
Benchmarking Different QP Formulations and Solvers for Dynamic
Quadrupedal Walking

Franek Stark1 and Jakob Middelberg1,2 and Dennis Mronga1 and Shubham Vyas1,2 and Frank Kirchner1,2

Abstract— Quadratic Programs (QPs) are widely used in
the control of walking robots, especially in Model Predictive
Control (MPC) and Whole-Body Control (WBC). In both
cases, the controller design requires the formulation of a QP
and the selection of a suitable QP solver, both requiring
considerable time and expertise. While computational perfor-
mance benchmarks exist for QP solvers, studies comparing
optimal combinations of computational hardware (HW), QP
formulation, and solver performance are lacking. In this work,
we compare dense and sparse QP formulations, and multiple
solving methods on different HW architectures, focusing on
their computational efficiency in dynamic walking of four-
legged robots using MPC. We introduce the Solve Frequency
per Watt (SFPW) as a performance measure to enable a cross-
hardware comparison of the efficiency of QP solvers. We also
benchmark different QP solvers for WBC that we use for
trajectory stabilization in quadrupedal walking. As a result,
this paper provides recommendations for the selection of QP
formulations and solvers for different HW architectures in
walking robots and indicates which problems should be devoted
the greater technical effort in this domain in future.

I. INTRODUCTION

The development of quadrupedal robots has progressed
rapidly in recent years, and several platforms have now
reached a level of industrial maturity [1], [2], [3]. Apart
from advancements in actuation, the main progress has been
made on numerical methods for trajectory optimization, and
its online implementation Model Predictive Control (MPC).
At the ICRA 2022 conference, 68 % of the papers presented
at the legged robotics workshop covered receding horizon
control or MPC [4]. Today, the de facto standard approach
for legged locomotion comprises the planning of a contact
sequence, computing a corresponding Center of Mass (COM)
trajectory using MPC, and, finally, stabilizing the obtained
motion in real-time using Whole-Body Control (WBC) [5].

At the core of MPC, an optimal control problem has
to be solved, which is formulated as linearly constrained
Quadratic Program (QP). Solving constrained QPs is such
a fundamental problem in both, MPC and WBC, that a

This work was done in the AAPLE (grant number 50WK2275) and M-
Rock (grant number 01IW21002) projects funded by the German Federal
Ministry for Economic Affairs and Climate Action (BMWK) and the
Ministry of Education and Research (BMBF) and is supported with funds
from the federal state of Bremen for setting up the Underactuated Robotics
Lab (201-342-04-2/2024-4-1)

Special thanks goes to Hannah Isermann and Rohit Kumar for their
support in developing control software for quadrupedal walking.

1All authors are with the Robotics Innovation Center at the German
Research Center for Artificial Intelligence (DFKI), Bremen, Germany,
Corresponding author’s email: franek.stark@dfki.de

2Jakob Middelberg, Shubham Vyas, and Frank Kirchner are additionally
affiliated with the University of Bremen, Bremen, Germany

Fig. 1. Go2 quadruped [6] used for evaluation in a Volcanic field test in
an analogous scenario with limited onboard computing power.

huge amount of research has been devoted to developing
efficient and stable QP solvers, most of which are based on
the Active-set method (ASM), Interior-point method (IPM)
or Augmented Lagrangian Method (ALM). Each solver and
each method is best suited for specific applications, e.g.,
some solvers show their strengths with small QPs on em-
bedded systems [7], others are optimized for larger problems
that may arise in machine learning applications [8], [9],
and again others exploit the sparsity in the QP [10], [8],
a feature that can be advantageous in MPC applications.
Here, sparsity in the QP is characteristic due to diagonal
stacking of system state and control matrices over the entire
prediction horizon. To reduce the QP size, the state variables
can be eliminated as decision variables, leading to denser and
smaller matrices [11], a process that is known as condensing.
A great variety of problem formulations can be obtained by
partially condensing the QP, e.g., only eliminating half of
the state variables [12]. Special forms of condensed QPs
can be found in [11] and [13]. In the works that introduce
the current de facto standard of using MPC and WBC [13],
[14], the authors claim significant speed-up by removing
some constraints and state variables from the QP, leading
to a dense and compact formulation. However, according
to [12], sparse formulations are advantageous in MPC as
their computational and memory requirements grow linearly
with the prediction horizon (O(N)) if sparsity is exploited,
while for the dense variant, the computational cost is O(N3)
for IPM and O(N2) for ASM [15]. Given these seemingly
contradicting results, the effects of partial or full condensing
of the MPC problem with respect to the solver need to be
investigated more thoroughly.

