of errors identified in the second phase of
the annotation. We already pointed to the subjective nature of the task, so our
initial assumption is that the number of errors does not increase when using the
assistant. To further investigate the quality of the annotations, we conducted
a survey to gather the annotators’ feedback on the assistant features. Among
other questions, they were asked to rate usefulness and reliability of the assistant
features on a three-point scale. While the former tries to estimate whether the
features were considered helpful in general, the latter assesses the trustworthiness
of the results—which, given the tendency of LLMs to confabulate/hallucinate,
is a critical aspect. In this context, an example would be the model predicting
ADUs that are not present in the original text. They should also assess perceived
impact of the assistant on speed/quality, the observed response latency, and
the preferred ChatGPT model. Lastly, they could provide free-form feedback
and choose whether they would prefer using the assistant in the future or not.
After completing the survey individually, we organized a virtual meeting with
all annotators to discuss their feedback together.

6.2 Results and Discussion

We now present the results obtained through our user study, starting with the
analysis of H1 and then moving on to the evaluation of H2. As part of the pro-
cess, the annotators identified two articles that did not contain any argumen-
tative information and were therefore not annotated: a list of Grammy winners
and a list of Donald Trump’s most memorable lines. The corpus containing the
remaining 88 argument graphs is publicly available3 under the attribution license
CC BY 4.0 for future research. On average, the graphs created manually contain
9.61 atom nodes and 8.64 scheme nodes, while the assistant-based ones contain
9.93 and 8.93, respectively. Combined, the published corpus contains a total of
3 https://github.com/recap-utr/news-articles-corpus.

https://github.com/recap-utr/news-articles-corpus
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(a) Time (min / 1000 characters). (b) Errors (per 1000 characters).

(c) Usefulness (total votes). (d) Reliability (total votes).

Fig. 2. Results of the user study, color scheme uses dark shades for favorable and light
shades for unfavorable results.

860 atom nodes and 773 scheme nodes. The annotator names have been redacted
from the published version and replaced with unique identifiers to ensure their
privacy. We also make available versions of the graphs with the errors identified
and corrected by the annotators in the second phase of the annotation.

Annotation Time. Using the created/edited timestamps of the graphs proved
to be unreliable: If an annotator paused the annotation and resumed it later,
the break would count towards the total time. We therefore used the manu-
ally recorded times for our analysis. Since each annotator worked on a different
set of articles, we computed the required time per 1,000 characters to allow
for a fair comparison. Analyzing the average duration as shown in Fig. 2a, we
find that the annotators were indeed faster when using the assistant: The mean
duration decreased from five to four minutes—a reduction of ∼ 20%. In case of
the assistant-based approach, there is one outlier that took more than 14 min
per 1,000 characters, while the remaining cases took less than 8 min per 1,000
characters. The annotator did not provide any additional information about
the outlier, but possible reasons include difficulties in understanding the article
and/or unwanted predictions by the LLM that needed to be corrected.

Given the ability to test both GPT-3.5 Turbo and GPT-4 Turbo, all three
students preferred the latter. Although the more advanced model was found
to be slower, the additional time was worth it due to the better results. The
two models also differ in terms of costs: GPT-4 Turbo is about 20 times more
expensive than GPT-3.5 Turbo. With most requests using GPT-4 Turbo, the
total cost for the 45 cases was ∼ 4.50 USD (or ∼ 0.10 USD per article).

In addition to the raw times, we also asked the annotators about the per-
ceived impact of the assistant on the annotation speed: All three reported feeling



ArgueMapper Assistant 199

faster when using the LLM functionality. They also unanimously replied that
the observed latency of the responses was fast enough for interactive use. Given
that both quantitative and qualitative results support H1, we conclude that the
assistant-based approach is indeed faster than the manual one.

Annotation Quality. To assess H2, we need to verify that the availability
of the LLM features had no negative impact on the quality of the annotated
argument graphs. An indicator of quality is the number of errors identified by
the annotators in the second phase of the annotation—shown in Fig. 2b. We
find that the average number of errors per 1,000 characters increased from 0.79
to 0.90 (about 14%). In both cases, we observe less than one error per 1,000
characters, which we consider to be a good result given the complexity of the
task. There are no outliers in both boxplots and the maximum number of errors
only increased slightly from 2.7 to 2.9. Closer investigation revealed that most
errors were related to missing ADUs and wrong relation types.

Additional insights can be gained from the user study shown in Figs. 2c and
2d. The ADU extraction was rated both as “useful” and as “reliable” by the
three annotators. The major claim identification and relation prediction were
rated at least “somewhat useful”, but differed in terms of reliability. The former
was found to be “somewhat reliable” by all participants, but the latter was
rated as “not reliable” by two of them. Since these features are successive steps
in a pipeline, we conclude that the more complex the task, the less reliable the
results. This interpretation is consistent with the feedback received for the end-
to-end graph generation: They found it to be at least “somewhat useful”, but
one student rated it as “not reliable” and the others as “somewhat reliable”.
The explanations generated by the LLM were found to be “useful” by most
annotators, but were considered “not/somewhat reliable”. Custom instructions
were the only feature not found to be “useful” by at least one participant, there
was even a vote for “not useful”. We did not measure its reliability of the feature
as it changes the behavior of the LLM and does not generate any output on its
own.

Overall, the assistant features are mostly considered to be useful. Reliability
ratings are more mixed, with the relation prediction and end-to-end approach
being the most problematic. When asked about the assistant’s perceived impact
on the quality of the argument graphs, two annotators reported no change,
while one even found that the assistant had a positive impact. Although there
were some issues with the assistant, they found it to be a valuable tool for the
annotation of argument graphs, especially when dealing with long texts, and
would prefer to use it again in the future. Although the results of the user
study suggest that the assistant features do not negatively impact the quality
of the annotated argument graphs, the error analysis shows that the number of
errors increased slightly. We therefore reject H2, but note that the increase in
errors may be mitigated in the future with improvements in the LLM technology,
optimized prompts that better guide the model towards the desired result, and
special training of the annotators to better understand the model’s behavior.
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Free-Form Feedback. Besides answering multiple questions, the annotators
also provided free-form feedback. We summarize the main points in the following,
starting with general aspects. The participants reported multiple instances where
the LLM response could not be parsed properly by the application, meaning
that they had to try again and wait for a new response. Such errors may occur
if invalid JSON objects are generated by the LLM, meaning that OpenAI does
not strictly enforce the provided schema in all cases. The probabilistic nature
of the assistant was received with mixed feelings: It allowed the annotators to
obtain different results by running the same generation twice (as anticipated),
but these inconsistent results also led to some confusion as to which one to keep.
Finally, the annotators wanted to have a best-practice guide on how to use the
assistant features effectively.

The discussion of individual features mainly confirmed the findings obtained
from Figs. 2c and 2d. The ADU extraction was praised by all participants and
even helped one of them better understand the structure of the text. They also
reported that this step should rather extract too much than too little, as it is
easier to remove unwanted ADUs than adding missing ones. A problem of this
step was that the model sometimes rephrased ADUs—requiring the human to
fix the text manually. The major claim identification was found to be useful if
the text actually contained a statement that could be considered the main con-
clusion. As an improvement, they suggested adding a feature to automatically
synthesize a major claim from the original text—for instance, through summa-
rization. The relation prediction was found to be more effective in shorter texts
and less so in longer ones. The annotators reported multiple instances of isolated
subgraphs and/or circular relations. The generation of graphs using the end-to-
end approach was not extensively used, and instead the annotators preferred to
fix issues between the individual steps manually. The explanations were found
to be consistent with the generated predictions; their usefulness, however, was
somewhat limited: ADU that were deemed non-argumentative by the annotator
often provided contained a summary of its content instead of proper reasoning—
indicating that the model should not have extracted them in the first place.
Custom instructions were seldom used: In cases where the model output was
not satisfactory, it was faster for them to do it manually instead of trying to
fix the assistant’s behavior. Instead, participants wished to modify the temper-
ature of the model so that they could decide between more creative and more
conservative responses depending on the current article.

Limitations. Using LLMs for the graph construction task may introduce biases
towards certain structures which the annotators may accept without question.
The assistant tends to generate more hierarchical graphs than annotators would
manually create in certain cases. In addition, predicting relations and/or com-
plete graphs may lead to semantically invalid results, which the annotator has to
fix manually (e.g., circular relations). LLMs are probabilistic models with results
that vary greatly in different runs even when using the same input—potentially
leading to confusion for the annotator. At the same time, this variation allows us
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to incorporate the notion of subjectivity into our interactive use case: The anno-
tator may choose to run the same generation twice to obtain different results
and decide which one to keep based on their own judgement.

Our qualitative results are based on feedback from three annotators and one
dataset, which may not be representative of real-world scenarios. The students
also likely knew what we were trying to show, which may have influenced their
votes on the usefulness and reliability of the assistant features. To determine
the speed improvement, we analyzed the annotation time for the entire graph
creation process without breaking it down into individual tasks. Consequently,
it may be the case that the speedup is caused by one of the tasks, whereas others
may actually be slower.

7 Conclusion and Future Work

In this paper, we have presented an interactive system for the annotation of argu-
ment graphs that integrates LLMs to support the annotators. Our prompting
strategy covers both an end-to-end technique and a pipeline-based one, allowing
annotators to choose the most suitable approach for the task at hand. Our user
study demonstrated that the modified version of ArgueMapper in fact decreases
the annotation time of the argument graphs, while only having a slight impact
on the resulting quality. In addition to making our ArgueMapper assistant pub-
licly available, we also release the argument graph corpus created as part of
our study. The speed improvements of the interactive system may contribute to
the availability of more argument graph corpora, which in turn could positively
affect the retrieval of arguments.

In future work, we plan to extend the functionality offered by the assistant—
for instance, by adding a way to synthesize a major claim from the original text.
Furthermore, we see the potential of using the LLM features to onboard new
annotators: In addition to written guidelines with a static selection of examples,
they could utilize LLM predictions to receive dynamic feedback for their task.
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Abstract. Transformer architectures have become popular across deep-
learning disciplines due to their capability of efficiently integrating infor-
mation across extensive temporal spans and handling large datasets.
Recently, this property of transformer models has also been utilized
for reinforcement learning (RL) by learning in-context. In in-context
learning for decision-making problems, i.e., RL, a transformer model
is usually pre-trained on an offline dataset and is tasked to predict
the most likely action given a context. Such a model is able to make
inference on the fly without parameter updates. Despite great success,
the use of transformer architectures for RL is still in its infancy. In
this paper, we further investigate the in-context learning abilities of
transformer-based goal-oriented RL. We introduce Goal-Focused Trans-
former (GFT), a transformer meta-agent for goal-oriented RL. Building
upon the Decision-Pretrained Transformer (DPT), GFT incorporates a
function which distills goal information from the context, which we refer
to as “goal-controller” (gc) and facilitates task inference during evalu-
ation. By learning to distil useful information from context about the
goal states, GFT enhances the exploration-exploitation dynamics and
achieves superior performance and stability compared to DPT in envi-
ronments with sparse rewards. Our contributions highlight GFT’s effi-
cacy in increasing average return, enhancing data efficiency, and provid-
ing a valuable mechanism for operating in dynamic environments while
consistently striving to achieve predefined objectives.

Keywords: Goal-Oriented Reinforcement Learning · In-Context
Reinforcement Learning · Transformer-Based Reinforcement Learning

1 Introduction

Self-attention transformer architectures have emerged in natural language pro-
cessing (NLP) due to their remarkable ability to seamlessly integrate informa-
tion across extensive temporal spans and handle large datasets [30]. Supervised
learned at scale, transformer models have demonstrated remarkable capabili-
ties in generalizing to unseen tasks when provided with input contexts [5,34].
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This ability can be understood as a form of meta-learning and commonly
phrased as in-context learning [2]. In-context learning refers to the ability to
learn algorithms, e.g., SGD, or infer tasks from contexts. When transformer
agents are used for in-context learning in the framework of RL, RL reduces to a
prediction problem that can be solved via supervised learning [25].

Fig. 1. Goal-Focused Transformer (GFT) outputs the distribution over actions con-
ditioned on a query state and context. During training, GFT learns via supervised
learning to predict optimal actions given a manifold of query states, contexts, and the
output of the goal-controller (gc), which is a function that distills goal information
from the context.

Among the first frameworks of in-context learning using a transformer model
in RL, [4] uses a “reward-on-the-go” mechanism. At test time, a target reward
is provided as conditional information to be achieved during rollout. Follow-
ing approaches [13,15,17,18,20,22] rather rely purely on, e.g., learning policy
improvements, achieving great success in offline RL using a transformer model.
In this paper, we aim to build upon these accomplishments by further exploring
transformer-based models for goal-oriented RL. We leverage the task general-
ization capabilities of the transformer model, navigating through uncertainty
about the ground truth task, and seamlessly transitioning to exploitation as
uncertainty diminishes. In goal-oriented RL, agents are trained to achieve pre-
defined objectives or goals within a given environment. This subfield of RL has
emerged to be a practical framework for robotic manipulation tasks, in which
an agent is required to reach a certain goal defined by a function on the state
space [27]. Key challenges include efficiently exploring the environment and mak-
ing decisions that lead to the successful attainment of the specified goal while
maintaining it over time. Successful agents need to learn an efficient exploration
strategy and switch to exploitation once the goal is sufficiently certain. Although
there has been rapid development in transformer-based RL, there is little liter-
ature [12] on utilizing its great potential for goal-oriented RL.
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In this paper, we aim to further investigate transformer-based in-context
learning for goal-oriented RL. Our work builds upon the Decision-Pretrained
Transformer (DPT) [18] and augments the algorithm by introducing a function
to distill goal information from the context. DPT first traverses through a super-
vised pertaining phase, where it takes in a dataset of interactions and can be
queried with a forward pass for predictions of the optimal action via inputting
a query state and an in-context dataset of interactions. Like most in-context
learning agents based on transformer models, DPT changes behaviour based
solely on the observed context. DPT has proven superior task generalization per-
formance compared to other in-context transformer-based RL algorithms, e.g.,
Algorithm Distillation (AD) [17], and performs in-context posterior sampling
under certain conditions.

Building upon DPT, we introduce Goal-Focused Transformer (GFT), a trans-
former meta-agent trained on an offline in-context dataset of interactions, a query
state, and a function for distilling goal information from the context, which we
refer to as the goal-controller. The in-context dataset of interactions consists of
<state, action, reward, next state> tuples of environment transitions. Figure 1
shows a visualization of the model. The agent learns to infer tasks based on the
context originating from a common Markov Decision Process (MDP). The query
state provides information about the current agent location in the environment.
As the agent traverses through the environment, they collect past transitions as
context. Based on the collected context transitions, the goal-controller distills
information about the goal location. Once the goal is observed in the context,
the goal-controller emphasises exploitation and strengthens the belief in the
underlying task. If the goal is unobserved, the agent maintains its exploration
behaviour. The goal-controller distinguishes GFT from DPT, resulting in over-
all performance improvements, while being more data-efficient for goal-oriented
environments with sparse rewards. We use the valuable properties of in-context
and meta RL for goal-oriented RL to quickly adapt to new unseen tasks, trans-
fer knowledge of seen tasks, and ensure robustness to task variability, while
enabling an efficient mechanism to switch from exploration to exploitation.

In summary, our main contribution in this work is the introduction of GFT,
a new transformer-based in-context learning method for goal-oriented RL. GFT
can quickly adapt to new unseen tasks in goal-oriented environments - by
learning to distill useful information from the context. We evaluate GFT in
Dark Room [17,18,35], a discrete action environment with sparse rewards that
requires targeted exploration. Our experimental results show that, compared to
DPT, GFT can 1) achieve better performance and 2) be more data-efficient in
terms of the number of tasks and examples per task required to reach the same
level or superior performance.

2 Related Work

Inspired by the great success of [30] for large language models, transformer mod-
els have been used for decision-making in offline reinforcement learning. By
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supervised learning from offline data, transformer models are capable of con-
ducting sequential decision-making directly [19]. Commonly in RL, transformers
autoregressively predict actions based on a context. Resulting algorithms can
learn the policy directly and apply it or infer the task from sequences of trajec-
tories. Hence, some transformer models can be seen as meta RL agents [21] that
quickly adapt their policies to new unseen tasks.

Meta-Learning focuses on quickly adapting to new unseen tasks. In RL, this
often refers to learning a function which outputs the policy instead of learning a
policy for a specific task [1]. A versatile solution involves integrating the entire
learning algorithm within a neural network, enabling the network to acquire the
ability of learning-to-learn through context [2,9,11,14,29,31].

In-context learning refers to the ability to learn algorithms, e.g., SGD,
or infer tasks from contexts. Previous work demonstrates that neural networks
can meta-learn in context [11,23,28,29]. Recently, more work focuses on using
large language models (LLMs) and transformer for in-context learning [3,10,16].
The works in [2,26] apply large language models (LLMs) for text completion
following prompts. In-context learning within the framework of RL has been
successfully applied, as demonstrated in [9,31]. In later approaches the context
usually takes the form of trajectories of past transition tuples [4,21,32,33].

Goal-oriented RL focuses on training agents to achieve pre-defined goals
within an environment. Commonly, goal-oriented RL is applied in areas such as
robotics and recommendation systems. Deep RL is used for goal-oriented obsta-
cle avoidance in [6] and later applied for goal-driven autonomous exploration in
the work of [7].

Transformer models introduce a novel architecture based on self-attention
mechanisms, helping to retain information in long sequences. First introduced
in [30], transformer relies on multi-head attention mechanisms and positional
encodings to capture long-range dependencies in sequential data without recur-
rent connections. Once successfully trained, transformer-based agents can learn
fully in context for decision-making due to context dynamics without parameter
updates. Despite the great success of the transformer architecture, its application
in the RL setting is still an open challenge [23,24].

The Decision Transformer (DT) [4] is among the first to successfully use a
transformer model for action prediction by framing reinforcement learning (RL)
as an autoregressive generation problem with a “reward-on-the-go” mechanism.
By conditioning on a target return, DT can learn without relying on explicit
temporal difference (TD) learning. The work in [13] repurposes beam search as
a planning tool, combining it with a transformer model for imitation learning,
goal-conditioned reinforcement learning, and offline reinforcement learning. A
method described in [17] learns policy improvements of source RL algorithms by
analyzing episode trajectories spanning entire learning processes. In [15], the
next action is autoregressively predicted based on transition tuples, with train-
ing performed on tuples of increasing performance generated by a Proximal
Policy Optimization (PPO) algorithm. Meanwhile, the approach in [12] employs
a Vision Transformer backbone [8] for autonomous navigation.
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Among existing work using transformer models in the RL setting, the
Decision-Pretrained Transformer (DPT) approach by [18] is most similar to the
algorithm presented in this paper. DPT uses a transformer to predict the dis-
tribution over optimal actions based on a query state and context transition
tuples for task inference. We further develop this approach for goal-oriented RL
by augmenting the transformer model with a goal information feature, distilling
goal information from the context. The so-developed algorithm achieves stable
high cumulative rewards while being data efficient.

3 Model

3.1 Preliminaries

We define a Markov decision process (MDP) as a tuple of M =
〈S,A,R, T ,H, γ, 〉, where S defines the states space, A represents the action
space, R(rt+1|st, at, st+1) is the reward function, T (st+1|st, at) is the state tran-
sition function including the initial state distribution T0(s0), H is the finite hori-
zon, and γ is the discount factor. A task is characterized by a distinct MDP Mi.
We follow a standard meta-learning setup in which we have a distribution over
possible tasks p(M). While generating the offline training dataset, we repeat-
edly sample from Mi ∼ p(M) defined by a tuple Mi = 〈S,A,Ri, Ti,H, γ, 〉.
Each index i represents a task description with alternating reward functions
and/or transition functions, e.g., varying goal locations and/or state transitions.
For each Mi, we generate N examples of transition contexts {Cn,i := {τh :=
(sh, ah, rh, s′

h)H
h=1}}N

n=1 following Ri and Ti.
An agent interacts with the environment by observing s ∼ S and executing

a ∼ π(s) according to its internal policy, observing the new state situation
s′ ∼ T (·|s, a) and receiving a reward of r ∼ R(·|s, a) until the episode ends
after H timesteps. A policy π(a|s) maps state observations to distributions over
actions and is used to interact with M. A policy π∗

M is optimal for tasks M
if it maximizes the value function V (π∗

M ) := maxπEπ

∑H
h=1 γhrh. We assume

that each Mi has one particular goal location Gi which is determined by Ri. To
maximize the cumulative reward (reach the goal and maintain it) in an unseen
MDP, we train the agent to first efficiently explore the state space S and then
switch to exploiting the goal information once G has been observed.

3.2 Goal-Focused Transformer

Training. We sample batches of Cn,i := {τh := (sh, ah, rh, s′
h)H

h=1}}N
n=1 pro-

viding contextual information for inference about M. Based on C, we sample
a query state q ∼ S from the state space and an optimal action a∗ ∼ π∗(·|q).
While transition tuples τ in C can come from various sources, e.g., expert demon-
strations, random interactions with M, and rollouts of a source algorithm, the
optimal actions a∗ need to come from an expert source. The query state q and
the context C, likewise to the in-context dataset of DPT [18], are used as inputs
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to a causal GPT-2 transformer model Pθ parameterized by θ. We define a func-
tion gc(C), which we refer to as goal-controller (gc), either outputting informa-
tion about G if C contains G, or a non-informative zero vector 0 otherwise, as
specified in (1). This output is then appended to the input of Pθ.

gc(C) =

{
λ, if G ∈ C
0, otherwise

(1)

Note λ is environment specific. In this work, we set λ = G. However, other
information criteria might be possible and more suitable for other domains. We
leave that for future work. Consequently, Pθ is trained via supervised learning to
predict the distribution over actions using a negative log-likelihood (NLL) loss:

L(θ) := −
M∑

m=1

N∑

n=1

H∑

h=1

log Pθ(a∗
mn|qmn, Cmn, gc(Cmn)), (2)

with M being the amount of training tasks Mtrain ⊆ M, N being the number
of training examples per task, and H being the finite horizon. A training dataset
Dtrain consists of the following1:

Dtrain :=
{{(

a∗, q, C := {τj := (sj , aj , rj , s
′
j)j∈[H]}, gc(C)

)}N

n=1
∼ p(Mtrain)

}M

m=1
.

(3)

While both continuous and discrete actions are possible, we concentrate on
the latter using a softmax parameterization. Since transformer models are inher-
ently good at classification tasks, we treat the problem as such. We refer to our
method of predicting the action distribution from query states, contexts, and
goal location information from a goal-controller as Goal-Focused Transformer
(GFT).

Architecture. Let S and A be subsets of RdS and R
dA , respectively. From the

training tasks Mtrain ⊆ M, we generate a training dataset Dtrain. Each con-
sists of H transition tuples providing the context C, a query state q, an optimal
action a∗, and a goal location information from gc(C). During training, we sam-
ple from Dtrain, building an embedding input E(X) for the backbone GPT-2
transformer model, with X being an input array of stacked query states q, con-
texts C, and the output of gc(C). We form the input array X := (v1, v2, C), over
batches B, for the embedding E by concatenating v1 := (q,0), v2 := (gc(C),0),
and C, with 0 being a zero vector, equaling the length of all vectors to be
dv = 2dS +dA +1 resulting in X being of dimensions dX = (H+2)×dv ×B. We
add no positional encoding on top of X in cases where the order of C does not
matter. The embedding E(X) is passed to the transformer model outputting a

1 For clarity in notation, we have omitted the subscripts; for instance, C may be
interpreted as Cmn.
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sequence Y = {(ŷ1,1, ŷ1,2, . . . , ŷ1,j), . . . , (ŷb,1, ŷb,2, . . . , ŷb,j)}b∈[B],j∈[H] of predic-
tions for the corresponding optimal actions {a∗

b}b∈[B]. The entries of Y are used
as logits and are converted to a distribution over actions in A by computing the
action probabilities as p̂bj = softmax(ŷbj), measuring the loss of the training
per batch B:

L(B) = −
B∑

b=1

H∑

j=1

log p̂bj(a∗
b). (4)

Evaluation. First, GFT is trained in a supervised manner on the offline train-
ing dataset Dtrain to minimize the cross entropy loss as specified in (4). Second,
during evaluation, we deploy GFT online in the environment on the holdout
tasks Meval = M \ Mtrain for 40 episodes. When evaluating online, at the very
beginning, the context C is empty and GFT acts purely based on the query state
q provided by the environment. Hence, the predicted action can be seen as a prior
given no contextual information. While the agent is interacting with the envi-
ronment, the context C is filling up until the maximum capacity of H transition
is reached. Thereafter, new transition rollouts replace the oldest in C according
to the paradigm of “first in, first out” (FIFO). Note that during the evaluation
phase, no parameter updates are required. Differences in the action selection of
GFT’s policy a ∼ πθ(·|q, C, gc(C)) for the same query states q originate from the
dynamic nature of C. While the agent explores the sparse reward environment,
the context C is constantly checked for goal location information based on the
reward payout during the rollout. Once the goal has been observed in the con-
text, the goal-controller distills this information and prompts it to the agent.
GFT switches from exploration to exploitation based on the information pro-
vided by gc(C). GFT aims to maximize the cumulative reward in goal-oriented
(dynamic) environments to optimally trade-off exploration and exploitation to
maintain a predefined goal. Note, a goal location in the considered environment
is indicated by a reward payout of +1 and 0 otherwise. While this payout holds
true for the used environment, other environments may differ in this regard. To
generalize over environments, the goal-controller needs the ability to adapt and
process various reward functions including continuous spaces. We leave that for
future work.

4 Experiments

In this section, we investigate GFT’s properties of task-solving in an environ-
ment that requires targeted exploration. We compare the performance of GFT
against Decision-Pretrained Transformer (DPT) [18], in terms of generalization
to new tasks, data efficiency, and stability. We observe that GFT shows supe-
rior generalization ability across seeds compared to DPT, while being up to one
order of magnitude more data efficient to reach the same level of performance.
GFT autonomously switches from exploration to exploitation while being robust
against false prompts from external sources, i.e., provided false goal location
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information. During the online evaluation, action selection relies on a greedy
policy, which entails choosing the most probable action from the output action
distribution. Experimental details and hyperparameters can be found in the
Appendix.

4.1 Environment

We test our agent in an environment that requires targeted exploration. Once
the goal has been found, the agent switches to exploitation to solve the task and
collect the maximum cumulative reward. The chosen environment is Dark Room
[17,18,35], a 2D discrete action environment, in which an overall goal exists -
finding an unknown goal location. The agent navigates a 10 × 10 grid with
a predefined timesteps horizon of H = 100. The agent’s observation is its xy-
position and its previous transitions. Actions are left, right, up, down, and stay
with deterministic transitions. A reward of +1 is awarded while the agent is
at the goal location, and 0 otherwise. During evaluation, the agent starts at
(x = 0, y = 0 ) and transits through the grid world by interacting with it based
on its learned policy. Training and evaluation tasks are drawn randomly without
replacement from the 100 possible grid goal locations. Testing for generalization
is executed on different percentages of training and holdout tasks, with a ratio of
(80/20, 60/40, 40/60, 20/80 ), respectively.

4.2 Dark Room Online Evaluation

Both algorithms GFT and DPT are trained on the same offline training dataset
Dtrain with four different ratios between training and holdout tasks, e.g., 80/20
refers to 80% training goal locations Mtrain and 20% holdout goal locations
Meval. During the evaluation, GFT and DPT act online in the environment on
the holdout goal locations Meval for 40 episodes. Per training task Mtrain, we
use N = 1000 contexts C. Note that fewer training tasks refer to fewer examples
during training, i.e., 80/20 equals 80,000 seen training examples, while 20/80
equals only 20,000 seen different training examples. Hence, a lower training-to-
holdout goal location ratio refers to a higher difficulty in terms of generalization.
Figure 2 shows the average return of GFT compared to DPT in the online setting
across 5 seeds on the same dataset Dtrain

2. The standard errors are calculated
from the individual performances over the holdout tasks and seeds. Both meth-
ods are trained for 1000 epochs. In this setting, we compare the performance
stability. For the extreme cases 80/20 and 20/80, GFT outperforms DPT in
terms of cumulative reward across seeds, both in terms of absolute performance
and learning speed. For the other two train-evaluation ratios, the performance
differences between GFT and DPG are not clearly differentiable.

Next, we compare GFT and DPT in terms of data efficiency and generaliza-
tion potential. For that, we handpick the best-performing seed for the baseline

2 To showcase the performance, we use identical metrics (mean and standard error)
as detailed in [18].
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Fig. 2. Mean cumulative online reward (solid line) ± standard error (shaded area)
across 5 seeds for different ratios of training and holdouts tasks. Both methods GFT
and DPT are trained for 1000 epochs.

DPT and use the same seed for GFT on a 80/20 train-evaluation ratio, thereby
giving DPT an advantage3. While the across seed performance is relatively sta-
ble for GFT, we choose the best performing (average return) seed for DPT and
match the seed for GFT. Figure 3 shows the average return after 100, 200, 500
and 1000 training epochs for GFT and DPT. After 1000 epochs, the performance
of both algorithms is comparable, however, after only 100 epochs of training,
GFT already learns to generalize to new, unseen tasks, while DPT hardly learns
to generalize at all. We argue that in terms of generalization, DPT heavily relies
on an informative and versatile context during training. While this holds true for
GFT, too, we believe GFT can process rare reward occurrences in the context
more efficiently and consequently enables faster learning, speeding up training
by up to one order of magnitude. Note that GFT is neither provided with goal
location information during evaluation nor are the holdout tasks included in the
training dataset. GFT successfully and quickly learns to adapt to new unseen
tasks by distilling useful information from the context.

Fig. 3. Mean cumulative online reward (solid line) ± standard error (shaded area)
for one handpicked seed after a certain amount of training epochs. The selection is
based on the best-performing seed for DPT and matched for GFT (same seed for both
algorithms) on a 80/20 train-evaluation ratio.

We also aim to analyze GFT’s capability to efficiently transit from explo-
ration to exploitation. To achieve this, we assess the individual performances
of both GFT and DPT across each holdout task, employing the same training
dataset seed combination as previously. Illustrated in Fig. 4a, the cumulative
reward per task for both GFT and DPT is depicted. Notably, as soon as GFT

3 See Appendix B for additional performances across seeds.
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Fig. 4. (a) Each learning curve represents the cumulative online reward per holdout
task. (b) Behavior of GFT in the Darkroom environment with different goal prompts
provided. The agent starts at the bottom left (black square) and has to navigate to
an unknown goal location (cross). ( ) Exploration behavior of GFT with an empty
goal prompt. ( ) Goal prompt consist of the true goal location. ( ) A false goal
information (shaded square) was prompted to GFT.

“discovers” evidence of the goal location within the context, the algorithm auto-
matically shifts from exploration to exploitation, indicated by a constant cumu-
lative return over time. While DPT achieves commendable cumulative rewards,
the algorithm struggles to stabilize the overall performance, exhibiting volatile
returns over time. This demonstrates GFT’s superior ability to task identifica-
tion.

