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Abstract. In traditional industrial settings, robot execution planning is typically 

governed by pre-programmed instructions, with cell logic predominantly 

managed by PLC (Programmable Logic Controller) systems. However, the 

rapid advancements in artificial intelligence have unlocked new possibilities, 

enabling the deployment of robots in previously unautomated sectors. Enhanced 

machine vision, advanced data processing, and increased adaptability to 

dynamic environments are now within reach. These developments necessitate 

a re-evaluation of conventional approaches to robot and cell programming. This 

paper explores the implementation of behavior trees as an alternative execution 

planning algorithm, specifically applied to an industrial YASKAWA robot, 

demonstrating their potential to optimize performance and flexibility in 

complex industrial applications in dynamic environment.  

1   Introduction 

In a typical industrial application, robot’s moves and interaction with other devices 

are executed by the robot program. Execution of the cell functionality is typically 

driven by a PLC control, either separated or integrated within the robot controller. 

This approach is based on the principle that the robot consistently performs the same 

movements and actions to meet a predefined cycle time and maintain an optimal 

workflow as defined by the programmer. However, it does not account for changes in 

the working process, variations in operating conditions, environmental shifts, or the 

need for flexibility within the work cell [1]. 

With decreasing amount of available human workforce and increasing demands of 

manufacturers, also areas of manufacturing or production, that were never considered 

for automation, are recently considered for deployment of robots. In comparison to 



fully automated solution, robots offer flexibility due to multi degrees of freedom and 

can be used in production, where conditions are changing. However, until now, such 

automation has been challenging to achieve and has proven costly to implement and 

maintain. Adding new products and functionality required an expert in robot 

programming or machine vision and new learning for operators. 

The recent advancements in artificial intelligence have enabled the deployment of 

robots in industries that have historically depended on human labor due to the 

necessity of cognitive abilities and creativity. These sectors include food processing 

and bakery operations, construction sites, healthcare facilities, biomedical and 

chemical industries, waste management systems, and other domains where 

automation was previously considered infeasible. Thanks to new development in 

artificial intelligence (AI), machine vision and data processing can be enhanced, and 

robots can be used in dynamic environments with adaptive capabilities. These use 

cases frequently demand more adaptive robot behavior, making it essential to explore 

new execution planning approaches for robots and cells to manage the increased 

complexity. Behavior trees offer modularity and scalability as well as clearer decision 

making with clear visualization. Such advantages offer a different approach in 

execution planning compared to traditional procedural programming approaches, 

where varying situations are typically solved using conditions and loops, which make 

system much more difficult to scale up. 

This paper presents the implementation of behavior trees on an industrial 

YASKAWA robot from the NEXT generation and shows advantages of used 

execution planning algorithms. 

 

2   State of the Art 

Execution planning can be implemented through three primary approaches: traditional 

routine programming on a CPU, enhanced programming with an external PC or GPU, 

and programming utilizing IoT and big data technologies [2].  

With a classical programming, robot job runs directly in the robot controller. This 

programming is typically used in a predefined environment with known robot paths 

and positions, which robot needs to reach. It does not involve changing environment 

or need for machine vision. These programs are easy to implement and debug, 

typically being written in a language specific to the manufacturer.  

On the other hand, when the environment around the robot is changing or the robot 

task is varying, it is necessary to use additional sensors to achieve required 

performance of the system. Such sensors include cameras, lidars, radars, tactile 

sensors and force and torque sensors as most common ones. Usage of those devices 

enlarges the capabilities of the robot and if are combined with methods of artificial 

intelligence, they can level up the device in its performance [3]. Methods of classical 

machine vision are boosted up with use of classification or other forms of machine 

learning algorithms [4]. However, such AI algorithms require more computation 

power and therefore, CPU of the robot controller is no longer capable of performing 

such calculations in reasonable time. Usually, such algorithms would need to run on 



an additional machine (industrial PC) connected to the robot controller. Adding 

another computer adds complexity to the hardware architecture and complicates 

robustness of the system. 

Third method mentioned above relates usage of big data, such as databases of 

learned models or patterns. The data is stored in a cloud, which brings not only 

networking delays, but also feared loss of data or cyber security related issues. 

Intelligent robots are supposed to work in less-structured environments together in 

collaboration with humans. Such workflows or tasks are composed of sub-tasks, that 

can be executed independently [5]. Example would be a grasping skill of the robot, 

based on the object and its position. Behavior trees simplify the composition of these 

sub-tasks in the whole application and the order in which the sub-tasks are executed is 

independent from their implementation, as sub-tasks can be designed, tested, and 

replaced independently. Such approach allows an easy composition of trees and 

creation of larger trees. In traditional programming, behaviors can be created as 

sequences of function calls, making it more difficult to implement, reuse, or maintain 

individual components, which can introduce bugs, make debugging more difficult and 

make the system less predictable [5]. Another huge benefit of behavior tree is 

parallelism, where behaviors can run simultaneously within the node. Implementation 

of parallelism in procedural programming often requires explicit threading or 

concurrent operations, which adds complexity and potential synchronization issues. 

Implementation of behavior trees also brings ease of use for non-skilled programmers. 

