
N
o
V
a

4
b

A

K
D
D
S
A
B
Q

1

a
m
t
r
a
m
f
p
a
t

h
R

Results in Control and Optimization 17 (2024) 100495 

A
2
(

Contents lists available at ScienceDirect

Results in Control and Optimization

journal homepage: www.elsevier.com/locate/rico

umerical benchmarking of dual decomposition-based
ptimization algorithms for distributed model predictive control
assilios Yfantis a,∗, Achim Wagner b, Martin Ruskowski a,b

Chair of Machine Tools and Control Systems, Department of Mechanical and Process Engineering, TU Kaiserslautern, Gottlieb-Daimler-Straße
2, 67663 Kaiserslautern, Germany
Innovative Factory Systems, German Research Center for Artificial Intelligence, Trippstadter Str. 122, 67663 Kaiserslautern, Germany

 R T I C L E I N F O

eywords:
istributed model predictive control
ual decomposition
ubgradient method
DMM
undle method
uasi-Newton

A B S T R A C T

This paper presents a benchmark study of dual decomposition-based distributed optimization
algorithms applied to constraint-coupled model predictive control problems. These problems can
be interpreted as multiple subsystems which are coupled through constraints on the availability
of shared limited resources. In a dual decomposition-based framework the production and con-
sumption of these resources can be coordinated by iteratively computing their prices and sharing
them with the involved subsystems. Following a brief introduction to model predictive control
different architectures and communication topologies for a distributed setting are presented.
After decomposing the system-wide control problem into multiple subproblems by introducing
dual variables, several distributed optimization algorithms, including the recently proposed
quasi-Newton dual ascent algorithm, are discussed. Furthermore, an epigraph formulation of
the bundle cuts as well as a line search strategy are proposed for the quasi-Newton dual ascent
algorithm, which increase its numerical robustness and speed up its convergence compared to
the previously used trust region. Finally, the quasi-Newton dual ascent algorithm is compared
to the subgradient method, the bundle trust method and the alternating direction method of
multipliers for a large number of benchmark problems. The used benchmark problems are
publicly available on GitHub.

. Introduction

The increase in complexity of industrial systems has necessitated the use of advanced control methods. Decentral control
rchitectures, consisting of a large number of decoupled PID control loops, have been used in practice for many years [1]. These
ethods often assume weak or non-existent coupling between the control loops of the system-wide control problem. However,

he strive for a more efficient operation of large-scale systems has led to a tighter integration of their individual components,
educing the robustness of decentralized control schemes. In addition, modern systems, and thus their associated control systems,
re tasked with satisfying multiple operational and safety-related constraints while simultaneously optimizing several performance
etrics. Model predictive control (MPC) is an optimization-based control method whereby a model of the plant is used to predict its

uture behavior depending on its current state and the computed control inputs. By stating the control problem as an optimization
roblem the system’s performance metrics can be minimized or maximized directly while the involved constraints can be explicitly
ccounted for. Nowadays problems with hundreds or even thousands of variables can be solved efficiently, in large part due to
he substantial performance increase of the used optimization solvers. However, some situations still necessitate the use of a more

∗ Corresponding author.
E-mail address: vassilios.yfantis@mv.uni-kl.de (V. Yfantis).
ttps://doi.org/10.1016/j.rico.2024.100495
eceived 13 December 2023; Accepted 9 November 2024
vailable online 19 November 2024 
666-7207/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
 http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

https://www.elsevier.com/locate/rico
https://www.elsevier.com/locate/rico
mailto:vassilios.yfantis@mv.uni-kl.de
https://doi.org/10.1016/j.rico.2024.100495
https://doi.org/10.1016/j.rico.2024.100495
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rico.2024.100495&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


V. Yfantis et al.

p
e

A

t

b
a

d
n
d

i
h
𝑁

e

c
t

Results in Control and Optimization 17 (2024) 100495 
decentralized control approach. One example are large-scale systems that consist of multiple autonomous subsystems, each with
their own objectives and constraints. Even though these subsystems can take autonomous decisions, they might still be coupled,
e.g., by streams of energy or materials. In this case system-wide constraints must still be satisfied, even when the individual control
roblems are solved in a decentralized manner. A reason for such a control structure can be confidentiality between the subsystems,
.g., if they belong to different legal entities and are not allowed or willing to disclose information on their dynamics and local

constraints. Distributed optimization can address this issue by coordinating the controllers of the different subsystems, leading to
distributed model predictive control (DMPC) problems.

A class of distributed optimization algorithms suited for the coordination of resource-coupled DMPC problems are dual
decomposition based-methods. These methods are also often referred to as price-based coordination, whereby the introduced dual
variables are interpreted as prices for shared limited resources and can be used to steer the subsystems towards a feasible solution
with respect to the system-wide constraints. The contribution of this paper is twofold: First, the recently proposed quasi-Newton
dual ascent algorithm [2,3] is extended by reformulating its used cutting planes into linear constraints via an epigraph formulation.

dditionally, a constrained line search update step is introduced, which speeds up the convergence in the vicinity of the optimum.
Second, a large number of DMPC benchmark problem instances were generated and made publicly available on GitHub. Even
hough several papers have conducted benchmark studies on DMPC algorithms, many of them either only consider isolated problem

instance [4–6] or do not make the benchmark instances publicly available [7]. The remainder of this paper is structured as follows:
Section 2 introduces the notation used throughout this paper as well as a general formulation of the considered class of MPC
problems. Section 3 discusses DMPC, including a review of different control architectures. Section 4 deals with dual decomposition-
ased DMPC. After illustrating how the central MPC problem can be decomposed via the use of dual variables, several coordination
lgorithms are discussed, namely, the subgradient method, the bundle trust method, the alternating direction method of multipliers,

and the quasi-Newton dual ascent. Section 5 first describes the generation of the DMPC benchmark problems, followed by a
discussion of the benchmark results. The paper is concluded in Section 6.

2. Preliminaries

In this paper we denote vectors by bold lowercase letters (𝐱) and matrices by bold uppercase letters (𝐀). In MPC time is usually
iscretized into equal time intervals with a sampling time 𝑇𝑠, i.e., into time points 𝑡𝑘 = 𝑡0 + 𝑘 ⋅ 𝑇𝑠, where 𝑡0 is the current time. The
otation 𝐱𝑘 and 𝐮𝑘 refers to the states and inputs of the plant at time 𝑡𝑘 respectively. The value of a variable 𝐳 in iteration 𝑡 of a
ual decomposition-based algorithm is denoted by 𝐳(𝑡). The Euclidean norm is denoted by ‖ ⋅ ‖2.

MPC algorithms usually employ a discrete-time model to predict the evolution of the plant’s states 𝐱 ∈ R𝑛𝐱 depending on the
current states and control inputs 𝐮 ∈ R𝑛𝐮 . A typical MPC optimization problem is given by Eq. (1),

min
𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1

𝐽𝑓 (𝐱𝑁𝑝 ) +
𝑁𝑝−1
∑

𝑘=0
𝐽 (𝐱𝑘,𝐮𝑘), (1a)

s. t. 𝐱𝑘+1 = 𝐀𝐱𝑘 + 𝐁𝐮𝑘, 𝑘 = 0,… , 𝑁𝑝 − 1, (1b)

𝐱0 = 𝐱̃(𝑡0), (1c)

𝐱𝑘 ∈  ⊂ R𝑛𝐱 , 𝑘 = 0,… , 𝑁𝑝, (1d)

𝐮𝑘 ∈  ⊂ R𝑛𝐮 , 𝑘 = 0,… , 𝑁𝑝 − 1. (1e)

Constraint (1b) represents a discrete-time model used to predict the state of the plant 𝐱𝑘+1 at the next sampling time from the
current states 𝐱𝑘 and the used control input 𝐮𝑘 with 𝐀 ∈ R𝑛𝐱×𝑛𝐱 and 𝐁 ∈ R𝑛𝐱×𝑛𝐮 . The future states and inputs are computed over a
prediction horizon 𝑁𝑝. Note that the control inputs must not necessarily be computed over the entire prediction horizon, especially
f solving the MPC optimization problem is computationally expensive. Instead, the control inputs can be computed over a control
orizon 𝑁𝑐 < 𝑁𝑝 and then be kept constant until the end of the prediction horizon, i.e., 𝐮𝑁𝑐 = 𝐮𝑁𝑐+1 = ⋯ = 𝐮𝑁𝑝−1. In this work
𝑝 = 𝑁𝑐 is assumed. Constraint (1c) represents the initial conditions of the plant, whereby 𝐱̃(𝑡0) denotes the measured states at time

𝑡0. Depending on the plant the actual states might not be measurable. In these cases, state estimation techniques might be used to
stimate the plant’s states from the measured output. However, state estimation is outside the scope of this paper. Necoara et al.

provide an overview of state estimation in a distributed setting [8]. A main advantage of MPC compared to other control approaches
is that constraints on the states and inputs can be explicitly considered within the optimization problem [9]. These constraints are
summarized by (1d) and (1e) respectively.

