
Behavior Tree as a Decision Planning Algorithm for

Industrial Robot

Martina Hutter-Mironovova1, Benjamin Blumhofer2, Christopher Schneider1,

Achim Wagner3
1YASKAWA Europe GmbH, Yaskawastraße 1, 85391 Allershausen, Germany

martina.hutter@yaskawa.eu, christopher.schneider@yaskawa.eu
2Technologie-Initiative SmartFactory KL e. V., Trippstadter Str. 122, 67663

Kaiserslautern, Germany

benjamin.blumhofer@smartfactory.de
3German Research Center for Artificial Intelligence GmbH (DFKI),

Trippstadter Str. 122, 67663 Kaiserslautern, Germany

achim.wagner@dfki.de

Abstract. In traditional industrial settings, robot execution planning is typically

governed by pre-programmed instructions, with cell logic predominantly

managed by PLC (Programmable Logic Controller) systems. However, the

rapid advancements in artificial intelligence have unlocked new possibilities,

enabling the deployment of robots in previously unautomated sectors. Enhanced

machine vision, advanced data processing, and increased adaptability to

dynamic environments are now within reach. These developments necessitate

a re-evaluation of conventional approaches to robot and cell programming. This

paper explores the implementation of behavior trees as an alternative execution

planning algorithm, specifically applied to an industrial YASKAWA robot,

demonstrating their potential to optimize performance and flexibility in

complex industrial applications in dynamic environment.

1 Introduction

In a typical industrial application, robot’s moves and interaction with other devices

are executed by the robot program. Execution of the cell functionality is typically

driven by a PLC control, either separated or integrated within the robot controller.

This approach is based on the principle that the robot consistently performs the same

movements and actions to meet a predefined cycle time and maintain an optimal

workflow as defined by the programmer. However, it does not account for changes in

the working process, variations in operating conditions, environmental shifts, or the

need for flexibility within the work cell [1].

With decreasing amount of available human workforce and increasing demands of

manufacturers, also areas of manufacturing or production, that were never considered

for automation, are recently considered for deployment of robots. In comparison to

fully automated solution, robots offer flexibility due to multi degrees of freedom and

can be used in production, where conditions are changing. However, until now, such

automation has been challenging to achieve and has proven costly to implement and

maintain. Adding new products and functionality required an expert in robot

programming or machine vision and new learning for operators.

The recent advancements in artificial intelligence have enabled the deployment of

robots in industries that have historically depended on human labor due to the

necessity of cognitive abilities and creativity. These sectors include food processing

and bakery operations, construction sites, healthcare facilities, biomedical and

chemical industries, waste management systems, and other domains where

automation was previously considered infeasible. Thanks to new development in

artificial intelligence (AI), machine vision and data processing can be enhanced, and

robots can be used in dynamic environments with adaptive capabilities. These use

cases frequently demand more adaptive robot behavior, making it essential to explore

new execution planning approaches for robots and cells to manage the increased

complexity. Behavior trees offer modularity and scalability as well as clearer decision

making with clear visualization. Such advantages offer a different approach in

execution planning compared to traditional procedural programming approaches,

where varying situations are typically solved using conditions and loops, which make

system much more difficult to scale up.

This paper presents the implementation of behavior trees on an industrial

YASKAWA robot from the NEXT generation and shows advantages of used

execution planning algorithms.

2 State of the Art

Execution planning can be implemented through three primary approaches: traditional

routine programming on a CPU, enhanced programming with an external PC or GPU,

and programming utilizing IoT and big data technologies [2].

With a classical programming, robot job runs directly in the robot controller. This

programming is typically used in a predefined environment with known robot paths

and positions, which robot needs to reach. It does not involve changing environment

or need for machine vision. These programs are easy to implement and debug,

typically being written in a language specific to the manufacturer.

On the other hand, when the environment around the robot is changing or the robot

task is varying, it is necessary to use additional sensors to achieve required

performance of the system. Such sensors include cameras, lidars, radars, tactile

sensors and force and torque sensors as most common ones. Usage of those devices

enlarges the capabilities of the robot and if are combined with methods of artificial

intelligence, they can level up the device in its performance [3]. Methods of classical

machine vision are boosted up with use of classification or other forms of machine

learning algorithms [4]. However, such AI algorithms require more computation

power and therefore, CPU of the robot controller is no longer capable of performing

such calculations in reasonable time. Usually, such algorithms would need to run on

an additional machine (industrial PC) connected to the robot controller. Adding

another computer adds complexity to the hardware architecture and complicates

robustness of the system.