There are several open-source benchmarks of QP
solvers [16], [17], which mostly use accuracy and solution
time as a benchmark. However, as legged systems are being



Fig. 2. Block diagram showing dynamic walking controller’s architecture

proposed for tasks such as space exploration [18], [19], other
metrics such as power consumption and required onboard
computing power become a critical factor for long-duration
autonomous missions. Fig. 1 illustrates the quadruped robot
during a space exploration field test on a volcano, where it
operates on limited battery capacity and onboard computing
power to carry out the exploration tasks. Despite the impor-
tance of energy constraints, the impact of QP formulation
(sparse, partially condensed, condensed) and the relation to
the prediction horizon, solver, and the computing hardware
(HW) on performance used has yet to be comprehensively
examined.

In this work, we focus on the application of dynamic
quadrupedal walking using MPC, which has so far produced
several specialized methods for QP formulation and solving,
to reduce computation time or increase the planning hori-
zon [20], [13], [14]. We employ the standard approach to
quadrupedal walking (contact planning, MPC, WBC) and
evaluate it on a Unitree Go2 robot [6]. The benchmark
involves (1) different QP formulations in MPC (sparse,
partially condensed, and fully condensed), (2) two HW ar-
chitectures (x86, ARM) with desktop and single-board target
computers, (3) various QP solvers, including different prin-
cipled methods for convex optimization, (4) different (dense)
QP solvers for WBC. To allow a cross-HW assessment of
solver efficiency, we introduce the Solve Frequency per Watt
(SFPW) metric to compare different solvers. As a result
of our benchmark, we recommend optimal combinations
of computing HW, problem sparsity, and QP solvers for
dynamic legged locomotion. The entire benchmark code,
including the quadruped controller, is made open source1.

The remaining paper is structured as follows. Section II
describes the dynamic walking controller, Section III the
experimental setup and the performance metrics used for
benchmarking. Section IV summarizes the results, with dis-
cussion in section V, and Section VI draws conclusions on
the benchmark.

1https://github.com/dfki-ric-underactuated-lab/d
fki-quad

II. DYNAMIC WALKING CONTROLLER

Our dynamic walking controller follows the general ap-
proach as described by [13] and [14] and is illustrated in
Fig. 2. It outputs joint commands (position, velocity, torque)
based on a target linear and rotational walking velocity and
body posture. The four sub-components of the controller run
in parallel at different control rates: (1) The Gait Sequencer
(GS) heuristically determines a gait sequence, containing the
foot contact plan and the robot’s target poses and velocities
for the respective time steps over the prediction horizon N,
based on the selected gait type and control target. (2) The
MPC calculates the optimal contact forces for the feet over
the prediction horizon to reach the target pose and velocity
specified in the gait sequence, assuming single rigid-body
dynamics (SRBD). (3) For the feet not intended for ground
contact in the current time step, the Swing Leg Controller
(SLC) computes the trajectory using a Bézier curve. (4) The
WBC computes the optimal joint accelerations and torques,
which achieve the given target positions and velocities for
the feet, the body posture/velocity and contact forces, taking
into account the whole-body dynamics. GS and MPC run
at 100 Hz, while SLC and WBC run at 500 Hz. The largest
computing load is generated by MPC and WBC, which both
require solving QPs in real-time. These two components are
detailed in the following.

A. Model Predictive Control

1) Formulation: The MPC with N prediction steps is
formulated as the following convex optimization problem:

min
X,U

N

∑
k=1

(xk −xd
k )

T Q (xk −xd
k )+uT

k−1 R uk−1 (1a)

s.t. xk+1 = Axk +Bkuk, k = 0 . . .N −1 (1b)

f j
m,k ≤ f j

k ≤ f j
M,k, ∀ j, k = 0 . . .N −1 (1c)

|f j
k · ên| ≤ µf j

k · êz, ∀n ∈ {x,y} ,∀ j, k = 0 . . .N −1 (1d)
x0 = x̄ (1e)

The decision variables xk ∈ X,uk ∈ U, denote the prediction
of the state and control input k steps ahead at the current
time step, Q is the diagonal state error cost matrix, R is
the diagonal input cost matrix, and xd

k the target state from
GS. The equality constraint (1b) formulates the linearized
system dynamics in world coordinates. The state vector x ∈
R13 contains the system’s base orientation, position, linear,
angular velocity, and the gravity constant. The control input
u ∈ R12 is a vector containing the four leg input forces f j ∈
R3, where j ∈ {1,2,3,4} is the leg index. The state matrix A
is linearized around the current state x̄. The input matrix Bk ∈
R13×12 consists of four R13×3 blocks, mapping the respective
feet contact force onto the system’s state, depending on the
planned contacts. The bounding-box constraint (1c) limits
the contact force to a maximum f j

M,k, enforces a minimum
contact force f j

m,k and sets it to zero if the respective leg j is
scheduled for swing phase at predicted step k. The constraint
(1d) keeps the contact forces within a linearized friction cone

https://github.com/dfki-ric-underactuated-lab/dfki-quad
https://github.com/dfki-ric-underactuated-lab/dfki-quad


with coefficient µ , where êx, êy, and êz denote the standard
unit vectors. The equality constraint (1e) sets the initial state
to the current estimated state x̄.