At each time step an input trajectory is computed over a prediction horizon 𝑁𝑝 by solving the open-loop optimal control problem
(1). A common objective in MPC is to track a given reference trajectory over the prediction horizon while also minimizing the control
inputs, i.e.,

𝐽 (𝐱𝑘,𝐮𝑘) = (𝐱𝑘 − 𝐱ref,𝑘)𝑇𝐇𝐱(𝐱𝑘 − 𝐱ref,𝑘) + 𝐮𝑘,𝑇𝐇𝐮𝐮𝑘, (2)

where 𝐇𝐱 ∈ R𝑛𝐱×𝑛𝐱 and 𝐇𝐮 ∈ R𝑛𝐮×𝑛𝐮 are symmetric positive (semi-) definite weighing matrices. Eq. (2) is often referred to as stage
osts, while 𝐽𝑓 (𝐱𝑁𝑝 ) is referred to as terminal cost. A common terminal cost is the deviation of the states from their reference at
he end of the prediction horizon, i.e.,
𝐽𝑓 (𝐱𝑁𝑝 ) = (𝐱𝑁𝑝 − 𝐱ref,𝑁𝑝 )𝑇𝐇𝑓
𝐱 (𝐱𝑁𝑝 − 𝐱ref,𝑁𝑝 ). (3)
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The design of the terminal cost plays an important role regarding the control performance and stability [9]. These aspects are also
outside the scope of this paper. Another main appeal of MPC is that control objectives beyond classical reference tracking can be
ncorporated into the optimization problem [10]. For instance, the economic performance of the process can be directly optimized,

giving rise to economic MPC (EMPC). An extensive review of EMPC is provided by Ellis et al. [11].
After solving the open-loop optimal control problem the first input 𝐮0 is applied to the system. At the next sampling time-point,

the new state is measured (or estimated) and the procedure is repeated.

3. Distributed model predictive control

MPC requires the solution of an optimization problem at each sampling point. However, this might be impractical if the
underlying optimization problem becomes too large and therefore computationally too expensive to be solved within the available
sampling time, or if the overall system consists of multiple subsystems and not all required information is centrally available. These
issues can be addressed by decomposing a system-wide MPC problem and solving it in a distributed manner.

Two types of distributed MPC (DMPC) problems are mainly examined in the literature. In the first case, the system-wide MPC
roblem consists of  = {1,… , 𝑁𝑠} subsystems coupled in their dynamics. These MPC problems can be expressed as

min
𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1

∑

𝑖∈

⎡

⎢

⎢

⎣

𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

𝑁𝑝−1
∑

𝑘=0
𝐽𝑖(𝐱𝑘𝑖 ,𝐮

𝑘
𝑖 )
⎤

⎥

⎥

⎦

, (4a)

s. t. 𝐱𝑘+1𝑖 =
∑

𝑗∈
𝐀𝑖𝑗𝐱𝑘𝑗 + 𝐁𝑖𝑗𝐮𝑘𝑗 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝 − 1, (4b)

𝐱0𝑖 = 𝐱̃(𝑡0), ∀𝑖 ∈ , (4c)

𝐱𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐱𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝, (4d)

𝐮𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐮𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝 − 1, (4e)

where 𝐱𝑖 and 𝐮𝑖 denote the states and inputs of subsystem 𝑖 respectively. The states and inputs of all subsystems are summarized in
∶= [𝐱𝑇1 ,… , 𝐱𝑇𝑁𝑠

]𝑇 and 𝐮 ∶= [𝐮𝑇1 ,… ,𝐮𝑇𝑁𝑠
]𝑇 . Each subsystem possesses its individual terminal and stage cost functions 𝐽𝑓

𝑖 (𝐱
𝑁𝑝
𝑖 ) and

𝑖(𝐱𝑘𝑖 ,𝐮
𝑘
𝑖 ) respectively. The matrices 𝐀𝑖𝑗 ∈ R𝑛𝐱𝑖×𝑛𝐱𝑗 and 𝐁𝑖𝑗 ∈ R𝑛𝐱𝑖×𝑛𝐮𝑗 describe the influence of the states and inputs of subsystem 𝑗

n the dynamics of subsystem 𝑖.
In the second case, the subsystems are coupled through their constraints

min
𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1

∑

𝑖∈

⎡

⎢

⎢

⎣

𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

𝑁𝑝−1
∑

𝑘=0
𝐽𝑖(𝐱𝑘𝑖 ,𝐮

𝑘
𝑖 )
⎤

⎥

⎥

⎦

, (5a)

s. t. 𝐱𝑘+1𝑖 = 𝐀𝑖𝐱𝑘𝑖 + 𝐁𝑖𝐮𝑘𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝 − 1, (5b)

𝐱0𝑖 = 𝐱̃(𝑡0), ∀𝑖 ∈ , (5c)

𝐱𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐱𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝, (5d)

𝐮𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐮𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝 − 1, (5e)
∑

𝑖∈
𝐑𝑖𝐮𝑘𝑖 ≤ 𝐫𝑘max, 𝑘 = 0,… , 𝑁𝑝 − 1. (5f)

The dynamics of each subsystem (5b) are decoupled. The coupling of the subsystem is represented by the system-wide constraints
5f), which can be interpreted as constraints on the availability of shared limited resources. The matrices 𝐑𝑖 ∈ R𝑛𝐫×𝑛𝐮𝑖 map the

subsystems inputs to the corresponding resource consumption or production, while 𝐫𝑘max ∈ R𝑛𝐫 denotes the maximum availability of
resources. Note that in the resource constraints, a positive sign indicates consumption while a negative sign indicates the production
of a resource.

This paper focuses on the second type of DMPC problems (5), which can be solved within a dual decomposition-based distributed
optimization framework. Note that DMPC problems of the form (4) can also be solved by using dual decomposition, which will be
briefly discussed in Section 4.3.

3.1. DMPC architectures

Apart from the type of coupling between the subsystems, the employed DMPC method strongly depends on the allowed
communication. Several DMPC architectures are reviewed by, e.g., Scattolini [12] and Christofides et al. [13], some of which are
depicted in Fig. 1. For the sake of simplicity, the influence of the output of a DMPC controller on other subsystems is omitted at this
point, i.e., 𝐁𝑖𝑗 = 𝟎 for 𝑖 ≠ 𝑗 (cf. Eq. (4b)). Fig. 1(a) depicts a setting in which the coupling of the subsystems is not explicitly
considered by the DMPC controllers, i.e., there is no communication between them. This is often referred to as decentralized
MPC. In this setting, the coupling between the subsystems can be regarded as an external disturbance that can be compensated
by the individual controllers. If the coupling between subsystems is strong, decentralized control might exhibit poor performance.
Furthermore, decentralized DMPC is not suitable for constraint-coupled problems as the satisfaction of system-wide constraints
3 
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Fig. 1. Different distributed model predictive control structures for two subsystems with two controllers.
Source: Adapted from [12].

cannot be guaranteed without some amount of information exchange. Christophides et al. provide an overview of decentralized
MPC [13].

If coupling between subsystems must be accounted for explicitly by the DMPC controllers some information must be exchanged.
Fig. 1(b) depicts a setting in which direct communication between the DMPC controllers is allowed. In this setting, the controllers
an exchange information like predicted state and input trajectories, objective values, constraints, etc. DMPC algorithms relying on

this architecture can be classified according to the number of communication rounds per MPC iteration, i.e., how often information
is exchanged before a control action is applied to the subsystems. Camponogara et al. provide a general overview of both types
of communication [14]. A main criterion for which information exchange frequency should be employed is the computational
cost of the solution of a single DMPC problem. While DMPC with multiple communication rounds, often also referred to as
gent negotiation [15], usually results in better performance and under certain conditions enables the convergence to the optimal

solution of the system-wide MPC problem, it is usually computationally more expensive than single communication DMPC since the
subsystems have to solve multiple optimization problems in each iteration. If short sampling times must be considered, performing

ultiple communication rounds is usually not feasible. This is the case, e.g., in the control of robotic manipulators with collision
onstraints, where only the predicted state trajectory is communicated to the neighboring DMPC controllers [16].

Finally, Fig. 1(c) depicts a setting where no direct communication between the DMPC controllers is allowed. This leads to a
hierarchical control structure where the individual controllers share information with a coordinator. The coordinator aggregates
the responses and communicates price signals to the DMPC controllers. This setting is considered in dual decomposition-based
DMPC, where the coordinator communicates the dual variables to the subsystems. Hierarchical DMPC is especially suitable for
onstraint-coupled problems where direct information exchange between the controllers is not intended, e.g., due to confidentiality
easons. Furthermore, a hierarchical DMPC approach always requires multiple communication rounds between the subsystems and
he coordinator. Thus, this approach is only suitable for systems with slow dynamics and large sampling times, where the underlying
PC problems can be solved multiple times within one sampling period until a feasible solution is found, e.g., for chemical plants

r power systems.
The next section provides a brief overview of related work on DMPC, mainly in cooperative and hierarchical settings.

3.2. DMPC literature review

Distributed control for large-scale systems has been an active field of research since the 1970s [17]. Extensive reviews on DMPC
re provided by, e.g., Scattolini [12], Necoara et al. [8], Chrisofides et al. [13], Negenborn and Maestre [18] and Müller and
llgöwer [19].