Next, we aim to evaluate GFT’s ability to handle externally provided prompts
for a selected holdout task in the Dark Room environment and test GFT’s
robustness against potential false goal information prompts. Figure 4b illus-
trates three distinct exploration behaviors of GFT after 1000 epochs of training.
When no goal prompt is provided ( ), when the true goal location is prompted
( ), and when false goal information is provided ( ). The agent begins at the
bottom left (black square) and must navigate toward an unknown goal (cross)
while maintaining it. In the absence of a goal prompt, GFT follows its learned
default strategy ( ) while the context accumulates past trajectories. After ini-
tial timesteps, GFT leaves out a blind spot in the upper left corner of the grid
world - even when explored later on the exploration behavior may not be opti-
mal. We argue that this is a result of little to no goal-locations in the upper
left corner during training. When provided with a prompt providing the true
goal location ( ), GFT swiftly navigates to the goal and maintains it there-
after, showcasing the preferred behavior. In the event of a false goal prompt
( ), GFT initially adheres to the provided task information. However, once it
reaches the supposed goal location (shaded square), GFT reverts to its default
strategy. This behavior is attributed to GFT’s continuous monitoring of the
context by the goal-controller, rendering it resilient to false goal information.
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5 Conclusion

In this paper, we explored in-context learning for goal-oriented RL using a trans-
former model. To achieve this, we extended DPT and introduced GFT, a meta-
transformer agent trained through supervised learning on offline data to predict
optimal actions based on a combined input of query states, contexts, and a goal
controller output. Through online evaluation on holdout tasks in the Darkroom
environment, we demonstrated strong generalization capabilities and data effi-
ciency of our method in a goal-oriented context. With external goal prompts, we
observed improved exploration-exploitation behavior, while the goal controller
effectively prevented false information from corrupting the agent’s policy. These
findings underscore the potential of transformer models with in-context decision-
making abilities in the goal-oriented RL setting.

Limitations. Despite the strong capabilities of GFT in goal-oriented RL, we
contend that its generalization abilities heavily depend on the distribution of
training tasks and the size of the state space in the training dataset. GFT is
susceptible to “blind spots” in its exploration behavior, which may result in
poor generalization for unseen tasks. Another drawback is GFT’s reliance on
expert actions during training, which poses additional challenges.

Future Work. The limitations of GFT also serve as a roadmap for future
research. There is significant potential in expanding the diversity of the training
task distribution, such as through data augmentation techniques or leverag-
ing distributional source agents to generate training data. This approach can
enhance the model’s generalization capabilities to new, unseen tasks. Addition-
ally, further refinements of the goal-controller for continuous state and action
spaces is warranted, while ensuring compatibility with more complex goal-
oriented environments with sparse rewards.

A Hyperparameters

We used the PyTorch framework fand seeds 1–5 during training. The handpicked
seed for the best DPT performance is 4.

Hyperparameters for GFT and DPT are listed below, are equal for both,
and are based on the findings of [18]. We use an embedding size of 32, a
horizon H of length 100, 4 hidden layers, 1 attention head and no resid-
ual/embedding/attention dropout. We use the AdamW optimizer with weight
decay 1e−4, learning rate 1e−4 and a batch size of 64.

B Additional Experimental Results

In the following, we display the performance after 100, 200, 500 and 1000 epochs
of training for DPT and GFT across 5 different seeds - for all train-evaluation
ratios (80/20, 60/40, 40/60, 20/80 ). Displayed are the mean cumulative online
rewards (solid line) ± standard error (shaded area).
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Fig. 5. 80/20 train-evaluation ratio.

Fig. 6. 60/40 train-evaluation ratio.

Fig. 7. 40/60 train-evaluation ratio.

Fig. 8. 20/80 train-evaluation ratio.
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Abstract. Designing a reward function that elicits the desired behav-
ior poses a significant challenge in the field of reinforcement learning
(RL). Existing techniques such as constrained RL, safe RL, and reward
shaping, while effective, still depend on the transformation of the reward
function, potentially complicating interpretability. Recently, policy regu-
larization methods have been employed to achieve the desired behavior.
One such method, known as affinity-based RL, has found applications in
domains such as finance and machine ethics. In this paper, we introduce
a variant called localized affinity-based RL (LAb-RL), which is versa-
tile in state-specific decision-making. Our experiments show that agents
can exhibit desired behaviors, and their actions in a given state can be
interpreted through their localized affinities. We conclude by advocat-
ing the extension of this algorithm to other problems that necessitate
state-specific and interpretable decision-making.

Keywords: Affinity-based Reinforcement Learning · Policy
Regularization · Interpretability

1 Introduction

Reinforcement learning (RL) is a powerful tool which uses a reward-based mech-
anism to learn the optimal actions an agent commits in an environment [16]. It
has widespread use in our daily lives, such as in transportation [20], robotics [5],
and healthcare [14] applications. Typically, in RL, an agent must navigate an
environment with states and commit actions. However, in many cases, designing
a reward function to ensure that the agent behaves appropriately is a difficult
problem and makes it challenging to explain the agent’s behavior, even with the
help of domain experts [4]. Although reward shaping [10] can help encourage
agents to learn the intentions of an expert, it adds to the problem of a lack
of algorithmic transparency. This often amplifies issues such as reward hacking
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[15]. Whereas, paradigms such as constrained RL, which aims at avoiding cer-
tain actions, can further complicate the reward function [3,6]. Others, such as
preference-based learning replace the reward function with action preferences,
which require human intervention [21].

Another technique known as policy regularization has been used, where
recent work [17] has imprinted desired behavior in the agent’s policy rather than
rewards. A variant of policy regularization known as affinity-based RL (ab-RL)
encourages agents to learn strategies that are partially decoupled from reward
functions [8]. It aims at (1) a simple, yet surprisingly effective method based
on a regularization of the objective function with a distinct action distribution
that encourages RL agents (“prototypes”) to globally choose preferred actions
based on desired agent traits, (2) an inherent RL interpretability which over-
comes the obfuscation of opaque RL models that rely on post-hoc explanations
and interpretations, and (3) the creation of mixed strategy agents through fuzzy
time-variant superpositions of prototypical policies with hierarchical RL, each
interpretable by its action affinities, that are globally interpretable.

Ab-RL was first demonstrated in a Manhattan Pizza Delivery environment
where the agent’s goal was to navigate a grid from a starting point to a desti-
nation location, and right turns were preferred [7]. This approach was further
applied [8] to a financial investment problem, where based on the personality
profile and age of the customer, the agent recommended a customized invest-
ment strategy. Other researchers [18,19] have explored the use of affinity-based
RL to encourage an agent to perform virtuous actions in Papers, Please envi-
ronment. Here, the agent, being an immigration agent, is faced with a moral
dilemma between taking a bribe from illegal entrants and being honest on the
job, and it was shown that the agent can be made to prefer honest actions.
However, in these scenarios, the agent acts honestly regardless of the state, and
it remains to be seen whether it can result in desired behavior depending on the
state.

To pursue this goal, we introduce localized affinity-based RL (LAb-RL),
where depending on the state, an agent behaves so that it prefers certain actions
in those states. For example, in the Manhattan Pizza Delivery scenario, where
the agent prefers right turns in some regions of the grid while preferring to go
straight in other parts, this novel algorithm aims to demonstrate that it is possi-
ble to achieve desired behavior localized in a state, thus making it interpretable.
We believe that this research direction has promise in applications beyond grid-
world problems, financial advisors, and machine ethics.

Our research contributions are as follows:

1. A novel interpretable method to incentivize an agent with preferences as a
function of the agent’s state.

2. An evaluation metric to measure how well an agent has achieved its affinities.
3. An extension of ab-RL which trains RL agent policy by combining state-

dependent prototypical agents.

The rest of this paper is organized as follows, beginning with Sect. 2 which
discusses state-of-the-art research on regularization in RL. Next, we describe the
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methods employed to implement LAb-RL, the evaluation metric and experimen-
tation (Sect. 3), followed by a section outlining our results (Sect. 4). Finally, we
discuss our results and motivate future work in Sect. 5.

2 Related Works

In this section, recent research on imprinting desired behavior in RL along with
alternatives such as constrained RL and preference-based RL is discussed. This
is followed by recent developments in ab-RL and relevant information about its
mathematical definition.

2.1 Reinforcement Learning and Desired Behavior

Recently, the problem of training an RL agent to optimize a reward function
while also imprinting desired behavior patterns has garnered increasing atten-
tion. For instance, Constrained RL, which steers clear of unwanted states and
actions, is being employed for applications that are critical to safety [1,3]. The
task of assigning costs to each state-action pair, which might occur infrequently
but could lead to severe outcomes, and can be quite daunting, particularly for
extensive state-action spaces. Overall, reward functions often encapsulate com-
plex expert domain knowledge, and crafting an appropriate one can be notori-
ously challenging. This complexity is further intensified by practices like reward
shaping [10], which introduce intricate modifications to the reward function to
guide agents towards learning an expert’s intentions. This practice also exacer-
bates issues such as reward hacking [15], where agents learn the exact reward
function rather than generalizing the expert’s intention. Preference-based RL
leverages the knowledge of domain experts to enforce preferences for actions
based on states [21]. However, a significant limitation is the requirement for a
comprehensive set of preferences or preference functions for continuous prob-
lems, as it is impractical to simulate human input for preferences for the actual
reward function.

While RL excels at learning in situations with sparse and delayed rewards,
it often faces a dilemma known as the exploration/exploitation trade-off [16],
which involves choosing between exploiting known effective solutions or explor-
ing potentially better unknown solutions. A more advanced approach involves
using intrinsic motivation with policy regularization in deep RL, which allows
agents to learn strategies that are somewhat independent of the anticipated
rewards [8]. This approach accelerates the learning process by guiding policy
selection, such as from a uniform action distribution, thereby promoting explo-
ration. It eliminates the need for complex objective functions while ensuring that
agents act as intended. Therefore, it is plausible that regularization could also
be employed to instill desirable behaviors specific to the domain. For example, it
has been used in offline RL with dataset constraint to overcome the value over-
estimation issue with a bounded performance gap, as exemplified in navigation
and locomotion tasks [12].



224 A. Vishwanath and C. Omlin

The concept of using priors to instill a specific behavior in RL agents through
policy regularization has been suggested, where models of probabilistic trajecto-
ries encapsulate the preferred behavior patterns [17]. These priors, which intro-
duce an inductive bias, are learned collectively, proving beneficial for multi-task
and transfer learning scenarios, as well as applications where safety is paramount.
A recent proposal introduced a method to enhance an RL agent with legibility
[11]. This method regularizes the agent’s policy post-training, eliminating the
need to alter its learning algorithm. It fosters an observer model, where a pair of
Bayesian networks, representing the agent and observer respectively, encompass
a previously learned set of policies, thereby enhancing the distinction between the
agent’s actual policy and other potential policies. Other researchers [9], used pol-
icy regularization for smooth control of action policies in a continuous scenario.
The agent is penalized if the action taken in the next state is significantly dissim-
ilar from the action taken in the current state, and further policy smoothening
to mitigate noise.

2.2 Affinity-Based Reinforcement Learning

Recently, a universal framework known as affinity-based RL has instilled globally
preferred behavior patterns [8]. Similar to entropy-based RL [22], its objective
function comprises the sum of the anticipated cumulative rewards and a regu-
larization term. The primary goal of policy regularization was to enhance con-
vergence, with a guarantee of no negative impacts. Essentially, its implicit and
unspoken purpose is to exert control over the learning process. Affinity-based
RL governs the learning process by employing a specific probabilistic action dis-
tribution as the regularization term. This adjustment shifts the balance between
exploration and exploitation, causing the policy to observe an overall action
probability distribution. It ingrains an inherent preference for certain actions
while deterring the selection of others.

Formally, in the equation below, the objective function is given by:

J(θ) = ES,A∼D[R(S,A)] − λL (1)

L =
1
M

M∑

j=0

[ES,A∼πθ
[aj ] − (aj |π0(A))]2 (2)

The regularizing term L is the mean-squared error of the expected action and
a specified prior distribution of actions π0, which the agent aims to emulate. aj

is the jth action from a set of M actions and πθ is the policy from which an
action probability is sampled. λ is the regularization strength of L. Because of
its interpretable nature, one can persuade an agent to commit actions based on
π0. In this manuscript we tailor L to target action preferences as a function of
state. In the next section, we define our algorithm and environment.
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3 Methodology

In this section, we begin by briefly discussing the environment used to train
RL agents. Next, we discuss affinity-based RL which is implemented using the
proximal policy optimization (PPO) algorithm [13]. Finally, we describe some
practical parameters involved in the training of ab-RL agents.

3.1 Environment

Manhattan Pizza Delivery is a 6× 6 grid world environment which simulates a
pizza delivery scenario, where the kitchen is located at (3, 0) and the delivery
locations appear in elsewhere in the grid (Fig. 1a). The goal is to deliver the
pizza via the shortest path. The states are given in Table 1 where heading refers
to the direction of the agent ranging from 0 to 3, i.e., North, East, South and
West respectively.

(a) Without Region 1 and Region 2
distinctions.

(b) With Region 1 and Region
2 distinctions.

Fig. 1. Shown here are different Manhattan Pizza Delivery environments: a) the origi-
nal environment used by [7] with an agent’s preference to turn right with a prior action
distribution of [0.0, 0.4, 0.6], and b) the environment used for this work to demonstrate
LAb-RL.

Since this work aims to exhibit different behaviors in different regions of the
environment, we have included two additional observation variables denoted by
‘x region 1 start’ and ‘y region 1 start’. In Fig. 1b Region 1 starts at (3, 3). Here,
the borders [(3, 3), (3, 6), and (3, 3),(6, 3)] are included as a part of Region 1.

3.2 Localized Affinity-Based Reinforcement Learning

In Sect. 2, we defined ab-RL as a technique to incentivize an agent to prefer some
actions over the others. In the Manhattan scenario, if the prior probabilities of
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Table 1. State space in Manhattan Pizza Delivery including the two additional obser-
vation variables specifying the start of Region 1 shown italicized.

State Value range Example State Value range Example

x distance to goal [−6, 6] 1 y location [0, 6] 3

y distance to goal [−6, 6] -4 x region 1 start [0, 6] 5

heading [0, 3] 2 y region 1 start [0, 6] 1

x location [0, 6] -2

action are defined as [0.0, 0.4, 0.6], i.e., a preference for turning right, it is possible
to train this agent to prefer right turns as shown in Fig. 1a.

Based on ab-RL, we introduce a more focused and customizable method
known as localized affinity-based reinforcement learning (LAb-RL) which is based
on action probabilities defined for each state in the environment. Hence, we
replace L in Eq. 1 with Ls, which is the localized regularization loss. Hence, the
objective function can be defined as:

J(θ) = ES,A∼D[R(S,A)] − λLs (3)

where λ is the regularization strength similar to Eq. 1. Ls is calculated similarly
to L from Eq. 2, except that the prior probability is now a function of the agent’s
state. The regularization loss is calculated as follows:

Ls =
1
M

M∑

j=0

[ES,A∼πθ
[aj ] − (aj |π0i(S,A))]2 (4)

Here, Ls is the mean-squared error of the expected action and the prior π0i,
which is a function of the agent’s state and action.

3.3 Experimental Parameters

The Proximal Policy Optimization (PPO) algorithm is preferred in RL because
of its simplicity, computational efficiency, and consistent performance. By per-
mitting multiple epochs of mini-batch updates, PPO circumvents the intricate
constrained optimization process characteristic of Trust Region Policy Optimiza-
tion (TRPO), thereby increasing sample efficiency [13]. Additionally, it incorpo-
rates a clipping mechanism to maintain stability in policy updates. PPO exhibits
versatility, demonstrating effective performance across both discrete and contin-
uous action spaces, and consistently attains state-of-the-art results across various
benchmark tasks. Furthermore, the direct policy update approach and its com-
patibility with continuous action spaces render PPO more effective than deep
Q-Networks (DQN) in complex environments [16]. In our version, training is ter-
minated after 2000 episodes and the hyperparameters used to train the model
are shown in Table 2.
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Table 2. Hyperparameters used in training the PPO algorithm with LAb-RL

Hyperparameter Value Hyperparameter Value

Actor Layers (1024, 1024) Batch size 16

Critic Layers (1024, 1024) Epochs 10

Input size 7 γ 0.99

Actor Learning rate 3e−4 Max iterations 2000

Critic Learning rate 1e−3

3.4 Evaluation Metric: Affinity Error

Affinity error is a metric to estimate the divergence from the prior probabilities.
It is given by the mean squared error between number of actions in specific states
t and the prior probabilities π0. The affinity error is given by:

πerr = 1/N

N∑

i=1

(t̃i − π0i)2

where t̃i and π0i are the normalized number of actions and prior probability in
state i out of N possible states, respectively. For example, the prior probability
could be π0 = [[0.8, 0.1, 0.1], [0.1, 0.8, 0.1]]. If the number of turns in each state
ti = [[2, 4, 2], [1, 2, 3]], normalizing t yields: t̃i = [[0.25, 0.5, 0.25], [0.167, 0.33, 0.5]].
Thus, the affinity error for each state is: πerr = [0.162, 0.127]. The ideal result
would be if πerr = [0.0, 0.0].

4 Results

In this section, we first show the impact of LAb-RL and then analyze the extent
to which the regularization strength, λ, influences learning and agent preferences.
Next we study the impact of Region 1 location, followed by the regularization
probability distribution π0.

4.1 LAb-RL Training

We trained the PPO model using policy regularization shown in Eq. 2 and the
relevant hyperparameters. Here, we present the results of training the LAb-RL
algorithm and visualize the reward function and loss function (Fig. 2). We can
observe that depending on the regularization strength, λ, the convergence varies.
In other words, higher the value of λ, slower the convergence.

We further analyzed the loss function based on the regularization terms, i.e.,
the reward loss and Region 1 loss. This helps us understand which losses the
model prioritizes and how they are balanced during training. Figure 3 shows
that λ plays a similar role in convergence and that a higher λ results in slower
convergence. Another interesting trend is that Region 1 and Region 2 losses are
minimized faster than Reward loss; hence, regardless of λ, they are minimized
in fewer episodes of training.
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Fig. 2. Reward and Loss functions for our LAb-RL agents varied by regularization
strength for each training episode.

Fig. 3. Reward and Region 1 losses incurred by LAb-RL agents varied by regularization
strength, λ, for 2000 episodes.

4.2 Impact of Regularization Strength (λ)

To further understand the impact of λ, we use our previously defined evaluation
metric, affinity error (πerr). We varied λ between 0 and 140 in steps of 10, and
trained our model for 2000 episodes. We observe an overall decline of πerr with
λ = 0 yielding the highest reward and highest πerr. Figure 4 illustrates this
decline of πerr with increasing λ.

The dark gray and light gray bars in Fig. 4 represent Region 1 and Region 2
respectively, where Region 1 is the region in Fig. 1b shaded dark gray. While the
black bars show the decreasing reward with increasing λ. The starting location
of Region 1 in this experiment is (3, 3) for 80 tests. In the next subsection, we
show the impact of starting location of Region 1 on our results (Fig. 5).

4.3 Impact of Region 1 Location on Affinity Error

Previous observations indicate that the value of πerr decreases as the parameter λ
increases. This study aims to demonstrate that a comparable trend is observable
for locations in Region 1, specifically at coordinates (1, 1), (2, 2), and (3, 3)
in Fig. 7. Conversely, for the location (4, 4), the decrease in πerr appears to
be less uniform. This inconsistency can be attributed to the low probability
of this location serving as the agent’s delivery target. Extending the training
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Fig. 4. Average reward and affinity error versus regularization strength for 80 test runs
and Region 1 location at (3, 3).

Fig. 5. Impact of regularization strength (λ) on affinity error. Higher the λ, more
the affinities towards certain actions. The black arrow denotes the affinity in Region
1 while the gray arrow indicates affinity in Region 2. π0 for this experiment was
[[0.8, 0.2, 0.0], [0.0, 0.2, 0.8]].

duration of the model and incorporating additional data points from this region
is anticipated to generate a more uniform trend for the coordinates (4, 4) and
(5, 5). In Figs. 6a and 6b, it is observed that agents exhibit a higher affinity error
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in Region 2 and Region 1, respectively. Furthermore, the frequency of visits to
these minority regions by the agents varies-frequent for Region 2 and infrequent
for Region 1-subsequently influencing the value of πerr.

(a) Region 1 start = [1, 1] (b) Region 1 start = [4, 4]

Fig. 6. Examples of Region 1 start location of (1, 1) and (4, 4) respectively. These are
for high regularization strengths and π0 = [[0.6, 0.3, 0.1], [0.1, 0.3, 0.6]].

Fig. 7. Impact of Region 1 location on affinity error across 80 test episodes. The x-axis
represents λ, while the y-axis is πerr

4.4 Impact of Prior Probability on Affinity Error

To understand the impact of the localized prior probabilities, we generated 15
random probabilities based on a Dirichlet distribution, which is a continuous
distribution defined on the a generalization of the range of possible values for
probability distributions. In Fig. 8, we can visualize each of the 15 distributions,
for each region in the Pizza Delivery grid. Region 1 lies between (3, 0) and (6,
6), while Region 2 lies between (0, 0) and (2, 6).
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Fig. 8. Impact of regularization parameters on affinity error. The y-axis represents πerr

and x-axis is the trial with the faded bars being the respective prior probabilities. The
black and gray lines denote πerr for Region 2 and Region 1 respectively.

Upon training the LAb-RL agent based on these distributions, we observe
the affinity errors, πerr. For Region 1, πerr is between 0.1 and 0.2, while Region
2 sees more fluctuations. When we explore why the values are high (Fig. 9) we
see that the prior probability, π0, of turning right is very high (0.8 to 0.9). An
explanation for these higher values, is due to the location of Region 2. In Region
2, there is a higher probability that an agent goes straight from its starting point
(3, 0) to reach its destination.

5 Discussion and Future Work

Affinity-based RL has been previously shown to exhibit interpretable preferred
behavior in grid-world problems [7], investment planning based on personality
[8] and virtuous behavior [19]. In this paper, we develop this research direction
further by building an RL agent’s policy by combining state-dependent pro-
totypical agents. Our results show that it is possible to customize an agent’s
behavior by optimizing hyperparameters in the objective function rather than
handcrafting a reward function (which is often a tedious task), thus making an
agent’s behavior interpretable. For instance, in Fig. 4 we show that it is possible
to optimize a reward function and an agent’s affinities in specific regions of an
environment using LAb-RL. Future work could focus on any of the following
directions:
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Fig. 9. Episode-wise affinity errors for Region 2 affinities of [0.14, 0.03, 0.83] and
[0.03, 0.07, 0.90]. It can be seen that Region 2 incurs a high cost compared to Region 1.

Multiple regions: Currently, we demonstrate that it is possible to train an
agent to behave differently in two different regions. We could instead adopt
the same approach for more regions. Figure 10 illustrates that behaviours
could be customized for different parts of the Manhattan Pizza Delivery grid.

Fig. 10. LAb-RL applied to more than two regions.

Continuous action spaces: So far, our objective function has been defined for
discrete state and action spaces based on the mean squared error. Instead,
we might be able to experiment in continuous action spaces with an equation
such as Eq. 5. Here, we calculate the mean integrated squared error using the
prior probability distribution π0 which is a true density function of state and
action, and ES,A∼πθ

(a) is the estimated density function.

Ls = lim
M→∞

1
M

∫ ∞

−∞
(ES,A∼πθ

(a) − (a|π0(s, a)))2da (5)

Benchmarking: There are many benchmark environments such as Frozen Lake,
Breakout, etc. [2]. The successful application of LAb-RL in these environ-
ments would significantly advance our understanding of behaviors derived
from prototypical agents. This would serve as a substantial contribution to
the field.
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Interpretation of complex agent behavior: Since ab-RL learns a super-
position of prototypical agents in the form of their linear combination, it is
conceivable that parameter estimation from action observations of complex
agent behavior could serve as a tool for the interpretation of global com-
plex agent behavior in terms of the global behavior of prototype agents. This
would fill an important knowledge gap: current RL interpretation techniques
typically use inverse RL to arrive at an opaque model, and the explanations
are typically restricted to either single actions or, at best, specific action
sequences.

In conclusion, we have introduced an interpretable RL algorithm called LAb-
RL to incentivize an agent to prefer certain actions in certain states in an envi-
ronment. We used a modified Manhattan Pizza delivery environment where the
agent has state-based preferences, and our algorithm exhibited these affinities,
which was empirically verified using our performance metric known as affin-
ity error. Finally, we have provided a compelling rationale for future research
endeavors in the field of ab-RL. We have also highlighted several promising
directions that this line of inquiry could potentially explore. This underscores
the dynamic and evolving nature of this research direction.
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Abstract. In this paper, we survey measures aimed at quantifying the
intrinsic quality of cases’ contents, which we collectively refer to as case
fidelity, and measures that capture their competence within the Case-
Based Reasoning literature. We discuss how insights from the Truth
Discovery and Item Response Theory literature can respectively inform
advancements in estimating case fidelity and competence. Additionally,
we highlight novel research directions that emerge from a deeper exami-
nation of case fidelity and competence.
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1 Introduction

Case-Based Reasoning (CBR) [7] is a problem-solving paradigm that involves
solving an input problem by first retrieving cases (problem-solution pairs) simi-
lar to it from a repository called the case base. The solutions proposed by these
neighboring cases are then modified using the adaptation knowledge to suit the
particular needs of the problem in question. If the proposed solution proves effec-
tive for the problem at hand, this problem-solution pair is optionally retained in
the case base. This reasoning ability of the case-based reasoner is attributed to
the four knowledge containers, namely the vocabulary (the case representation
strategy), case base, similarity, and adaptation [23].

It is known that, over time, one or more of these knowledge containers may
accumulate invalid or outdated knowledge. To address this, the broader frame-
work of Case-Based Reasoner Maintenance [31] was proposed and involves the
maintenance of the four knowledge containers. In that, the maintenance of the
case bases, referred to as Case Base Maintenance (CBM) [5], which typically
involves the removal of poor quality cases from the case base, has garnered signifi-
cant attention. This evaluation of case quality often encompasses various criteria,
such as whether the solution present in a case is suitable for its corresponding
problem, the contribution of the case in preserving the problem-solving ability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
M. Bramer and F. Stahl (Eds.): SGAI 2024, LNAI 15446, pp. 235–249, 2025.
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of the reasoner, etc. In addition, recent developments have also highlighted the
necessity to account for the contribution of cases in making unfair decisions,
such as in [17].

In this work, we provide what we believe is the first of its kind, a unified
view of the approaches in the CBR literature that attempt to quantify case
fidelity—a term we use to collectively refer to measures that capture the intrinsic
quality of a case’s contents—and its predictive competence—the criticality of a
case in preserving the problem-solving ability of the reasoner. It is to be noted
that our study does not center on methodologies for maintaining case bases.
Readers interested in exploring recent advancements in CBM methodologies are
encouraged to consult the comprehensive survey provided in [5]. Additionally, our
analysis of case competence is confined to the predictive performance of cases,
excluding notions such as explanatory competence, which pertains to explanation
aspects as outlined in [6]. Henceforth, we will refer to predictive competence
simply as competence.

We further explore methodologies beyond the confines of CBR to identify
frameworks that may inspire novel approaches for quantifying the fidelity and
competence of cases. Furthermore, our study of case fidelity and competence
unveils several open research directions that include the necessity for the fidelity
and competence measure to interact and the imperative need to widen the scope
of maintenance to other knowledge containers as well.

The organization of our work is summarized as follows. In Sect. 2, we survey
methodologies proposed in the literature for quantifying the fidelity and compe-
tence of cases. Section 3 explores literature beyond the realm of CBR that may
offer potential insights into advancing methodologies for quantifying case fidelity
and competence. Finally, in Sect. 4, we highlight key directions for research that
spawn from a deeper inspection of case fidelity and competence.

2 Literature Review

In this section, we provide background into two classes of measures used to
quantify the goodness of cases, namely, their fidelity and competence. We review
the existing approaches in the literature that attempt to capture these properties.
As we shall see, the demarcation between these two facets appears somewhat
blurry in the literature. We finally illustrate, using a synthetic example, that
although these properties may be perceived as indicators of the goodness of a
case, they need not necessarily have a bearing on one another.

2.1 Understanding Fidelity and Competence

The Merriam-Webster dictionary defines the term fidelity as ‘accuracy in
details’1. In the context of CBR, the true fidelity of a case would refer to how

1 https://www.merriam-webster.com/dictionary/fidelity.

https://www.merriam-webster.com/dictionary/fidelity
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well a domain expert perceives its solution component appropriate for the prob-
lem description (or conversely). In this work, we refer to a case with high (low)
fidelity as faithful (unfaithful).

In practice, however, obtaining expert feedback may not always be feasible
or timely [9], thereby making it difficult to acquire true fidelity scores. The
CBR community has proposed multiple approaches over the years to arrive at
a proxy to the true fidelity estimates of cases in the case base via bottom-up
means. As would be surveyed in Sect. 2.2, these methods largely rely on arriving
at fidelity estimates of cases by inspecting the extent to which they comply
with the foundational assumption in CBR that similar problems have similar
solutions.

It is important to note that the estimates arrived at by such approaches need
not necessarily conform with human assessments. Specifically, a case could be
attributed a high fidelity score by an expert but not by bottom-up measures due
to the presence of poor similarity and/or adaptation knowledge.

The competence of a case, on the other hand, can be defined as the criticality
of the case in preserving the problem-solving ability of the reasoner. A case that
plays an indispensable role by heavily contributing to the problem-solving ability
of the reasoner is regarded as competent, while a case whose contribution is
subsumed by other cases is deemed redundant.

Since it is not possible to envisage all possible problems that the reasoner
may encounter in the future, the true competence of cases in the case base
cannot be estimated. The measures proposed for estimating the competence of
a case, therefore, assume that the case base serves as a good representative of
the problems that the reasoner might encounter in the future [27]. Thus, the
criticality of a case in preserving the problem-solving ability over its cases is
used as a proxy for its true competence.

A distinguishing feature between fidelity and competence concerns with their
implications on the effectiveness and efficiency of the reasoner. In particular,
the deletion or undermining of cases with low fidelity is associated with an
improvement in the prediction quality of the reasoner. Competence, on the other
hand, has predominantly been used for the compaction of case base, thereby
leading to efficiency enhancements. While an improvement in efficiency need not
necessarily result in effectiveness gains, experiments in [13] have shown some
improvements in average accuracy scores upon removal of redundant cases.