Robots can be deployed faster, therefore lowering costs for the 

companies [1].Behavior tree should be designed in the way, that is utilizing 

modularity of the sub-tasks as much as possible. Behavior tree must fulfil all 

requirements, all nodes shall be executed in correct workflow and all behaviors must 

be covered. In case of very complex trees, this could be more difficult to perform [5]. 

More standardized approach to understanding of robot skills can simplify the 

implementation of the behavior tree and interconnectivity of individual nodes [6]. 

Each skill should be designed that it receives and provides information in a structured 

way for universal connection to other skills. Another aspect is to achieve adaptable 

movement of the robot, so it would simply move between positions without collisions 

with its environment. Working area of the robot can be monitored (with radar, lidar, 

camera, etc.) and collected data transformed into virtual environment. In such digital 

twin, robot paths can be automatically generated based on the obstacles or other 

equipment in the workcell [6]. 

For practical use, automatic generation of the BT architecture from classical 

workflow description would be enormous simplification for project development and 

can be considered as a further work [7]. Research in this field have been performed 

with promising results, especially with use of reinforcement learning methods [8], 

simulation and reality [9]. 

 



3   Approach to Execution Planning with Behavior Trees 

Behavior trees started to be used in computer game industry for modelling of NPC 

characters’ behavior (Non-player character). In the last few years, usage of this 

programming method spread also to robotics area as a more expressive tool to model 

behavior of autonomous agents [10].   

Behavior tree (BT) is designed as a composition of behaviors, that are independent 

from each other. Execution (tick) of a BT starts from the root (node without a parent) 

and propagates through top to bottom and left to right. Execution ends at leaf, which 

has no other child nodes underneath. The rules are set how behaviors occur, and in 

which order they will be executed. BT follows traditional way of data structure, where 

execution starts at the root in fixed direction, so it does not look back or repeat itself. 

Internal nodes are called control flow nodes and leaf nodes are called execution 

nodes. The control flow node must have at least one child and each node has one 

parent. Tick is a trigger to execute the node, which returns either running, failure or 

success. Control flow nodes are of four types: Sequence, Fallback, Parallel, Decorator 

and execution nodes are either Condition or Action [10]. Various node types are 

explained in the Table 1. 

BT used in this example is BT.CPP, a C++17 library, that provides a framework 

for construction of a behavior tree. It is written in C++ language and tree can be 

defined using a scripting language based on XML. Created behavior tree can be 

visualized and edited via GUI called Groot 2 [11]. There are variety of different 

libraries in C++ or Python languages available for the user. List of those can be found 

in this publication [12] with description and comparison analysis. 

Table 1.  Explanation of nodes with labelling convention. [10] 

Node Labelling Success Failure 

Sequence 

(AND) 
 

All children must return success At least one child return failure 

Fallback 

(OR) 
 

One child returns success All children return failure 

Parallel 
 

When at least M child nodes succeed When all child nodes fail 

Decorator 
 

According to user defined policy According to user defined policy 

Condition  If is true If is false 

Action 
 

When completed If not possible to complete 

 

 

 



3.1   Hardware and Software Architecture  

  

For the implementation purposes, new generation of intelligent robots 

MOTOMAN NEXT of YASKAWA is used. In addition to the robot controller CPU 

this robot is expanded with an integrated edge computer equipped with CPU and 

GPU. CPU of the robot controller takes care of standard robot functionalities, while 

GPU allows user to run expanded functions, such as robot control service, AI service, 

machine vision service, path planning and obstacle avoidance service and user 

defined skills, tasks or services. Architecture of the NEXT controller is illustrated in 

Figure 1. 

 

Fig. 1. Architecture of the NEXT controller. RC (Robot Controller) operating system is 

VxWorks, it hosts the motion kernel, which is core functionality for the robot functionality. On 

RC run JOBs (robot native programs) and skills user interfaces. RPC-Server serves for 

transferring tasks between CPU and ACU. 

 

With this unique and novel architecture, it is easy to achieve optimal performance 

and develop custom applications, that can be deployed directly inside the robot 

controller without the need of additional PC. Services offer APIs for easy and direct 

implementation of functions into the user’s own code, which can be then uploaded 



onto the ACU (Autonomous control unit) as a containerized application (Docker 

container) via graphical user interface.  

3.2   Description of the Robot Task 

The demonstration of the pick skill designed by behavior tree is shown in Figure 2. 

A Machine vision service provides the product type and 3D pose of the robot based 

on the recognized product type and its position in the cameras coordinate system. 3D 

pose is directly converted and written into the position variable in the RC as three 

positions and three rotations in robot coordinate system. Product type is written in 

variable in RC as well. Recognized products, their type and position are written in 

a table that is checked by the tick in decision tree. Based on the type of the product 

written in the table on i-th position during the i-th iteration, the gripping method is 

selected. Either a finger gripper or a vacuum suction cup gripper is used. This is 

simplified Pick Skill without error handling. Behavior tree can be either visualized in 

the graph form (Figure 2) or written in XML format. 

 

 

Fig. 2. Structure of the behavior tree. Individual nodes are represented as rectangles, arrows 

connect child nodes and parent nodes. 