Stewart et al. present a cooperative DMPC algorithm that can be interpreted as a suboptimal system-wide MPC, in turn proving
tability [20]. Maestre et al. propose a cooperative DMPC algorithm for two agents with two communication rounds per sampling

period [21]. They also propose a cooperative DMPC scheme with multiple agents whereby in each communication round a random
4 
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set of agents proposes a control action, which is accepted by their neighbors if it improves the overall control objective [15]. Zheng
et al. present a DMPC algorithm for a network of interacting systems with direct communication between the controllers [22].

Dual decomposition-based DMPC has been applied to systems coupled in their dynamics and constraints. Giselsson and Rantzer
mploy dual decomposition for systems coupled in their dynamics and present a stopping criterion that guarantees bounded
uboptimality and asymptotic stability [23]. Gieselsson et al. also present an accelerated gradient method for dual decomposition-

based DMPC where the objective function includes 1-norm penalty terms [24]. In [25] Giselsson and Rantzer present a stopping
criterion based on adaptive constraint tightening that allows for an early termination of dual decomposition-based DMPC problems
for dynamically coupled systems. Köhler et al. examine recursive feasibility for premature termination of a dual decomposition-based
distributed optimization algorithm [26]. Doan et al. employ dual decomposition and use primal averaging and constraint tightening
to ensure convergence of DMPC problems with both coupled dynamics and constraints [27].

Biegel et al. show how MPC can be used for congestion management in an energy grid comprised of intelligent consumers
ith energy storage capabilities [28]. This problem is extended into a DMPC setting in [29]. Biegel et al. also show how dual

decomposition-based DMPC can be generally applied to constraint-coupled systems [30]. Pflaum et al. compare primal and
dual decomposition-based DMPC for the distributed control in smart districts [31]. In [32] they examine the scalability of dual
ecomposition-based DMPC using a bundle method based on the number of subsystems, the number of constraints, and the maximum
ize of the bundle.

Razzanelli et al. use DMPC for the management of the energy flow within a network of microgrids using a subgradient
method [33]. Eser et al. use the alternating direction method of multipliers (ADMM) to distributedly control building energy
systems [34]. Maxeiner and Engell use ADMM for DMPC of semi-batch reactors coupled in their inputs through shared limited
resources [35]. This work is extended in [5], where the subgradient method, ADMM, and the augmented Lagrangian-based
alternating direction inexact Newton method (ALADIN) are extensively compared for these types of problems. Houska and Shi
provide a tutorial on how ALADIN can be employed for DMPC [36]. Yfantis et al. apply a quadratic approximation-based algorithm
to DMPC problems with shared limited resources, comparing its performance to the subgradient method [37].

Conte et al. study computational aspects of dual decomposition-based DMPC using an accelerated gradient method and
DMM [7]. More specifically they examine the influence of the coupling strength, stability, the initial state, and the network size
nd topology on the computational performance of the DMPC. Stomberg et al. compare the performance of six algorithms for DMPC
f dynamically coupled systems, namely the subgradient method, an accelerated subgradient method, ADMM, a distributed active
et algorithm, an essentially decentralized interior point method, and Jacobi iterations [6].

Other proximal algorithms, other than ADMM, can also be used for DMPC. Halvgaard et al. use the Douglas-Rachford splitting
ethod for the coordination of smart energy systems [38]. An extensive collection of DMPC algorithms and applications can be

ound in the textbook by Maestre and Negenborn [39].

4. Dual decomposition-based distributed model predictive control

This section deals with dual decomposition-based DMPC. After decomposing a system-wide constraint-coupled MPC problem by
ntroducing dual variables, the corresponding dual problem is formulated, which can be solved in a distributed manner. Several
lgorithms for the solution of the dual problem are presented, including the quasi-Newton dual ascent algorithm. Finally, the use

of dual decomposition is demonstrated for dynamically coupled DMPC problems for the sake of completeness.

4.1. Dual decomposition of constraint-coupled DMPC problems

In this section, the system-wide constraint-coupled MPC problem is decoupled using dual decomposition. By introducing dual
variables 𝝀𝑘 ∈ R𝑛𝐫 at each sampling time 𝑘 the Lagrange function can be defined,

(𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1,𝝀0∶𝑁𝑝−1) =
∑

𝑖∈

⎡

⎢

⎢

⎣

𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

𝑁𝑝−1
∑

𝑘=0
[𝐽𝑖(𝐱𝑘𝑖 ,𝐮

𝑘
𝑖 ) + 𝝀𝑘,𝑇𝐑𝑖𝐮𝑘𝑖 ]

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑖(𝐱

0∶𝑁𝑝
𝑖 ,𝐮

0∶𝑁𝑝−1
𝑖 ,𝝀0∶𝑁𝑝−1)

−
𝑁𝑝−1
∑

𝑘=0
𝝀𝑘,𝑇 𝐫𝑘max (6)

The Lagrange function can then be decomposed into the individual Lagrange functions,

(𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1,𝝀0∶𝑁𝑝−1) =
∑

𝑖∈
𝑖(𝐱

0∶𝑁𝑝
𝑖 ,𝐮0∶𝑁𝑝−1

𝑖 ,𝝀0∶𝑁𝑝−1) −
𝑁𝑝−1
∑

𝑘=0
𝝀𝑘,𝑇 𝐫𝑘max (7)

Thus the dual function

𝑑(𝝀0∶𝑁𝑝−1) ∶= min
𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1

(𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1,𝝀0∶𝑁𝑝−1), (8)

s t. (5b)–(5e)

can be evaluated by solving the individual DMPC problems

min
0∶𝑁𝑝 0∶𝑁𝑝−1

𝑖(𝐱
0∶𝑁𝑝
𝑖 ,𝐮0∶𝑁𝑝−1

𝑖 ,𝝀0∶𝑁𝑝−1), (9a)

𝐱𝑖 ,𝐮𝑖
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s t. 𝐱𝑘+1𝑖 = 𝐀𝑖𝐱𝑘𝑖 + 𝐁𝑖𝐮𝑘𝑖 ,

𝑘 = 0,… , 𝑁𝑝 − 1, (9b)

𝐱0𝑖 = 𝐱̃(𝑡0), (9c)

𝐱𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐱𝑖 , 𝑘 = 0,… , 𝑁𝑝, (9d)

𝐮𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐮𝑖 , 𝑘 = 0,… , 𝑁𝑝 − 1 (9e)

for each subsystem 𝑖 in a distributed manner.
Dual decomposition-based optimization relies on the solution of the dual optimization problem

max
𝝀0∶𝑁𝑝−1

𝑑(𝝀0∶𝑁𝑝−1), (10a)

s t. 𝝀𝑘 ≥ 𝟎, 𝑘 = 0,… , 𝑁𝑝 − 1, (10b)

which is amendable to distributed computations due to the separability of the dual function. Constraint (10b) stems from the
Karush–Kuhn–Tucker conditions and the coupling constraints being inequalities [40].

The dual function and the corresponding dual optimization problem exhibit some important properties. First, the optimal
objective value of the dual problem (10) always provides a lower bound on the objective of problem (5), which is called the
primal problem in this context. This property is referred to as weak duality. If the primal problem is convex, and if some additional
regularity conditions hold, the optimal objective values of the primal and the dual problem are equal, which is referred to as strong
duality [40]. Furthermore, an optimal primal solution is obtained when the subproblems (9) are solved with the optimal value of
he dual variables. Second, the dual function is always concave, regardless of whether or not the primal problem is convex or not.
owever, it is not always smooth, i.e., a gradient of the dual function does not exist for every value of the dual variables [3]. Thus,

the dual problem (10) is a nonsmooth convex optimization problem. The following section reviews algorithms that are used to solve
he nonsmooth dual problem.

4.2. Dual decomposition-based algorithms

This section presents the dual decomposition-based distributed optimization algorithms used throughout this paper. After a brief
description of the subgradient method, the bundle trust method and the alternating direction method of multipliers, the recently
proposed quasi-Newton dual ascent algorithm [2,3] is presented in more detail. Compared to [3] the algorithm is extended by the
reformulation of the update problem via an epigraph formulation and by a line search update step in the vicinity of the optimum.