It is crucial to emphasize at this point that although fidelity and competence
scores may appear to associate exclusively with the cases in the case base, they
cannot be determined in isolation from other knowledge containers. For instance,
the neighborhood information necessitates the similarity knowledge container,
while the solves function also incorporates adaptation. In all the approaches
that follow, the fidelity and competence estimates are considered to be implicitly
conditioned on one or more of the knowledge containers.
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2.2 Approaches for Estimating Case Fidelity

The literature on estimating case fidelity has proposed a multitude of approaches.
These approaches operate under an implicit assumption that the unfaithfulness
of cases stems from their solution components. A predominant theme observed
in quantifying the fidelity of cases involves inspecting the extent to which a case
is well aligned with its neighborhood. In this section, we briefly review these
measures.

Alignment-Based Approaches. The cohesion measure [8], one of the first
case fidelity measures, captures the extent of overlap between the problem-side
and solution-side neighbors of a case.

cohesion(c) =
|NProb

c ∩ NSol
c |

|NProb
c ∪ NSol

c | (1)

where NProb
c and NSol

c represent the problem-side and solution-side neighbors of
the case c, respectively. A high cohesion value is assigned to a case if its problem-
side neighbors tend to have similar solutions and the solution-side neighbors have
similar problem parts.

A significant limitation of the cohesion measure arises from the observation
that, while it is necessary in CBR for problem-side neighbors to have similar solu-
tions, the converse is not essential. Consequently, a case may be unjustly penal-
ized by the cohesion measure if its solution-side neighbors do not exhibit simi-
lar problem-side attribute values. In contrast, the alignment measure proposed
in [15] addresses this issue by assigning higher scores to cases whose problem-side
neighbors have similar solutions while disregarding the converse. The alignment
of a case c with its problem-side neighbors Nc is given by,

alignment(c) =

∑
c′∈Nc

sProb
cc′ × sSol

cc′
∑

c′∈Nc
sProb
cc′

(2)

where sProb
cc′ and sSol

cc′ indicate respectively the problem-side and solution-side
similarity2 between c and c′. Furthermore, the formulation allows a closer
problem-side neighbor to exert more influence on the alignment score than a
distant one.

It is important to note that the applicability of cohesion and alignment mea-
sures extends beyond regression and classification settings. An empirical com-
parison of these measures in the context of Textual CBR can be found in [22].

While it is a common practice to use the k−nearest neighbors, denoted here
by N k

c for the case c, Eq. 2 was further extended in [2] where a higher-order
neighborhood N kn

c was considered. For instance, N k2

c refers to the second-order
neighbors of c and contains the k-nearest neighbors of the cases in N k

c .
2 It is important to recognize that estimating solution-side similarity is often a non-

trivial task in various settings. We point the readers to [21] for relevant discussions
in the context of Textual CBR (TCBR).
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Another approach that accounts for a wider neighborhood is the Complexity
measure [13]. Proposed in a classification setting, it captures the proportion of
neighbors of c that belong to a class different from that of c as the neighborhood
size increases. The complexity within the neighborhood of c is given by,

complexity(c) = 1 − 1
K

K∑

k=1

Plc(N k
c ) (3)

where Plc(N k
c ) denotes the proportion of neighbors in N k

c that belong to lc, the
class label of c. A case c with complexity greater than a predefined threshold is
considered unfaithful.

The heterogeneity score proposed in [29] and Reputation-Based Mainte-
nance [18], much like complexity, also account for the distribution of the neigh-
boring cases to the different classes in the set of classes L. The heterogeneity
score associated with a case c is given by,

heterogeneity(c) =
∑

l∈L
Pl(Nc ∪ {c})2 (4)

The reputation of a case c is the difference between the number of neighbors
with the same class as c and the number of those belonging to a different class.

reputation(c) =
∑

c′∈Nk
c

I(vc = vc′) −
∑

c′∈Nk
c

I(vc �= vc′)

= |N k
c | × (

Plc(N k
c ) − PL−lc(N k

c )
)

(5)

where I(p) is the identity function that returns 1 if p evaluates to true, 0 other-
wise. This approach regards a case as unfaithful if it has a negative reputation.

The Friend-to-Enemy ratio (F : E) [14], in contrast to the class distribution-
based approaches, makes use of the average distance of the case c to its k−nearest
like neighbors N k(+)

c and that to its k−nearest unlike neighbors N k(−)
c .

F : E(c) =

∑
c′∈Nk(+)

c
d(c, c′)

∑
c′∈Nk(−)

c
d(c, c′)

(6)

where d(c, c′) is the distance between the problem parts of c and c′. Consequently,
c is regarded unfaithful if it is closer to its enemies (N k(−)

c ) than its friends
(N k(+)

c ).
The methods discussed thus far implicitly assume that the neighboring cases

of a given case provide a sound basis for assessing its fidelity. In particular, they
regard all the cases within Nc as uniformly faithful when estimating the fidelity
of c. This may result in erroneous conclusions in the presence of truly unfaithful
neighbors. Specifically,

1. Consider a case c that is truly faithful but has a neighborhood predominantly
comprising unfaithful cases. Since a large proportion of the cases similar to
c have dissimilar solutions, c would be falsely assigned low fidelity by the
measures discussed this far.
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2. On the other hand, if c is a truly unfaithful case situated in a neighborhood
of predominantly unfaithful cases, the problems similar to c can potentially
have similar solutions. Thus, c may be falsely regarded as faithful by virtue
of its agreement with its unfaithful neighbors.

That is, the fidelity of the neighboring cases in Nc should be accounted for
while estimating the fidelity of c in order to discount the influence of unfaithful
neighbors. RelCBR, proposed in [19], uses a circular definition to quantify the
reliability of cases in the case base. It considers a case to be reliable if it is well
aligned with its reliable neighbors. The reliability vector r∗ = {r∗

c}c∈C is given by

r∗ = argmin
{rc}c∈C

∑

c∈C
rc × dSol(vc, vec)

2 (7)

where rc is the reliability score assigned to the case c, vec denotes the reliability-
weighted solution proposed by cases in Nc for c, and dSol(vc, vec) captures the
discrepancy between vec and the solution mentioned in c. The details associated
with the optimization procedure can be found in [19].

A notable distinguishing trait of reliability, compared to other fidelity estima-
tion approaches discussed previously, is its ability to account for the adaptation
knowledge when computing the solution proposed for cases ({vec}c) using the
solution of their neighbors.

We would also like to emphasize that the above circular formulation lends
RelCBR visibility to a wider neighborhood. Specifically, the reliability of a case c
is determined by examining the reliability of cases in N k

c . However, the reliability
of each neighbor within N k

c is itself dependent on the reliability of their own
neighbors, collectively denoted by N k2

c , and so forth. Therefore, rc is effectively
dependent on the reliability of cases in its higher-order neighborhood.

Finally, we present a comparative analysis of the fidelity estimation
approaches in Table 1.

Table 1. A comparison of fidelity estimation approaches.

Cohesion Alignment Higher-order Alignment Complexity Heterogeneity Reputation F:E Reliability

Need for solution-side similarity/neighbors? Y Y Y N N N N Y

Local (L) or Extended (E)Visibility? L L E E L L E E

Applicable beyondClassification settings? Y Y Y N N N N Y

Accounts for adaptation knowledge? N N N N N N N Y

Agnostic to the presence of unfaithful neighbors? Y Y Y Y Y Y Y N

Provenance-Based Approach. The alignment-based approaches have been
largely employed to estimate the fidelity of cases within a static snapshot of
the case base. However, the provenance-based approach introduced in [9] offers
a temporal perspective, aiming to identify potentially unfaithful cases by con-
sidering the growth of the case base over time. This approach operates under
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the assumption that the case base comprises faithful cases during the onset of
the reasoner, with the accumulation of unfaithful cases occurring due to the
retention of unverified cases. The claim is that a case whose parent case is itself
unverified is more likely to be unfaithful compared to another with a verified
parent case. In general, the unfaithfulness of a case is captured by the length of
the path to its nearest verified ancestor.

2.3 Approaches for Estimating Case Competence

The competence of a case denotes its criticality in preserving the problem-solving
ability of the reasoner. In other words, a case with low competence may be
deemed redundant to the reasoner’s problem-solving ability. An accurate esti-
mate of the competence of the cases in the case base would require assessing
the cases over all possible scenarios that the reasoner may encounter. However,
since this information is not known apriori, it is commonplace to assume that
the case base denotes a representative sample of the future target problems [27].
Consequently, the competence of a case c is measured in terms of its criticality
in solving the other cases from the case base.

The most rudimentary measure of competence of a case c is given by the
cardinality of its Coverage Set [28], the cases which are solved by c.

CoverageSet(c) = { c′ | c′ ∈ C , c solves c′ } (8)

where c solves c′ = true indicates that c is retrieved for c′ and the solution of
c can be adapted to arrive at the solution of c′.

The Competence Measure (CM) proposed in [1] regards a case to be compe-
tent if it solves multiple cases but is solved by few cases, and is given by

CompetenceMeasure(c) =
| CoverageSet(c) |

| ReachabilitySet(c) | (9)

where ReachabilitySet(c) denotes the set of cases in the case base that solve c.
These measures regard the number of cases solved by a case as a key indicator

of its competence. However, it is recognized that a case with large coverage need
not necessarily be competent by virtue of the possibility of its coverage being
subsumed by other cases. In contrast, a case may be regarded as competent
despite having a small coverage set comprising of cases that are not solved by
other cases in the case base.

The Relative Coverage [27] attempts to address this issue by rewarding a
case for solving cases that are not solved by many cases.

RelativeCoverage(c) =
∑

c′∈CoverageSet(c)

1
| ReachabilitySet(c′) | (10)

This measure of case competence is also used to identify the representative cases
in each competence group using the footprint algorithm [27]. Other approaches
to identify representative cases make use of clustering techniques, such as in [26].
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The Relative Coverage provides yet another perspective in the context of
CBM. Heuristically, it denotes the likelihood of a case being retained in the
case base post CBM. This interpretation of case competence is explored in the
Retention Score measure [16]. It further addresses a key limitation of the Relative
Coverage measure by allowing Compositional Adaptation [30].

RS(c) =
∑

c′ ∈ CoveredCases(c)

RS(c′)
∑

C ∈ SupportCases(c,c′)

min
c′∈C

RS(c′)
| C | (11)

In essence, a case c is assigned a high retention score if (i). c participates in
solving multiple cases (captured by Covered Cases) that have high Retention
Score, (ii). c requires support from a few cases to solve c′ ∈ CoveredCases(c)
(captured by each C ∈ Support Cases), and (iii). These supporting cases are
likely to be retained.

2.4 Relation Between Fidelity and Competence

Since fidelity and competence capture the goodness of the cases in the case base,
a natural question in this context is whether these characteristics have a bearing
on one another. Specifically, if information regarding a case’s fidelity is available,
can we infer anything about its competence, or vice versa?

Fig. 1. A sample case base in the
Loan Application domain. Each
case has two attributes Income
and Loan Amount in its prob-
lem part, while the solution is
either Approved (denoted by � )
or Rejected (denoted by � ).

Consider a case-based reasoner that pre-
dicts the class of a test instance as that of its
nearest neighbor (i.e., null adaptation) based
on the Euclidean distance measure from its
case base depicted in Fig. 1. In such a setting,
it may be seen that the cases within the case
base may be categorized as both faithful and
competent (such as c1 and c2 that can col-
lectively preserve the problem-solving ability
of the reasoner to a large extent), unfaithful
and redundant (c3), and faithful but redun-
dant (c6). However, there is also a possibil-
ity of a case being perceived as unfaithful but
competent. Cases c4 and c5 may be consid-
ered unfaithful but can be regarded as com-
petent by virtue of them exclusively solving
each other, thereby preserving the problem-
solving ability of the reasoner over its cases.
It is important to note that the notion of com-
petence does not inherently account for the fidelity of cases, and as a result, c4
and c5, although likely unfaithful, are attributed high competence.

This example illustrates that it is possible for a case to have high or low
fidelity irrespective of its competence, and vice versa. This underscores the inad-
equacy of any atomic measure - one that cannot be broken down into two or
more parts - to simultaneously capture both the fidelity and competence of cases



Navigating the Landscape of Case Fidelity and Competence 243

within the case base. This, in our opinion, demands a reassessment in the litera-
ture, where approaches such as complexity (Eq. 3) and reputation (Eq. 5) claim
to capture both aspects simultaneously.

3 Literature Beyond CBR for Estimating Fidelity
and Competence

In this section, we highlight relevant literature outside the CBR context that may
inspire further development in estimating the fidelity and competence of cases
in the case base. We also highlight why these may not be trivially applicable in
the CBR context by bringing out how they fundamentally differ from CBR. The
following discussion also motivates the necessity to propose novel circularity-
aware approaches [20] for estimating case fidelity and competence.

3.1 Truth Discovery

Truth Discovery [11] deals with a set of sources that provide potentially con-
flicting answers to questions from a set of questions. Within this framework, the
objective is to estimate the reliability of the sources and trustworthy answers to
the questions. In contrast to assigning uniform reliability to the sources and con-
sidering the majority voted answer as trustworthy, Truth Discovery advocates
for a nuanced reliability-weighted aggregation.

The overarching theme for estimating the two sets of parameters - reliability
of sources and the trustworthy answers to the questions - is captured in the
following circular statement:

A source is considered reliable if it provides trustworthy answers. An
answer is deemed trustworthy if it is supported by multiple reliable sources.

Although mapping this setting to the CBR context might appear trivial, there
are complexities involved. We highlight the key differences here. For an input
query (question) q, the similarity function dictates an eligibility criterion that
permits only a few cases to participate in answering q. Further, the solution
proposed by each of the eligible cases c is not directly projected as a proposed
solution for q but is instead passed through an adaptation function. In addition,
cases may be allowed to collaborate by means of compositional adaptation, unlike
the typical independent source assumption in Truth Discovery. In effect, the
reliability score thus obtained is a commentary not only on a case in isolation
but also accounts for the similarity function and adaptation rule employed.

One approach, motivated by Truth Discovery, is proposed in [19] with a focus
on regression and classification tasks. Further extensions could explore settings
beyond classification and regression, examine the algorithm’s convergence guar-
antees, and incorporate aspects such as fine-grained source reliability [11].
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3.2 Item Response Theory

The Item Response Theory (IRT) [4] is widely employed in the context of Psy-
chometrics for assessing the latent abilities of the respondents and the difficulty
of the question3 presented to the respondents. The use of IRT in the evaluation
of high-stakes examinations such as the Scholastic Assessment Test (SAT) and
Graduate Record Examinations (GRE) underscores its substantive influence.
IRT has also recently garnered attention in the context of Natural Language
Processing [24] and more broadly in Machine Learning [12].

IRT allows discrimination between two participants even though they cor-
rectly answer the exact same number of questions in a questionnaire when the
correct responses by one are attributed to a set of simpler questions while the
other correctly answers more difficult ones.

Note the departure from the Truth Discovery setting in that each question is
marked with a ground truth solution, but the difficulty annotations are unavail-
able. The two properties - respondent ability and item difficulty - are intertwined:

A respondent who answers multiple difficult questions, in addition to
the simpler ones, will be assigned a higher competence, while questions
answered primarily by competent respondents are regarded as difficult.

In the context of CBR, competence estimation approaches based on CoverageSet
(Eq. 8 and 9) account solely for the number of cases (questions) solved. Relative
Coverage (Eq. 10), on the other hand, considers a slightly nuanced perspective.
It models an aspect similar to the difficulty of q, the case being solved, by means
of the 1/ | ReachabilitySet(q) | term. That is, a case is deemed difficult if it is
solved by fewer (competent or otherwise) cases.

It is important to note that the Relative Coverage measure persists to have
setbacks despite its significant resemblance to the IRT framework. Firstly, the
difficulty measure used in Relative Coverage remains competence agnostic, unlike
the circular statement employed in IRT. Further, its applicability is restricted
to reasoners that employ 1−nearest neighbor.

4 Potential Research Directions

In this section, we enumerate some research directions that emerge from our
discussions thus far. In particular, the significant deficit of the consideration of
adaptation knowledge while computing case fidelity can be traced down to how
the problem-solution regularity [10] is defined in the literature. We propose the
need for a reassessment of this in the light of adaptation knowledge. Secondly,
insights from Sect. 2.4 motivate the need for interaction between fidelity and
competence. Lastly, we advocate for extending the focus of maintenance efforts
to include not only the case base but also other knowledge containers.

3 Technically, referred to as items in IRT.
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4.1 An Adaptation-Aware Definition of Problem-Solution
Regularity

Validating the applicability of CBR in a given problem domain involves veri-
fying whether the foundational assumption that similar problems yield similar
solutions largely holds [13]. Measures such as cohesion (Eq. 1) and alignment
(Eq. 2) have been used in the literature to quantify this problem-solution regu-
larity within the local neighborhood of a case. An average of these across all the
cases in the case base gives an estimate of the problem-solution regularity across
the entire case base. If this global regularity measure falls below a predefined
threshold, it often suggests that CBR may not be suitable for the task. Addition-
ally, the regularity measures can also support authoring case-based reasoners [8]
by assisting in making a choice between different configurations of knowledge
containers.

While measures like cohesion and alignment have been employed in designing
case-based reasoners, their limitations have been acknowledged in the literature.
As noted by the authors in [3], measures such as cohesion and alignment fail
to account for adaptation. However, experimental results in [3] indicate that
incorporating adaptation into the computation of global problem-solution reg-
ularity results in better correlation with generalization accuracy compared to
adaptation-agnostic measures.

This motivates the need for a shift in perspective from viewing problem-
solution regularity as merely similar problems having similar solutions. Instead,
we suggest an adaptation-aware viewpoint by accounting for all four knowledge
containers.

A case c is well-aligned with its neighbors when the solutions of the neigh-
bors can be adapted to solve c.

This definition of problem-solution regularity offers two key benefits: firstly,
it can allow for more informed decision-making on the suitability of CBR for
a given problem setting and can assist in authoring CBR systems. Secondly, it
can serve as a sound basis for further advancements in case fidelity estimation
techniques that encompass adaptation knowledge.

4.2 Interaction Between Fidelity and Competence Computation

In the CBR literature, fidelity and competence computation are typically viewed
as non-interacting steps. However, the case of c4 and c5 from Fig. 1 being deemed
competent while potentially being unfaithful motivates the need for an interac-
tion between the two measures of case quality. Potential strategies for such an
interaction involve (i). performing fidelity assessment followed by a fidelity-aware
competence computation, (ii). computing competence scores and incorporating
them into the fidelity assessment, or (iii). iteratively cycling through fidelity and
competence computations.

The experiments in [13] propose discarding unfaithful cases before computing
the competence of cases (akin to strategy (i) noted above) to prevent assigning
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high competence scores to cases that have noisy class labels. While this suggests
that fidelity assessment is a useful precursor for competence computation, the
exploration of other strategies remains open in the literature.

We note that the deletion of unfaithful cases prior to estimating competence
in [13] disregards the fact that cases exhibit varying degrees of fidelity rather than
being strictly faithful or unfaithful. This may lead to the loss of potentially useful
information. An alternate strategy might be to incorporate fidelity awareness in
the estimation of the competence of cases. A similar extension - competence-
aware fidelity - may be proposed for the other potential interaction strategy.

4.3 Extending Maintenance to Other Knowledge Containers

One central bottleneck in effective CBR maintenance is the availability of expert
knowledge. In the spirit of active learning, it makes sense to selectively seek
expert intervention in a way that can potentially have the highest impact on the
problem-solving ability of the reasoner. This suggests that the order in which we
present cases or other knowledge containers to an expert to seek their feedback
can play an important role in minimizing the overall knowledge acquisition effort.

While CBM has received much attention in the context of the maintenance
of case-based reasoners, the maintenance of knowledge containers may warrant
closer inspection as well. For instance, a lack of problem-solution regularity
between cases in a certain locality can be attributed to deficiencies in the way
vocabulary, similarity (or adaptation4) knowledge have been encoded – and fix-
ing one of these problems can avoid examination of several cases in isolation.

From a cognitive standpoint, the issue of CBM opens up many interesting
frontiers of exploration. For a start, a case that has a solution component very
different from other cases in its neighborhood appears to be an outlier and
may be considered as a candidate for deletion. However, as humans, any experi-
ence that is strikingly different from the norm often paves the way for learning.
Of particular mention is the classical model of human reminding proposed by
Roger Schank in his seminal work Dynamic Memory [25] that was instrumental
in paving the way for a large class of computational models of human mem-
ory and their applied counterparts, such as Case-Based Reasoning. According to
Schank’s model, humans generate expectations based on generalized represen-
tations of memory, and when these expectations fail, they are curious and seek
explanations for such failures. These explanations, in turn, lead to further gen-
eralizations. Thus, according to Schank’s model, a case that is not well-aligned
with its neighborhood could be potentially very interesting since it could trig-
ger expert intervention in meaningful ways to bring about changes in either the
case representation itself or in associated vocabulary, similarity, or adaptation
knowledge. One of Schank’s examples is the case where one visits a restaurant
where one has to pay before they eat – this is strikingly different from his past
experiences where people pay only after eating. Accommodating such outliers

4 In the extended notion of alignment presented in this paper where adaptation knowl-
edge is integrated.
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may necessitate revisiting the underlying vocabulary, the language in which cases
are expressed and indexed. For instance, adding more attributes can help better
discriminate between classes – interestingly, this is also the philosophy behind
bottom-up approaches such as Support Vector Machines. In the context of CBR,
attributes may be drawn from more involved types, such as trees/hierarchies or
graphs, to bring about richer representations of the underlying domain knowl-
edge.

5 Conclusion

In this work, we have presented a survey of approaches in the CBR literature
aimed at quantifying the fidelity and competence of cases. We highlight how
insights from Truth Discovery and Item Response Theory can serve as potential
inspirations for proposing circularity-aware approaches that attempt to estimate
the fidelity and competence of cases. We finally identify three key research direc-
tions emerging from a closer examination of these measures. First, we advocate
for a reassessment of how problem-solution regularity is defined in the liter-
ature. Second, we emphasize the need for an interaction between fidelity and
competence measures. Finally, we underscore the need for further study on the
maintenance of the other knowledge containers for effective CBR maintenance.
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Abstract. The automated design of analog circuits presents a signifi-
cant challenge due to the complexity of circuit topology and parameter
selection. Traditional evolutionary algorithms, such as Genetic Program-
ming (GP), have shown potential in this domain but are often hindered
by inefficient search processes and the large design space. Furthermore,
fitness evaluation in the evolutionary design of circuits is often computa-
tionally very expensive. In this paper, we introduce a novel evolutionary
framework that leverages approximate Shapley values to guide the opti-
mization process in tree-based genetic programming for analog circuit
design. Our approach addresses the computational challenges associated
with computing Shapley values by introducing a two-stage evolutionary
framework that includes a Shapley Value Library (SVlib) and a KNN-
based prediction for efficient estimation of Shapley values. Our proposed
work not only enhances the search efficiency by focusing on the most
beneficial sub-circuits but also leads to more compact and efficient cir-
cuit designs. Furthermore, fitness evaluation in the evolutionary design of
circuits is often computationally very expensive experiments, we verify
that our framework accelerates evolutionary convergence and outper-
forms traditional methods in terms of circuit optimization.

Keywords: Tree-based genetic programming · Evolvable hardware ·
Shapley Value · KNN · Analog circuit design

1 Introduction

The design of analog circuits is a critical yet challenging task in electronics, where
achieving optimal configurations is essential for performance and efficiency. Tra-
ditional methods often struggle with the complexity of analog circuit design [17],
making evolutionary algorithms, particularly Genetic Programming (GP) [13],
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a promising alternative for automating this process. However, the efficiency of
these algorithms is hampered by the vast search space and the intricate interplay
between circuit topology and parameters.

In evolutionary analog circuit design, genetic operators like crossover and
mutation play a pivotal role, yet their efficacy is often constrained by the choice
of circuit representation. Typically, these operators are applied to genes selected
at random, a strategy that can inadvertently discard valuable sub-circuits,
thereby diminishing search efficiency. Additionally, the evolution process might
be plagued by the bloat phenomenon [14], where circuits become unnecessarily
large due to components that contribute nothing to the overall functionality.

The crux of enhancing search efficiency lies in the ability to discern which
parts of a sub-circuit are truly instrumental in driving evolutionary progress.
Current methods such as the Leave-One-Out (LOO) approach [7], while useful
in other contexts, fall short in circuit design as they fail to account for the intri-
cate interdependencies among circuit elements. Consequently, there is a pressing
need for a more apt metric that can accurately assess the significance of each
gene within the circuit’s framework, thereby refining the evolutionary process.
In recent years, Shapley values, derived from cooperative game theory, have
gained prominence as a robust tool for interpreting machine learning models,
especially tree-based models. By attributing quantified contributions to each
feature, SHAP values offer a transparent and consistent approach to model inter-
pretation. Despite their theoretical appeal, the computation of SHAP values is
notoriously resource-intensive, posing a significant challenge for large datasets
or complex models such as deep tree structures [26]. This issue is particularly
acute in evolutionary analog circuit design, where efficiently assessing the con-
tribution of circuit components is crucial for guiding the evolutionary process
toward optimal designs.

Motivated by the computational challenges associated with SHAP values and
the need for a more efficient method in the context of analog circuit design, we
propose an evolutionary framework that leverages approximate Shapley values
to guide the optimization process. Our approach aims to enhance the search
efficiency and circuit quality by retaining and exploiting beneficial sub-circuits,
thereby addressing the limitations of traditional genetic operators that often
operate randomly and may discard useful circuit components.

Our key contributions are as follows:

1. Shapley Value Library Creation for Circuit Trees: We establish a novel
methodology for the computation of Shapley values in circuit tree individuals,
laying the groundwork for a Shapley Value Library (SVlib). This library rep-
resents a comprehensive collection of real Shapley values for nodes in circuit
trees, providing a crucial reference for evolutionary operations.

2. Two-Stage Evolutionary Framework with Accelerated Computa-
tion: We introduce a two-stage evolutionary framework that leverages the
SVlib. The first stage involves the creation of this library by calculating the
real Shapley values of nodes in circuit tree individuals. In the second stage, we
utilize KNN-based prediction to rapidly estimate the Shapley values of nodes
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in new individuals. This accelerated computation significantly enhances the
efficiency of the evolutionary process.

3. Guided Evolution of Circuit Trees Using Approximated Shapley
Values: Within our evolutionary framework, we employ the predicted Shap-
ley values to guide the crossover and mutation processes. This approach
ensures that evolutionary operations are informed by a node’s importance,
directing the evolution of analog circuits towards more promising regions of
the search space.

4. Experimental Studies to Show Enhanced Evolutionary Efficiency
and Circuit Optimization: Experiments shows that our approach accel-
erates evolutionary convergence and produces more efficient circuit designs.
This verifies the effectiveness of integrating Shapley value computation with
tree-based genetic programming in circuit evolution.

The rest of this paper is structured as follows. Section 2 introduces the related
work. Section 3 proposes a novel genetic programming approach for evolving
analog circuits. Section 4 describes the experimental studies for verifying our
proposed method. The conclusions of our work are presented in Sect. 5.

2 Related Work

2.1 Preliminary Knowledge of Shapley Value

In Cooperative Game Theory (CGT) [3], a set of N players are interconnected
through a score function V : 2N → R, where V (S) represents the performance of
the model after setting the elements in N \S to zero. To distribute the collective
reward among the players equitably, the Shapley value [25] is introduced. It
quantifies the contribution of player i to the coalition by defining the marginal
contribution ΔV (i, S) as the additional value generated by including i in S:

ΔV (i, S) = V (S ∪ i) − V (S) (1)

The Shapley value is essentially the average of the marginal contributions across
all possible subsets of players, considering the permutations where a particular
ordering of S immediately precedes player i:

ui =
1

|N |
∑

S⊆N\i

ΔV (i, S)
(|N |−1

|S|
) (2)

This formulation accounts for interactions between players, capturing scenarios
where the performance improvement is contingent on the presence or absence of
specific players.

Shapley values have found applications beyond traditional game theory, such
as in feature attributions for machine learning models, where they offer insights
consistent with human intuition [19]. They have also been used to evaluate the
importance of training samples [8,12] and to assess the contribution of individ-
ual elements within a model, such as neurons in a neural network [28]. These
applications underscore the versatility and relevance of Shapley values in various
domains.
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2.2 Evolutionary Design of Analog Circuits

In the realm of automated circuit design, evolutionary algorithms have emerged
as a powerful tool, with a plethora of approaches being explored [4,10,13,16].
One notable example is the work of Kruiskamp et al. [15], who leveraged
Genetic Algorithms (GA) to tackle the synthesis of CMOS operational ampli-
fiers (opamps). In their approach, each individual in the population represented
a potential circuit design encoded as a multi-gene chromosome, which could be
decoded into an actual circuit. In a different way, Grimbleby et al. [9] utilized
GA for the automated synthesis of analog networks, focusing on configuring the
circuit structure. However, this approach necessitated numerical optimization to
ascertain the values of the circuit components, adding a layer of complexity to
the design process.

Moreover, approaches based on Genetic Programming (GP) have shown the
ability to evolve circuit netlists that encompass both topology and device val-
ues, offering a more integrated solution. While some researchers have used GA
to encode circuit topology and parameter values as strings, this often results in
limited circuit diversity and a cumbersome decoding process [6,18]. In contrast,
GP-based methods enable a richer variety of circuit designs and a more stream-
lined decoding process, making them a promising avenue for advancing the field
of analog circuit design.

2.3 Knowledge-Driven Evolutionary Operators

In standard Genetic Programming (GP), crossover and mutation operators play
a crucial role in generating offspring. However, the random selection of genes for
these evolutionary operations may hinder search efficiency by overlooking poten-
tially valuable sub-circuits [11]. Additionally, the presence of devices with zero
contribution can lead to bloat, resulting in larger evolved circuits [11]. To over-
come these limitations, researchers have explored more sophisticated approaches
that incorporate semantic information to enhance the exploration of the search
space [5,21,24]. For instance, Beadle et al. [2] utilized semantic information
to guide GP crossover in Boolean problem domains, while Krawiec et al. [15]
defined the semantics of an individual as a vector of outputs for corresponding
input fitness cases. Nguyen et al. [23] proposed a semantic crossover approach for
real-value domains. However, these advanced operations are tailored for Boolean
or real-value problem domains and are not directly applicable to analog circuit
design, where circuit validity is a crucial consideration [30].

In the context of evolutionary analog circuit design, it is essential to account
for the dependencies among sub-circuits and assign appropriate importance
measures. Moreover, the concept of equivalent circuits, which refers to circuits
with identical input-output characteristics as the original circuit [1], should be
integrated into the design process. While there has been an attempt to evalu-
ate the importance of sub-circuits using the LOO strategy [11], this approach
neglects the dependencies among different sub-circuits/devices and their com-
binations, and it has been limited to digital circuits. Analogue circuits handle
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continuous signals, while digital circuits use binary signals. To the best of our
knowledge, there is no existing work in evolutionary analog circuit design that
comprehensively addresses these two perspectives. As discussed in Sect. 2.1, the
Shapley value offers a promising solution for measuring the importance of sub-
circuits/devices while considering their dependencies.