Third method mentioned above relates usage of big data, such as databases of

learned models or patterns. The data is stored in a cloud, which brings not only

networking delays, but also feared loss of data or cyber security related issues.

Intelligent robots are supposed to work in less-structured environments together in

collaboration with humans. Such workflows or tasks are composed of sub-tasks, that

can be executed independently [5]. Example would be a grasping skill of the robot,

based on the object and its position. Behavior trees simplify the composition of these

sub-tasks in the whole application and the order in which the sub-tasks are executed is

independent from their implementation, as sub-tasks can be designed, tested, and

replaced independently. Such approach allows an easy composition of trees and

creation of larger trees. In traditional programming, behaviors can be created as

sequences of function calls, making it more difficult to implement, reuse, or maintain

individual components, which can introduce bugs, make debugging more difficult and

make the system less predictable [5]. Another huge benefit of behavior tree is

parallelism, where behaviors can run simultaneously within the node. Implementation

of parallelism in procedural programming often requires explicit threading or

concurrent operations, which adds complexity and potential synchronization issues.

Implementation of behavior trees also brings ease of use for non-skilled programmers.

Robots can be deployed faster, therefore lowering costs for the

companies [1].Behavior tree should be designed in the way, that is utilizing

modularity of the sub-tasks as much as possible. Behavior tree must fulfil all

requirements, all nodes shall be executed in correct workflow and all behaviors must

be covered. In case of very complex trees, this could be more difficult to perform [5].

More standardized approach to understanding of robot skills can simplify the

implementation of the behavior tree and interconnectivity of individual nodes [6].

Each skill should be designed that it receives and provides information in a structured

way for universal connection to other skills. Another aspect is to achieve adaptable

movement of the robot, so it would simply move between positions without collisions

with its environment. Working area of the robot can be monitored (with radar, lidar,

camera, etc.) and collected data transformed into virtual environment. In such digital

twin, robot paths can be automatically generated based on the obstacles or other

equipment in the workcell [6].

For practical use, automatic generation of the BT architecture from classical

workflow description would be enormous simplification for project development and

can be considered as a further work [7]. Research in this field have been performed

with promising results, especially with use of reinforcement learning methods [8],

simulation and reality [9].

3 Approach to Execution Planning with Behavior Trees

Behavior trees started to be used in computer game industry for modelling of NPC

characters’ behavior (Non-player character). In the last few years, usage of this

programming method spread also to robotics area as a more expressive tool to model

behavior of autonomous agents [10].

Behavior tree (BT) is designed as a composition of behaviors, that are independent

from each other. Execution (tick) of a BT starts from the root (node without a parent)

and propagates through top to bottom and left to right. Execution ends at leaf, which

has no other child nodes underneath. The rules are set how behaviors occur, and in

which order they will be executed. BT follows traditional way of data structure, where

execution starts at the root in fixed direction, so it does not look back or repeat itself.

Internal nodes are called control flow nodes and leaf nodes are called execution

nodes. The control flow node must have at least one child and each node has one

parent. Tick is a trigger to execute the node, which returns either running, failure or

success. Control flow nodes are of four types: Sequence, Fallback, Parallel, Decorator

and execution nodes are either Condition or Action [10]. Various node types are

explained in the Table 1.

BT used in this example is BT.CPP, a C++17 library, that provides a framework

for construction of a behavior tree. It is written in C++ language and tree can be

defined using a scripting language based on XML. Created behavior tree can be

visualized and edited via GUI called Groot 2 [11]. There are variety of different

libraries in C++ or Python languages available for the user. List of those can be found

in this publication [12] with description and comparison analysis.

Table 1. Explanation of nodes with labelling convention. [10]

Node Labelling Success Failure

Sequence

(AND)

All children must return success At least one child return failure

Fallback

(OR)

One child returns success All children return failure

Parallel

When at least M child nodes succeed When all child nodes fail

Decorator

According to user defined policy According to user defined policy

Condition If is true If is false

Action

When completed If not possible to complete

3.1 Hardware and Software Architecture

For the implementation purposes, new generation of intelligent robots

MOTOMAN NEXT of YASKAWA is used. In addition to the robot controller CPU

this robot is expanded with an integrated edge computer equipped with CPU and

GPU. CPU of the robot controller takes care of standard robot functionalities, while

GPU allows user to run expanded functions, such as robot control service, AI service,

machine vision service, path planning and obstacle avoidance service and user

defined skills, tasks or services. Architecture of the NEXT controller is illustrated in

Figure 1.