4.2.1. Subgradient method
The simplest algorithm for solving the nonsmooth dual problem is the subgradient method [41]. The subgradient is a

generalization of the gradient for nonsmooth functions. For the sake of brevity we denote the column vector of the dual variables
over the prediction horizon as

𝝀𝑁𝑝
∶= [𝝀0,𝑇 ,… ,𝝀𝑁𝑝−1,𝑇 ]𝑇 ∈ R𝑛𝑛𝐫 ⋅(𝑁𝑝−1) (11)

A subgradient of the dual function (8) in iteration 𝑡 can be computed by evaluating the constraints on the shared limited resources
(5f), i.e.,

𝐠(𝝀0∶𝑁𝑝−1,(𝑡)) ∶=
⎛

⎜

⎜

⎜

⎝

∑

𝑖∈ 𝐑𝑖𝐮
0,(𝑡+1)
𝑖 − 𝐫0max
⋮

∑

𝑖∈ 𝐑𝑖𝐮
𝑁𝑝−1,(𝑡+1)
𝑖 − 𝐫𝑁𝑝−1

max

⎞

⎟

⎟

⎟

⎠

, (12)

where 𝐮𝑘,(𝑡+1)𝑖 are the control inputs computed by the subsystems by solving problem (9) in iteration 𝑡 of the distributed optimization
algorithm. In the subgradient method the dual variables can then be updated in each iteration in the direction of the subgradient,

𝝀(𝑡+1)𝑁𝑝
= [𝝀(𝑡)𝑁𝑝

+ 𝛼(𝑡)𝐠(𝝀(𝑡)𝑁𝑝
)]+, (13)

where [⋅]+ denotes the projection onto the positive orthant. The step size parameter 𝛼(𝑡) is usually adapted over the course of the
iterations. The algorithm is terminated when the norm of the primal residual

[𝐰(𝑡)
𝑝 ]𝑙 ∶= max

{[

𝐠(𝝀(𝑡)𝑁𝑝
)
]

𝑙
, 0
}

, 𝑙 = 1,… , 𝑛𝐛 (14)

and the dual residual

𝐰(𝑡)
𝑑 ∶= 𝝀(𝑡+1)𝑁𝑝

− 𝝀(𝑡)𝑁𝑝
, (15)

lie below a predefined threshold, i.e., when the primal problem is feasible and the dual variables have converged to a stationary
alue.
6 
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Fig. 2. Comparison of the resource utilization upon convergence of the ADMM algorithm for DMPC benchmark problem with different update strategies of the
auxiliary variables. The plots show the aggregated resource utilization for a DMPC problem with 𝑁𝑠 = 20, 𝑛𝐱 = 3, 𝑛𝐮 = 2, 𝑛𝐮 = 2, 𝑁𝑝 = 15. The constraints on the
shared resources are violated when using the update strategy (22b).

4.2.2. Bundle trust method
The subgradient method only uses the current subgradient to update the dual variables. Bundle methods are a class of generally

ore efficient nonsmooth optimization algorithms, whereby subgradients from multiple previous iterations are used to update the
ual variables [42]. To this end the data

(𝑡) = {(𝝀(𝑙)𝑁𝑝
, 𝐠(𝝀(𝑙)𝑁𝑝

), 𝑑(𝝀(𝑙)𝑁𝑝
)) ∈ R𝑛𝝀 × R𝑛𝝀 × R| 𝑙 = 𝑡 − 𝜏 + 1,… , 𝑡} (16)

is stored in each iteration, where 𝑛𝝀 = 𝑛𝐫 ⋅ (𝑁𝑝 − 1) denotes the number of dual variables. (𝑡) is referred to as a bundle and it
contains the dual variables, subgradients, and values of the dual function from previous iterations. Since storing all information
from all previous iterations might cause memory issues, only data from the previous 𝜏 iterations is used.

The collected bundle information can then be used to construct a piece-wise linear over-approximation of the dual function, a
so-called cutting plane model, which is then optimized. Since the cutting plane model is still nonsmooth, an epigraph formulation
is used to compute a search direction for the dual variables, subject to a trust region constraint, leading to a bundle trust method
BTM)

max
𝑣∈R, 𝐬∈R𝑛𝝀

𝑣, (17a)

s. t. ‖𝐬‖22 ≤ 𝛼(𝑡), (17b)

𝐠𝑇 (𝝀(𝑙)𝑁𝑝
)𝐬 − 𝛽(𝑙 ,𝑡) ≥ 𝑣, ∀𝑙 ∈ {𝑡 − 𝜏 + 1,… , 𝑡}, (17c)

𝝀(𝑡)𝑁𝑝
+ 𝐬 ≥ 𝟎. (17d)

with the linearization error

𝛽(𝑙 ,𝑡) = 𝑑(𝝀(𝑡)𝑁𝑝
) − 𝑑(𝝀(𝑙)𝑁𝑝

) − 𝐠𝑇 (𝝀(𝑙)𝑁𝑝
)(𝝀(𝑡)𝑁𝑝

− 𝝀(𝑙)𝑁𝑝
), ∀𝑙 ∈ {𝑡 − 𝜏 + 1,… , 𝑡}. (18)

After computing a direction the dual variables are updated according to
𝝀(𝑡+1)𝑁𝑝

= 𝝀(𝑡)𝑁𝑝
+ 𝐬(𝑡). (19)

4.2.3. Alternating direction method of multipliers
The alternating direction method of multipliers (ADMM) employs regularization terms that convexify the response surface of the

ual function [43]. The setting of multiple subsystems coupled via shared limited resources can be handled by the optimal exchange
version of ADMM [44]. In this an augmented Lagrange function is defined by introducing auxiliary variables 𝐳𝑘𝑖 for each subsystem,

𝜌,𝑖(𝐱
0∶𝑁𝑝
𝑖 ,𝐮0∶𝑁𝑝−1

𝑖 ,𝝀0∶𝑁𝑝−1, 𝐳0∶𝑁𝑝−1
𝑖 ) =

𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

𝑁𝑝−1
∑

[

𝐽𝑖(𝐱𝑘𝑖 ,𝐮
𝑘
𝑖 ) + 𝝀𝑘,𝑇 (𝐑𝑖𝐮𝑘𝑖 − 𝐳𝑘𝑖 )

]

+
𝜌

𝑁𝑝−1
∑

‖𝐑𝑖𝐮𝑘𝑖 − 𝐳𝑘𝑖 ‖
2
2. (20)
𝑘=0 2 𝑘=0
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Convergence of the ADMM algorithm can be proven for constant values of the regularization parameter 𝜌. However, adapting the
arameter over the course of the iterations usually works better in practice. In this paper, the adaptation strategy reported in [45,46]

is employed:

𝜌(𝑡+1) =

⎧

⎪

⎨

⎪

⎩

𝜏 incr𝜌(𝑡), if ‖𝐰(𝑡)
𝑝 ‖2 > 𝜇‖𝐰(𝑡)

𝑑 ‖2,
𝜌(𝑡)∕𝜏decr, if ‖𝐰(𝑡)

𝑑 ‖2 > 𝜇‖𝐰(𝑡)
𝑝 ‖2,

𝜌(𝑡), otherwise.
(21)

The parameters 𝜇 , 𝜏 incr, 𝜏decr > 1 are tuning parameters. The dual and auxiliary variables can then be updated according to
𝐳𝑘,(𝑡+1)𝑖 = 𝐑𝑖𝐮

(𝑘,𝑡+1)
𝑖 − 1

𝑁𝑠

∑

𝑖∈

(

𝐑𝑖𝐮
(𝑡+1)
𝑖 − 𝐫𝑘max

)

, 𝑘 = 0,… , 𝑁𝑝 − 1, (22a)

𝝀𝑘,(𝑡+1) =

[

𝝀𝑘,(𝑡) + 𝜌(𝑡) 1
𝑁𝑠

∑

𝑖∈

(

𝐑𝑖𝐮
(𝑡+1)
𝑖 − 𝐫𝑘max

)

]+

, 𝑘 = 0,… , 𝑁𝑝 − 1. (22b)

ADMM tends to push the subsystems towards primal feasibility due to the added regularization term. For inequality-constrained
problems, this can lead to a situation where the system-wide constraints are satisfied while the regularization term does not vanish.
However, the regularization term should vanish if the optimal dual variables are found, i.e., the dual variables found using ADMM
should result in a primal feasible solution for the unaugmented Lagrange function. Maxeiner [47] proposed to replace the update
of the auxiliary variables (22b) by an optimization problem,

𝐳(𝑡+1) = argmin
𝐳

𝑁𝑝−1
∑

𝑘=0

‖

‖

‖

‖

‖

∑

𝑖∈
𝐑𝑖𝐮

𝑘,(𝑡)
𝑖 − 𝐳𝑘𝑖

‖

‖

‖

‖

‖

2

2

, (23a)

s. t.
∑

𝑖∈
𝐳𝑘𝑖 ≤ 𝐫𝑘max, 𝑘 = 0,… , 𝑁𝑝 − 1. (23b)

Fig. 2 illustrates the effect of the update of the auxiliary variables. When using the update strategy (22b) ADMM converges to a
alue of the dual variables where optimizing the augmented Lagrange function results in a feasible resource utilization. However,

when the same dual variables are used to optimize the unaugmented Lagrange function, i.e., without the regularization term, the
onstraints on the shared limited resources are violated. Thus, ADMM does not converge to the optimal dual variables. This case
s shown for two resources in Figs. 2(a) and 2(b). When the auxiliary variables are updated according to (23) ADMM converges to

a dual optimal solution, i.e., a feasible solution for both the augmented and unaugmented Lagrange function. This is depicted in
Figs. 2(c) and 2(d). In the following the auxiliary variables are updated using (23).