3 Our Method

We introduce a novel genetic programming approach for evolving analog circuits,
utilizing an approximated Shapley Value for enhanced efficiency.

The algorithm commences with a population of circuit trees, a Shapley Value
Library, and an archive for individual records. It operates in two stages: ini-
tially, it calculates real Shapley values for nodes in each circuit tree, updating
the library and archive. Beyond a certain threshold, it employs KNN to predict
Shapley values using historical data, guiding the genetic operations of crossover
and mutation. This process iterates until a set number of iterations are reached,
yielding a refined population of circuit trees. This method innovatively inte-
grates Shapley values into circuit evolution, streamlining the search process and
improving design outcomes. The specific description of our proposed approach
is presented as Algorithm 1.

In this section, we introduce the overarching goal of the algorithm: to effi-
ciently compute the Shapley values of nodes within circuit tree individuals, which
represent potential solutions to a given circuit design problem. The initialization
process is crucial as it sets up the initial population of circuit tree individuals,
denoted as Pt Each individual is a tree-like structure where nodes represent dif-
ferent circuit components, and the connections between nodes define the circuit’s
topology.

Additionally, the Shapley Value Library (SVlib) is established. This library
is a vital component of the algorithm, as it stores the Shapley values of nodes,
providing a measure of their importance or contribution to the overall perfor-
mance of the circuit. An archive is also set up to store individuals alongside their
computed Shapley values, creating a historical record that will be instrumental
in predictive modeling during later stages of the algorithm.

3.1 Tree-Based Hierarchical Circuit Encoding Method

In evolutionary analog circuit design, it is crucial to consider both the evolution
of circuit topology and the optimization of device values. Our approach repre-
sents circuits using a multi-tree structure, T , where the set of all nodes in the
tree is denoted as MT . The internal nodes, or function nodes, are represented
by the set NF . Each function node consists of two parts: the device type and a
value tree. The value tree is a binary tree that represents the numeric value of
the circuit device, with internal nodes for arithmetic operations and leaf nodes
for numeric values. For devices that do not require a value, the value tree is null.
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Fig. 1. (a) An example of tree encoding method for a circuit. (b) Equivalent sub-circuit
during Shaley value calculation.

The leaf nodes, or terminal nodes, are denoted by the set NT . Each terminal
node represents the position of one device port in the circuit netlist. The arity
of a function node, which is the number of child nodes, is determined by the
number of device ports. We define Chk(nodei) as the k-th child of function node
nodei. To enhance flexibility in circuit representation, devices with polarity are
represented by different function nodes, allowing for any-connection circuits.

To transform the tree-based circuit representation into circuit netlists, each
function node is assigned a netlist position number, determined by the left-most
terminal nodes corresponding to all its children. For example, consider a circuit
with function nodes MOS, R, C, and Mem, and terminal nodes {1, 2, 3, 4, 5, 6}.
The hierarchy formed by these nodes defines the circuit connection, with the posi-
tion of each node given by a function U(H(nodei)), where H(nodei) is defined
based on whether the node is a terminal or function node.

To ensure circuit feasibility, three strategies are applied: avoiding dangling
terminals in the embryo circuit, preventing dangling terminals in the evolved
circuit, and restricting tree depth. An embryo circuit is a basic initial circuit
that needs to be connected to the evolved circuit to form a complete circuit
loop. The evolved circuit must ensure that each terminal node is used at least
twice to prevent dangling terminals. Finally, a maximum depth limit is imposed
on the tree to prevent tree bloat, with any nodes exceeding this limit replaced
by their left terminal node. More details of tree-based hierarchy circuit encoding
and decoding methods could be found in work [27].
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3.2 Shapley Value-Based Evaluation of Sub-Circuits to Guide
Genetic Operators

In order to evaluate the contribution of the function node to the whole circuit
tree representation, several desirable proprieties to evaluate the circuit device
should be taken into the consideration. We list these properties below:

– Zero contribution: One decision to make is how to handle circuit
devices/blocks that have no contribution. We say that a function node i has
no contribution if ∀S ⊆ N \ {i} : V (S ∪{i}) = V (S). This means that it does
not change the performance when added to any subtree in of the whole tree.
For such null function node, the valuation should be 0.

– Symmetric elements: If two nodes contribute exactly the same to any sub-
set of the rest of function nodes, they will have the same values by definition.
Mathematically, if ∀S ⊆ N \ {i} : V (S ∪ {i}) = 0.

– Additivity in Performance Metric: As for a circuit device and circuit
evolution task, there are two or more performance metrics V1, V2, ... for an
evolved circuit. For example V1 measures it’s performance on output accuracy
and V2 is its performance on circuit area. A natural way to measure the overall
performance of the model is having a linear combination of such metrics
e.g. : V = V1 + V2. The additivity in our context is an optional property,
since the circuit performance of output accuracy is more dominated compared
with other metrics due to its critical impact on reliability and effectiveness in
applications.

The Shapley Value-based importance unodei of a function node nodei can be
calculated using the following formula, which uniquely satisfies all these proper-
ties:

unodei =
1

|NF |
∑

S⊆NF −{i}

V (SubTreeS∪nodei) − V (SubTreeS)
(|NF |−1

|S|
) (3)

where V (S) denotes the performance of subtree S. To evaluate the fitness V (s)
of subtrees, we consider two scenarios:

(1) If the subtree πj has overlapping nodes with the subtrees πi ∈ π, i < j, the
fitness is calculated based on the differences between the voltages on the
input and output terminals of the subtree and the target voltage.

(2) If the subtree πj has no overlapping nodes with the subtrees πi ∈ π, i < j, its
fitness is calculated based on the maximum fitness of the previous subtrees
or the fitness of πj itself.

Figure 1(b) illustrates the example of evaluating the Shapley value within
the context of a circuit. To ascertain the contribution of a specific function
node, it is temporarily omitted from the circuit and substituted with a distinct
node, denoted by W . This node W signifies a wire connection, effectively short-
circuiting the circuit element whose contribution is under evaluation. By compar-
ing the circuit’s performance, before and after this substitution, we can discern
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the impact of the excluded node, thereby quantifying its individual contribution
to the overall circuit functionality. This process enables a precise calculation of
each element’s Shapley value based on the variance in fitness it induces.

This Shapley Value-based approach provides an equitable assignment of val-
ues to nodes, enabling the evaluation of the contribution of sub-circuits in a
circuit-plausible way. As in [26], crossover will swap the subtree rooted by the
function node whose Shapley value is the highest in the one parent with the one
whose Shapley value is the lowest in the other parent. Mutation will delete or
replace the function node with the lowest Shappley value by a new randomly
generated one.

3.3 Two-Stage Based Evolutionary Framework

In the initial stage, the focus is on populating the Shapley Value Library SVlib

with real Shapley values. For each individual i the population Pt, the algorithm
computes the real Shapley value for each node, reflecting its contribution to
the individual’s overall performance. These calculated Shapley values are then
used to update SVlib, ensuring that it contains the most recent and accurate
information. Concurrently, the individual i and its node Shapley values are stored
in the archive, providing a rich dataset for future predictions.

The second stage of the algorithm highlights our novel methodology. As the
iteration count t surpasses the predefined threshold T1, the algorithm transi-
tions to using a KNN (K-Nearest Neighbors) based approach for predicting the
Shapley values of nodes in new individuals.

3.4 KNN-Based Approximation of Shapley Values

Once the iteration count exceeds the predefined threshold T1, our proposed app-
roach uses KNN to predict the Shapley values of nodes in new individuals, lever-
aging historical data from the archive for quick estimation of node importance.
The predicted values then guide genetic operations such as crossover and muta-
tion, instead of the Shappley values themselves. This enables the algorithm to
focus on nodes with higher importance to create offspring with improved perfor-
mance, while avoiding the computational cost of computing the Shapley values.
After these operations, the population Pt is updated with the new, evaluated
individuals.

The integration of KNN-based predictions with genetic operations is a key
feature, enabling efficient exploration of the solution space. As the algorithm
reaches the maximum number of iterations (maxiter), it concludes with a final
refined population Pt. The innovative use of KNN for predicting Shapley values,
combined with strategic genetic operations, makes the algorithm a powerful tool
for circuit design optimization.

The algorithm effectively integrates the concept of Shapley values into the
evolutionary process of circuit trees, utilizing a two-stage approach to enhance
efficiency. The first stage is dedicated to building a comprehensive Shapley Value
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Algorithm 1. Shapley Value Approximation Using KNN for Circuit Tree Evo-
lution
1: Input: Circuit tree individuals, target
2: Output: Individuals after crossover and mutation based on importance
3: Initialize population Pt, Shapley Value Library SVlib, and archive Archive
4: while t < maxiter do � Iterate until max number of iterations is reached
5: if t < T1 then � First Stage: Shapley Value Library Creation
6: for each individual i in Pt do
7: Calculate real Shapley value of each node in i
8: Update SVlib with real Shapley values
9: Store individual i and its node Shapley values in Archive

10: end for
11: else � Second Stage: Accelerated Computation with KNN Prediction
12: Use KNN to predict Shapley values of nodes in new individuals using

Archive
13: for each new individual i in Pt do
14: Predict importance of nodes in i using KNN with Archive
15: Perform crossover and mutation on i guided by predicted importance
16: end for
17: Evaluate new individuals and integrate into the population
18: end if
19: end while
20: Return Pt

Library, while the second stage accelerates the computation by predicting Shap-
ley values using KNN, thereby guiding the evolutionary operations more effec-
tively.

4 Experimental Studies

The main loop of our evolutionary framework is developed in Python, while
the performance evaluation of the circuits is conducted through simulations in
NGSPICE [29], a tool derived from Spice3 [22].

The experimental study encompasses three distinct types of circuit evolution
tasks, focusing on the evaluation of the proposed method across three circuits:
a voltage reference circuit, a temperature sensor circuit, and a Gaussian func-
tion generator. These circuits are commonly utilized in assessing the efficacy of
evolutionary analog circuit design methods and are referenced extensively in the
literature [4,14,20], demonstrating their relevance and applicability to this field.
Parameter setting is given in Table 1.

Reference Voltage Circuit. In this task, the objective is to design and refine a
reference voltage circuit that consistently delivers a fixed output of 2V . To assess
the circuit’s performance across a range of temperatures, the output voltage is
measured at various points for each temperature condition. These measurements
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Table 1. Parameter setting

Algorithm Parameter Value

Population Size (Pop Size) 100

Tournament Size (Tou Size) 20

Maximum Iterations (Max Iteration) 500

Crossover Probability (Pcross) 0.8

Mutation Probability (Pmutation) 0.2

K Value (K) 10

Threshold (T1) 50

Crossover Value Probability (Pvaluecross) 0.2

are compared against predetermined ideal values to evaluate circuit accuracy.
The effectiveness of a given design is quantified by a fitness function, which is a
summation of the squared deviations between the measured and target voltages,
adjusted for a margin of error. Only deviations exceeding a threshold of 0.01V
are considered, reflecting the precision goal of the circuit design [14]. The embryo
circuit setting of reference voltage circuit is presented in our previous work [27].
The fitness function is given as the following equation [14]:

fitness = −
∑

i,j

εij , (4)

where εij is:

εij =

⎧
⎨

⎩

(
Vouti,j − V ∗

outi,j

)2
, if |Vouti,j − V ∗

outi,j | ≥ 0.01V

0, if |Vouti,j − V ∗
outi,j | < 0.01V.

(5)

At various circuit temperatures Ti, each measured output voltage point Vouti,j

corresponds to a target value V ∗
outi,j . i represents the i-th circuit temperature,

and j represents the sampled output voltage points.

Temperature Sensing Circuit. The challenge involves developing a circuit
capable of sensing temperature changes, as reflected by variations in its output
voltage. The output voltage linearly correlates with temperature. The linear rela-
tionship is characterized by a constant, ensuring output voltage directly corre-
sponds to ambient temperature changes. The circuit’s performance is evaluated
through a fitness function, which aggregates the squared differences between
actual and expected output voltages. This approach allows for precise calibra-
tion of the circuit’s temperature sensitivity, leveraging genetic algorithms to
fine-tune its response characteristics. The embryo circuit setting of temperature
sensor is presented in our previous work [27]. The fitness function is defined as
following [14]:
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fitness = −
∑

i

(Vouti − V ∗
outi)

2
. (6)

At various circuit temperatures Ti, the output voltage Vout changes and will
be measured for evaluation. The target value of the output voltage for the i-th
temperature, V ∗

outi, is linearly related to Ti and is defined as V ∗
outi = ηTi. Here, η

is a constant representing the linear relationship between the circuit temperature
and the output voltage.

Gaussian Function Generator. The task focuses on the creation of a Gaus-
sian function generator, where the aim is to produce an output current that fits
a Gaussian distribution in relation to the input voltage. The task is to measure
the output current for various input voltages and align these measurements with
their theoretical Gaussian counterparts. The alignment is measured using a fit-
ness function with a key normalization factor. This factor adjusts for the scale
of the current measurements, ensuring the squared differences between expected
and actual currents are accurately compared. This process embodies the appli-
cation of evolutionary algorithms to the intricate task of circuit function gener-
ation, following the methodologies proposed by [14]. The embryo circuit setting
of Gaussian function generator is given in our previous work [27]. The fitness
function is defined as follows [14]:

fitness = −1014 ∗
∑

i

(Iouti − I∗
outi)

2
. (7)

During circuit evolution, the output current is measured for evaluation. Differ-
ent input voltages Vin1 will correspond to different target values of the output
current.

4.1 Ablation Study

Table 2 gives the average fitness under ablation experiments, focusing on the per-
formance of three approaches (Random, TMC SV, and KNN SV ) across three
different tasks: a voltage reference circuit, a temperature sensor, and a Gaussian
function generator. This approach helps identify which parts are essential and
how each component influences the overall effectiveness. Random approach refers
to the approach where random nodes are selected for crossover and mutation.
The Random method serves as a baseline, wherein mutation rates, crossover
points, and selection mechanisms are randomized, allowing for straightforward
comparisons with more sophisticated strategies. TMC SV refers to the app-
roach where the Truncated Monte Carlo Shapley Value (TMC SV ) is applied.
This approach simplifies the computational cost of calculating the exact Shapley
values by using a truncated Monte-Carlo technique [26], maintaining a balance
between computational cost and accuracy. The parameter setting is the same
as the work in [26]. KNN SV refers to our proposed approach where the KNN
model is applied to the predict the Shapley Value. Each task evaluates the best
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Table 2. Average fitness under ablation experiments

Tasks Cases |BF| |MBF|
Voltage reference circuit Random 0.0051 0.0261

TMC SV 0.0027 0.0183

KNN SV 0.0012 0.0142

Temperature sensor Random 0.0189 0.3981

TMC SV 0.0096 0.1194

KNN SV 0.0087 0.1048

Gaussian function generator Random 0.0874 0.4046

TMC SV 0.0382 0.1988

KNN SV 0.0396 0.1208

fitness (|BF|) and mean best fitness (|MBF|) achieved by each method. In our
study, we employ three distinct methods for guiding genetic operations.

For the voltage reference circuit, the KNN SV method outperforms the oth-
ers, showing the lowest best fitness and mean fitness, indicating a superior capa-
bility to optimize circuit parameters effectively. In the temperature sensor task,
KNN SV again demonstrates its efficacy with the lowest best fitness and a
competitive mean fitness, suggesting its robustness and reliability in sensor opti-
mization. Lastly, for the Gaussian function generator, while KNN SV does not
achieve the lowest best fitness, it offers a significantly lower mean fitness com-
pared to TMC SV, highlighting its consistency and effectiveness in generating
functions with high fidelity.

Overall, the KNN SV method consistently shows promising results across all
tasks, proving its potential as a highly effective tool in these specific applications.
Its ability to consistently achieve low best and mean fitness values suggests it
might be the preferred method for similar tasks, though specific requirements
and goals of each experiment should guide the final methodology choice.

4.2 Comparisons with Previous Work

Table 3 presents a comprehensive comparison between our work and three pre-
vious studies, applied to the design of reference voltage circuits, temperature
sensors, and Gaussian function generators. A key focus is on the number of eval-
uations, mean best fitness (|MBF|), and the number of components utilized in
each approach.

In the reference voltage task, our proposed approach alongside Shi [27] dras-
tically reduces the number of evaluations to just 50,000, a significant decrease
from the millions required in earlier works by Koza [14] and Mattiussi [20]. More-
over, our proposed approach achieves the lowest mean best fitness at 0.0142 and
uses the fewest components (15), indicating a substantial improvement in circuit
optimization efficiency and precision.
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Table 3. Comparisons with previous works

Parameters [14] [20] [27] Ours

Reference voltage

Evaluations 5.12 × 107 5.6 × 106 5 × 104 5×104

|MBF | 6.6 2.64 0.0261 0.0142

#Components 67 70.2 32 15

Temperature sensor

Evaluations 1.6 × 107 6.5 × 106 5 × 104 5×104

|MBF | 26.4 1.13 0.3981 0.1048

#Components 54 27.8 22 19

Gaussian function

Evaluations 2.3 × 107 4.3 × 106 5 × 104 5×104

|MBF | 0.094 0.3 0.4046 0.1208

#Components 14 36 24 25

P-value [14] VS ours: 0.0404; [20] VS ours:0.0404; [27] VS ours: 0.0452

Similarly, for the temperature sensor application, both the recent study and
Shi [27] have again significantly cut down the evaluation count. Our work excels
with a mean best fitness of 0.1048, which is the best among all compared studies,
and achieves this with fewer components (19), demonstrating an optimized and
efficient design.

The Gaussian function generator results mirror these improvements, with
all recent studies requiring fewer evaluations. Although our proposed approach
does not achieve the lowest historical mean best fitness, it performs significantly
better than Shi [27] with a fitness of 0.1208 and uses a moderate number of
components (25), balancing complexity and performance efficiency.

Statistically significant improvements in the current methods over previous
studies are confirmed by P-values of 0.0404 and 0.0452. These values indicate a
significant enhancement in performance across all metrics, validating the effec-
tiveness of the new approaches.

5 Conclusion

In this paper, we focus on the significant challenges of automated analog circuit
design due to the complexity of circuit topology and parameter selection. While
traditional evolutionary algorithms like Genetic Programming (GP) have shown
potential in this field, they often struggle with inefficient search processes and
the vast design space. To address these issues, we introduce a novel evolutionary
framework that uses approximate Shapley values to guide the optimization pro-
cess in tree-based genetic programming for analog circuit design. Our approach
reduces the computational costs of Shapley values by implementing a two-stage
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evolutionary framework. This includes the creation of a Shapley Value Library
(SVlib) and a KNN-based prediction phase for quickly estimating Shapley values.
Our approach improves search efficiency by focusing on the most beneficial sub-
circuits, leading to more compact and efficient circuit designs. Through experi-
mental verification, we demonstrate that our approach accelerates evolutionary
convergence and surpasses traditional methods of evolving circuits. Our future
includes the scalability of our approach to larger analog circuits.
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Abstract. The application of Multi-Objective Evolutionary Algorithms
(MOEAs) is often constrained when addressing computationally expen-
sive Multi-Objective Optimisation Problems (MOOPs). To mitigate this,
we propose a dominance-based surrogate classifier that can be integrated
into a MOEA to steer the algorithm towards viable (potentially non-
dominated) solutions, thereby facilitating faster convergence. This sur-
rogate classifier is paired with a simple, yet effective data labelling mech-
anism, which assigns a label of 1 to non-dominated solutions and a label
of 0 to dominated solutions within a generation. Experimental results
demonstrate that a surrogate classifier guided NSGA-II achieves faster
convergence compared to the standard NSGA-II across 31 well-known
benchmark problems.

Keywords: Surrogate models · Surrogate-classifier · NSGA-II ·
dominance · MOEA

1 Introduction

Many real-world optimisation scenarios involve multiple and often competing
objectives. In these scenarios, the goal is to identify solutions that simultaneously
achieve optimal or near-optimal performance across all objectives. For instance,
an electrical engineer designing an electric motor might seek a design that is both
highly efficient and cost-effective in terms of material usage. To achieve this,
the design process would involve optimising the motor’s geometry and material
selection to satisfy these performance requirements [18].

Multi-Objective Evolutionary Algorithms (MOEAs) are often used in tack-
ling these complex Multi-Objective Optimisation Problems (MOOPs). To date,
several state-of-the-art MOEAs exist, including NSGA-II [13], SPEA2 [33],
GDE3 [19], NSGA-III [12] and MOEA/D [31]. These algorithms offer diverse
strategies for handling MOOPs and as a result they are often used in tack-
ling many industrial and research problems. Despite their success, a significant
challenge arises when MOEAs are applied to solving MOOPs with objective
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functions that are computationally expensive to evaluate. These computation-
ally expensive objective functions, often encountered in industrial applications,
require substantial computational resources and time to complete. Returning
to the previously discussed example of electric motor design optimisation, the
objective function relies on finite-element simulations to assess the performance
of each design iteration. To identify optimal solutions, a typical MOEA will
need to evaluate thousands of candidate solutions, translating to an equivalent
number of computationally demanding simulations [4]. This poses a significant
limitation to the practical application of MOEAs in computationally expensive
MOOPs.

One way to overcome this challenge is the use of surrogate models, which
accelerate the optimisation process. Traditionally, this has been achieved by
replacing the computationally expensive objective function evaluations with
faster, yet accurate, estimations of the objective function values. This approach,
called fitness replacement significantly reduces the overall runtime of the opti-
misation process without compromising the quality of the results. Consequently,
surrogate models have become an active area of research, leading to the develop-
ment and application of various techniques. Some of the most common surrogate
modelling techniques include radial basis function (RBF) [15], polynomial regres-
sion [25], support vector machines (SVMs) [1], artificial neural networks (ANNs),
and Gaussian processes (GPs), also known as Kriging [27]. These techniques are
essentially data-driven regression models that aim to predict the values of the
expensive objective function. A comprehensive overview of various surrogate
modelling techniques can be found in the work of Diaz-Manriquez et al. (2016)
[14].

While successful, regression-based fitness replacement surrogate models are
not without limitations. Firstly, as the surrogate replaces the actual fitness func-
tion, cumulative errors can potentially affect the overall accuracy of the optimisa-
tion. Secondly, since a surrogate needs to be constructed for each objective, this
potentially increases the amount of required computational resources, especially
in many-objective optimisation problems [23,30]. Lastly, the surrogate may not
effectively capture non-linear patterns leading to a poor representation of the
Pareto front. Consequently, fitness replacement surrogate-guided MOEAs may
not be universally applicable to computationally expensive MOOPs.

An alternative to fitness replacement surrogate modelling is called pre-
selection, in which promising solutions are selected for evaluation whereas those
deemed non-viable (potentially dominated) are discarded. In this way, the lim-
itations outlined earlier are addressed as the promising solutions are evaluated
using the true fitness functions. The core principle behind pre-selection sur-
rogate modelling lies in guiding the MOEA towards promising regions of the
search space, thereby accelerating convergence. Building on ongoing research
in pre-selecting candidate solutions [22,23,26,30], this paper proposes a new
dominance-classifier that can be incorporated into a dominance-based MOEA
to steer it towards viable (potentially non-dominated) candidate solutions based
on their predicted Pareto-domination. Our approach includes a simple, but effec-



270 T. M. Banda and A.-C. Zăvoianu

tive data labelling strategy that assigns the label of 1 to non-dominated solutions
and the label 0 to dominated solutions and uses these for training the dominance
classifier.

The rest of the paper is organised as follows: In Sect. 2 we describe our
proposed modelling approach including the data labelling strategy; in Sect. 3 we
describe the experimental design; in Sect. 4 we provide the results and provide
our interpretations; and finally in Sect. 5 we conclude and provide areas of further
research.

2 Proposed Approach

Before delving into our proposed approach, it is essential to establish the funda-
mentals in multi-objective optimisation. An unconstrained MOOP with n real-
valued variables and m objectives can be formulates as follows:

Minimise F (x) = (f1(x), . . . fm(x)), m ≤ 3 (1)

where x ∈ R
n represents a candidate solution and is subject to xl ≤ x ≤ xu,

and f1 to fm represent individual objectives. Typically, there are 2 or 3 objec-
tives. Where there are more, the problem is called a many-objective optimisa-
tion problem. The goal is either to minimise or maximise the objective functions
simultaneously. In our case here we aim to minimise all objective functions.

When solving a MOOP, a standard MOEA progresses through five distinct
stages as illustrated on the left hand side of Fig. 1. The phases are: initialisa-
tion, evaluation, replacement, selection, and reproduction (note the line from
reproduction to evaluation depicting the standard MOEA path). The specific
implementation details of these stages contribute to the unique characteristics
of various MOEAs that exist today.

• Initialisation: During this initial phase, the algorithm generates a popula-
tion of candidate solutions. These solutions are randomly created within the
predefined upper and lower boundaries of the problem space.

• Evaluation: Each solution within the population undergoes an evaluation
process where its objective functions are assessed. This evaluation determines
the fitness of each solution within the current population.

• Replacement: Following evaluation, a comparison between solutions occurs
to identify the most promising candidates. Many MOEAs leverage ranking
techniques, such as non-dominated ranking and strength ranking, to assign
fitness scores based on the concept of Pareto dominance. Additionally, opera-
tors like crowding distance are employed to maintain solution diversity within
the population and prevent clustering around specific regions of the Pareto
front. If the pre-defined termination criteria are satisfied at this stage, the
algorithm terminates successfully.

• Selection: This stage focuses on selecting suitable parent solutions from the
existing population. These parents will participate in the reproduction process
to generate offspring for the next generation. Binary tournament selection is
a commonly used technique for this purpose.
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Fig. 1. Flow diagram showing our proposed surrogate model incorporated into a stan-
dard MOEA. The left hand side shows the distinct phases of a standard MOEA. On
the right is the surrogate model.

• Reproduction: The selected parent solutions undergo a process known as
reproduction, where genetic operators such as crossover and mutation are
applied to generate offspring solutions. These offspring solutions represent
the next generation of candidate solutions within the population.

After the reproduction stage, the newly generated offspring solutions are evalu-
ated, and the entire process iterates until a pre-defined termination criterion is
met. At the conclusion of each generation (iteration), a standard MOEA typi-
cally returns a set of optimal solutions that have been found so far. The optimal
solutions dominate all other solutions evaluated by the algorithm, i.e., signifying
that their objective function values cannot be simultaneously improved upon [6].
A solution x1 is said to dominate another solution x2, if it satisfies two condi-
tions: a) x1 is strictly superior to x2 in at least one objective; b) solution x1 is
not poorer than x2 in any objective [9].

Building on the aforementioned background, we now describe our proposed
approach, which is illustrated on the right-hand side of Fig. 1. We posit that a
well-trained classifier, equipped with sufficient data from prior generations, can
effectively identify non-dominated solutions within a new generation of candi-
date solutions. We integrate the surrogate model in between the reproduction
and evaluation phases of the MOEA framework and leverage on it to filter and
discard dominated solutions from the offspring population so that the optimi-
sation process can concentrate its computational resources on evaluating the
more promising non-dominated solutions thereby accelerate convergence towards
the Pareto front. This targeted approach offers significant potential for enhanc-
ing computational efficiency. The surrogate model has two components: a data
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labelling module and the classifier itself. As the name suggests, the data labeller
is responsible for generating training data that maps solution features (input
variables) to their corresponding dominance classification (output class, either
dominated or non-dominated). The classifier is trained on the data generated by
the labeller and is used to classify the candidate solutions. We will delve deeper
into the specifics of these components in the following sections.

Fig. 2. Flow diagram of the surrogate data labeller.

2.1 Data Labelling

Due to the inherent variability of optimisation problems, the acquisition of pre-
labelled training data is infeasible and as a result, data collection and labelling
must be done during the optimisation process itself. Our proposed approach
incorporates a straightforward, yet efficient data labelling technique that assigns
labels to solutions data at the end of each generation, as illustrated in Fig. 2.
Specifically, all non-dominated solutions receive a label of 1 whereas all other
dominated solutions are assigned a label of 0. As anticipated, the number of
dominated solutions typically exceeds that of non-dominated solutions, resulting
in a class imbalance scenario. While existing literature offers a multitude of
techniques for mitigating class imbalance, any of which could theoretically be
employed, our approach adopts the following steps to circumvent this issue:

• Firstly, we augment the number of data points belonging to the class labelled
1 (non-dominated solutions) by incorporating solutions from the second rank
of the non-dominated sorting procedure. The rationale behind this strategy
stems from the design principles of evolutionary algorithms that leverage
crowding distance, such as NSGA-II [13]. These algorithms promote diversity
within the population by penalising solutions on the non-dominated front
that are located in close proximity to each other. As a consequence, the
second rank, following the non-dominated sorting with crowding distance,
often contains solutions of comparable quality and characteristics to those in
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the first rank that are relegated to the second rank solely due to their spatial
proximity to other non-dominated solutions in the objective space.

• Secondly, we restrict the size of the class labelled 0 (dominated solutions) by
limiting the set of solutions considered for inclusion in this class. Specifically,
our approach focuses solely on dominated solutions belonging to the most
recent generation. This approach is based on the premise that solutions from
earlier generations are less likely to represent the current search landscape
and potentially hinder the learning process of the surrogate classifier.

Following the data labelling process, the labelled training data undergoes a ran-
domisation step (shuffling) to ensure a well-distributed representation of solu-
tions within the training set. This shuffled training data is then provided to
the classifier for the training phase. The trained classifier will subsequently be
employed to classify solutions belonging to the new generation, as depicted in
Fig. 2 as the “current generation”.

2.2 Training and Tuning the Surrogate Classifier

The second component of the surrogate model is the classification algorithm
itself. From a theoretical point of view, any well-performing classifier can be
employed for this task. During our initial model exploration, we investigated a
range of algorithms, including Support Vector Machines (SVM), Random Forest
(RF) [5], K-Nearest Neighbors (KNN) [7], and Multi-Layer Perceptron (MLP)
[16]. We finally opted for the Random Forest classifier because of its competitive
performance within the context of our specific application.

As with data labelling, hyperparameter tuning must be conducted during the
optimisation run. The challenge lies in the dynamic nature of the data, which
changes from one generation to the next, necessitating the training of a new
classifier and the discovery of new optimal hyperparameters. Any one of the
established hyperparameter selection techniques can be employed for this pur-
pose. In our study, we opted for RandomizedSearchCV [3], which is recognised
for its efficiency in exploring vast hyperparameter spaces. Depending on the size
of the hyperparameter space, hyperparameter tuning becomes a computation-
ally expensive exercise (higher time complexity). During experimentation, we
observed that in the later generations, all solutions in the population tend to be
classified as non-dominated, as the classifier fails to distinguish between them.
When this occurs, the surrogate model ceases to contribute meaningfully to the
MOEA and instead slows it down. To address this, the optimal hyperparam-
eter search can be terminated or the surrogate model deactivated entirely. In
our work, we opted for the former approach to prevent premature deactivation.
Upon completion of training and hyperparameter tuning, the classifier is made
available to classify solutions in the new generation.