Fig. 1. Architecture of the NEXT controller. RC (Robot Controller) operating system is

VxWorks, it hosts the motion kernel, which is core functionality for the robot functionality. On

RC run JOBs (robot native programs) and skills user interfaces. RPC-Server serves for

transferring tasks between CPU and ACU.

With this unique and novel architecture, it is easy to achieve optimal performance

and develop custom applications, that can be deployed directly inside the robot

controller without the need of additional PC. Services offer APIs for easy and direct

implementation of functions into the user’s own code, which can be then uploaded

onto the ACU (Autonomous control unit) as a containerized application (Docker

container) via graphical user interface.

3.2 Description of the Robot Task

The demonstration of the pick skill designed by behavior tree is shown in Figure 2.

A Machine vision service provides the product type and 3D pose of the robot based

on the recognized product type and its position in the cameras coordinate system. 3D

pose is directly converted and written into the position variable in the RC as three

positions and three rotations in robot coordinate system. Product type is written in

variable in RC as well. Recognized products, their type and position are written in

a table that is checked by the tick in decision tree. Based on the type of the product

written in the table on i-th position during the i-th iteration, the gripping method is

selected. Either a finger gripper or a vacuum suction cup gripper is used. This is

simplified Pick Skill without error handling. Behavior tree can be either visualized in

the graph form (Figure 2) or written in XML format.

Fig. 2. Structure of the behavior tree. Individual nodes are represented as rectangles, arrows

connect child nodes and parent nodes.

Behavior tree practically describes the workflow and actions performed by the

robot. In its visual form, it is easy to understand and follow the job flow, as well as

debug the relations between nodes. When the BT is created, it is necessary to pay

attention to correct workflow and execution, because complex tasks can lead to

complex structures of behavior trees. In such complexity, it might be difficult to cover

all possible situations or behaviors [5]. However, one advantage of behavior trees is

their ability to nest multiple trees within a single structure.

4 Implementation into the MOTOMAN NEXT

In the previous section, the structure of the behavior tree was established and

executed in XML format (or visualized by Groot 2 software). In this section, an

implementation of the behavior trees to the robot controller will be discussed.

Typically, behavior trees use the framework ROS (Robot Operating System) as the

most common open source software development kit among companies or institutions

in research and industry in robotics and automation providing an interface between

the applications and the hardware. It is modular and reusable, allowing developers to

create independent programs (called nodes), that can communicate with each other

and be therefore re-used or shared freely among large community.

Fig. 3. Digital twin in the simulation environment YNX Robot Simulator and the surrounding

environment with defined obstacles.

The NEXT controller from YASKAWA provides a comprehensive set of services

(APIs) that offer a direct interface to the robot controller, eliminating the need for

additional interface setup. This enables users to implement a library of functions and

seamlessly exchange data between their applications and the robot controller, as well

as across multiple applications. Users can manage variables (such as byte, integer,

string, positions, etc.), initiate robot motions (linear, joint), execute robot JOBs (from

the RC controller), and read or write system variables (such as servo on, start, hold,

etc.). These services are fully compatible with one another, allowing for integrated

functionality; for instance, the Machine Vision service can provide position data of

detected objects, which the Robot Control service can process and send to the RC

unit. Simultaneously, the Path Planning service creates an optimal trajectory for the

robot between two points in space, taking into account environmental factors like

obstacles, other machines, and parts. The robot follows this automatically generated

collision-free path, and the path can be recalculated with each iteration of the

program, enabling the robot to adapt to changing conditions in its environment

(Figure 3).

An example of such implementation of functions, that write to the robot controller

variables (byte and position) and execute the robot motion are shown in the pseudo

code. It shows one node implementation (this node executes a motion of the robot),

creation of the tree from XML file and node registration to the tree structure. Every

node has to be written separately as a function, that implements the node behavior.

I.e., opening the gripper would set the variable that would trigger the external output

(24V signal) to the gripper.