4.2.4. Quasi-Newton dual ascent
Recently Yfantis et al. proposed the quasi-Newton dual ascent (QNDA) algorithm [2,3]. It is based on a quadratic approximation

of the dual function

𝑑(𝑡)𝐵 (𝝀𝑁𝑝
) = 1

2
(𝝀𝑁𝑝

− 𝝀(𝑡)𝑁𝑝
)𝑇𝐁(𝑡)(𝝀𝑁𝑝

− 𝝀(𝑡)𝑁𝑝
) + 𝐠𝑇 (𝝀(𝑡)𝑁𝑝

)(𝝀𝑁𝑝
− 𝝀(𝑡)𝑁𝑝

) + 𝑑(𝝀(𝑡)𝑁𝑝
), (24)

which is motivated by the fact that the dual function is always concave. The idea is similar to Newton methods. However, since
the dual function is nonsmooth no gradients or Hessians can be used in the approximation. Instead, subgradients are used and the
pproximated Hessian is updated in each iteration via the Broyden–Goldfarb–Shanno-Fletcher (BFGS) scheme,

𝐁(𝑡) = 𝐁(𝑡−1) +
𝐲(𝑡)𝐲(𝑡),𝑇

𝐲(𝑡),𝑇 𝐬(𝑡)
− 𝐁(𝑡−1)𝐬(𝑡)𝐬(𝑡),𝑇𝐁(𝑡−1),𝑇

𝐬(𝑡),𝑇𝐁(𝑡−1)𝐬(𝑡)
, (25)

where

𝐬(𝑡) = 𝝀(𝑡)𝑁𝑝
− 𝝀(𝑡−1)𝑁𝑝

(26)

is the variation of the dual variables and

𝐲(𝑡) = 𝐠(𝝀(𝑡)𝑁𝑝
) − 𝐠(𝝀(𝑡−1)𝑁𝑝

) (27)

is the variation of the subgradients. The approximated dual function is then optimized to update the dual variables.
The approximation 𝑑(𝑡)𝐵 (𝝀𝑁𝑝

) is a smooth quadratic function while the actual dual is nonsmooth. This can result in significant
approximation errors, especially at or near points of nondifferentiability. To overcome this issue bundle information (16) can be
used. In the case of BTM the bundle is used to build a piece-wise linear over-approximation of the dual function. In contrast, in
he QNDA algorithm it is used to construct cutting planes which are added as constraints to the update problem. A subgradient is
 normal vector to a supporting hyperplane of the dual function. Therefore, the constraint

𝑑(𝑡)𝐵 (𝝀(𝑡+1)𝑁𝑝
) ≤ 𝑑(𝝀(𝑙)𝑁𝑝

) + 𝐠𝑇 (𝝀(𝑙)𝑁𝑝
)(𝝀(𝑡+1)𝑁𝑝

− 𝝀(𝑙)𝑁𝑝
), ∀𝑙 ∈ {𝑡 − 𝜏 + 1,… , 𝑡}. (28)

is added to the update problem. This prevents the update from leaving the range of validity of the approximation. Constraints (28)
are referred to as bundle cuts and summarized as

(𝑡) 𝑛𝝀 (𝑡) (𝑙) 𝑇 (𝑙) (𝑙)
𝑑𝐵
= {𝝀𝑁𝑝

∈ R | 𝑑𝐵 (𝝀𝑁𝑝
) ≤ 𝑑(𝝀𝑁𝑝

) + 𝐠 (𝝀𝑁𝑝
)(𝝀𝑁𝑝

− 𝝀𝑁𝑝
), ∀𝑙 ∈ {𝑡 − 𝜏 + 1,… , 𝑡}}. (29)
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in the following. Yfantis et al. proposed to update the dual variables in each iteration by solving the optimization problem [2,3]

𝝀(𝑡+1)𝑁𝑝
= argmax

𝝀𝑁𝑝
𝑑(𝑡)𝐵 (𝝀𝑁𝑝

), (30a)

s. t. ‖𝝀𝑁𝑝
− 𝝀(𝑡)𝑁𝑝

‖

2
2 ≤ 𝛼(𝑡), (30b)

𝝀𝑁𝑝
∈ (𝑡)

𝑑𝐵
, (30c)

𝝀𝑁𝑝
≥ 𝟎. (30d)

Constraint (30b) represents the same trust region that is used in the BTM algorithm (17b). The bundle cuts (30c) sometimes result
in a slow convergence during the initial iterations of the algorithm. Therefore, they are only enforced within a certain distance to
the optimum depending on a user-defined threshold

‖𝐰𝑝(𝝀
(𝑡)
𝑁𝑝

)‖2 ≤ 𝜖𝑏 ⋅ ‖𝐰𝑝(𝝀
(0)
𝑁𝑝

)‖2. (31)

Problem (30) is a quadratically constrained quadratic program (QCQP). Numerical tests showed that it is more efficient to
reformulate the bundle cuts via an epigraph formulation:

𝝀(𝑡+1)𝑁𝑝
= argmax

𝝀𝑁𝑝 ,𝑣
𝑑(𝑡)𝐵 (𝝀𝑁𝑝

), (32a)

s. t. ‖𝝀𝑁𝑝
− 𝝀(𝑡)𝑁𝑝

‖

2
2 ≤ 𝛼(𝑡), (32b)

𝑑(𝑡)𝐵 (𝝀𝑁𝑝
) ≤ 𝑣 (32c)

𝑣 ≤ 𝑑(𝝀(𝑙)𝑁𝑝
) + 𝐠𝑇 (𝝀(𝑙)𝑁𝑝

)(𝝀(𝑡+1)𝑁𝑝
− 𝝀(𝑙)𝑁𝑝

), ∀𝑙 ∈ {𝑡 − 𝜏 + 1,… , 𝑡}, (32d)

𝝀𝑁𝑝
≥ 𝟎. (32e)

The newly introduced variable 𝑣 is an over-estimator of the approximated dual function 𝑑(𝑡)𝐵 (𝝀𝑁𝑝
) (32c). The bundle cuts can then

be formulated as linear constraints (32d), which leads to increased numerical robustness and faster convergence.
Preliminary numerical tests additionally showed that the QNDA algorithm tends to converge quickly to the vicinity of the

ptimum for the DMPC problems. However, it tends to oscillate near the optimum resulting in poor overall performance. To avoid
his issue the update strategy of the dual variables is switched to a constrained line search instead of using a trust region within a
ertain distance to the optimum,

𝐬(𝑡) = arg max
𝐬∈R𝑛𝝀 , ̂𝛼∈R 𝛼̂ , (33a)

s. t. 𝝀(𝑡) + 𝐬 ∈ (𝑡)
𝑑𝐵
, (33b)

𝐬 = 𝛼̂∇𝑑(𝑡)𝐵 (𝝀(𝑡)), (33c)

𝛼̂ ≤ 𝛼(𝑡), (33d)

𝝀(𝑡+1) =
[

𝝀(𝑡) + 𝐬(𝑡)
]+. (33e)

The update (33) essentially describes an update step in the direction of the gradient of the approximated dual function. Constraint
33b) ensures that the bundle cuts are satisfied, whereby the formulation (32c)–(32d) is employed. Constraint (33c) gives the search

direction. The step size is limited by constraint (33d), which replaces the trust region constraint. The dual variables are then updated
in the computed search direction and projected onto the positive orthant due to the nonnegativity constraints on the dual variables.
The update steps (33) are used if

‖𝐰𝑝(𝝀(𝑡))‖2 ≤ 𝜖𝑙 ⋅ ‖𝐰𝑝(𝝀(0))‖2, (34)

where 𝜖𝑙 has to be sufficiently small to ensure that the algorithm has reached the vicinity of the optimal dual variables.
The effect of the line search strategy is illustrated in Fig. 3. The evolution of the primal and dual residuals without a line search

s shown in Fig. 3(a). In comparison, the line search strategy (33) is employed in Fig. 3(b). This results in faster convergence in the
vicinity of the optimum.

4.3. Dual decomposition of dynamically coupled DMPC problems

For the sake of completeness, this section briefly demonstrates how dual decomposition can be applied to distributedly solve
MPC problems with coupled dynamics (4). Also for the sake of brevity, it is assumed that the subsystems are only coupled through

their states, i.e., 𝐁𝑖𝑗 = 𝟎 for 𝑖 ≠ 𝑗. First the subset 𝑖 ⊂  is defined which contains all neighbors of subsystem 𝑖, i.e., 𝐀𝑖𝑗 ≠ 𝟎, ∀𝑗 ∈ 𝑖.
Each subsystem 𝑖 can now be augmented by additional decision variables 𝐯𝑖𝑗 which represent a local copy of the states of a
neighboring subsystem 𝑗. With this, the system-wide problem (4) can be reformulated as
9 
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Fig. 3. Comparison of the convergence of the QNDA algorithm for a DMPC benchmark problem with and without the line search update (33). The plots show
the evolutions of the primal and dual residuals for a DMPC problem with 𝑁𝑠 = 20, 𝑛𝐱 = 3, 𝑛𝐮 = 2, 𝑛𝐮 = 2, 𝑁𝑝 = 15. The line search is used once the algorithm
eaches the vicinity of the optimum.

min
𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1 ,𝐯0∶𝑁𝑝

∑

𝑖∈

⎡

⎢

⎢

⎣

𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

𝑁𝑝−1
∑

𝑘=0
𝐽𝑖(𝐱𝑘𝑖 ,𝐮

𝑘
𝑖 )
⎤

⎥

⎥

⎦

, (35a)

s. t. 𝐱𝑘+1𝑖 = 𝐀𝑖𝑖𝐱𝑘𝑖 +
∑

𝑗∈𝑖

𝐀𝑖𝑗𝐯𝑘𝑖𝑗 + 𝐁𝑖𝐮𝑘𝑖 , ∀𝑖 ∈ ,

𝑘 = 0,… , 𝑁𝑝 − 1, (35b)

𝐱0𝑖 = 𝐱̃(𝑡0), ∀𝑖 ∈ , (35c)