2.3 Predicting the Class of Solutions

The MOEA executes the reproduction stage as usual, generating a population
of offspring solutions. The new offspring solutions are then passed to the trained
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classifier for classification. Based on the classifier’s output, the offspring solutions
are directed to separate pools. Solutions classified as non-dominated are added
to a dedicated non-dominated pool whereas those classified as dominated are
channelled into a separate dominated pool. This process continues iteratively
until a pre-defined success rate is achieved. The success rate signifies the desired
number of promising non-dominated solutions within the offspring population.
Upon exiting the loop, the non-dominated pool will hold a population size that
is either equal to or exceeds the product of the success rate and the offspring
population size. However, it will remain smaller than the offspring population
size. The remaining offspring solutions required to reach the offspring population
size are obtained from the dominated pool. This ensures that there is diversity
within the offspring population.

3 Experimental Design

We incorporated the surrogate model into NSGA-II [13] in between reproduc-
tion and evaluation phases as described in Sect. 2. Henceforth, we will refer
to the NSGA-II guided by the surrogate classifier as Dominance Classifier
Guided NSGA-II (DCG-NSGA-II). NSGA-II is the updated version of the Non-
dominated Sorting Genetic Algorithm originally proposed in 1994 [28]. It follows
the same MOEA framework described earlier, but its key distinction is that it
uses the non-dominated sorting procedure to rank solutions into non-domination
fronts. The ranks prioritise solutions based on their Pareto-dominance, with the
superior solutions occupying the initial fronts. To ensure population diversity
within each front, a crowding distance methodology is employed. This approach
assigns a penalty to solutions exhibiting excessive proximity in the objective
space, thereby promoting a well-distributed population. The algorithm selects
parent solutions using a tournament selection mechanism and creates offspring
solutions using crossover and mutation. By virtue of its robust nature, NSGA-II
has garnered widespread adoption across various industrial applications [29].

We parameterised the NSGA-II component of DCG-NSGA-II based on the
settings recommended in the literature. Specifically, the population and offspring
population sizes were both set to 200. Simulated Binary Crossover (SBX) [10]
with a crossover probability rate of 0.8 and a crossover distribution index of 20, as
well as Polynomial Mutation (PM) [11] with a mutation probability of 1/n and
a mutation distribution index of 20 were used. For the surrogate component,
we utilised a Random Forest classifier [5]. We set the success rate, the only
parameter for the surrogate classifier to 0.5, and employed RandomizedSearchCV
to discover optimal parameters for the number of trees (ranging from 100 to 500
in increments of 50) and the maximum depth of trees (ranging from 50 to 100).

We evaluated the performance of DCG-NSGA-II on a comprehensive suite
of 31 benchmark problems drawn from established test suites: DTLZ [8], LZ09
[21], WFG [17], ZDT [32], and KSW10 [20]. The details of these test suites
are summarised in Table 1. We compared the performance of DCG-NSGA-II
against the standard NSGA-II. For each test problem, both algorithms were
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Table 1. Details of the 31 benchmark problems used for performance comparison.

Problem No. of variables No. of objectives

DTLZ1 7 3
DTLZ2-6 12 3
DTLZ7 22 3
KSW10 10 2
LZ09_F1-F5, F9 30 2
LZ09_F6 30 3
LZ09_F7-F8 10 2
WFG1-9 6 2
ZDT1, 2 30 2
ZDT3, 4, 6 10 2

granted a fixed computational budget of 50,000 fitness function evaluations (i.e.,
250 generations). To account for the inherent stochastic nature of MOEAs, 50
independent runs were conducted for each solver on each problem, facilitating
statistically robust comparisons of their performance. The experiments were car-
ried out using jMetalPy v1.6, a Python framework widely used for single and
multi-objective optimization with metaheuristics [2].

In comparing the performance of the solvers on the benchmark problems, we
employed the hypervolume indicator (Hv) [34] as our unary Pareto front quality
measure. This choice was due to its widespread acceptance in the MOEA commu-
nity, and its theoretical proof of monotonic convergence behaviour. The Hv(PFc)
metric measures the size of the objective space dominated by a candidate Pareto
front PFc when considering an anti-optimal reference point [34]. Consequently,
larger Hv values are preferred. To enhance the interpretability of the numerical
values, we compute the relative hypervolume as Hr(PF c) = Hv(PFc)

Hv(PFt)
. We cal-

culated Hv(PFt) for all 31 benchmark problems using their known true Pareto
fronts. Based on this, for each problem and solver combination, we calculated
the average relative hypervolume achieved at each generation when considering
the 50 independent repeats.

4 Results and Interpretation

4.1 Performance on Individual Problem Suites

We present the average comparative performance results for DCG-NSGA-II and
NSGA-II on the five benchmark problem suites in Figs. 3, 4, 5, 6 and 7. The plots
on the left focus on the first 50 generations for a closer look on early convergence
trends, whereas those on the right show the full 250 generations. The results
indicate that, with the exception of the DTLZ suite, DCG-NSGA-II converges
faster than NSGA-II within the first 20–40 generations. Notably, the advantage
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of DCG-NSGA-II is substantial on the ZDT problem suite, where it achieves an
average relative hypervolume of 79.7% by generation 80, compared to NSGA-II’s
62.2%. At the end of the runs (generation 250), DCG-NSGA-II slightly outper-
forms NSGA-II on the ZDT suite, achieving 99.46% relative hypervolume versus
NSGA-II’s 99.37%, and on the WFG suite, achieving 90.18% versus 89.66%.
However, for the KSW10 suite, NSGA-II surpasses DCG-NSGA-II in the end
of the run results, with NSGA-II reaching 99.3% compared to DCG-NSGA-II’s
99.25% mean relative hypervolume. DCG-NSGA-II exhibits the lowest perfor-
mance on the DTLZ problem suite. We suspect that the reason for this sub-par
performance could be attributed to the fact that all 7 DTLZ problems have 3
objectives. Similar poor performance was observed on LZ09_F5, which also has
3 objectives. More extensive experimentation is required to confirm this though.

Fig. 3. Mean performance of DCG-NSGA-II and NSGA-II on the ZDT problem suite.
Left: close look at the first 50 generations. Right: all 250 generations.

Fig. 4. Mean performance of DCG-NSGA-II and NSGA-II on the KSW10 function.
Left: close look at the first 50 generations. Right: all 250 generations.
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Fig. 5. Mean performance of DCG-NSGA-II and NSGA-II on the LZ09 problem suite.
Left: close look at the first 50 generations. Right: all 250 generations.

Fig. 6. Mean performance of DCG-NSGA-II and NSGA-II on the WFG problem suite.
Left: close look at the first 50 generations. Right: all 250 generations.

4.2 Overall Performance on All Problem Suites

Figure 8 depicts the average performance of the two solvers across all 31 bench-
mark problems. The plot on the right shows relative hypervolumes achieved in all
the 250 generations, while the one on the left zooms into the first 100 generations.
The plots suggest that DCG-NSGA-II initially exhibits a faster convergence rate
compared to NSGA-II, as was the case with the individual problem suites. How-
ever, this advantage diminishes in later generations, resulting in DCG-NSGA-II
achieving slightly lower end-of-run performance than NSGA-II.

For each of the 31 benchmark problems, to determine if there is a statistical
difference between the relative hypervolumes achieved by the two algorithms at
each of the 250 generations, we carried out a pair of one-sided Mann-Whitney U
tests [24] with a significance level of 0.05. The Mann-Whitney U test is a non-
parametric statistical test used to compare two independent groups. In both
our tests, the null hypothesis at each generation was that there is no statistical
difference between the mean relative hypervolumes achieved by NSGA-II and
DCG-NSGA-II for that problem. The alternative hypothesis for the first test
was that the mean relative hypervolumes achieved by NSGA-II were lower than
those achieved by DCG-NDGA-II (i.e., DCG-NSGA-II over-performed NSGA-



278 T. M. Banda and A.-C. Zăvoianu

Fig. 7. Mean performance of DCG-NSGA-II and NSGA-II on the DTLZ problem suite.
Left: close look at the first 50 generations. Right: all 250 generations.

Fig. 8. Overall performance of DCG-NSGA-II and NSGA-II on all 31 benchmark prob-
lems. Left: focus on the first 50 generations. Right: All 250 generations.

II) and these are plotted by the solid black line in Fig. 9. In the second test,
the alternative hypothesis was that the mean relative hypervolumes achieved by
NSGA-II were higher than those achieved by DCG-NDGA-II (i.e., DCG-NSGA-
II under-performed NSGA-II) and these are plotted with solid grey in Fig. 9.
In Fig. 9 we also plot the number of benchmark problems where there was no
statistical difference between the two (the dashed grey line). It is clear from the
results that DCG-NSGA-II over-performed NSGA-II across more benchmark
problems during early convergence. For example, at generation 19 (where Fig. 8
indicates for both solvers an average hypervolume attainment of ≈ 50% over
all problems), DCG-NSGA-II statistically outperformed NSGA-II in 19 of the
31 benchmark problems. As the generations progress, the number of benchmark
problems in which DCG-NSGA-II outperforms NSGA-II begins to reduce. By
around generation 100 (the start of late convergence) NSGA-II starts to outper-
form DCG-NSGA-II and this trend continues to the end of runs.



A Dominance-Based Surrogate Classifier for MOEAs 279

Fig. 9. Significance test comparisons of the two solvers.

5 Conclusion and Future Work

This paper has demonstrated the efficacy of employing a classifier trained on
a recent population of solutions to predict dominance relationships in a new
generation, guiding a MOEA towards faster convergence. The proposed DCG-
NSGA-II achieved faster convergence across various benchmark problem suites,
with the most significant performance observed on the ZDT problems, followed
by KSW10, LZ09, and WFG suites. Notably, the surrogate model did not demon-
strably enhance NSGA-II’s performance on the DTLZ problem suite. Overall,
when evaluated across the 31 benchmark problems, our DCG-NSGA-II outper-
formed the standard NSGA-II during the early convergence stage. The findings
were statistically validated using one-sided Mann-Whitney U tests. As such, our
approach can be seen as providing a problem-agnostic convergence improvement
for MOOPs with a limited fitness evaluation budget.

For future research, we aim to refine the proposed surrogate model further,
incorporate it into other state-of-the-art MOEAs and test performance on a real
industrial application including carrying out comprehensive speed comparisons.
Additionally, we will seek to study the reasons behind the surrogate’s limited
effectiveness on the DTLZ problem suite, and explore if the population size and
number of objectives have any effect on its performance.
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Abstract. Much of the information that we use is geospatially refer-
enced. The need for homogeneous representation of global geographic
themes is recognised as critical for sustainable development goals. The
richness of local geographic data created and maintained by individual
countries vary widely, creating what is known as a geospatial digital
divide. Attempts to bridge this divide include the adoption of Discrete
Global Grid Systems that provide an abstract and uniform method of
partitioning space on Earth. This paper considers how the local meth-
ods of partitioning space adopted in individual countries and provided
as open data can be integrated with this global grid system. The paper
proposes a novel ontology design pattern for representing the integration
of both grid systems, and evaluates it against existing methods. It is
shown how a uniform treatment of spatial semantics is used to represent
geographic places across grid systems. This proposal is a step towards the
effective utilisation of these grid systems in building global geographic
information systems.

Keywords: geospatial ontology · spatial semantics · global grid
systems

1 Introduction

Geospatial information describes the physical location of features on Earth and
their relationships with other features and associated information. It provides the
integrative platform for all digital data that has a location dimension. The critical
role that geographic information plays in national social, economic and environ-
mental development is witnessed by the United Nations Integrated Geospatial
Information Framework [10]. The last decade has seen substantial efforts in open-
ing up geospatial datasets by governments. Of particular interest to this work
are open data sets representing administrative and other geographic division
boundaries, for example, the Ordnance Survey (OS) open datasets that include
all of the administrative and postal code boundaries for countries in the UK1

[13], and the USGS national boundary dataset for the US2. Other global efforts
1 https://osdatahub.os.uk/.
2 https://data.usgs.gov/datacatalog/data/.
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include the United Nations’ Second Administrative Level Boundaries (SALB)
programme3 and the Global Administrative Areas (GADM)4 that collect and
provide boundaries at national and lower subdivisions in countries worldwide
[3]. The scale and the richness of the information provided vary across countries,
as shown in the example in Fig. 1, where GADM provides a hierarchy of three
levels for Switzerland and a hierarchy of only one level for Libya.

Fig. 1. GADM boundaries at different levels for (a) Switzerland (level 0-3) and (b)
Libya (level 0-1) (see footnote 4).

Some characteristics of these datasets can be summarised as follows.

1. Geographic divisions of a country are thematic, hierarchical irregular tessel-
lations that partition the space representing the boundary of the country into
cells. The hierarchical division is normally represented as a set of contermi-
nous subspaces having the same dimension as the space being partitioned;
i.e. cells on any level in the hierarchy are adjacent with shared boundaries
and cover the space completely. However, there can be some exceptions where
cells can have contiguous boundaries (adjacent but not touching), for example
when part of the country land is disconnected by a sea. This system of geo-
graphic divisions shall henceforth be denoted Discrete Local Irregular Grid
System (DLIGS). An example is shown in Fig. 2, showing a hierarchy of two
levels representing the Unitary Authority districts in Wales (with emphasized
boundaries) and their division into communities.

2. Irregular tessellation of space is common, where cells may vary widely in size.
For example when representing levels of communities in urban and rural areas

3 https://salb.un.org/en.
4 https://gadm.org.

https://salb.un.org/en
https://gadm.org
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Fig. 2. (a) Unitary Authority Districts containing communities in Wales, UK, (b)
DLIG hierarchy for Wales.

of the country, cells representing urban areas are more likely to be smaller in
size.

3. Cell boundaries may change over time, e.g. as population distribution change,
boundaries of school districts may change as well.

4. Cells may be associated with multiple names (identifiers), e.g. to record his-
torical names or names in different languages.

5. Multiple hierarchies of different scales of division can be adopted in different
countries. For example, some areas in England are designated civil parishes
while others are ‘unparished’, resulting in different administrative division
hierarchies for different areas in the country.

6. Multiple hierarchical divisions of the same area in space can be used. For
example, school, health and electoral districts. In this case, cells in different
hierarchies may overlap.

The above points represent a challenge to the homogeneous and integrated
treatment and management of global geographic information across different
countries, particularly when the monitoring of global themes such as sustainable
development is considered. The proposal of the Discrete Global Grid System
(DGGS) by the Open Geospatial Consortium (OGC)5 and ISO 19170-1:2021
Geographic information [5] could address some of these challenges. DGGS is
designed as a global spatial information framework that represents the surface
of the Earth uniformly. DGGS address the entire planet by partitioning it into a
discrete hierarchical tessellation of progressively finer resolution cells. H3, Uber’s
hexagonal hierarchical spatial index, is an example DGGS implementation devel-
oped by the ride-sharing company for their specific purposes, and made available

5 https://docs.ogc.org/as/15-104r5/15-104r5.html#7.

https://docs.ogc.org/as/15-104r5/15-104r5.html#7


288 A. I. Abdelmoty and A. Satoti

open-source [4]. The H3 grid is shown in Fig. 3. Kmoch et al. gives an overview
of some examples DGGS [8].

Fig. 3. Common tessellations used in DGGS; hexagonal as used in H3. Figure adapted
from [4]

This work proposes the integration of DGGS and DLIGS to address the
challenge of homogeneous manipulation and management of global geographic
information. We review previous works to address this problem and propose an
ontology design pattern with a uniform treatment of both DGGS and DLIGS
for representing geographic space. This work paves the way for considering the
combined spatial reasoning with the two systems and the realisation of global
geographic information systems.

In Sect. 2, an overview of DGGS is given and an analysis of related pro-
posal are presented. Our ontology design pattern and examples of its utility are
presented in Sect. 3. A discussion of future work and conclusions are given in
Sect. 4.

2 Related Work

In contrast to DLIGS, DGGS provides a uniform approach to partitioning space
for all countries [2]. The underlying geometry of the cells and the topological rela-
tionships between neighboring cells can be used to define globally unique identi-
fiers (GUIDs) for the cells at any resolution [9]. Previous works have considered
the functional specification of DGGS and the functional operations required for
its realisation and practical use in Geographic Information Systems [9]. There
it is used as a space indexing method to facilitate efficient search and retrieval;
a sort of a realisation of a Quadtree spatial index with uniform application
across the whole surface of the Earth and with recognizable unique identifiers
for its cells. Typical operations on a DGGS include translation of coordinates
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to grid cells, indexing, cell geometry calculations and visualization. Uber’s H3 is
used for locating neighbouring cells, and representing movement between cells
to facilitate navigation queries.

Few works have considered the data modelling aspects of DGGS and how it
links to the standard vector and raster models for geographic data. In partic-
ular, how are the cells in a DGGS link to the topological structuring of space
with points, lines and polygons representing geographic features and places and
how do the identifiers for these units of information correspond. This is neces-
sary to allow for effective reasoning with geographic information. Recent work
in the KnowWhereGraph project [6,7] has considered this question and devel-
oped an ontology design pattern, denoted the Hierarchical Cell Feature (HFC)
pattern, whose purpose is to model how features and regions interact with an
underlying Discrete Global Grid in the context of facilitating the integration of
data resources on the Web. Here we review this design pattern and its ability to
integrate with DLIGS.

2.1 The Hierarchical Cell Feature (HFC) Pattern

Figure 4 shows the HFC pattern as described in Shimizu et al. [12]. The figure is
adapted to present how DGGS is represented and used to model the concepts of
features and regions [7]. An overview of the modelling and reasoning capacities
offered by HFC is given below.

Modelling

1. DGGS is represented using the concept of a Cell that has an associated geo-
metric representation.

2. A Cell has a spatial relationship with a geographic Feature. This is a natural
consequence from the fact that the grid of cells is projected on space and the
cells coincide with a specific location on Earth, and therefore intersects with
geographic features occupying this space. Figure 5 shows a set of six standard
qualitative topological spatial relations between simple regions that can be
used to instantiate this relationship.

3. A Cell has more than one adjacent Cell and a Cell is contained in a (parent)
Cell.

4. A Feature is spatially related to a Cell. A Feature encapsulates the notion of
a feature, characteristic, or aspect of the surface upon which the hierarchical
grid system has been applied.

5. A Region is spatially related to a Cell. ’A Region is a socio-culturally or
geopolitically significant area. For example, Kansas is a state (administrative
region) in the United States. It can also be regarded as a Feature’ [12].

6. The OGC classes of Feature, Spatial Object and Geometry are used [1], shown
with a dark gray colour in the figure.
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Fig. 4. Hierarchical Cell Feature ontology design pattern; adapted from [12].
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Fig. 5. Topological relations between simple regions.

Reasoning. Semantic compression and spatial reasoning with the pattern are
described in [14]. In particular, two main methods are used: transitivity property
of spatial containment relationships and inheritance of spatial relations for spa-
tially related features. The exact nature of this inheritance depends on the type
of spatial relation. For example, if a Cell is spatiallyRelated to a Feature, then
the parent of that Cell is also spatiallyRelated to the Feature. The following are
selected axioms from [12] that summarise these methods.

Cell � Geometry
Cell � ∀spatialRelations.Geometry
Cell �≥ 0spatialRelations.Cell
Cell �≥ 0isAdjacentTo.Cell
Cell � ∀isAdjacentTo.Cell

∃isAdjacentTo.Cell � Cell
Cell �≥ 0contains.Cell
Cell � ∀contains.Cell

∃contains.Cell � Cell

isFullyContainedIn � contains−

contains ◦ contains � contains
isFullyContainedIn ◦ isFullyContainedIn � isFullyContainedIn

contains ◦ spatiallyRelated � spatiallyRelated

In summary, the pattern models DGGS as an abstract geometric division
of geographic space. Geographic features are then attached to the cells with a
spatial relationship that is defined through their extent and coincidence with the
underlying abstracted space division. This is modelled uniformly for places and
regions that can be administrative regions. A spatial relationship can also be
established between geographic place and administrative divisions. As it stands,
the pattern does not explicitly model the hierarchies in a DLIGS, nor does it
clarify how the places/features relate to this hierarchy beyond possible spatial
relationship with any region on any level in the hierarchy. The link between
the DGGS and DLIGS is thus implicit and will need to be computed by the
information systems (GIS) that implement the models.

Here we describe basic requirements for an integrated DGGS and DLIGS
ontology design pattern that can be used as competency questions for evaluation.
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A more thorough treatment of these requirements and the reasoning support
needed are the subject of ongoing work and are beyond the scope of this paper.
A schematic representation of DGGS and DLIGS are shown in Fig. 6, in which
an analogy is made with representation of different map scales. A pattern that
integrates both DGGS and DLIGS will be capable of addressing the following
set of questions.

Fig. 6. DGGS and DLIGS are depicted as maps of different scales.

1. Where is place x?, where x can be any type of place on the base place map.
The location of x can be represented by a simple point or by its areal extent
and boundary. A region on any division is also considered to be a type of
place. The answer to this question should identify the location of the place
within the DGGS and within the DLIGS.

2. Which regions are neighbours (not neighbours) of region x?
3. Which regions are parents of (children of) region x?
4. Which regions in Division 1 intersect with region x in Division 2?

Questions 1–3 consider the relationships between places and regions within
the same hierarchical division, while question 4 consider regions in different
divisions, where the DGGS can serve to identify and link the levels of resolution
in different divisions. A further example of useful questions that can be used for
integration of data analysis across different countries is “Produce a DLIGS for
a country that is comparable to another of a different country”. For example, to
produce a DLIGS for Libya that is similar to the DLIGS used for representing the
Communities in Wales. The purpose here is for example to support the uniform
statistical analysis and reporting of geographic themes across the two countries.
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3 The Discrete Local Irregular Grid (DLIG) Pattern

An overview of the proposed ontology design pattern for the DLIGS is shown in
Fig. 7. Relevant aspects of the design pattern are summarised as follows.

1. DLIGS is represented using the concept of a GeoUnit that represents a cell
on any of the levels of the hierarchical division of space, e.g. an particular
community or a particular district, etc.

2. GeoUnits and their associated hierarchies are modelled with two design pat-
terns, namely, the Tree Design pattern and the Composition design pattern
[11], shown in Fig. 8.

3. GeoUnits are adjacent to one or more GeoUnits and have a GeoUnit as a
parent.

4. Country is a subclass of a root GeoUnit, and thus does not have a parent.
5. Geographic place are located inside a leaf GeoUnit.
6. Geographic places with extended geometries can intersect more than one

GeoUnit.
7. Geographic divisions, base places and extended base places are subclasses of

Place that is itself a subclass of Feature.
8. A Place is an abstract concept to represent geographic places with identifying

attributes of name and place type.

DGGS can now be integrated in a uniform manner within the pattern as
shown in the figure.

1. A DGGS Cell is a subclass of GeoUnit. This allows for the uniform represen-
tation and treatement of the DGGS hierarchy as any other division hierarchy
in the system.

2. A GeoUnit is contained within a Cell. This explicit relationships allow for a
direct definition of the location of the GeoUnit in the DGGS hierarchy.

The primary difference between DLIGS and HFC is in the treatment of how
the places and regions are represented. Explicit spatial relationships are defined
to relate the location of all objects. Some axioms that represent these explicit
relationships are defined below. Note that this is only a partial set of the axioms.
A complete set that describe the properties and constraints for all concepts is
beyond the scope of this paper.
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Fig. 7. The proposed Discrete Local Irregular Grid pattern.
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Fig. 8. The Tree and Composition ontology design patterns used in the definition of
the DLIG pattern.

GeoUnit � Feature
GeoUnit �≥ 0isAdjacentTo.Cell
GeoUnit � ∀isAdjacentTo.Cell

∃isAdjacentTo.GeoUnit � GeoUnit
GeoUnit �≥ 0contains.GeoUnit
GeoUnit � ∀contains.GeoUnit

∃contains.GeoUnit � GeoUnit
GeoUnit �≥ 0contains.Place
GeoUnit � ∀contains.Place

∃contains.Place � GeoUnit

Similar qualitative spatial reasoning rules apply for transitivity of contain-
ment relationships and downward and upward inheritance of spatial relationships
within hierarchies and across hierarchies of DLIGS and DGGS. Some example
application of the pattern for the representation of places in different countries
are shown in Figs. 9 and 10. Tables 1 and 2 gives details of the places as repre-
sented using the pattern and how the DGGS information can be matched across
the hierarchies to link the data. Evaluation of the pattern and its utility and
effectiveness for the integration of global geodata is the subject of ongoing work.

Table 1. Representation of the Location of Llandaff Cathedral in Wales.

DLIG DLIG Level DGG (H3) level DGG Cell Id

Llandaff Cathedral Base Place 15 8a7bacc04847fff

Llandaff North Community-Ward 2 8 88195ab69dfffff

Cardiff Unitary Authority District 1 4 8419587ffffffff

Wales Country 0 2 82195ffffffffff
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Fig. 9. Location of Llandaff Cathedral in Wales represented in (a) Administrative
hierarchy of Wales (DLIGS), and (b) H3 hierarchy (DGGS).

Table 2. Representation of the location of Bahia Palace in Morocco.

DLIG DLIG Level DGG (H3) level DGG Cell Id

Bahia Palace Base Place 15 8a96a85b1167ff

Marrakesh Community-Ward 2 2 833983fffffffff

Morocco Country 0 3 82398ffffffffff
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Fig. 10. Location of Bahia Palace in Morocco represented in (a) Administrative hier-
archy of Morocco (DLIGS), and (b) H3 hierarchy (DGGS).

4 Conclusions

This paper addresses the need for integrated methods of management and rea-
soning over global geographic datasets. The complexity of the problem and its
dimensions are analysed by recognising the different local representations of geo-
data sets in different countries and their open data availability. To address these
challenges, this paper proposed a novel ontology design pattern that explicitly
represents topological and proximity spatial semantics to capture the relation-
ships between grid systems that represent geographic space and the geographic
features and places on the ground. Design requirements for this pattern have
been elicited by reviewing existing approaches to building integrated geographic
knowledge graphs. The pattern has been implemented and evaluated with real-
istic data sets. Some examples were shown to demonstrate its utility.
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Full logical specification of the pattern and its spatial reasoning capabilities is
the subject of ongoing work. Also, more elaborate evaluation and demonstration
of its utility is being carried out using open geodata sets. The integrated use of
global grid systems and local grid systems is an important current topic and will
pave the way for the development of global geographic information systems.
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Abstract. Predicting stock prices remains a critical research focus in finance,
complicated by numerous external factors. Recent approaches utilize high-level
data, such as tweets and news articles, for financial sentiment analysis. However,
these methods often struggle to accurately capture public sentiment, leading to
prediction inaccuracies. We introduce a high-quality dataset and a novel data
collection method using a programmable search engine and FinBERT sentiment
analysis, resulting in weekly sentiment metrics and stock prices for 20 stocks. The
dataset was used to train and enhance a Flair sentiment model, integrated into a
neural network for stock price prediction.Our results show that the neural networks
with multiple time series output parameters outperform single-output models.
Moreover, fine-tuned Flair models achieved higher accuracy than FinBERT-based
models in predicting stock prices. This research highlights the potential of novel
databases and refined sentiment models, offering improved insights into sentiment
analysis in finance and introducing an innovative data collectionmethod applicable
across sectors using natural language processing.

Keywords: Flair · FinBERT · Fine-Tuning · Sentiment Analysis ·
Programmable Search Engine · Neural Network · Stock Prediction

1 Introduction

Understanding the various factors influencing stock price fluctuations is a complex and
nuanced task, posing significant challenges to achieving high accuracy and reliable
predictions [1]. Stock prices are affected by numerous variables, including economic
indicators, market sentiment, and geopolitical events [2], which complicate forecasting
efforts.While neural networks can provide estimates based onmetrics like stock opening,
closing prices, and trade volumes, many unknowns introduce noise and hinder precise
predictions [3, 4]. An alternative approach involves leveraging news articles, as news
often reflects or influences stock movements, with negative news potentially driving
traders to sell [5]. Sentiment analysis can convert news content into actionable data for
stock price estimation. However, current sentiment analysis models for stock prediction
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often rely on limited and potentially biased datasets from platforms like X1 (formerly
Twitter), forums, or financial news outlets [6, 7]. This study proposes a novel method
using Google’s programmable search engine (PSE) to compile a comprehensive dataset
of stock-related news. This dataset will be used to train and fine-tune a Flair sentiment
model, integrating sentiment analysis with a neural network to predict stock prices at
intervals of 1 day, 1week, and 3weeks. The dataset contains stock information, FinBERT
sentiment and the title and publisher of each article, this dataset is stored onGitHub2. The
study will also compare the effectiveness of the FinBERT and Flair models in predicting
stock price movements.

2 Related Work

FinBERT, a pre-trainedNLPmodel based onBERT [8], is tailored for financial sentiment
analysis and fine-tuned using the Financial PhraseBank [9]. A 2023 study [6] compared
TextBlob, VADER, and FinBERT for sentiment analysis of tweets in predicting stock
market trends, finding that sentiment improves forecasting accuracy. However, reliance
on Twitter for public sentiment presents limitations, as its user base may not represent
broader demographics that rely on news outlets. Another study [7] comparing FinBERT
and VADER found FinBERT to be more accurate with financial news (Bloomberg,
CNBC, Reuters, WSJ, Fortune) but less effective with tweets, where VADER performed
better, emphasizing the importance of matching models to datasets. Further research
[10] showed sentiment analysis, using the Harvard psychological dictionary and the
Loughran-McDonald sentiment dictionary, outperformed bag-of-words approaches in
stock prediction. A FinBERT model fine-tuned on 4,840 financial news sentences was
also employed to classify sentiment [11]. Additionally, a study [12] using Flair sentiment
models combined with deep learningmethods like EWT, LSTM, and PSO achieved 90%
accuracy in forecasting financial trends over 10 days.