// Import used libraries incl. APIs from YASKAWA

Import ...

// Define individual nodes and their functionality

class PickFruitBehaviourNode extends BehaviourNode {

...

virtual BehaviourNodeStatus execute() override {

 //YASKAWA functions for moving the robot,

 //writing variables, starting JOBs, etc.

 robot_controller_client_.robot_motion(...);

 robot_controller_client_.variable_byte_value_set(...);

 robot_controller_client_.job_start(...);

 return BehaviourNodeStatus();

}

// define the client for the communication with RC unit

RobotControllerClient robot_controller_client_;

}

function void main() {

// start the client for the communication with RC unit

robot_controller_client = new RobotControllerClient(...);

// generate BT from XML file

behaviour_tree = new BehaviourTree(...);

// register all nodes to BT

behaviour_tree.registerNode<PickFruitBehaviourNode>(robot

_controller_client);

behaviour_tree.execute();

}

The user application must be containerized and build within the ACU SDK

environment. Once completed, the application can be uploaded and managed through

the web-based interface of the ACU (Figure 4).

Fig. 4. Graphical user interface in the ACU. Left hand side menu shows Services, Skills and

Applications in the ACU, and logging and settings interfaces. Main screen displays list of all

uploaded applications, their name, description, version number and status.

5 Conclusions and Further Work

This study demonstrates the effectiveness of integrating behavior trees with industrial

robots, offering a flexible and adaptable approach to execution planning in dynamic

manufacturing environments. Behavior trees provide a structured and intuitive

method for managing complex tasks, and when combined with AI-driven machine

vision, they significantly enhance the capabilities of industrial robots. The innovative

architecture of the MOTOMAN NEXT robot, with its built-in ACU unit, facilitates

the direct implementation of AI methods within the robot controller, eliminating the

need for additional external computing resources. The APIs provided by YASKAWA

further streamline the integration of native robot skills and services into custom user

applications.

The current implementation serves as a foundation for further development, with

plans to incorporate additional YASKAWA services, such as Machine Vision and

Path Planning, to create a fully operational application. This will allow for

a comprehensive evaluation of performance in real-world scenarios. Additionally, the

behavior tree framework could be expanded into a user-friendly service, complete

with pre-defined nodes for robot motion, gripper control, and other essential

functions. This would greatly simplify the process for users to develop their own

applications, enhancing the overall user experience and expanding the potential for

innovation in industrial robotics.

References

1. Sidorenko, A., Rezapour, M., Wagner, A., Ruskowski, M.: Towards Using Behavior Trees

in Industrial Automation Controllers (2024)

2. Naghib, A., Navimipour, N., Hosseinzadeh, M., Sharifi, A.: A comprehensive and systematic

literature review on the big data management techniques in the internet of things, Springer,

Wireless Networks (2022)

3. Li, Q., Wu, C., Yuan, Y., You, Y.: MSSP : A Versatile Multi-Scenario Adaptable Intelligent

Robot Simulation Platform Based on LIDAR-Inertial Fusion (2024)

4. Peters, J., Tedrake, R., Roy, N., Morimoto, J.: Robot Learning (2017)

5. Colledanchise, M.: Behavior Trees in Robotics, Doctoral Thesis Stockholm, Sweden (2017)

6. Herrero, H., Moughlbay, A., Outon, J., Salle, D., Ipina, K.: Skill Based Robot Programming:

Assembly, Vision and Workspace Monitoring Skill Interaction, Neurocomputing (2017)

7. Iovino, M., Smith, Ch.: Behavior Trees for Robust Task Level Control in Robotic

Applications (2023)

8. Banerjee, B.: Autonomous Acquisition of Behavior Trees for Robot Control (2018)

9. French, K., Wu, S., Pan, T., Zhou, Z., Jenkins, O. Ch.: Learning Behavior Trees From

Demonstration (2019)

10. Colledanchise, M., Ögren, P: Behavior Trees in Robotics and AI: An Introduction, CRC

Press, kTH., (2022)

11. Faconti, D.: BehaviorTree.CPP [Software]. Available online (on 21.08.2024) at GitHub:

https://github.com/BehaviorTree/BehaviorTree.CPP (2019)

12. Ghzouli, R., Berger, T., Johnsen, E. B., Wasowski, A., Dragule, S.: Behavior Trees and

State Machines in Robotics Applications (2022)