𝐱𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐱𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝, (35d)

𝐮𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐮𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝 − 1, (35e)

𝐯𝑘𝑖𝑗 − 𝐱𝑘𝑗 = 𝟎, ∀𝑖 ∈ , 𝑗 ∈ 𝑖, 𝑘 = 0,… , 𝑁𝑝. (35f)

The subsystems in problem (35) are now coupled through the constraints (35f) for which dual variables 𝝀𝑘𝑖𝑗 , 𝑖 ≠ 𝑗, can be introduced.

he resulting individual Lagrange function for a subsystem 𝑖 can then be defined as

𝑁𝑝−1 𝑁𝑝
𝑖(𝐱
𝑘∶𝑁𝑝
𝑖 ,𝐮0∶𝑁𝑝−1

𝑖 , 𝐯0∶𝑁𝑝
𝑖𝑗 ,𝝀0∶𝑁𝑝

𝑖𝑗 ) = 𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

∑

𝑘=0
𝐽𝑖(𝐱𝑘𝑖 ,𝐮

𝑘
𝑖 ) +

∑

𝑘=0

∑

𝑗∈𝑖

[𝝀𝑘,𝑇𝑖𝑗 𝐯𝑘𝑖𝑗 − 𝝀𝑘,𝑇𝑗 𝑖 𝐱𝑘𝑖 ]. (36)
10 
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The system-wide MPC problem (35) can then be solved in a distributed manner by optimizing the individual Lagrange functions in
parallel and coordinating the solution via the dual variables.

5. Numerical analysis for DMPC problems

In this section, several DMPC benchmark problems are solved using the subgradient method, BTM, ADMM, and QNDA. The
generated benchmark problems have the structure of problem (5) with a reference tracking objective (2) and a terminal cost (3).
The objective function matrices were generated randomly as symmetric positive definite matrices,

𝐇𝐱𝑖 = 𝐇𝑓
𝐱𝑖 = 𝐍𝑇

𝐱𝑖
𝐍𝐱𝑖 ∈ R𝑛𝐱𝑖×𝑛𝐱𝑖 , (37)

𝐇𝐮𝑖 = 𝐍𝑇
𝐮𝑖
𝐍𝐮𝑖 ∈ R𝑛𝐮𝑖×𝑛𝐮𝑖 , (38)

where the elements of 𝐍𝐱𝑖 and 𝐍𝐮𝑖 were drawn from a normal distribution [𝐍𝐱𝑖 ]𝑙 ,𝑗 , [𝐍𝐮𝑖 ]𝑙 ,𝑗 ∈  (𝜇 = 0, 𝜎 = 1).
The system matrices 𝐀𝑖 were generated such that the resulting subsystems are stable. A discrete-time system is stable if all

eigenvalues of the matrix 𝐀𝑖 lie within the unit sphere [48]. The matrices were thus computed as

𝐀𝑖 = 𝐒𝑖𝐃𝑖𝐒−1𝑖 , (39)

where 𝐃𝑖 is a diagonal matrix containing the eigenvalues of the matrix 𝐀𝑖 drawn from a continuous uniform distribution [𝐃𝑖]𝑙 ,𝑙 ∈
𝑐 (−1, 1) while the elements of the matrix 𝐒𝑖 were drawn from the continuous uniform distribution 𝑐 (−3, 3). The elements of the
input matrix 𝐁𝑖 were drawn from the continuous uniform distribution 𝑐 (−2, 2).

The individual constraints were generated as intersections of ellipsoids around the origin,

𝑖 = {𝐱𝑖 ∈ R𝑛𝐱𝑖
| 𝐱𝑇𝑖 𝐆𝐱𝑖 ,𝑙𝐱𝑖 ≤ 𝑝2𝐱𝑖 ,𝑙 , 𝑙 = 1,… , 𝑛𝑐}, (40)

𝑖 = {𝐮𝑖 ∈ R𝑛𝐮𝑖
| 𝐮𝑇𝑖 𝐆𝐮𝑖 ,𝑙𝐮𝑖 ≤ 𝑝2𝐮𝑖 ,𝑙 , 𝑙 = 1,… , 𝑛𝑐}. (41)

The matrices 𝐆𝐱𝑖 ,𝑙 and 𝐆𝐮𝑖 ,𝑙 were generated in the same way as the objective matrices while the right-hand sided 𝑝𝐱𝑖 ,𝑙 and 𝑝𝐮𝑖 ,𝑙 were
drawn from the continuous uniform distribution 𝑐 (1, 5).

Ideally the reference trajectory 𝐱ref,0∶𝑁𝑝
𝑖 should be feasible. Therefore, the elements of the reference trajectory were drawn from

the continuous uniform distribution 𝑐 (−2, 2) at each time point until a feasible point was found, i.e., until 𝐱ref,𝑘
𝑖 ∈ 𝑖. The initial

state 𝐱̃(𝑡0) was generated in the same way.
The elements of the resource matrix 𝐑𝑖 were first drawn from the continuous distribution 𝑐 (1, 2). Afterward, they were altered

such that their sign was flipped or they were set to zero through the uniform discrete distribution 𝑑 [−1, 0, 1],

𝐑𝑖 = 𝐃𝑖◦𝐂𝑖 ∈ R𝑛𝐫×𝑛𝐮𝑖 , [𝐃𝑖]𝑙 ,𝑗 ∈ 𝑐 (1, 2), [𝐂𝑖]𝑙 ,𝑗 ∈ 𝑑 [−1, 0, 1]. (42)

This ensures that not all subsystems are connected to each resource network and that some produce while others consume certain
esources. The maximum resource utilization should be generated such that the decentralized solution, i.e., for 𝝀 = 𝟎, is infeasible,
hile the system-wide problem is feasible. To this end, the optimal input trajectory for the system-wide problem without the

esources constraints was first computed,

𝐮0∶𝑁𝑝−1,∗ = arg min
𝐱0∶𝑁𝑝 ,𝐮0∶𝑁𝑝−1

∑

𝑖∈

⎡

⎢

⎢

⎣

𝐽𝑓
𝑖 (𝐱

𝑁𝑝
𝑖 ) +

𝑁𝑝−1
∑

𝑘=0
𝐽𝑖(𝐱𝑘𝑖 ,𝐮

𝑘
𝑖 )
⎤

⎥

⎥

⎦

,

s. t. 𝐱𝑘+1𝑖 = 𝐀𝑖𝐱𝑘𝑖 + 𝐁𝑖𝐮𝑘𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝 − 1, (43a)

𝐱0𝑖 = 𝐱̃(𝑡0), ∀𝑖 ∈ , (43b)

𝐱𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐱𝑖 , ∀𝑖 ∈ , 𝑘 = 0,… , 𝑁𝑝, (43c)
𝐮𝑘𝑖 ∈ 𝑖 ⊂ R𝑛𝐮𝑖 , ∀𝑖 ∈ ,

𝑘 = 0,… , 𝑁𝑝 − 1. (43d)

Using the found optimal solution the optimal unconstrained resource utilization can be computed,

𝐫𝑘,∗ ∶=
∑

𝑖∈
𝐑𝑖𝐮

𝑘,∗
𝑖 , 𝑘 = 0,… , 𝑁𝑝 − 1. (44)

The maximum resource utilization was then computed by tightening the optimal unconstrained resource utilization,

[𝐫𝑘max]𝑙 = [𝐫𝑘,∗]𝑙 − 𝛽𝑘𝑙 |[𝐫
𝑘,∗]𝑙|, 𝑘 = 0,… , 𝑁𝑝 − 1, 𝑙 = 1,… , 𝑛𝐫 , 𝛽𝑘𝑙 ∈ 𝑐 (0, 0.2). (45)

After the maximum resource utilization was generated, the feasibility of the decentralized and the system-wide problem was
verified.

The number and size of the subproblems were varied as follows:

Number of subproblems: 𝑁 ∈ {5, 10, 20, 50},
𝑠

11 
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Table 1
Parameter settings of the distributed optimization algorithms for the DMPC benchmark problems.

Value Description Algorithms

𝝀(0) 𝟎 initial dual variables All
𝛼(0) 1 initial step size/trust region parameter SG, BTM, QNDA
𝑡max 500 maximum number of iterations All
𝜖𝑝 10−2 primal residual convergence tolerance All
𝜖𝑑 10−2 dual residual convergence tolerance All
𝜖𝑏 0.6 bundle cuts threshold QNDA
𝜖𝑙 10−2 line search threshold QNDA
𝜌(0) 10−3 initial regularization parameter ADMM
𝜏incr 1.25 see (21) ADMM
𝜏decr 1.1 see (21) ADMM
𝜇 10 see (21) ADMM
𝐳(0) 𝟎 initial auxiliary variables ADMM
𝜏 150 allowed age of data points BTM, QNDA
𝐁(0) −𝐈 Initial approximated Hessian QNDA

Number of states: 𝑛𝐱 ∈ {2, 3, 4, 5},
Number of inputs: 𝑛𝐮 ∈ {2, 3, 4, 5}, 𝑛𝐱 ≥ 𝑛𝐮
Number of resources: 𝑛𝐫 ∈ {2, 3, 4, 5}, 𝑛𝐮 ≥ 𝑛𝐫
Prediction horizon: 𝑁𝑝 ∈ {10, 15, 20}.