3 Design and Methodology

3.1 Data Collection, Pre-processing and Validation

This study selects 20 stocks based on company size, sector, and public prominence to
optimize search results. Data generation is conducted via the PSE, ensuring compliance
with terms of service3 by maintaining transitory storage of extracted data. To manage
time and resource constraints, the dataset includes only Wednesdays within the date
range of 01/01/2020 to 01/04/2024, minimizing the weekend effect [13]. Temporary
datasets are created for each stock using queries “Stock name news from start_date to
end_date” and store search terms, URLs, and publication dates. Website text is extracted
using the libraries requests, article, paper, and BeautifulSoup, and is compiled into a
unified database containing titles, text, publishers, keywords, and summaries. Prepro-
cessing is applied to remove URLs, non-alphanumeric characters, and entries below a

1 https://x.com/.
2 https://github.com/Nicholasfp/GoogleFinancialDatabase.
3 https://support.google.com/programmable-search/answer/1714300?hl=en.

https://x.com/
https://github.com/Nicholasfp/GoogleFinancialDatabase
https://support.google.com/programmable-search/answer/1714300%3Fhl%3Den


OK Google, What is the Stock Forecast for Next week? 303

minimum character count to ensure data quality and compatibility with FinBERT and
Flair, addressing anti-scraping measures that return short, unusable text. Initially, the
2020–2024 database contained 24,633 articles, but after preprocessing, 1,746 unusable
articles were removed, leaving 22,887. Stock data is retrieved via Alpha Vantage, fil-
tered by search dates, and integrated with the extracted text. FinBERT is used to estimate
sentiment, serving as a baseline and stored in a new column. To train the Flair model,
separate text and sentiment databases are prepared with two split ratios: 70% train, 20%
test, 10% validation, and 70% train, 10% test, 20% validation. FinBERT was selected as
the baseline model due to the impracticality of manual labelling, which would require
approximately 763 h and could introduce bias. As a consistent and accurate model for
processing news articles and financial reports [7], FinBERT’s sentiment assignments
were manually reviewed on a sample of data points and found to be reliable.

3.2 Models

This study employs FinBERT as the baseline model due to its accuracy in analysing
financial news and reports [7], leveraging its domain-specific training on financial data
to better capture industry-specific jargon and nuances [1]. While FinBERT excels in this
context, it performs less effectively on shorter, general posts like tweets. To address the
limitations of FinBERT’s context window and skewed sentiment detection, the study
introduces a bias mechanism favouring positive or negative sentiment when neutral
values dominate. Additionally, the study uses Flair, an open-source NLP library for
model training [14] comparing DistilBERT4 and RoBERTa [15] embeddings, chosen for
their efficiency and performance. A custom database is created by combining FinBERT
sentiment data, which is used to train and evaluate the Flair model. The models are
evaluated based on accuracy and mean squared error, with hyperparameters adjusted
iteratively to improve performance, as discussed in later sections.

During the training of Flair, we developed eight models using the generated dataset,
all of which share the following fixed hyperparameters: embeddings_storage_mode =
‘none’, TransformerDocumentEmbeddings fine_tune = False, and a label dictionary
with neutral, positive, and negative classes. To optimize model performance and prevent
overfitting, we focused on tuning learning rate, mini-batch size, epochs, weight decay,
and the train-validation-test split. Models F and G utilize RoBERTa word embeddings
while the others are based on DistilBERT embeddings.

For evaluation of Flair’s performance, we capture the Accuracy, Precision, Recall
and F-score in each model. These metrics are widely used in classification tasks and are
useful for understanding the overall correctness and quality of predictions.

3.3 Neural Nets

The study trains neural networks using inputs such as sentiment, sentiment score (Flair
only), number of articles published, and stock open-close values to predict stock move-
ments after 1 day, 1 week, and 3 weeks, with models generated for both FinBERT and

4 https://huggingface.co/docs/transformers/en/model_doc/distilbert.

https://huggingface.co/docs/transformers/en/model_doc/distilbert


304 N. A. Frederick-Preece and N. Abbas

Flair. The neural network architecture for each model includes two fully connected lay-
ers with 64 and 32 neurons (using ReLU activation) and a final layer corresponding to
the number of outputs. To prepare the data, stock open-close columns are added for each
prediction period, and unnecessary text and URL columns are removed. Identical hyper-
parameters, including StandardScaler, Adam optimizer, 10,000 epochs, and a batch size
of 32, are used for comparison, with additional fine-tuning of epochs and batch size for
improved performance at 60,000 epochs and a batch size of 100. Model evaluation is
conducted using mean squared error (MSE) and the Keras accuracy metric, providing a
binary comparison between predicted and actual results.

4 Experimental Results and Discussion

Following training on the dataset, each model undergoes evaluation using a dedicated
test dataset, and the outcomes of this evaluation are detailed in Table 1.

Table 1. Flair sentiment evaluation results.

Model id Accuracy Precision Recall F-score

A 0.7027 0.6335 0.7027 0.6638

B 0.7536 0.7463 0.7536 0.7464

C 0.7541 0.7473 0.7541 0.7439

D 0.7541 0.7462 0.7541 0.7462

E 0.7455 0.7429 0.7455 0.7303

F 0.5703 0.5486 0.5703 0.4152

G 0.7275 0.6609 0.7275 0.6876

H 0.7545 0.7469 0.7545 0.7477

Utilising model H we run evaluation on single and multiclass neural net models, this
generates the results shown in Table 2.

Table 2. Neural net evaluation results.

Neural net model Accuracy Mean Squared Error

FinBERT all predictions 0.3727 44.9837

FinBERT after 1 day predictions 0.0118 59.6242

FinBERT after 1 week predictions 0.00939 75.2323

FinBERT after 3 weeks predictions 0.0068 135.5796

Flair model H all predictions 0.3292 69.9274

(continued)
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Table 2. (continued)

Neural net model Accuracy Mean Squared Error

Flair model H after 1 day predictions 0.0056 64.5539

Flair model H after 1 week predictions 0.0094 104.8947

Flair model H after 3 weeks predictions 0.0068 83.8780

FinBERT fine tuned all predictions 0.3609 49.1761

Flair DistilBERT fine tuned all predictions 0.3703 95.4864

Comparing the generated sentiment models from Table 1 we see that model H has
the highest accuracy, recall and f score of 0.7545, 0.7545 and 0.7477 with a precision of
0.7469, model C has the highest precision at 0.7473 with an accuracy of 0.7536, models
C and D have comparable accuracy and precision scores to model H. From these results
model H shows good performance with only a small compromise for a slightly lower
precision. The results trend shows that an increase in mini batch size and a decrease in
learning rate increases accuracy.

Analysis of the neural networks reveals that incorporating all predictions yields sig-
nificantly higher accuracy compared to individual predictions in both FinBERT and Flair
models, with FinBERT showing a 34% improvement and Flair a 30% increase, indicat-
ing substantial potential for future enhancement. Table 2 highlights that the best baseline
FinBERT models outperform Flair in both accuracy (by 0.04) and mean squared error
(MSE reduction of 24.9437). However, fine-tuning improves Flair’s accuracy beyond
FinBERT by 0.0094, though at the cost of a higher MSE (46.3103), likely due to overfit-
ting. Fine-tuning appears to negatively affect FinBERT, while presenting improvement
opportunities for Flair. The dataset used in this study, though smaller than others [7]
(260000 tweets), [16] (306242 news articles), offers higher quality by relying on general
news sources rather than potentially biased platforms like Twitter [17], thus providing
a more representative view of public sentiment. This aligns with research advocating
for data quality over quantity [18], emphasizing the dataset’s ability to better capture
sentiment-company perception correlations.

5 Conclusions and Future Work

This study demonstrates significant advancements in both financial analysis and NLP by
effectively using sentiment analysis to predict stock prices, utilizing a novel dataset gen-
erated throughGoogle’s programmable search engine. The improvedprediction accuracy
of models with multi-class outputs highlights the importance of integrating diverse time
series data, offering a valuable tool for financial analysts and investors. Notably, fine-
tuning enhancesFlairmodels but hinders FinBERT, providing key insights for optimizing
neural networks in financial sentiment analysis. Beyond financial forecasting, the study
contributes to NLP research by showcasing the value of comprehensive data collection
and model fine-tuning with Flair distilBERT models outperforming RoBERTa models.



306 N. A. Frederick-Preece and N. Abbas

The research also suggests future exploration into expanding datasets, integrating more
models, and using real-time sentiment analysis for enhanced stock price prediction.

A review of legal frameworks revealed that UK and EU fair use laws allow text
extraction for non-commercial research under specified conditions, while US laws per-
mit text and data mining but restrict the publication of full text, requiring substantial
transformation of the original material.
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Abstract. This research explores the use of university news articles for Natural
Language Processing (NLP) and gender bias detection. It emphasises the impor-
tance of ethical considerations in NLP, advocating for transparency and diversity
in dataset selection to ensure fairness. Using techniques such as Sentiment Anal-
ysis (SA) and gender-specific language classification, the study reveals a bias
towards male possessive terms, indicating gender imbalance in the content. While
the FacebookBART-Large-Mnli model demonstrated strong accuracy, it struggled
with neutral sentiment, suggesting areas for improvement. The study highlights
university news as a valuable dataset for promoting equity and inclusivity in NLP
tools, laying the foundation for fairer methodologies.

Keywords: University News · Bias · News Bias · NLP · SA · Text Classification

1 Introduction

Addressing bias inNLPoften stems from training datasets that reflect societal prejudices.
Traditional bias detection studies have focused onmainstream news, but university news,
an underexplored resource, may present unique gender biases. In this study, bias is
defined as the systematic favouring or disadvantaging of certain genders, manifested
through language choices and representation in media content. Specifically, university
media can perpetuate biases by selectively highlighting achievements or issues related
to a particular gender.

This paper’s original contribution lies in applying NLP techniques to university news
articles to uncover and quantify gender bias, thereby expanding the understanding of
bias in academic contexts. While SA has been used in mainstream media, its application
to university news remains limited. This study fills that gap, offering insights into gender
representation in academia and contributing to more inclusive NLP methodologies.

The structure of this paper is as follows: Sect. 2 provides a background onmedia bias
and the role of diverse datasets in NLP. Section 3 outlines the methodology. Section 4
presents the results, and Sect. 5 discusses their implications. Section 6 concludes the
paper and suggests directions for future research.
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2 Background

In NLP, diverse datasets play a critical role in enhancing the robustness and fairness of
models. Curated datasets are used for evaluation, while supervised datasets train and
fine-tune models, and large unsupervised datasets are vital for pretraining and language
modelling [7]. The reliance on varied data sources highlights the need for diversity to
reduce systemic biases and ensure that NLP systems can process language from a wide
range of contexts. This underscores the value of incorporating university news articles
into NLP research. Diverse datasets are key to mitigating biases in NLP models, as
homogeneous datasets often lead to poor performance, especially on texts from under-
represented groups [5]. Research has shown that models trained on less diverse data
struggle to generalise across different dialects and sociolects, potentially marginalising
minority groups [1]. These findings stress the ethical implications of dataset diversity,
which is essential for creating fairer and more accurate NLP applications [4]. Despite
the growing research on media bias using SA, university news remains underexplored.
Existing literature highlights the application of SA in identifying shifts in sentiment and
nuances inmedia reporting [3]. Further studies have used Transformermodels to analyse
sentiment over time [8] and measure media bias in newspaper tweets [9]. However, uni-
versity news, which often targets internal audiences like students and staff, may exhibit
unique biases not seen in mainstream media. For example, research into media bias
surrounding historically black colleges and universities (HBCUs) shows how selective
reporting and tone can negatively affect institutional support and public perception [10].

3 Methodology - University Media Bias: A Case Study

This investigation aimed to enhance the understanding of bias within news associated
with higher education, an area that has not been extensively explored in bias detection
studies. In this case study, our objective is to conduct an SA to identify gender bias
in the news website of a research-intensive British university. Our analysis began with
classifying the news articles by gender distribution, following themethodology proposed
by [2]. Subsequently, we performed an SA for each gender category. We then employed
evaluation metrics to assess the performance of our SA model. Finally, we analysed the
frequency of career and family-related terms across different gender classes.

3.1 University News Dataset

The dataset comprises 5,782 university news articles from a British university’s official
website, coveringApril 2009 tomid-March 2023. These articles cover topics such as aca-
demic achievements, administrative announcements, and campus events. The data was
programmatically collected with formal approval, ensuring compliance with copyright
and usage policies. Articles were compiled into a CSV file, standardised by converting
text to lowercase, removing punctuation and stop words, and filtering noise.

Annotation.We used Amazon Mechanical Turk (MTurk) to annotate 46 university
news articles for SA, classifying each as positive, negative, or neutral. Annotators from
the EU region were paid $0.48 per task, with three annotators per article for reliability.
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MTurk was chosen for its accessibility, and the goal was to compare the model results
with human-labelled data, not to retrain the model. Annotators received clear examples:
positive sentiment highlighted achievements (e.g., ‘Dr. XX was awarded the prestigious
research grant’), negative addressed controversies (e.g., ‘Dr. XX’s controversial state-
ment sparked criticism’), and neutral was factual (e.g., ‘Professor XX presented his
findings’).

3.2 Gender Distribution Analysis

Following the methodology proposed by [2], we classified each news article based on
the presence of gender identity terms. Articles were categorised as male (M), female (F),
or neutral (N) depending on whether they predominantly featured masculine or feminine
possessive nouns or neither. This classification allowed us to quantify the representation
of genders across the dataset. The number of news articles in each class is as follows:
M = 1861, F = 599, and N = 3301.

3.3 SA Using Facebook BART-Large-Mnli

We applied the Facebook BART-Large-Mnli model, introduced by [6] and fine-tuned
on the Multi-Genre Natural Language Inference (NLI) corpus [11], for SA. As a pre-
trained NLImodel, it classifies text into categories not seen during training by evaluating
hypotheses. This model was used in a zero-shot capacity, meaning it was not retrained on
this annotated subset but applied as-is to perform classification based on its pre-trained
knowledge. For SA, we aimed to identify the emotional tone in articles categorised
as M, F, or N. In M articles, there were 1,602 positive sentiments, 251 negative, and
8 neutral. F articles had 526 positive, 71 negative, and 2 neutral sentiments, while N
articles contained 2,940 positive, 359 negative, and 2 neutral sentiments.

3.4 Career and Family Words Analysis

To investigate gender bias,we analysed the frequencyof career-related and family-related
terms in the M and F categories, using comprehensive datasets of “Career Words” and
“Family Words” from [2]. The analysis showed 1,874 career-related words for F and
5,704 for M, while family-related words totalled 2,652 for F and 1,997 for M.

4 Results

4.1 Gender Distribution Analysis

We classified each article based on gender identity terms as M, F, or N. Out of 5,782
articles, 1,861 (32%) M, 599 (10%) F, and 3,301 (57%) were N. A Chi-square test
revealed a significant difference in gender distribution (χ2(2, N = 5782) = 2503.83, p
< 0.001), indicating notable gender bias.Example sentences further highlight this bias
in representation:

M: “The Scientific Director is Professor XX whose ground-breaking research has
shown how disruption to the signalling system within a cell can trigger cancer. He has
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worked at some of the world’s most prestigious cancer research institutions and was
previously Executive Dean of the Faculty of Biological Sciences at XX.” F: “Professor
XX entered the profession in the 1980s, at a time when the overwhelming majority
of physicists were men and attitudes prevailed that women were not cut out for ‘hard
science’. Throughout her career, she has worked to improve equality and diversity.”

4.2 Facebook BART-Large-Mnli Model’s SA Evaluation

The performance of the Facebook BART-Large-Mnli model was evaluated using preci-
sion, recall, and F1-score. It achieved 85% accuracy, with high precision and recall for
positive and negative sentiments but poor performance in identifying neutral sentiments
(F1 score of 0.00). This highlights the model’s need for refinement in classifying neutral
sentiments (see Table 1).

Table 1. Evaluation metrics of Facebook BART-Large-Mnli model’s sentiment.

Precision Recall F1

Negative 0. 82 1.00 0. 90

Neutral 0.00 0.00 0.00

Positive 0.89 0.84 0.86

Accuracy - - 0.85

Macro Avg 0.57 0.61 0.59

Weighted Avg 0. 78 0.85 0. 81

4.3 SA Results

The SA using the Facebook BART-Large-Mnli model showed positive sentiment in 86%
of M, 88% of F, and 86% of N articles. Negative sentiment appeared in 14% of M, 12%
of F, and 14% of N articles, while neutral sentiment was rare across all categories. Two-
proportion z-tests revealed no significant differences in positive (z = -0.84, p = 0.402),
negative (z = 1.27, p = 0.204), or neutral sentiments (z = 0.00, p = 1.000) between M
and F articles. Example sentences classified by sentiment:

Positive. M: "He has also acted as a special representative in China for the Institute
of Civil Engineers, developing opportunities for British businesses both in China and
further afield. Since 2017, Sir XX has chaired the Executive Group of the University’s
Institute for High-Speed Rail and System Integration." F: "XX has become a passionate
ambassador against knife crime. ’I eat and sleep knife crime every day. Young people
have become desensitised towards knife crime and this needs to change,’ she said."

Negative.M: "‘Attack on Creative Expression in India’, Dr. XX, Associate Professor
in Information Technology Law, describes the jewellery company’s advert, which ended
up being pulled from circulation, before proceeding to discuss and analyse the nation’s
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response to the advert, asmanydeemed it controversial.Dr.XXdiscusses the significance
of cultural and religious influences of the advert as well as the wider context of legal
restraint on creative expression in India." F: "Women who had a final diagnosis of
NSTEMI had a 41 per cent greater chance of a misdiagnosis when compared with men."

Neutral. M: “At XX, Professor XX is leading a five-year interdisciplinary study
into the impact of climate change on the Congo peatlands." F: "Professor XX, Vice-
Chancellor, addressed the recent pay award in an email to all staff."

4.4 Career and Family Words Analysis

The analysis revealed 5,704 career-related words in M articles compared to 1,874 in F
articles, while family-related words appeared 1,997 times in M articles and 2,652 times
in F articles. Two-proportion z-tests showed significant differences in the use of career
words (z= 50.07, p< 0.001) and family words (z= -27.21, p< 0.001) between M and
F articles. Example sentences are provided below.

Career. M: "Professor XX will be heading up a new Academic Unit of Palliative
Care at the XX Institute of Health Sciences, a teaching and research institute within
the University’s School of Medicine. He will be leading research to develop and test
innovative treatments that aim at improving the care of patients who have an incurable
illness." F: "To investigate the importance of these ‘master controller’ regions in protein
aggregation in living cells, the team joined forces with Dr. XX and her students, also
members of the Astbury Centre in XX."

Family. M: "Professor XX’s successful campaign to right historical wrongs for
LGBT veterans and their families demonstrates the powerful role that evidence-based
research plays in influencing public policy." F: "But Mrs XX, now a mother and grand-
mother herself, is pleased work by academics such as Dr XX is shedding new light on
the experiences of her father and his fellow XX. "

5 Discussion

Considering the gender distribution among university staff, which has historically been
male dominated, provides additional context for the observed gender imbalance in the
news articles. This correlation underscores the importance of accounting for institutional
demographics when analysing media bias. SA and gender classification of university
news articles reveal significant gender disparities. A higher frequency ofmale possessive
terms suggests a bias towards masculine references. The analysis of career and family-
related terms reinforces traditional gender roles, with male-associated articles empha-
sising careers and female-associated ones focusing on family. These findings demon-
strate how media can perpetuate gender stereotypes, influencing public perceptions and
potentially discouraging women from pursuing underrepresented fields.

6 Conclusion and Future Work

This study highlights the importance of using diverse data sources, such as university
news, in NLP research to detect gender biases. The results show a clear bias, with male-
related terms linked to professional achievements and female-related terms associated
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with family contexts. Future work should focus on refining models to better handle
neutral sentiments and explore other forms of bias in academic media. Additionally,
future studies should broaden the scope to include university news from different regions
or continents and compare these findings with other news sources to provide a more
comprehensive understanding of media bias across different domains.
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Abstract. This study investigates the enhancement of Romanized Nepali text
generation and comprehension using open-source large language models (LLMs),
addressing challenges posed by colloquial words and non-standard sentence struc-
tures. While current open-source LLMs struggle with these complexities, com-
mercial models like OpenAI GPT-4 outperform in generating accurate Nepali
text. To bridge this gap, we use OpenAI GPT-4 for synthetic data generation,
manually verified for accuracy by a native speaker, and fine-tune an open-source
LLM using the Parameter-Efficient Fine-Tuning (PEFT) technique. Our evalua-
tion, based on translation quality metrics, shows a marked improvement in the
fine-tuned model’s performance over the base model, demonstrating the effec-
tiveness of this approach in low-resource language NLP. Additionally, this work
contributes to the community by open-sourcing the fine-tuning process and the
generated dataset.

Keywords: Low Resource Language · Synthetic Data Generation ·
Parameter-Efficient Fine-Tuning · Nepali Machine Translation

1 Introduction

Nepali, a low-resource language with millions of speakers, faces AI challenges [1].
While LLMs like GPT 3.51 and GPT 42 can generate accurate Nepali text, they some-
times confuse it with Hindi, especially in Romanized Nepali mixed with English, which
current NLP models struggle with. Open-source models like LLaMA3 and LLaMA 24

offer limited utility compared to commercial models [2]. Data scarcity, as seen with
Vietnamese [3] and African languages [4], remains a major issue. While synthetic data
generation with OpenAI GPT has been useful [5], it often fails to capture nuances in

1 J. Ye et al., ‘A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series Models’, Mar.
2023.

2 OpenAI et al., ‘GPT-4 Technical Report’, Mar. 2023.
3 H. Touvron et al., ‘LLaMA: Open and Efficient Foundation Language Models’, Feb. 2023.
4 H. Touvron et al., ‘Llama 2: Open Foundation and Fine-Tuned Chat Models’, Jul. 2023.
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Romanized Nepali. Current Nepali datasets focus mainly on Devanagari, lacking collo-
quial words [6, 7]. Open-source models like LLaMA and Stanford’s Alpaca 7B [8, 9],
using PEFT [10] and LoRA [11], have improved fine-tuning efficiency, reducing training
time and showing promise for low-resource languages like Nepali [12]. This approach
holds promise for enhancing the language comprehension and generation capabilities of
open-source large language models for such languages5,6.

2 Design and Methodology

The methodology follows 3 main sections: Data Generation, Data Translation, Fine
Tuning. The data generation phase used LangChain with GPT-4 and a JSON parser for
structured content, enabling accurate Romanized Nepali text generation across contexts.
While other LLMs like Google’s Gemini Pro7 were explored, GPT-4 proved more con-
sistent. We covered ten service sectors, generating ten unique Q&A pairs per subtopic
[14], with 1818-token prompts that included instructions, slang, and few-shot examples
[13]. Q&A pairs were synthetically generated to create a dataset simulating commu-
nication between a business assistant and a customer, providing the LLM with exam-
ples of expected input and output patterns. After generating Q&A pairs, the Romanized
Nepali text was translated into English usingGPT-4, addressing the challenges ofmixed-
language usage. The dataset was split into two JSON files for questions and answers,
resulting in 2674 sentence pairs. The concise 72-token prompt guided GPT-4 to trans-
late accurately, with adjustments made to prevent it from answering questions instead
of translating. A native speaker verified the dataset for accuracy, once it was generated
with manual verification and correction as required. This dataset of Q&A and translated
sentence pairs was essential for fine-tuning the LLM on translation tasks (Fig. 1).

Fig. 1. Diagram Translation process for the generated Q&A pairs.

The fine-tuning process involved two key steps: selecting an appropriate open-source
LLM and applying LoRA Parameter-Efficient Fine-Tuning (PEFT) using the translated

5 https://github.com/kshitizrimal/generated-translated-nepali.
6 https://huggingface.co/kshitizrimal/tigerbot-13b-chat-v5-finetuned-nepali.
7 Gemini Team et al., ‘Gemini: A Family of Highly Capable Multimodal Models’, Dec. 2023.

https://github.com/kshitizrimal/generated-translated-nepali
https://huggingface.co/kshitizrimal/tigerbot-13b-chat-v5-finetuned-nepali
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data. After extensive research, the Llama-2-based “tiger-bot-13b-chat-v5” model [15]
was selected for its support of over 120 languages, including Nepali, making it ideal
for our multilingual translation tasks. A 7B model was initially considered but fell short
in performance, leading us to opt for the more robust 13B model, which better suited
our fine-tuning needs. The model was quantized to 4-bit for LoRA fine-tuning to fit
GPU limitations. Evaluation methodology incorporates several metrics to assess model
performance on the evaluation set and compare the basemodelwith the fine-tunedmodel.

Metric Formula Description

Bilingual Evaluation
Understudy (BLEU)8

BP · exp
(∑N

n=1wnlogpn
)

BP prevents short translations.
N is the max n-gram length
(usually 4) with weights wn
summing to 1
pn is the n-gram precision,
matching n-grams btween
generated and reference text

Metric for Evaluation of
Translation with Explicit
Ordering (METEOR)9

Fmean(1− Penalty) Fmean is the harmonic mean of
precision and recall for
unigrams in candidate and
reference translations. The
penalty reduces scores for
fragmented translations

Recall-Oriented Understudy for
Gisting Evaluation with longest
common
subsequence(ROUGE-L)10

(
1+β2

)·LCSPrecision·LCSRecall
β2·LCSPrecision+LCSRecall

LCSPrecision measures the
candidate text in the longest
common subsequence (LCS),
while LCSRecall shows how
much of the reference text is
captured. β balances precision
and recall, typically set to 1for
equal weight

Thesemetrics offer a comprehensive evaluation of translation quality. BLEU focuses
on precision and word order with n-grams, ROUGE-L assesses recall and F1 score via
the longest common subsequence, and METEOR evaluates synonyms and stems for
semantic depth. This approach thoroughly measures improvements from fine-tuning.

8 K. Papineni et al., “BLEU,” Proc. 40th Annual Meeting of ACL, 2001, p. 311. https://doi.org/
10.3115/1073083.1073135.

9 S. Banerjee and A. Lavie, “METEOR: An Automatic Metric for MT Evaluation,” Proc. ACL
Workshop on Evaluation Measures for MT, 2005, pp. 65–72. Available: https://aclanthology.
org/W05-0909.

10 C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” Proc. Text
Summarization Branches Out, 2004, pp. 74–81. Available: https://aclanthology.org/W04-1013.

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/W05-0909
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3 Experimental Results and Discussion

A detailed evaluation assessed the fine-tuning of the LLM for translating Romanized
Nepali into English. LoRA parameters had nested quantization set to ‘False,’ using the
‘paged_adamw_32bit’ optimizer and a constant learning rate (Tables 1 and 2).

Table 1. LoRA hyper-parameter values.

LoRA Rank LoRA Alpha LoRA Dropout Number of
Training
Epochs

Per-Device
Training Batch
Size

Per-Device
Evaluation
Batch Size

128 32 0.1 1 4 4

Table 2. Fine-tuning hyper-parameter values.

Gradient
Accumulation Steps

Maximum Gradient
Norm

Learning Rate Weight Decay Warmup Ratio

1 0.3 2e-4 0.001 0.03

The training and validation sets were split in an 80–20 ratio and shuffled before
fine-tuning to ensure a randomized distribution of data, which is crucial for preventing
the model from learning the order of the data instead of the underlying patterns.

3.1 Evaluation Sentences

For a comprehensive model assessment, two distinct sets of 25 evaluation sentences
were used. The first set included complex Romanized Nepali sentences sourced from
legal documents, such as the Constitution of Nepal, to test the model’s ability to han-
dle intricate syntax and specialized vocabulary. The second set consisted of simple,
everyday Romanized Nepali sentences, aiming to evaluate the model’s performance in
more common, conversational contexts (Table 3).

Table 3. Samples of complex and simple sentences alongside their English translations.

SN Nepali Sentence English Translation Reference

1 Constitution le discrimination lai kasto
tackle garchha ra law ko agadi sabai lai
equal parne garchha, jasto ki, dalit haru ko
lagi quota system ra women ko lagi
reservation

How does the Constitution tackle
discrimination and ensure equality before
the law, such as through quota systems for
Dalits and reservations for women?

3 Ma sahar bhitra hidna khojchu I like to wander around the city
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3.2 Translations and Performance Metrics

The translation capabilities of both the base and fine-tuned models were tested using
these evaluation sets (Table 4).

Table 4. Results of translating simple and complex sentences in the evaluation set.

Sentence Reference Base Model
Translation

Fine-tuned Model
Translation

Ma guitar sikdai chu I am learning guitar My guitar is broken I’m learning to play
the guitar

Emergency situation
ko provisions ra
Constitution ko
amendment ko
process k ho?

What are the
provisions for
emergency situations
and the process for
amending the
Constitution?

Emergency situation,
Constitution provides
for amendment
process

What are the
provisions for an
emergency situation
and the process of
amending the
Constitution?

The performance was quantitatively assessed through BLEU, METEOR, and
ROUGE-L scores. The following presents the average scores across all 25 sentences
for each set (Tables 5 and 6):

Table 5. Mean BLEU and METEOR Scores Across Both Evaluation Sets.

Metrics BLEU METEOR

Eval Set Simple Complex Simple Complex

Base 0.0677 0.198 0.236 0.414

Fine-tuned 0.1163 0.528 0.374 0.743

Table 6. Mean ROUGE-L Precision (P), Recall (R), and F1-Score (F) for Both Sets of
Evaluations.

Metrics ROUGE-L P ROUGE-L R ROUGE-L F1

Eval Set Simple Complex Simple Complex Simple Complex

Base 0.2616 0.447 0.172 0.235 0.203 0.306

Fine-tuned 0.465 0.746 0.251 0.372 0.321 0.495

Our analysis showed that the fine-tuned model outperformed the base model across
BLEU, METEOR, and ROUGE-L metrics, confirming the effectiveness of fine-tuning
for improving translation. Interestingly, both models performed better on complex sen-
tences than simple ones, likely due to fewer tokens in simple sentences, making intent
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harder to capture. However, when simple sentences were more detailed, translation
accuracy improved, highlighting the importance of context and clarity for effective
translation, especially in simpler sentences.

4 Conclusions, Future Work and Ethical Issues

In this study, we leveraged GPT-4 for synthetic data generation to enhance the under-
standing and translation of Romanized Nepali. The process involved two key stages:
creating conversations in Romanized Nepali with precise prompts and translating them
into English. Iterative refinement of the prompts was crucial in generating high-quality
data. Fine-tuning involved careful optimization of hyperparameters and the selection of
an appropriate base model, resulting in improved performance across BLEU,METEOR,
andROUGE-Lmetrics, particularly for complex sentences. For futurework, adding tasks
like generating explanations and reverse translation could further improve the model’s
language comprehension. Exploring quantization techniques may also allow models to
run locally on lower-spec hardware, making NLP technology more accessible.

Throughout the study, we ensured data accuracy and ethical standards by verifying
the content with a native speaker and eliminating personal and biased information.
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Abstract. This research explores the development of a deep learning-
based audio-visual emotion recognition system, aiming to enhance the
accuracy and robustness of emotion classification by integrating multiple
modalities. Traditional speech emotion recognition (SER) systems often
rely on unimodal data, which limits their ability to fully capture human
emotional expressions. Our study leverages the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) to implement a
multimodal approach, combining audio and visual data. The proposed
model incorporates Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and attention mechanisms to improve
performance. Experimental results demonstrate that the attention-based
audio model achieves the highest accuracy of 62%, outperforming other
tested configurations. The study highlights the potential of integrating
attention mechanisms and multimodal data to enhance SER systems,
while also identifying areas for future research, such as utilizing addi-
tional datasets and transfer learning techniques to further improve model
performance and generalizability.