 

Behavior tree practically describes the workflow and actions performed by the 

robot. In its visual form, it is easy to understand and follow the job flow, as well as 

debug the relations between nodes. When the BT is created, it is necessary to pay 

attention to correct workflow and execution, because complex tasks can lead to 

complex structures of behavior trees. In such complexity, it might be difficult to cover 

all possible situations or behaviors [5]. However, one advantage of behavior trees is 

their ability to nest multiple trees within a single structure.   



4   Implementation into the MOTOMAN NEXT 

In the previous section, the structure of the behavior tree was established and 

executed in XML format (or visualized by Groot 2 software). In this section, an 

implementation of the behavior trees to the robot controller will be discussed.  

Typically, behavior trees use the framework ROS (Robot Operating System) as the 

most common open source software development kit among companies or institutions 

in research and industry in robotics and automation providing an interface between 

the applications and the hardware. It is modular and reusable, allowing developers to 

create independent programs (called nodes), that can communicate with each other 

and be therefore re-used or shared freely among large community. 

 

  

Fig. 3. Digital twin in the simulation environment YNX Robot Simulator and the surrounding 

environment with defined obstacles. 

The NEXT controller from YASKAWA provides a comprehensive set of services 

(APIs) that offer a direct interface to the robot controller, eliminating the need for 

additional interface setup. This enables users to implement a library of functions and 

seamlessly exchange data between their applications and the robot controller, as well 

as across multiple applications. Users can manage variables (such as byte, integer, 

string, positions, etc.), initiate robot motions (linear, joint), execute robot JOBs (from 

the RC controller), and read or write system variables (such as servo on, start, hold, 

etc.). These services are fully compatible with one another, allowing for integrated 

functionality; for instance, the Machine Vision service can provide position data of 

detected objects, which the Robot Control service can process and send to the RC 

unit. Simultaneously, the Path Planning service creates an optimal trajectory for the 

robot between two points in space, taking into account environmental factors like 

obstacles, other machines, and parts. The robot follows this automatically generated 

collision-free path, and the path can be recalculated with each iteration of the 



program, enabling the robot to adapt to changing conditions in its environment 

(Figure 3). 

An example of such implementation of functions, that write to the robot controller 

variables (byte and position) and execute the robot motion are shown in the pseudo 

code. It shows one node implementation (this node executes a motion of the robot), 

creation of the tree from XML file and node registration to the tree structure. Every 

node has to be written separately as a function, that implements the node behavior. 

I.e., opening the gripper would set the variable that would trigger the external output 

(24V signal) to the gripper.  

// Import used libraries incl. APIs from YASKAWA 

Import ... 

 

// Define individual nodes and their functionality 

class PickFruitBehaviourNode extends BehaviourNode { 

... 

virtual BehaviourNodeStatus execute() override { 

  //YASKAWA functions for moving the robot,  

  //writing variables, starting JOBs, etc. 

  robot_controller_client_.robot_motion(...); 

  robot_controller_client_.variable_byte_value_set(...); 

  robot_controller_client_.job_start(...); 

  return BehaviourNodeStatus(); 

} 

 

// define the client for the communication with RC unit 

RobotControllerClient robot_controller_client_; 

 

} 

 

function void main() { 

// start the client for the communication with RC unit 

robot_controller_client = new RobotControllerClient(...); 

// generate BT from XML file 

behaviour_tree = new BehaviourTree(...); 

// register all nodes to BT 

behaviour_tree.registerNode<PickFruitBehaviourNode>(robot

_controller_client); 

behaviour_tree.execute(); 

} 

The user application must be containerized and build within the ACU SDK 

environment. Once completed, the application can be uploaded and managed through 

the web-based interface of the ACU (Figure 4).  

 



 

Fig. 4. Graphical user interface in the ACU. Left hand side menu shows Services, Skills and 

Applications in the ACU, and logging and settings interfaces. Main screen displays list of all 

uploaded applications, their name, description, version number and status.  

5   Conclusions and Further Work 

This study demonstrates the effectiveness of integrating behavior trees with industrial 

robots, offering a flexible and adaptable approach to execution planning in dynamic 

manufacturing environments. Behavior trees provide a structured and intuitive 

method for managing complex tasks, and when combined with AI-driven machine 

vision, they significantly enhance the capabilities of industrial robots. The innovative 

architecture of the MOTOMAN NEXT robot, with its built-in ACU unit, facilitates 

the direct implementation of AI methods within the robot controller, eliminating the 

need for additional external computing resources. The APIs provided by YASKAWA 

further streamline the integration of native robot skills and services into custom user 

applications. 

The current implementation serves as a foundation for further development, with 

plans to incorporate additional YASKAWA services, such as Machine Vision and 

Path Planning, to create a fully operational application. This will allow for 

a comprehensive evaluation of performance in real-world scenarios. Additionally, the 

behavior tree framework could be expanded into a user-friendly service, complete 

with pre-defined nodes for robot motion, gripper control, and other essential 



functions. This would greatly simplify the process for users to develop their own 

applications, enhancing the overall user experience and expanding the potential for 

innovation in industrial robotics.  
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