Each subsystem contains the same number of states and inputs, i.e., 𝑛𝐱𝑖 = 𝑛𝐱 , 𝑛𝐮𝑖 = 𝑛𝐮, ∀𝑖 ∈ . The number of state and input
constraints was set equal to the number of states, i.e., 𝑛𝑐 = 𝑛𝐱. Ten benchmark problems were generated for each combination
resulting in a total of 2400 DMPC problems.

All algorithms and DMPC subproblems were implemented in the programming language Julia [49] using the optimization toolbox
JuMP [50]. All DMPC subproblems were solved using the commercial solver Gurobi [51]. The update problem of BTM is guaranteed
to have a linear objective with affine and convex quadratic constraints, therefore it was solved using Gurobi. The update problems
of QNDA were solved using IPOPT [52]. All computations throughout were performed on a standard Laptop PC (Intel(R) Core(TM)
5-6200U CPU @ 2.30 GHz, 8 GB RAM).

To assess the efficiency of the different algorithms the computation time required for the solution of a distributed optimization
roblem was computed as [32]

𝑇comp = 𝑁iter ⋅ 𝑇comm +
𝑁iter
∑

𝑡=1
(𝑇 (𝑡)

update + max
𝑖∈

𝑇 (𝑡)
sub,𝑖), (46)

where 𝑁iter is the number of required iterations, 𝑇comm is the required communication time between the coordinator and the
subproblems, which is assumed to be constant, 𝑇 (𝑡)

update is the time required by the coordinator to update the dual variables in
iteration 𝑡 and 𝑇 (𝑡)

sub,𝑖 is the solution time of subproblem 𝑖 in iteration 𝑡. In a distributed optimization setting the subproblems can be
solved in parallel. Since the coordinator needs to collect the responses of all subproblems the time for updating the primal variables
n each iteration is dictated by the slowest subproblem. The communication time is set to 𝑇comm = 800 ms in the following.

5.1. Parameter settings for DMPC problems

The parameters for the DMPC problems were set by trial and error to achieve a good compromise between robustness and rate of
convergence. The initial step size parameter (SG)/ trust region parameter (BTM, QNDA) was set to 𝛼(0) = 1 and updated according
o

𝛼(𝑡) = 𝛼(0)

max{‖𝐰(0)
𝑝 ‖2,… , ‖𝐰(𝑡)

𝑝 ‖2}
. (47)

The ADMM algorithm exhibited divergence when tuned too aggressively. Therefore the initial regularization parameter was set
𝜌(0) = 10−3. The tuning parameters were set to 𝜏incr = 1.25, 𝜏decr = 1.1 and 𝜇 = 10. The bundle cuts threshold was set to 𝜖𝑏 = 0.6
(cf. Eq. (31)) and the threshold for the line search (33) was set to 𝜖𝑙 = 10−2 (cf. Eq. (34)). The age parameter for BTM and QNDA
was set to 𝜏 = 150. All algorithms were initialized with 𝝀(0) = 𝟎 and 𝐳(0)𝑖 = 𝟎, ∀𝑖 ∈  (for ADMM). The approximated Hessian for
he QNDA algorithm was initialized with the negative identity matrix. All algorithms were terminated after 𝑡max = 500 iterations or

when the primal and dual residuals reached the threshold 𝜖𝑝 = 𝜖𝑑 = 10−2. All parameters are summarized in Table 1.

5.2. Results for DMPC problems

The results of the distributed optimization of the DMPC benchmark problems are depicted in Fig. 4 and summarized in Table 2.
The results show that the ADMM and QNDA algorithms can solve almost all DMPC benchmark problems. While ADMM can solve
slightly more problems, the QNDA algorithm outperforms ADMM in terms of required iterations, computation time, and quality of
12 



V. Yfantis et al.

n

b

c
m
o

h
b

Results in Control and Optimization 17 (2024) 100495 
Fig. 4. Values of the primal residuals upon termination for the distributed MPC problems. Each data point represents the mean values of the converged problem
instances for a tuple (𝑁𝑠 , 𝑛𝐱 , 𝑛𝐮 , 𝑛𝐫 , 𝑁𝑝) (cf. Table B.3).

Table 2
Summary of the results for the distributed optimization
of the DMPC benchmark problems (mean values of the
converged instances only), 𝑡: mean number of iterations
until convergence, 𝑇comp: mean computation time of
converged runs (in s), ‖𝐰𝑝‖2: mean primal residual of
converged runs (×10−3), %𝑐 : percentage of converged
runs within 𝑡max iterations.

Algorithm 𝑡 𝑇comp ‖𝐰𝑝‖2 %𝑐

SG 42.83 𝟑𝟓.𝟐𝟒 8.18 80.96
BTM 273.83 228.17 7.09 57.58
ADMM 62.24 51.92 7.65 𝟗𝟗.𝟐𝟏
QNDA 𝟒𝟐.𝟔 38.31 𝟕.𝟎𝟕 98.21

found solutions. The subgradient method exhibits a similar number of required iterations for its converged runs as QNDA with a
better computation time due to the less expensive update steps. However, the subgradient method solves far fewer problems than
the ADMM and QNDA algorithms. BTM algorithm exhibits rather poor performance for the DMPC benchmark problems. A more
detailed summary of the results is given in Table B.3 in the appendix.

The considered DMPC problems are convex. Thus, the optimal duality gap, i.e., the difference between the optimal primal and
dual objectives, is zero. For nonconvex problems, such as mixed-integer programs, the optimal duality gap tends to decrease as the
umber of subsystems increases [53]. Additionally, the degree of nonsmoothness tends to decrease with an increase in the number

of subsystems [3,54]. In the case of the considered convex DMPC problems this results in higher-quality solutions being found
y the different algorithms, as illustrated in Fig. 5. Note that the convergence tolerance 𝜖𝑝 of the algorithms, i.e., the equivalent

to a feasibility tolerance, is chosen relatively large (cf. Table 1). The reason is that a low feasibility tolerance for the coupling
onstraints is usually not necessary in practice. Furthermore, algorithms like ADMM tend to converge quickly to solutions with
oderate tolerances, while requiring significantly more iterations to further improve them [44]. Fig. 5 shows that the distributed

ptimization algorithms tend to find solutions with tighter tolerances as the number of subsystems increases. Note that only the
mean values of the runs that actually converged are depicted.

Fig. 6 shows the mean number of iterations performed by the different algorithms for different numbers of subsystems to analyze
their scalability. It can be seen that in the case of the subgradient method and BTM the mean number of iterations increases as the
number of subsystems increases. In contrast, the number of iterations decreases or stays relatively consistent for ADMM and QNDA.
Furthermore, they require far fewer iterations, underlining their better efficiency and scalability. In contrast, Fig. 7 shows that the
number of resources does not have a substantial influence on the number of iterations.

Fig. 8 shows the results for the distributed optimization of a benchmark problem with three shared resources and a prediction
orizon of 15. i.e., 𝝀 ∈ R42. The subgradient method and QNDA exhibit the fastest convergence. ADMM exhibits a small oscillation
ut still converges quickly. The BTM algorithm exhibits significant oscillations and converges very slowly compared to the other

algorithms. However, Fig. 8(b) shows that the oscillations mainly take place in the vicinity of the optimal dual variables, indicating
that the resource utilization is sensitive to the change of the dual variables.
13 
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Fig. 5. Comparison of the mean primal residuals of converged runs for different numbers of subsystems.

Fig. 6. Comparison of the mean number of iterations performed by the different algorithms for different numbers of subsystems.

Fig. 7. Comparison of the mean number of iterations performed by the different algorithms for different numbers of resources.
14 
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Fig. 8. Results for a DMPC benchmark problem with 𝑁𝑠 = 10, 𝑛𝐱 = 5, 𝑛𝐮 = 5, 𝑛𝐫 = 3, 𝑁𝑝 = 15.

Fig. 9. Resource utilization upon termination for a DMPC benchmark problem with 𝑁𝑠 = 10, 𝑛𝐱 = 5, 𝑛𝐮 = 5, 𝑛𝐫 = 3, 𝑁𝑝 = 15.
15 
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Fig. 10. Results for a DMPC benchmark problem with 𝑁𝑠 = 50, 𝑛𝐱 = 4, 𝑛𝐮 = 4, 𝑛𝐫 = 2, 𝑁𝑝 = 10.

Fig. 11. Resource utilization upon termination for a DMPC benchmark problem with 𝑁𝑠 = 50, 𝑛𝐱 = 4, 𝑛𝐮 = 4, 𝑛𝐫 = 3, 𝑁𝑝 = 10.

Fig. 9 depicts the utilization of the shared limited resources upon the convergence of the distributed optimization algorithms for
he DMPC benchmark problem in Fig. 8. All algorithms converge to the same resource utilization, i.e., to the optimal dual variables.

The results in Table 2 show that the subgradient method exhibits similar performance to QNDA for its converged runs. However,
aggressive tuning is necessary to obtain this performance, which comes at the cost of robustness.

Fig. 10 shows the results for a DMPC benchmark problem with two shared resources and a prediction horizon of 10, i.e., 𝝀 ∈ R18.
he subgradient method is not able to converge as it exhibits extreme oscillations due to the aggressive step size parameter.