Keywords: Emotion · Audio · Video · Deep Learning · MFCC ·
Tensorflow

1 Introduction

In recent years the speech emotion recognition (SER) task of interpreting human
emotions in computer language has become an important research area with sev-
eral applications such as human-machine interaction (HCI), healthcare, customer
service, and others. Implementing effective speech-emotion recognition systems
allows machines and robots to understand and receive the full spectrum of emo-
tions reproduced by humans [12]. In recent years there has been increased atten-
tion to deep learning (DL) methods for emotion classification. Initially, SER was
utilized through unimodal datasets, which means using a single data source like
textual, speech, or visual data. However unimodal data cannot fully represent
human emotions, since emotion expression is a multimodal phenomenon [3]. In
other terms, it would be better to analyze and extract not only single-modality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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data, but other modalities as well, including facial movements, gestures, body
movements, and other possible contributing modalities. This research will focus
on experimental approach for multimodal SER using different DL architectures,
including 3D-Convolutional Neural Networks(3D-CNN), Long Short-Term Mem-
ory(LSTM) model, Attention mechanism to enhance the accuracy and efficiency
of emotion detection. Furthermore, this research will encompass a comparative
analysis of the proposed models leveraging different modalities such as audio,
video, and combined audio-visual inputs. Ensuring the robustness and repeata-
bility of the findings, the same training and testing datasets will be used across
all proposed models. The novelty of this study lies on the integration of diverse
deep learning architectures with multiple modalities for enhanced emotion recog-
nition, aiming to fill the existing research gap and contribute to the advancement
of SER systems in real-world applications. This study seeks to not only validate
the effectiveness of these approaches but also to provide insights into their poten-
tial for broader adoption and practical implementation across various domains.

2 Literature Review

The rapid advancements in DL have significantly transformed various comput-
ing domains, enabling more efficient and accurate processing of complex data.
Among these domains, SER has gained considerable attention due to its poten-
tial applications in areas such as human-computer interaction, mental health
monitoring, and customer service. This literature review explores the evolution
of DL techniques in SER, highlighting the key methods and models that have
been developed to improve the accuracy and efficiency of emotion detection
from both audio and visual data. Due to recent developments in the field of
DL and its ability to automatically extract high-level features from raw data,
DL has become an efficient tool in many computing domains, including natural
language processing, computer vision and audio recognition [3,4,7].

Data pre-processing is crucial, particularly in the SER scenarios, to extract
essential features that could help to identify certain emotions in the raw data.
Spectral features have the potential to effectively describe the emotional state
of the speakers. According to Lian et al. [5] spectral audio features represent the
power spectrum in speech, which is closely tied to how humans interpret their
emotions. Spectral features include spectrograms, Mel-frequency spectrograms,
Mel-frequency cepstral coefficients and others.

Models based on CNNs with attention mechanism with are getting extremely
popular, including using spectral features as their input, resulting in increasingly
more papers on the design of attention-based models. Research works such as
that of Chen et al. [2] and Singh et al. [11], integrated attention layers into the
model based on CNN and LSTM, and achieved an accuracy of 85.346% and 90%,
respectively. The former study used the EMO-DB dataset for training the model,
while the latter used a curated dataset created with a combination of audio SER
datasets RAVDESS, SAVEE, and TESS. Spectrograms, Mel spectrograms, and
Mel-frequency cepstral coefficients were utilized to train these deep models.
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DL-based methods can also be applied to visual SER. CNNs are also suitable
for the visual SER problem since they can differentiate the high-level features of
visual data. An example of such research from Breuer and Kimmel [1], utilized
2D CNNs for extracting the features and a Multi-layer Perceptron as a classifier.
Zhang et al. [13] indicate that it is important to consider the sequence of video
motion, so a 3D-CNN network is suggested. There is currently research work in
which the techniques described above were used in multimodal audio-visual fea-
ture extraction methods. CNN-based multimodal DL networks were introduced
by Middya et al. [9] in which the video and audio features were extracted with
the aid of CNNs. In this research, the number of layers, the fusion methods,
and the hyperparameter tuning were experimented with, achieving an accuracy
of 86% for RAVDESS and 99% for SAVEE datasets. A spatio-temporal hybrid
network was suggested by Sharafi et al. [10] for user emotion prediction using
LSTM and CNN. RAVDESS and SAVEE datasets were used in this research
and resulted in accuracy levels of 99% and 94% respectively.

3 Dataset

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
dataset [6], is an open-source dataset involving audio, visual and audio-visual
recordings of 24 actors (12 males, 12 females) performing emotional expressions.
This will be used as the main dataset in this study. The dataset includes 7356
files, equally distributed among eight emotions, ensuring a balanced representa-
tion of emotional states.

4 Methodology

4.1 Audio Feature Extraction

Feature extraction is performed to transform audio files into Mel-Frequency Cep-
stral Coefficients (MFCCs) to effectively capture essential frequency and tem-
poral dynamics, which are vital for detecting emotions in audio signals. These
MFCCs will be used as input for a subnetwork that includes CNN, LSTM, and
an attention mechanism, forming the deep neural network architecture. The
audio features are sized (40, 108), where ‘40’ represents the number of cepstral
coefficients and ‘108’ corresponds to the timeframes of the audio sample.

4.2 Video Feature Extraction

Video files are used to extract facial expressions and body movements. Each
frame will be resized to maintain uniformity of the features. These standardized
frames will then serve as input for a 3-dimensional CNN, specifically designed
to process video data. The output from this video processing will be 10 frames,
each with an image resolution of (32, 32) and includes RGB color channels.

After video and audio files are processed, extracted features are normalized.
The detailed architecture of the proposed audio-visual model can be seen in the
next subsection.
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4.3 Model Architecture

Audio Subsystem: Extracted MFCCs are used to train the deep learning network,
which consists of several convolutional blocks, 2 LSTM layers and an attention
mechanism. Each convolutional block involves a convolutional layer, batch nor-
malization, max pooling, dropout and dense layers. Video Subsystem: In parallel
with audio data, the video frames are passed through the next subnetwork for
video frames. As mentioned before all video files have a fixed size of 10 frames
with image size = (64, 64) in RGB color channel. After extracted features are
passed through 2 Convolutional blocks. Like in the audio subnetwork, each block
consists of convolutional layers, Batch normalization, and max pooling layers.
Then extracted high-level features are passed through 3 Dense layers with 512,
256 and 128 neurons, respectively. Each of the Dense layers will utilize the Relu
activation function.

Fusion Technique: After both audio and visual features were extracted they
are concatenated, thus perceptrons of the last layers of two subnetworks with 128
neurons are appended to each other. Hence, a layer consisting of 256 neurons is
processed further with the sequence of a couple of fully connected Dense layers.
Finally, the last layer was implemented for the classification of emotions. Since
this is a multiclass classification task, this layer uses Softmax activation.

5 Experiments

In this research, various unimodal and multimodal DL models were designed and
trained. Particularly, in addition to the proposed multimodal neural network,
separate subnetworks were trained. Furthermore, experiments with attention
layers were performed, to identify the impact of attention mechanisms on the
performance of the model. Initially four DL models were trained: the audio
model with attention, the audio model without attention, the video model, and
the audio-visual model. Then it was decided to experiment with the combination
of 3D-CNN, LSTM and self attention mechanisms, thus this network was tested
as visual subnetwork for audio-visual network and visual neural network for
emotion recognition. Therefore, in total 6 models were trained.

6 Results

Based on the previously described experiments with different architectures and
modalities, and testing outcomes are described in Table 1. During the testing of
several combinations of layers, it was evidenced that the attention-based speech
emotion recognition methods output the best accuracy compared to others. The
table also shows other metrics for comparison.

The Table 2 shows results of previous works that use RAVDESS dataset.
The table shows that the current research results are comparable to previous
research on this dataset.
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Table 1. Accuracy of trained models

Modality Architecture Accuracy Precision Recall F1 score

Audio CNN + LSTM + Attention 59% 58% 56% 56%

Audio CNN + LSTM 38% 42% 38% 38%

Video 3D-CNN 55% 59% 58% 55%

Audio-visual CNN + LSTM + Attention 62% 65% 62% 62%

3D-CNN

Video 3D-CNN + LSTM + Attention 63% 64% 63% 63%

Audio - Visual CNN + LSTM + Attention 69% 69% 69% 68%

3D-CNN + LSTM + Attention

Table 2. Results for previous works for RAVDESS dataset

Authors Modality Architecture Accuracy

Middya et al. (2022) Audio-Visual CNN2D + LSTM for video CNN1D for audio 77%

Singh et al. (2023) Audio CNN + LSTM + Attention 74%

Luna-Jimenez et al. (2021) Audio-visual Transfer Learning 80%

Overall, from the performance metrics and comparison with other authors
several important points can be made. The greater performance of multimodality
setup over unimodal ones proves the alignment of previous works’ conclusions.
Thus, it clearly shows that multimodal datasets can help to increase the per-
formance of the existing unimodal DL models. Secondly, RAVDESS dataset is
the standard dataset which is used by the most of the research papers. However,
there are also other source of data that can be used for the multimodal SER
task. In addition, combination of them and data augmentation technique could
help to increase the accuracies of the proposed models such in the research done
by Singh et al. [11].

7 Conclusion

In conclusion, it is observed that attention based model performs well than audio
model without attention, resulting as 21% difference in accuracies. Visual model
that relies on video data has achieved around 55% accuracy, which is the lowest
result among other models, but with combination of attention mechanism it
was increased by 8%. On the other hand, combined audio-visual model could
produce better results than using separate modalities. For instance, using only
video files performed 55% and 63%, and using audio with and without attention
produced 59% and 38%, respectively. Consequently, it clearly shows that for
emotion classification it is better to use multiple modalities rather than single
ones. It was proven by comparing both multimodal models with other ones. Also,
looking at confusion matrices audio-visual model has better predicting ability
than other developed ones.
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7.1 Future Work

Despite that current research study results are not impressive, studying multi-
modality in development of SER systems still continue to be one of the promis-
ing research area in this field. Hence, it is crucial to take into account other
SER datasets that were provided in literature review. Proposed method can
be extended by merging multiple datasets to increase sample size number and
increase generalizability of the overall system. Moreover, considering other spec-
tral features might be a key for effective emoton classification methods. Another
solution for increasing data size could be various data augmentation techniques
which can produce artificial data, thus can also increase robustness and avoid
the problem of overfitting of the SER model. Research can also be enhanced by
utilizing transfer learning techniques, consequently applying ready-to-use state-
of-the-art models that have already applied to other research areas.
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Abstract. Air quality is an important aspect of both human health
and climate change. In recent years, air quality forecasts have received a
lot of attention and multiple attempts with different methods have been
applied to achieve this task. Many pollutants have been utilised for air
quality research, the most common ones being PM2.5, PM10 and NO2.
Although various techniques have been used for air quality prediction,
the need for more granular and reliable pollutant concentration data has
been investigated on a smaller scale, especially in the case of interpola-
tion methods with Internet of Things (IoT) sensors for data collection.
In this study, the analysis of spatial patterns of multiple air pollutants
(PM2.5, PM10 and NO2) has been assessed by collecting data at multi-
ple locations in a case study area with Aeroqual devices and by utilising
three interpolation techniques (Inverse Distance Weighted (IDW), Ordi-
nary Kriging and Radial Basis Function). Each method achieved high
accuracy in predicting pollution concentrations in new test locations and
performance was evaluated using Root Mean Squared Error (RMSE) and
Mean Squared Error (MSE). IDW emerged as the best-performing inter-
polation technique for most of the pollutants with the lowest RMSE and
MSE scores.

Keywords: Spatiotemporal Modelling · Pollutants · Interpolation

1 Introduction

Air pollution is a major environmental challenge affecting public health world-
wide. The pollutants as carbon emissions are a major cause of climate change.
Traditionally the emissions are estimated from traffic patterns at very low reso-
lution. The move towards active monitoring of pollutants is one of the first steps
towards understanding and mitigating the effects of climate change and working
towards net zero targets. There have been efforts around using networks of Inter-
net of Things (IoT) sensors for micro-climate modeling and air quality prediction
[7,11]. However, the increasing demand for granular, accurate and reliable air
quality or emission data has led to the development of various spatial interpola-
tion techniques for predicting air pollutant concentrations at locations without
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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any monitoring stations. This research project aims to address the gap in the
literature concerning the evaluation of the effectiveness of different spatial inter-
polation techniques for air pollutant predictions by assessing the accuracy and
precision of three popular interpolation techniques, Inverse Distance Weighting,
Kriging, and Radial Basis functions, and the impact of Spatial variability on
prediction accuracy. By comparing and evaluating the performance of various
methods on real-world data, this study will contribute to improving the accu-
racy and reliability of air quality or carbon emission prediction, which is crucial
for making informed policy decisions and climate change mitigation strategies
along with reducing the impact of pollutants on public health.

2 Related Work

Air quality monitoring is a critical aspect of urban environmental management,
with several studies focusing on the prediction of different pollutants at specific
locations. The need for emission data across a wider geospatial area has led to
the use of estimation and interpolation techniques.

Kim et al. [6] aimed to create a spatial distribution map of chlorophyll-a
concentrations in a stream using data collected by an unmanned surface vehi-
cle (USV). The collected data was used to compare two interpolation meth-
ods, inverse distance weighting (IDW) and kriging, for spatial distribution. The
results showed that IDW was the optimal interpolation method. The study
demonstrated the potential for the commercialization of remote monitoring tech-
nology development using USVs in streams. Choi et al. [3] evaluated the per-
formance of indoor spatial interpolation methods for visualizing various indoor
environmental quality (IEQ) factors on an IEQ distribution map. The study
found that the accuracy of the IEQ distribution map was high regardless of
occupancy time, outdoor weather conditions, and HVAC operating period and
the entire IEQ condition can be identified using a small number of monitoring
instruments. The study proposed future research to develop a real-time IEQ
distribution map that receives environmental data from monitoring instruments
and analyzes IEQ distribution in the vertical direction within the indoor space.
Li et al. [9] combined IDW with the shortest wind-field path distances (SWPD)
to estimate PM concentration levels for both hourly and daily prediction in the
Beijing urban area for May 2013. The study demonstrated the higher accuracy
of the combined system for concentration prediction by enhancing IDW capa-
bilities, with SWPD showing potential in estimating spatial dependence and
correlation between monitoring points.

Spatial interpolation techniques are employed in GIS to estimate attribute
values at unsampled locations and generate continuous spatial data, which can
be classified into two categories: deterministic and geostatistical interpolation
methods. The choice of the optimal interpolation method depends on the study
objective and is determined through comparative analysis of different techniques
employed in previous research [4,10]. Li et al. [8] provided a review of spa-
tial interpolation methods (SIMs) for generating spatially continuous data of
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environmental variables. The paper compares the features of commonly applied
methods falling into three categories, non-geostatistical, geostatistical, and com-
bined interpolation methods. The review discusses the factors affecting the per-
formance of the methods, including sampling design, sample spatial distribution,
data quality, correlation between primary and secondary variables, and interac-
tion among factors.

3 Data and Methods

The data for this study was collected using two Aeroqual S500 devices [2] at
18 different geographical points within a locality: the site was located in Cam-
bridge City (UK). This location was chosen due to its high traffic density and
potential for air pollution. The monitoring devices were used to measure various
air quality parameters, including Particulate Matter (PM2.5 and PM10) and
Nitrogen Dioxide (NO2), at regular intervals during the study period, over mul-
tiple days. In order to establish the same parameters for each collection period
at different locations, an anemometer has been utilised to record and compare
weather conditions to ensure continuity between location points data. Pollutant
measurements for PM and NO2 were collected for 20min, for each location.
The data collection period spanned over multiple days, to capture variations in
air pollutant concentrations over different weather and traffic conditions. The
study area was carefully selected to ensure that it represented the broader area
air quality conditions and enabled meaningful comparisons between different
spatial interpolation techniques. Figure 1 shows the location of the 18 collection
points selected for this experiment.

Fig. 1. Monitoring Locations

Utilisation of IoT devices for air quality data collection does introduce some
challenges in calibration, failures and alignment. Comparison between collected
data and available datasets from other sources requires calibration of used IoT
devices with monitoring stations from these datasets: this is due to different
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sensitivity and measuring values between multiple devices. different devices of
the same models must also be aligned with each other, to avoid different read-
ings in the same settings: for the data recorded in this study, both the Aeroqual
sensors have been calibrated in the same way to avoid this failure. This work
represents the first set of multiple experiments on spatial interpolation for air
quality prediction in urban settings: many factors can affect pollutant concen-
tration levels from the distance between monitoring points to weather conditions
and urban geography. The study aims to represent a first attempt of using IoT
data with multiple interpolation techniques to study the related factors and to
create a baseline for other scenarios with different settings to provide a better
understanding of how an IoT sensor network could be deployed for air quality
control. Measurements for each pollutant at all locations were combined into a
single dataset and their values analysed: the concentration levels were recorded
in mg/m3. The three interpolation methods utilised in this study are IDW, Krig-
ing and RBF. For IDW, each observation point is weighted in such a way that
their influence on other locations is correlated to the distance between them,
while Kriging utilises mathematical functions to reflect the spatial correlations
between a number of points inside a particular radius. On the other hand, RBF
utilises a weighted sum of radial basis functions to interpolate data points, such
as the Gaussian function [1,5].

4 Results and Discussion

In order to compare each interpolation method, the data for each pollutant has
been divided: 70% has been used to perform interpolation and test the accuracy
against the remaining 30%. Table 1 shows the RMSE and MSE results for each
technique.

Table 1. Interpolation Results

Metric Pollutant IDW Kriging RBF

RMSEPM2.5 0.01487 0.01358 0.02352
PM10 0.03409 0.03801 0.05979
NO2 0.00467 0.00490 0.00505

MSE PM2.5 0.00022 0.000184 0.000541
PM10 0.00116 0.001445 0.003575
NO2 2.19E-05 2.41E-05 2.55E-05

All three interpolation techniques performed with great accuracy, as both
RMSE and MSE values for each pollutant are low. IDW provided the lowest
error rate for both PM10 and NO2, while Kriging performed slightly better with
PM2.5 data. Apart from selecting random points for interpolation, experiments
have been performed by selecting points for interpolation from the available



Spatial Interpolation of Air Quality: A UK Case Study 331

locations. The three techniques provided great accuracy and low error rates
when interpolating for the three locations as well, but RBF performed better
than IDW and Kriging for both PM2.5 and PM10, while NO2 values were better
interpolated by Kriging.

Table 2 shows the results of the three techniques when used to interpolate
data to three locations: locations 7, 11, and 18. Each point was selected at a
different position in the case study area: one at the top, one in the middle and
one at the bottom.

Table 2. Interpolation Results with 3 selected Points

Metric Pollutant IDW Kriging RBF

RMSEPM2.5 0.00544 0.00522 0.00358
PM10 0.02398 0.02106 0.01934
NO2 0.00290 0.00278 0.00363

MSE PM2.5 2.97E-05 2.72E-05 1.28E-05
PM10 0.00057 0.00044 0.00037
NO2 8.44E-067.74E-06 1.32E-05

5 Conclusion and Further Work

In this study, we compared three different interpolation techniques, namely
Inverse Distance Weighting (IDW), Kriging, and Radial Basis Function (RBF),
for estimating air pollutant concentrations. The three pollutants considered in
this study were PM2.5, PM10, and NO2. The performance of each interpolation
method was evaluated based on two metrics: RMSE and MSE. The results of
our study show that the IDW interpolation method performed best for two of
the three pollutants when random locations were interpolated, with the lowest
RMSE and MSE values. For PM2.5, the RMSE for Kriging was 0.0136, which
was lower than the RMSE values for IDW (0.0149) and RBF (0.0233). For PM10

and NO2, IDW had the lowest RMSE and MSE values, indicating that it was the
most accurate method of the three. More visualisations of the data and interpo-
lation outputs are presented in the appendix for reference. A potential direction
for future research could be the extension of the monitoring period to capture
seasonal variations and long-term changes in air quality and a selection of a
bigger use case area with measurement locations further away from each other.
A longer monitoring period could help identify temporal patterns and trends in
air pollution. A future study could compare the performance of different sensor
models under similar conditions to identify the most suitable sensor for the study
area. This could involve the evaluation of various sensors based on their accuracy,
precision, sensitivity, and response time. This study theorizes that a limitation of
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the proposed method is the dependence on the density and distribution of moni-
toring stations, as the accuracy of the interpolated values may decrease in areas
with sparse or uneven station coverage. Further work can be explored on increas-
ing the distance between points to simulate an IoT sensor network, to recreate
similar settings to a real-world scenario to research and analyse the effect of dis-
tance and urban features on pollution readings and interpolation effectiveness.
Moreover, the accuracy of the interpolation results can also be influenced by
the choice of interpolation method, as different methods have varying degrees
of sensitivity to outliers, noise, and underlying trends in the data, factors that
might vary depending on areas selected for different case studies. There are lim-
ited deep learning-based spatiotemporal models as the modeling would involve
very complicated architectures considering the complex interactions of the spa-
tial and temporal aspects of the pollutants and related features. But as a future
step, large amounts of data will be collected to compare deep learning models
to these simple interpretable models presented in this research. These modeling
systems will be further integrated into digital twin models for policy validation
and to work towards net zero.
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Abstract. This paper introduces a promising approach for evaluating the qual-
ity of translations between Modern Standard Arabic (MSA) and the Egyptian
(Cairo) dialect using Large Language Models, specifically Claude and AraT5.
We demonstrate how similarity scores provide a more meaningful and nuanced
measure of translation quality, capturing semantic preservation and model perfor-
mance improvements through fine-tuning on dialect-specific datasets. Our results
highlight the potential of semantic similarity scores as a valuable evaluation tool
for Arabic dialect translation using large language models. These findings sug-
gest that semantic similarity scores could become a standard evaluation tool for
Arabic dialect translations, enhancing the development and assessment of new
high-quality datasets and advancing the Arabic NLP domain.

Keywords: AraT5 · Claude ·Modern Standard Arabic (MSA) · Egyptian
Dialect Translation · Similarity Metrics

1 Introduction

Translating betweenModern StandardArabic (MSA) and regional dialects such as Egyp-
tian, Gulf, Levantine, andMaghrebi Arabic poses significant challenges due to linguistic
variations [1, 2]. Existing evaluation metrics for machine translation, such as BLEU
scores [3], often fail to capture the nuances and semantic proximity between the original
and translated text, particularly in the context of Arabic dialects [4–6]. As LLMs become
increasingly prevalent in addressing these translation challenges, there is a growing need
for more effective and meaningful evaluation approaches to assess their performance.

This study introduces an evaluation approach based on semantic similarity scores for
assessing the quality of translation between MSA and Egyptian dialect using large lan-
guagemodels, specificallyClaude [3] andAraT5 [4].Wepropose that semantic similarity
scores provide amore fine-grained and contextually relevantmeasure of translation qual-
ity compared to commonly used metrics. By capturing the semantic proximity between
the original and translated sentences, our approach offers a more accurate assessment
of meaning preservation and model performance improvements through fine-tuning on
dialect-specific datasets.
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We propose that semantic similarity scores provide a more fine-grained and con-
textually relevant measure of translation quality compared to commonly used metrics.
By capturing the semantic proximity between the original and translated sentences, our
methodology offers a more accurate assessment of meaning preservation and model
performance improvements through fine-tuning on dialect-specific datasets.

The main contributions of this paper are:

• Introducing an approach that utilizes semantic similarity scores for assessing the
quality of Arabic dialect translation using Claude and AraT5.

• Demonstrating the effectiveness offine-tuning theAraT5model on avalidateddialect-
specific dataset, leading to significant improvements in translation quality.

2 Methodology

We employ Claude [7] for initial translations from MSA to Egyptian (Cairo) dialect.
Then, the AraT5, a model specifically pre-trained on Arabic dialects [10], is used for
back-translation from Egyptian (Cairo) dialect to MSA. The AraT5 model is further
fine-tuned on a dialect-specific dataset, namely the MADAR Egyptian (Cairo) dataset,
to enhance performance.

2.1 Models

Our methodology employs two distinct language models: Claude for initial MSA to
Egyptian dialect translation, and AraT5 for back-translation to MSA. This approach
leverages the strengths of each model:

Claude: An advanced LLM developed by Anthropic [7], is designed to understand
and generate human-like text. The model is pre-trained on a vast corpus of text data
from diverse sources, including substantial representations of various Arabic dialects
[9], allowing it to learn a wide range of language patterns, facts, and nuances. This
extensive training, in addition to its optimized architecture, helps it generate coherent
and contextually relevant text across various topics [7, 8]. We conducted experiments
comparing Claude and ChatGPT 3.5, with results reviewed by a native Egyptian speaker.
Claude consistently outperformed ChatGPT in dialect translation tasks.

AraT5: building upon the work of Nagoudi et al. [10], was chosen as the base model
for the back-translation task. It employs a sequence-to-sequence (seq2seq) framework
with an encoder-decoder structure. Themodel utilizesmulti-head attention layers, which
allow it to focus on different parts of the input sequence simultaneously, enhancing its
ability to capture contextual information. This model was selected due to its demon-
strated effectiveness in handling both Modern Standard Arabic (MSA) and various
Arabic dialects [10].

By using Claude for initial translation, we benefit from its extensive knowledge and
ability to handle nuanced, context-dependent translations. The subsequent use of AraT5
for back-translation allows us to leverage its Arabic-specific capabilities, potentially
correcting any dialect-specific errors introduced by Claude.

This two-model approach aims to create high-quality, diverse training data that cap-
tures the complexities of Arabic dialect translation more effectively than using a single
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model. The resulting dataset can be used to fine-tune specialized models or evaluate the
performance of various translation systems, contributing to the advancement of Arabic
NLP research.

2.2 Datasets

We utilized two primary datasets:

• Arabic Children’s Corpus: this corpus contains 2,950 documents and nearly 2 mil-
lion words, featuring a variety of children’s literature genres, including classic tales
and popular fictional characters [11].

• MADAR Corpus: this corpus includes parallel sentences covering the dialects of
25 Arab cities, along with English, French, and MSA. It was created by translating
selected sentences from the Basic Traveling Expression Corpus (BTEC) into different
dialects [1].

2.3 Translation Quality Metric

Cosine Similarity: We use cosine similarity to measure the semantic proximity between
the original MSA sentences and the translated sentences generated by the AraT5 model,
quantifying meaning preservation. A pre-trained embedding model is used to encode
the sentences into high-dimensional vectors. The resulting similarity scores range from
-1 to 1, with 1 indicating perfect semantic similarity. For generating embeddings used
in cosine similarity calculations, we employed AraBERT v2 [12] a BERT-based model
pre-trained on a large Arabic corpus. It had the following key features: 77GB of text from
Arabic Wikipedia, Arabic news websites, and Arabic literature. Architecture: 12-layer,
768-hidden, 12-heads, 136M parameters.

We chose AraBERT due to its robust performance on various Arabic NLP tasks and
its ability to handle both MSA and dialectal Arabic. This model provides contextualized
word embeddings that capture nuanced meanings in both the original MSA text and
the translated Egyptian dialect, enabling accurate semantic similarity comparisons. The
similarity score is then multiplied by a 100 to convert it to a percentage.

BLEU Score: This metric is used to compare the candidate Egyptian translations
to reference translations, measuring the precision of n-grams [3]. We used the sen-
tence_bleu function from the NLTK library to calculate BLEU scores for each translated
sentence. The scores were computed using a smoothing function to handle cases where
there were no matching n-grams. BLEU scores range from 0 to 1, with higher scores
indicating greater similarity between the candidate and reference translations [3].

3 Results and Discussion

Fine-tuning the AraT5 model on a validated dialect-specific dataset led to substantial
improvements in the translation quality, as evidenced by the similarity scores and BLEU
scores. Before Fine-Tuning, the basic AraT5 model achieved an average similarity score
of 94.9% across the translated sentences. After Fine-Tuning, the AraT5 model showed a
significant increase in the average similarity score, reaching 97.1%. This indicates that
the fine-tuned model produced translations that were semantically closer to the original
MSA sentences.
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Furthermore, the fine-tuning process led to an improvement in the BLEU score.
Before Fine-Tuning, the basic AraT5model achieved an average BLEU score of 0.0827.
After Fine-Tuning, it showed an increase in the average BLEU score, reaching 0.0867.
This suggests that the fine-tuned model generated translations that were closer to the
reference translations in terms of n-gram overlap.

3.1 Examples of Translation Improvements

MSA Original:
Translation: The eraser replied kindly: “Because I love you… I erase your mistakes

so that no one will see them and mock you!!!”.

Claude Output:
.

ARAT5 Output: .

Translation: The coat replied kindly, “Because I love you. I write your mistakes so that
no one will see them.“

• Accuracy: This translation has significant errors. It incorrectly changes “ ” (the
eraser) to ‘ (the coat), altering the meaning entirely.

• Similarity Score: 90%–Despite these errors, the similarity score indicates a relatively
high degree of semantic overlap, though the key semantic errors significantly affect
the overall quality.

• BLEUScore: 0.02–This lowscore reflects the significant divergence from theoriginal
text in terms of word choice and meaning.

Fine-Tuned AraT5:

Translation: The eraser replied: “Because I love you… I erase your mistakes so that no
one will see them and mock you!!!”.

• Accuracy: This translation is very accurate and closely matches the original MSA
text.

• Similarity Score: 98% – This high score reflects the model’s enhanced ability to
preserve semantic content and produce a translation that is very close to the original
text.

• BLEU Score: 0.09 – The significant increase in BLEU score indicates a much closer
alignment with the original text in terms of word choice and sentence structure.

The combination of similarity scores and BLEU scores provides a comprehensive
evaluation of translation quality. Similarity scores assess semantic preservation, while
BLEU scores measure lexical and structural accuracy. The improvement in these metrics
(similarity score from 90% to 98%, BLEU score from 0.02 to 0.09) demonstrates the
effectiveness of fine-tuning on dialect-specific datasets. This approach ensures accurate
translation between Arabic dialects and MSA, preserving both meaning and structure.
These metrics are crucial for validating LLMs’ performance in handling the nuances of
Arabic dialect translation, enhancing the accuracy of machine translation models.
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4 Conclusion and Future Work

This study demonstrates the value of utilizing semantic similarity scores as an effective
evaluation approach for assessing the quality of the translation of LLMs, specifically
Claude and AraT5, in translating between MSA and the Egyptian (Cairo) dialect. The
higher average similarity scores and increased frequency of high-scoring translations
achieved by the fine-tuned AraT5 model underscore the importance of fine-tuning on
dialect-specific datasets.