Compared to that, all other algorithms converge, with QNDA being the most efficient. Note that both the QNDA and BTM algorithms
mploy the same parameter as the subgradient method for their trust region and, in the case of the QNDA algorithm, for the line

search updates.
Fig. 11 shows the utilization of the shared limited resources for the DMPC benchmark problem in Fig. 10. The BTM, ADMM,

and QNDA algorithms converge to the optimal resource utilization. Fig. 11(b) shows that the subgradient method terminates with
n infeasible utilization of resource 2.
16 
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6. Conclusion

This paper demonstrated how dual decomposition-based distributed optimization can be applied to solve distributed MPC
problems that are coupled through shared limited resources. The recently proposed quasi-Newton dual ascent algorithm was
extended by an epigraph formulation for the bundle cuts and by a constrained line search update step in the vicinity of the optimum.
The efficiency of the algorithm was demonstrated on a large number of benchmark problems. While the ADMM algorithm was able
to solve the most benchmark problems and the subgradient method showed similar performance to QNDA for its converged runs,
the QNDA algorithm exhibits the best balance in terms of performance and robustness. Furthermore, the benchmarks showed that
ADMM and QNDA scale well with the number of subsystems, both in terms of the quality of the found solutions and the number of
equired iterations. The number of resources exhibited limited impact on the number of required iterations for all algorithms.

As shown in Section 4.3 dual decomposition can also be applied to DMPC problems where the subsystems are coupled through
heir dynamics. The creation of a comprehensive benchmark set and the evaluation of different algorithms for these types of
MPC problems can be investigated in the future. Furthermore, all systems considered in this paper were governed by linear
ynamics. As dual decomposition-based distributed optimization is an iterative hierarchical approach, i.e., many communication
ounds have to be performed until the control inputs for the next time step can be applied, it is most suitable for systems with slow
ynamics, which can usually be linearized without a significant loss of prediction accuracy. However, as the efficiency and robustness
f nonlinear optimization solvers increase, the use of nonlinear models in MPC is also increasing. Therefore, the application of
ual decomposition-based DMPC to systems with nonlinear dynamics and constraints should be further investigated. Nonlinear
odel predictive control (NMPC) problems are usually nonconvex, which in turn means that an optimal dual solution does not
ecessarily correspond to a feasible primal solution. In general, heuristics have to be used to obtain a feasible solution in the case
f dual decomposition-based distributed optimization with nonconvex subproblems. Nevertheless, the value of the dual function
till provides a lower bound on the objective value at the optimal primal solution. Finally, the literature is still lacking in real-life
ndustrial-scale DMPC benchmarks, especially with a large number of subsystems. While many aspects of distributed optimization
an be demonstrated in laboratory-scale benchmarks, the true impact of a coordination scheme can only be properly assessed when
pplied to a large-scale system.
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Appendix A. DMPC benchmark problems

All used benchmark problems are available at: https://github.com/VaYf/DMPC-Benchmark-Problems

Appendix B. Results of the DMPC benchmarks

The results for the DMPC benchmark problems are summarized in Table B.3.

Data availability

A link to the data used for this research is included in the manuscript.

Table B.3
Summary of the results for the distributed optimization of the DMPC benchmark problems (mean values of the converged
instances only), 𝑡: mean number of iterations until convergence, 𝑇comp: mean computation time of converged runs (in s), ‖𝐰𝑝‖2:
mean primal residual of converged runs (×10−3), %𝑐 : percentage of converged runs within 𝑡max iterations.

DMPC SG BTM

𝑡 ‖𝐰𝑝‖2 𝑇comp %𝑐 𝑡 ‖𝐰𝑝‖2 𝑇comp %𝑐

Mean 𝟒𝟐.𝟖𝟑 𝟖.𝟏𝟖 𝟑𝟓.𝟐𝟒 𝟖𝟎.𝟗𝟔 𝟐𝟕𝟑.𝟖𝟑 𝟕.𝟎𝟗 𝟐𝟐𝟖.𝟏𝟕 𝟓𝟕.𝟓𝟖

𝑁𝑠 = 5, 𝑛𝐫 = 2 75.96 8.92 62.18 83.33 248.51 5.8 206.64 83.0
𝑁𝑠 = 5, 𝑛𝐫 = 3 79.18 9.36 65.1 84.44 309.54 6.93 257.53 52.22
𝑁𝑠 = 5, 𝑛𝐫 = 4 81.44 9.38 67.24 93.33 373.43 8.34 310.17 31.11
𝑁𝑠 = 5, 𝑛𝐫 = 5 88.44 9.62 73.32 90.0 425.67 8.98 354.84 10.0

𝑁𝑠 = 10, 𝑛𝐫 = 2 47.38 8.63 38.91 88.67 244.71 7.19 203.75 86.67
𝑁𝑠 = 10, 𝑛𝐫 = 3 44.09 8.87 36.38 88.89 305.44 7.93 253.95 47.22
𝑁𝑠 = 10, 𝑛𝐫 = 4 39.2 9.05 32.4 92.22 389.08 7.9 323.86 27.78
𝑁𝑠 = 10, 𝑛𝐫 = 5 29.04 8.76 24.14 86.67 458.0 9.42 382.54 10.0

(continued on next page)
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Table B.3 (continued).
𝑁𝑠 = 20, 𝑛𝐫 = 2 26.87 7.65 22.07 84.33 261.61 7.38 218.46 84.33
𝑁𝑠 = 20, 𝑛𝐫 = 3 21.02 8.01 17.36 88.89 301.23 8.0 250.84 43.89
𝑁𝑠 = 20, 𝑛𝐫 = 4 18.73 8.12 15.53 90.0 399.12 7.4 332.71 26.67
𝑁𝑠 = 20, 𝑛𝐫 = 5 16.15 7.53 13.42 86.67 404.0 6.16 338.32 3.33

𝑁𝑠 = 50, 𝑛𝐫 = 2 21.98 6.21 18.12 65.0 249.21 6.86 208.35 70.67
𝑁𝑠 = 50, 𝑛𝐫 = 3 16.33 6.98 13.52 57.22 317.98 8.05 264.98 30.56
𝑁𝑠 = 50, 𝑛𝐫 = 4 15.56 6.5 12.92 67.78 431.18 8.16 360.08 12.22
𝑁𝑠 = 50, 𝑛𝐫 = 5 17.44 6.56 14.51 53.33 – – – –

DMPC ADMM QNDA

𝑡 ‖𝐰𝑝‖2 𝑇comp %𝑐 𝑡 ‖𝐰𝑝‖2 𝑇comp %𝑐

Mean 𝟔𝟐.𝟐𝟒 𝟕.𝟔𝟓 𝟓𝟏.𝟗𝟐 𝟗𝟗.𝟐𝟏 𝟒𝟐.𝟔 𝟕.𝟎𝟕 𝟑𝟖.𝟑𝟏 𝟗𝟖.𝟐𝟏

𝑁𝑠 = 5, 𝑛𝐫 = 2 68.5 9.22 56.33 95.33 38.93 7.48 35.09 92.0
𝑁𝑠 = 5, 𝑛𝐫 = 3 75.28 9.38 62.32 97.78 37.7 7.99 34.64 95.56
𝑁𝑠 = 5, 𝑛𝐫 = 4 78.77 9.32 65.7 100.0 30.11 7.8 27.28 97.78
𝑁𝑠 = 5, 𝑛𝐫 = 5 80.93 9.59 68.17 100.0 43.37 8.63 43.53 100.0

𝑁𝑠 = 10, 𝑛𝐫 = 2 60.5 8.86 49.88 99.67 30.63 7.41 26.58 98.0
𝑁𝑠 = 10, 𝑛𝐫 = 3 63.36 9.0 52.62 100.0 30.1 7.54 26.34 99.44
𝑁𝑠 = 10, 𝑛𝐫 = 4 66.06 9.09 55.35 100.0 40.56 7.93 36.68 100.0
𝑁𝑠 = 10, 𝑛𝐫 = 5 66.5 9.12 56.35 100.0 45.17 8.02 42.11 100.0

𝑁𝑠 = 20, 𝑛𝐫 = 2 54.66 7.5 45.24 100.0 29.46 6.79 25.41 99.67
𝑁𝑠 = 20, 𝑛𝐫 = 3 55.0 7.97 45.96 100.0 42.42 6.97 37.56 100.0
𝑁𝑠 = 20, 𝑛𝐫 = 4 55.2 8.28 46.63 100.0 62.19 7.11 57.37 100.0
𝑁𝑠 = 20, 𝑛𝐫 = 5 54.73 8.57 46.84 100.0 77.9 7.2 74.7 100.0

𝑁𝑠 = 50, 𝑛𝐫 = 2 57.15 3.88 47.82 100.0 41.31 6.15 36.06 100.0
𝑁𝑠 = 50, 𝑛𝐫 = 3 60.78 5.14 51.65 100.0 68.63 5.71 61.71 99.44
𝑁𝑠 = 50, 𝑛𝐫 = 4 61.62 5.42 53.29 100.0 82.43 6.49 77.11 100.0
𝑁𝑠 = 50, 𝑛𝐫 = 5 61.97 5.47 54.67 100.0 111.93 6.8 109.76 100.0
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