Furthermore, the semantic similarity score approach adopted in this study has the
potential to be generalized to other language pairs and translation tasks beyond Ara-
bic dialects. For instance, this approach could be explored for evaluating translations
between other closely related languages or dialects, such as Spanish and Portuguese or
different varieties of Chinese. Additionally, semantic similarity scores could be inves-
tigated as an evaluation methodology for tasks like machine translation post-editing,
where capturing the semantic equivalence between the original and edited translations
is crucial.
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Abstract. The idea of a monadic value is introduced, which has a binary form: it
either has a value or is undefined. This resolves the apparent dissonance between
the internal binary representation of data and the need for all external values to have
an unobserved state. For example, a typically binary type, Boolean, if external,
must be trinary. This exotic monadic type finds use in speech understanding as a
premise in verbal reasoning. A premise is a terminator in a chain of reasoning,
while it can be observed, it has no dependent reason; it is self-evident. An example
is presented in the machine understanding tool, Enguage, which is a processes of
monadic speech values.

Keywords: Machine Understanding · Verbal Reasoning · Rhetoric

1 Introduction

One problemwith values from aworld in continual flux [1] is that theymust be observed.
In contrast to variables within an algorithm, which can be initialized to a typically zero-
based value, external values need an extra value, unknown, for their unobserved state.
This is the rationale behind relational databases [2] where any data item may be set to
‘null’, unless they are defined with the keywords, ‘NOT NULL’.

This simple anomaly between an external Boolean and its internal trinary represen-
tation reveals a wider limitation of context-free languages and their dualist heritage [3,
6]. Not only may an external value be unobserved, but its written internal ontology is
fixed by compile-time. This is particularly acute for natural language processing [10–
13], which must ‘conceal its lack of understanding’ [12:pp44], its inability to construct
ideas. Any faith, even hubris, in fixed software denies the possibility of the next Black
Swan moment [22].

Monads closes this ontological gap by showing how true external binary values
can exist, and are useful, in verbal reasoning. This idea stems from Gödel Numbering
[20], where mathematical equations are encoded, and reasoned with, as numeric val-
ues. Enguage [7] uses monads to construct reasoning, using speech as a computational
medium [15]; specifically, it creates a monadic binary to complete a deterministic chain
of reasoning. Such a demonstration of speech, using speech, won Enguage the SGAI
Machine Intelligence Competition in 2016 [16].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
M. Bramer and F. Stahl (Eds.): SGAI 2024, LNAI 15446, pp. 339–345, 2025.
https://doi.org/10.1007/978-3-031-77915-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-77915-2_27&domain=pdf
http://orcid.org/0000-0002-8519-8284
https://doi.org/10.1007/978-3-031-77915-2_27


340 M. J. Wheatman

2 The Monadic Premise

All classes of real world objects need an unobserved value: unknown [2]. Thus, the four
point cardinal direction type has the values [unknown, North, South, East, West]; a three
point temporal system has the values [unknown, Present, Past, Future]; and, a Boolean
has [unknown, False, True]. This pattern breaks down when descending to a singular
value plus unknown, as singular values within an algorithm are typically regarded as a
constant, such as π, pi, the ratio between the circumference and diameter of a circle.
This is because π, 3.1415926…, is a fact—a value of definition—rather than a variable;
and, because of its transcendental nature, πmay only ever be an approximation, but it is
never unknown.

One example of a singular value which needs to be (un-)observed, however, is the
premise, a component of verbal reasoning. This rhetorical utterance, in its widest sense,
needs no reasoning in itself and, thus, can act as a terminator for a chain of reasoning.
There is no need to explain that ‘a mask soaks moisture from your breath’ because
anyone who has worn a mask will have experienced this. The observation of a premise
is achieved by its annunciation.

This premise-as-monad can be demonstrated by using verbal reasoning in the form
of ‘effect because cause’, to create a chain of reasons. This is initiated by the expression
of an observation, which can be followed by, ‘a mask prevents the spread of COVID
because a mask soaks moisture from your breath’. This causal link may, in turn, be used
as the reason for a moral obligation, ‘we should wear a mask because a mask prevents
the spread of COVID’.

3 Functional Speech Using Enguage

Gödel Numbering shows how amathematical equation can be reasoned with as a numer-
ical value [20]. Enguage [7], extends thismonad to the representation of speech, whereby
an utterance is an immutable value. Emanating from an external world, it forms a binary
opposition to the ubiquitous unknown: something is either expressed or it is not.

Enguage determines the most appropriate interpretation from the various interpre-
tations of an utterance [24], which determines the values (if any) it contains, and what
it means in terms of implied utterances [4]. Each interpretation results in one of several
arbitrary replies encoded with a success value [18], which may direct the flow of further
interpretation. This model of computation appears as an arbitrary swapping of values,
for example, “I need a coffee”, returns either, “okay, you need a coffee” or “yes, I know”,
depending on whether, “I need a coffee”, has already been expressed.

This functional approach to language was originally illustrated as a triadic model
of interpretation, see Fig. 1. The implied link, dotted baseline, between the spoken
utterance, SYMBOL, and its REFERENT reply, is always determined through a list of
utterances, THOUGHT or REFERENCE. This prototypical function was published a
decade before the Lambda Calculus [17].

Enguage uses two written forms of instruction to record functions: comma or
semicolon separated, depending on the number of implications [5]:
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Fig. 1. The Semiotic Triangle of Reference [8, pp11]

On “thank you”, reply “you’re welcome”.
On “i need a coffee”:

does a coffee exist in my needs list;
if so, reply yes I know;
add a coffee to my needs list;
reply “okay, you need a coffee”.

Both of these represent Fig. 1, which may be better illustrated, if arranged thus:

Does a coffee exist in my needs list;
if so, reply yes I know;
if not, add a coffee to my needs list;
reply okay you need a coffee.

/                                  \
“I need a coffee”   [“okay, you need a coffee” | “yes, I know” ]

Using such instructions, Enguage demonstrates verbal reasoning by using the symbol
pattern ‘effect because cause’ [9, 7:etc./dict/w/why+ because.entry].When an utterance
matches the symbol, the cause is ‘thought’ first—uttered internally—to see if it is valid,
and if so, the effect is similarly thought. Thus, causes and effects are enacted during the
process of reasoning. Failure of either will return their respective failure, and rollback
of an utterance transaction [19]. If the cause and effect are both felicitous, then the
cause-effect link is recorded.

4 Machine Understanding

More recently, various spoken function description repertoires have been developed
which can also be written in lieu of these written descriptions. The latest form, in brief,
is:

‘I can say …’
‘This implies …’
‘Then …’
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which can construct the above instruction at runtime. This introduces the idea of
machine understanding, by which ideas can be conveyed to, and subsequently used to
interact with, a machine. The onus is then on the machine to use our ideas [14], rather
than a mechanical imposition of some artificial logical structure [6].

The first of these spoken instructions, ‘I can say…’, populates an empty interpreta-
tion, a symbol but without any implications or reply. This might suggest an incomplete
function: a definition without a body or return value; however, this has found use in
the representation of a premise. Therefore, Enguage returns a felicitous reply for these
symbol-only functions: it is understood simply because it can be said. Saying you can
say something in this way is declaring an observation.

Therefore, spoken instruction allows the premise, to be used in reasoning.

5 An Example

The example in Sect. 2 is illustrated here using the unit test in [7:etc./dict/s/should.entry],
which is presented below. The should repertoire contains three written interpretations:

On "you should PHRASE-ACTION":
add ACTION to our should list;
reply "ok, ACTION".

On "should we PHRASE-ACTION":
ACTION exists in our should list;
if so, reply "yes, we should ACTION";
reply "no, we do not need to ACTION".

On "what should we do":
get our should list;
if not, reply "i don't know what we should do";
reply we should ... .

There is also an interpretation added to the because/why repertoire:

On "why should we PHRASE-ACTION":
should we ACTION;
if not, say so;
get the cause of you should ACTION from _user causal
list;
if not, reply "i don't know";
set cause to ...;
reply "because EXT-CAUSE".

The premise is ‘a mask soaks upmoisture’ which is taken as a commonly understood
observation. Since the COVID-19 pandemic and the obligatory wearing of masks in
public spaces, it is common knowledge that a mask will be damp after being worn for
some time. The human breathes out ½ to 1 L of fluid a day, depending on exertion;
however, the exact amount is not important, it is simply observed that some of this ends
up in the mask.
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To obtain and run the example below, git and a Java SDK must be installed. Then,
from the command-line:

$ git clone https://bitbucket.org/martinwheatman/enguage.git
$ cd enguage
$ javac opt/test/UnitTest.java
$ java opt.test.UnitTest -T should

TEST: should
============

user> what should we do.
enguage> i don't know what we should do.

user> i can say a mask soaks up moisture from your breath.
enguage> ok , you can say a mask soaks up moisture from my 
breath.

user> i can say wearing a mask prevents the spread of covid 
because a mask soaks up moisture from your breath.
enguage> ok , you can say wearing a mask prevents the spread 
of covid because a mask soaks up moisture from my breath.

user> you should wear a mask because wearing a mask prevents 
the spread of covid.
enguage> ok , i should wear a mask because wearing a mask 
prevents the spread of covid.

user> what should we do.
enguage> we should wear a mask.

user> why should we wear a mask.
enguage> because wearing a mask prevents the spread of covid.

1 test group(s) found
+++ PASSED 6 tests in 198ms +++

Firstly, this test starts by showing that there is nothing that we should do. Secondly,
in creating a premise bymaking an observation, we can start to construct an argument for
wearing a mask. Next, the test creates a second rhetorical device from the first premise,
by saying that we can say, “wearing a mask prevents the spread of COVID”. This is
perhaps not as obvious, not such a common observation, so it is the first link in a chain
of reasoning, dependent on the first premise. Perhaps it could be observed by analyzing
the data to show the spread of COVID against the incidence of wearing masks? A second
link is created by saying that I can say what you should do: we should wear a mask.
This is confirmed by repeating what we should do and why. If the monadic value, the
premise, “a mask soaks up moisture”, were not observed, and therefore not something
we can say, this test would not be possible.

Finally, this is all dependent upon being under pandemic conditions, and Enguage
already supports this conditional processing [19]; however, to include this might overly
burden this paper? Certainly, there are more examples in the full unit test (using the -t
option) which demonstrates over 500 examples.
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6 Conclusion

This paper explores Codd’s idea that external values need a value to represent the unob-
served state. This prevents the neat binary representation of an external Boolean; how-
ever, external binaries do exist, the premise is an idea which has sense but no implica-
tions, and is useful as a terminator in a chain of reasoning. These monadic values are
declared by saying, “I can say value”, after which it is observed. This principle has been
demonstrated in software by Enguage using a simple chain of reasoning.

This also shows that while speech is computational [15], it cannot be represented
by programming languages, the category mistake [14] is between their dyadic attributes
and the monadic spoken domain. Context-free languages are well-formed and can be
parsed to extract meaning; however, much of what we say is unstructured grunts and
expletives [21]: ‘yes’ has many possible implications, but not a meaning. The resultant
failure to produce a deterministic speech understanding system is evidenced by over
70 years’ effort merely supporting simple imperatives [11].

Nevertheless, this representation dissonance leaves a vacuum which is easily filled
by charlatan programs exploiting the human ability to making sense of things. Such
techniques include: keyword search [12]; limiting the world and the actions that can
be performed within it [11, 13]; and more latterly, generating non-deterministic content
based on probability [10]. Without a monad-to-dyad mapping, without the ability to say,
“I can say …”, such programs cannot create speech—ideas—at runtime.

This paper does not claim that this verbal reasoning example given does not have
flaws. The astute reader may claim that it may be possible to say, “I can shoot people
because I like guns”. While Enguage supports the concepts of like and can, “I can
shoot people”, should fail because, “I must not shoot people”, should already have been
observed. The efficacy of moral reasoning, and the details of innate ideas, in Enguage
and its dictionary is hugely important but beyond the scope of this paper.

This paper could also show that monadic binaries can be combined—because all
unknown values coincide—to create binary values and so on. So [unknown, False] and
[unknown, True] can be combined to create Boolean [unknown, False, True]. An obser-
vation, in using such values, is that they should typically progress through unknown to
pass onto another value; however, this idea is outside scope.
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Abstract. This paper presents an Ensemble Extreme Learning Machine (ELM)
approach for predicting railway delays, part of an ongoing PhD project with Net-
work Rail and Loughborough University. With only 68.3% of station stops on
time in early 2024, improving prediction accuracy is vital. The Ensemble ELM
model, combining multiple ELMs, addresses key challenges in Train Delay Pre-
diction (TDP) such as data quality and model generalization. Initial results show
significant improvements in accuracy and efficiency over traditional methods. The
model will be validated using UK railway data, contributing to more reliable and
scalable delay prediction systems.

Keywords: Extreme Learning Machine · Ensemble Learning · Train Delay
Prediction · Railway Systems

1 Introduction

1.1 Context

The increasing complexity of railway systems, combined with growing demands for
punctuality, has made managing delays a critical challenge. In early 2024, only 68.3%
of station stops in Great Britain were recorded as on time, with 86.8% of trains arriving
within 5–10 min of their scheduled time [1], underscoring the need for more sophisti-
cated predictive models to enhance reliability. This research, part of an ongoing PhD
project in collaboration with Network Rail and Loughborough University, aligns with
the Seasonally-Agnostic-Railway-Model (SARM) initiative [2] which aims to improve
railway resilience using Train Delay Prediction (TDP) systems.

The urgency for such a shift from reactive to proactive strategies is highlighted by
incidents like the Stonehaven derailment [3], demonstrating the vulnerability of railway
systems to external effects. In this context, Machine Learning (ML) has emerged as a
transformative tool, offering the ability to leverage the large quantities of data within the
industry [4]. However, the application of ML is hindered by multiple factors and is still
in its early stages. This research aims to identify key barriers to ML implementation for
TDP and propose a solution utilizing Extreme Learning Machine (ELM) and Ensemble
approaches.
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1.2 Considerations

As ML is a broad, multidisciplinary field with rapidly evolving techniques and applica-
tions, this study narrows its focus to the specific application of ML for TDP. A special-
ized but impactful area within transportation, allowing for a comprehensive exploration
of the approaches used with a clear emphasis on practical application. This research
operates under several key assumptions, including access to high-quality historical data
(such as train schedules, delays, weather, and infrastructure status) and sufficient com-
putational resources for developing and testing complex models. Ethical standards are
upheld through data anonymization, compliance with data protection regulations, and a
commitment to scientific integrity with transparent reporting of limitations and potential
biases.

2 Literature Review

2.1 Systematic Approach

To ensure that the methodology in this research is built on a solid foundation, a com-
prehensive systematic review of the literature was conducted to identify common prac-
tices, highlight the most effective algorithms and data handling techniques, and uncover
research gaps that need to be addressed to advance the field ofML for TDP. The Preferred
Reporting Items for Systematic Reviews andMeta-Analyses (PRISMA) 2020 guidelines
were followed [5], which ensure rigor, transparency, and reproducibility in systematic
reviews. The study selection process is also guided by strict inclusion criteria and the
Critical Appraisal Skills Programme (CASP) checklist [6], which ensure high-quality
and methodologically sound studies are included, while minimizing the risk of bias and
providing a balanced synthesis of the evidence.

2.2 Current Challenges in TDP

A series of key literature reviews were included within the search [4, 7–9], which were
examined to provide a comprehensive overview of the current state ofML approaches for
TDP. The findings from these reviews have been compiled and synthesised into several
key challenges which highlight the critical areas for improvement in both data handling
andmodel development. Tackling these challenges will not only advance future research
in TDP but also enhance its practical applications within the industry. The primary
challenges are outlined below:

• Data Quality and Integration: Inconsistencies, missing data, and difficulties in
merging static and dynamic sources reduce predictive model accuracy. Solutions
include gathering diverse, high-quality datasets, improving integration techniques,
and standardising formats.

• Model Interpretability: Deep learningmodels can lack transparency. Hybridmodels
and targeted feature selection can balance complexity with interpretability, ensuring
predictions are actionable without losing accuracy.
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• Computational Complexity: Advanced models are resource-intensive, affecting
real-time or large-scale predictions. Using model compression, parallel processing,
and hardware like GPUs/TPUs can reduce computational costs while maintaining
performance.

• Generalisation Across Networks: Models trained in specific environments may
struggle in different settings. Techniques like transfer learning and ensemble/hybrid
models can improve adaptability and generalisation.

• Real-Time Model Updates: Climate change and evolving infrastructure/operations
demand real-time updates for predictive models to maintain relevance in a rapidly
changing environment.

These challenges underscore the need for continuous advancements in data man-
agement and model methodologies, guiding both future research and the methodology
adopted in this research project to develop more robust and reliable TDP systems.

3 Methodology

3.1 Theoretical Background

ELM is a ML algorithm designed for single-hidden layer feedforward neural networks,
introduced by Huang et al. [10] ds by randomly assigning input weights and biases in
the hidden layer and analytically determining the output weights. As found in recent
reviews [11–13] this approach benefits from Extremely Fast Learning Speed, Good
GeneralizationPerformance andVersatility andScalability,making it an attractive choice
for addressing the challenges present in TDP. However, they also highlight potential
limitations on real-world applications of ELM due to its Random Dependency, Low
Level of Abstraction and Sensitivity to Outliers.

Only a small number of studies have aimed to overcome ELM’s limitations in TDP,
with a clear focus on hyperparameter optimization. The main parameters in an ELM
approach consist of the Number of Nodes, Activation Functions, and the Input Weights
and Biases, all of which can drastically vary the model’s performance. These hyper-
parameter methods include Particle Swarm Optimization [14] and a novel ‘threshold’
approach [15]. Despite these efforts, they collectively encountered significant perfor-
mance variability due to random initialization and increased computational complexity,
suggesting further research into ensemble and hybrid methods.

In light of these findings from the literature, this study proposes the use of the ensem-
ble learning paradigm to alleviate the limitations present within ELM’s application for
TDP. As found by Nan Liu and Han Wang [16], leveraging an ensemble architecture
for ELM drastically reduces the dependency on random initialization and the need for
extensive hyperparameter tuning. Initial validation tests conducted using the M4 com-
petition dataset [17] indicate that an Ensemble ELM demonstrates superior performance
across several key metrics when compared to traditional baseline models.

The Ensemble ELM utilized a bagging approach [18] to randomly sample 25 subsets
with replacement at a 20% sampling size, followed by building a randomly initialized
ELM on each subset. The outputs of the base ELMs are then aggregated using a meta-
learner in a stacking approach [19] in this case a linear regression model was used
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to maintain simplicity and efficiency. This architecture achieved the lowest MSE and
MAE reflecting a 11.3% improvement over Random Forests, and the highest R2 score
(0.8625), indicating 8.4% better generalizability thanNeural Networks.When compared
to a traditional optimized ELM, the Ensemble ELM reduced MSE by 16.5% and R2
improved by 4.1%,while training 25.0% faster. These results highlight that the Ensemble
ELM not only delivers enhanced accuracy and generalizability but also achieves greater
efficiency without the need for extensive hyperparameter tuning, validating it as an ideal
choice for large-scale time-dependent prediction tasks such as TDP.

3.2 Case Study

To rigorously assess the viability of the proposed Ensemble ELM approach in a real-
world setting for TDP, the next phase of this research will involve an in-depth case study
focused on the UK railway network. This is motivated by the collaboration with the
SARM project and its aim to develop predictive tools for UK railway operators and
infrastructure managers.

To maintain a manageable scope while ensuring relevance to high-traffic areas of the
network, a subsection of the UK railway has been selected based on the available data
and current progress within SARM. Focusing on the London Paddington to Penzance
line, spanning from 2010 to 2023, data will be captured from various sources guided by
current literature of TDP on the UK Railway [20–22] These include:

• Historical Service Performance (HSP) Platform: Provides data on the UK railway
operations, including train schedules, actual arrival/departure times, delays, cancel-
lations, and operator performance metrics. Accessible via the National Rail Darwin
Data Feed with secure API access.

• Met Office MIDAS - UK Land Surface Stations Data: Covers weather stations across
the UK near railway tracks, offering variables such as temperature, precipitation,
wind speed, humidity, solar radiation, and snow depth. Freely accessible under an
Open Government License from the CEDA archive.

• Track and Infrastructure Data: Contains information on the UK’s railway infras-
tructure, including track conditions, signal failures, maintenance schedules, and
infrastructure-related incidents. Access is facilitated through Network Rail’s infras-
tructure network models and railway industry partnerships.

The proposed Ensemble ELM approach will then be implemented and evaluated
against existing models and TDP systems, focusing on key performance metrics which
reflect the ability to predict delay times and provide actionable results.

4 Conclusion

4.1 Future Directions

The next steps in this research mainly focus on the further development of the case
study, finalizing the data integration and modelling stages. Beyond this, the potential
to leverage extra external data sources to improve modelling accuracy is a promising
direction, along with the extension onto larger sub-sections of the UK railway network
and continued integration within the SARM project.
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To push the boundaries of the ELMensemble’s capabilities and ensure that it remains
a competitive approach for TDP, additional refinements and enhancements may be
explored within the proposed ML methodology. These include meta-parameter modifi-
cations, alternate meta-learners and more advanced architectures, enabling key benefits
such as Real TimeUpdates utilizing ELM’s fast training time to stay relevant in changing
climates, Specialized Base-Learners to generalize over specific and rare scenarios, and
extra Interpretability to ensure bias-free and trustworthy outputs for operational use.
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Abstract. Computer assisted navigation is important in surgeries. In
this paper, we focus on the field of total knee arthroplasty, where com-
puter aided navigation is already widely used to increase surgical pre-
cision. For the purpose, marker-based optical measurement systems are
used, which are able to determine the position and orientation of sur-
gical tools as well as femur and tibia. For the purpose of tracking the
bones, optical locators must be drilled into the patient’s femur and tibia
to determine the position and orientation precisely. However, the tem-
porarily inserted locators slow down the patient’s healing process, due
to the additional drilling.

This article presents a solution that aims to replace the marker-based
measurement system used in total joint arthroplasty with an image-based
measurement system. The 3D model of the knee required for computer-
aided navigation is to be reconstructed in real time from 2D images using
photogrammetric methods. This requires the relevant image data (femur
and tibia) to be reliably identified and separated from the image back-
ground. For this purpose, an AI-based segmentation was implemented
to pre-process the 2D image data. The difficulties and requirements are
shown and a first proof-of-concept solution with initial results is pre-
sented.

Keywords: total knee arthroplasty · artificial intelligence ·
segmentation · annotation · synthetic data · optical measurement
photogrammetry

1 Introduction

The implantation of artificial total knee joints is a standard surgical procedure
and one of the most frequently performed operations in Germany. Approximately
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36% of total knee arthroplasty operations are already supported by navigated
computer-assisted systems [5]. Computer-assisted interventions enable greater
precision in the alignment and positioning of prostheses, but this requires addi-
tional surgical interventions [4], which on the other hand can have a negative
impact on the patient’s healing process.

For the computer-based, intraoperative navigation support of the surgeon,
the position of the knee joint in relation to the patient’s leg axis has to be
determined. For this purpose, locators with 4–5 fixed optical markers must be
surgically installed in femur and tibia. A stereoscopic 3D measuring system con-
tinuously tracks the locators during the operation in order to dynamically deter-
mine the position of the knee joint. The hip and ankle joint center is calculated
in advance to determine the position of the knee in relation to the mechanical
leg axis. The installation of the locators requires drilling into the bones, which
is associated with further risks for the patient including risk of infection and
misplacement. In addition, the healing process is prolonged [4,8].

The overall aim of this work is to develop a method with increased precision,
improved patient well-being and faster, less error prone surgery using total knee
arthroplasty as an example. This is to be achieved through the development of
an assistive multi-sensor system incorporating the latest algorithms of artificial
intelligence (AI) and augmented reality (AR). The overall technical goal, the
fusion of 3D measurement technology and AR, is divided into three sub-goals:

1. Markerless 3D reconstruction of femur and tibia from 2D image data
2. High-precision real-time tracking and navigation during surgery
3. Convenient visualization of planning in augmented reality

In this paper we concentrate on the challenge to generate a highly accurate 3D
reconstruction of the knee surface from 2D images in real time despite prob-
lematic imaging conditions, such as superimposition of the bone structure by
fluids and tissue, reflections, occlusion, etc. A feasibility study by [2] shows that
marker-free total knee surgeries with the support of photogrammetry is promis-
ing. But it has not yet been possible to achieve sufficient accuracy. As part of
a proof-of-concept study, an AI-based pre-processing of 2D image data will be
presented, which can be used to generate a highly accurate 3D reconstruction of
the femur and tibia using marker-less tracking with a multi camera device and
SLAM.

While the current state of the art and necessity of this research was discussed
in the introduction, the underlying methodology and approach are presented
in Sect. 2. The implementation is presented in Sects. 3 and 4. Initial proof-of-
concept results and further steps are described in Sect. 5.

2 Concept and Methodology

By replacing the marker-based measurement method with a marker-less optical
method, the surgical installation of additional locators can be omitted. This can
shorten the rehabilitation time after the procedure as well as the duration of
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the operation and also reduce the risk of infection and misplacement. Replacing
physical locators with a purely image-based method requires reliable recognition,
evaluation and assignment of pixel-based image information. A high accuracy
must be achieved for the 3D reconstruction of the knee. In order to successfully
achieve these goals, it is essential to first document a high-precision 3D model of
the bones (femur and tibia). This must be done during the first surgery phase.
A trinocular SLAM method is used in this study to digitize the knee.

A trinocular system offers significant advantages in terms of robustness as the
additional view creates redundancy in the computation [1,3]. As explained in [7],
the reconstruction of the knee surface takes several steps. In the pre-processing
phase, we introduce an AI-based method to perform semantic segmentation in
2D image data to only proceed with the relevant bone structures. This step
involves creating a training data set comprised of pre-segmented and annotated
image data of femur and tibia to train an AI-model for this specific use case. As
part of a proof-of-concept study, various AI-models were trained and evaluated.
In order to be able to test the trained models optimal, independent data sets
were used for training and testing.

The deep learning (DL) framework Detectron2 1 from Facebook AI Research
was used.

3 Segmentation and Masking Procedure

To train the AI model, a training data set consisting of 2D image with tibia and
femur must be segmented and annotated. Finally, the training data set must be
divided into two parts. The larger part is used for training, while the smaller
part is used for accompanying validation of the results.

A training data set of 500 individual images of an artificial knee joint was
segmented using LabelMe2 Individual bones and ligaments were manually seg-
mented and labeled with the categories femur, tibia and ligament (Fig. 1 left).

Fig. 1. from left: (1) segmentated and annotated image; examples of modifications: (2)
rotation, (3) blurred and (4) image section

The data set was then artificially extended by calculating additional images
by filtering (grayscale filter, blur, etc.), scaling and image section generation
1 Detectron2 (Meta), Version v0.6, https://github.com/facebookresearch/detectron2.
2 LabelMe Version 5.5.0, https://github.com/labelmeai/labelme.

https://github.com/facebookresearch/detectron2
https://github.com/labelmeai/labelme
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resulting in a training data set of approx. 10,000 images (Fig. 1 right). The
original images were taken in JPG format with a resolution of 1920px × 1200px.
This corresponds to the resolution of the trinocular camera system, which is
used for the images to be analysed during the operation.

4 Training and AI-Based Segmentation

The deep learning (DL) framework Detectron2 (Meta) contains pre-trained AI
models that can be used as the basis for self-defined AI models. By further
training these models, it is possible to generate application specific AI models.
Detectron2 provides state of the art algorithms for object detection, segmenta-
tion and other visual recognition tasks and is based on the PyTorch library [9].

Of the 10,000 images, 7,000 images were used for training and 3,000 images
for validation. The training process was implemented with 1,000 iterations. After
each 100 iterations, an evaluation process was started, which evaluates the cur-
rent training status via the validation data set. After 1,000 iterations, a detection
average of approx. 65% (femur) and approx. 55% (tibia) was achieved.

The generated AI model is then tested with independent data sets. Functions
from the Detectron2 library were used for the automatic segmentation. Functions
from OpenCV 3 were used to generate the masked images, which are used for
further calculation of the 3D knee model via SLAM (Fig. 2).

The trinocular SLAM algorithm, which is used for the subsequent creation of
the 3D model, achieves significantly more stable results with the automatically
masked images than with the images without masking [6].

Fig. 2. from left: (1) original image; (2) detected segmentation and annotation; (3)
polygon calculation; (4) calculated mask image

5 Results and Further Work

The first proof-of-concept results are presented and directly supplemented with
planned optimization work for the further procedure. The masked images from
the AI-based image segmentation for further processing are only created if the
respective bone was recognized with a probability of over 95%. This applies to
approx. 70% of the first test data set (artificial knee model) and 10% of the second
3 OpenCV, Version 4.10.0, https://github.com/opencv/opencv.

https://github.com/opencv/opencv
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test data set (real surgical images). The resulting data set from the first test data
set is sufficient to subsequently generate 3D models from 2D image data. In order
to be able to process more masked image data in the subsequent SLAM process,
the training is to be carried out with 10,000 iterations in future. This increases
the average recognition rate and, analogously, the number of images that can be
used for the subsequent generation of the 3D knee model.

Another option is to enlarge the training data set with image data that cor-
responds to the real surgery conditions. The latter should significantly improve
the evaluation of the real surgery image data from the second test data set.

However, for data protection reasons, it is difficult to obtain real surgical
images in the required quantity. In addition, the integration of real surgical
data into the training data set would entail extremely time-consuming manual
segmentation and labeling.

Another promising approach is the use of synthetic training data, which we
are currently working on. For this purpose, the artificial knee joint was captured
as a 3D point cloud and then converted into a meshed model. The resulting
3D model consists of independent bones that can be virtually moved and bent
using the software Blender4 Synthetic images of the knee are then rendered
from different angles and in a variety of postures and materials. The Blender
plugin vision_blender5 is used to generate ground truth maps from the captured
images, which contain the segmentations and annotations of the individual bones
(Fig. 3). This method can be used to generate a large amount of training data
with different properties at low cost.

Fig. 3. from left: (1) 3D model from 1scan; (2) Visualization in Blender; (3) Ground
truth map; (4) Calculated segmentation and annotation

6 Conclusion

In this work, a proof-of-concept was presented that enables AI-supported seg-
mentation and annotation of surgical 2D images in order to refine the subsequent
creation of a 3D knee model using trinocular SLAM algorithms. The trained
models already provide promising but not yet sufficient results when applied to
the generated test data set. In particular, the real surgery images cannot yet be
4 Blender, version 4.10, https://www.blender.org/.
5 vision_blender, version 1.0, https://github.com/Cartucho/vision_blender.

https://www.blender.org/
https://github.com/Cartucho/vision_blender


Semantic Bone Structure Segmentation in 2D Image Data 357

sufficiently segmented, annotated and masked. This was caused by anatomical
conditions (skin, ligaments, blood, etc.), obstruction of the bones by the surgeon
as well as reflections, insufficient lighting and others. Using synthetic training
data can simulate these influences to allow future AI-models to be evaluated on
a comprehensive test data set consisting of real surgical images. To this end,
a method was presented that can be used to generate synthetic data that can
be incorporated into the training data without difficulties with medical data
protection.
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