2) Partial Condensing: Classically, MPC problems are
formulated into a dense QP by eliminating all state variables
(except the initial state) as the state can be expressed as a
function of the previous state and the input in LTI systems.
This work follows the idea of [12], implemented by [21],
where the number of eliminated state variables can be
specified. For this purpose, the original prediction horizon N
is divided into Np blocks, each containing several consecutive
states. The idea is that in each block, all states but the first
one are eliminated by the system dynamics. Following this
approach, a partially condensed QP is formulated, which can
be interpreted as another MPC problem with a prediction
horizon of Np, enlarged input matrix, and input vector, but
fewer states and dynamic constraints. Further details can be
found in [21].

B. Whole-Body Control

We use a variant of the WBC in [22] to stabilize the
quadrupedal walking. The WBC considers the full system
dynamics and solves for the joint accelerations q̈ ∈ R18 and
contact forces u ∈ R12 in a single QP:

min
q̈,u

∥∑
i

wi(Jiq̈+ J̇iq̇− v̇i
d)∥2 +∥w f (ud −u)∥2 (2a)

s.t. Hq̈+h = JT
c u (2b)

Jcq̈ =−J̇cq̇ (2c)

|f j · ên| ≤ µf j · êz,∀n ∈ {x,y} , f j · êz > 0, ∀ j (2d)

τm ≤ S−1 (Hq̈+h−JT
c u

)
≤ τM (2e)

where wi is the weight, Ji ∈ R6×18 the Jacobian, and v̇i
d ∈

R6 the desired spatial acceleration for the i-th positioning
task. The v̇i

d for the respective tasks are generated by PD-
controllers to stabilize the body and feet trajectories produced
by the MPC and SLC. Further ud ∈ R12 the desired contact
forces, as optimized by the MPC in (1), i.e. ud = uk=0. The
WBC can correct it to account for the full system dynamic.
The amount of correction is specified by the diagonal weight
matrix w f . The constraint (2b) considers the rigid body
dynamics, where H ∈ R18×18,h ∈ R18,Jc ∈ R12×18 are the
mass-inertia matrix, bias vector, and contact Jacobian. Note
that we consider only the floating base dynamics here , as
we do not have torques as optimization variables in the
QP. The constraint (2c) ensures that the feet’ contacts are
rigid and slip-free, while (2d) prevents the contact forces
from leaving the linearized friction cones, where µ is the
friction coefficient. Finally, (2e) ensures that the torque limits
[τm,τM] are respected, where S ∈ R18×12 is the actuator
selection matrix. Note that in (2e) we use the subscript a to
account only for the actuated joints. In contrast to [14], we
use a weighting scheme for prioritization, as it is the common
choice in WBC and is thus better for benchmarking. The
resulting joint accelerations q̈ are integrated twice and the
joint torques are computed from q, q̇, q̈ by inverse dynamics.

TABLE I
TARGET COMPUTERS USED FOR COMPARISON.

Arch. CPU Cores RAM

Jetson Orin NX ARM64 AA78AEv8.2 8@2 GHz 16 GB
LattePanda Alpha x86-64 M3-8100Y 2@3.4 GHz 8 GB

Desktop PC x86-64 i9-10900K 10@3.7 GHz 16 GB

As alternative approach, we formulate the joint torques as
additional optimization variables and solve for them directly
in the QP. This leads to a larger QP, but avoids additional
inverse dynamics computations. We refer to this approach as
full TSID here, while (2) is called reduced TSID.

III. EXPERIMENTAL SETUP

A. Performance Metrics

Two different metrics are used to compare the performance
of the QP solvers: (1) The solve time is the duration required
for the solvers to solve the respective QP. (2) The Solve
Frequency per Watt (SFPW), which we introduce to assess
the efficiency of the respective QP solvers independent of the
computational HW. This metric is inspired by the FLOPS per
Watt measure, employed by the Green500 list of the world’s
most power-efficient supercomputers [23]:

SFPW =
solve time−1

CPU power consumption

[
Hz
W

]
(3)

On x86, the Intel RAPL Interface determines the CPU
power consumption. For the ARM, the tegrastats utility
is used. The CPU power consumption is sampled at 10 Hz.

The three target computers are listed in Table I. The Jetson
Orin NX and LattePanda Alpha are single-board computers
suitable for installation on the quadruped due to their low
power consumption and small form factor.

B. Implementation and Solvers

We use the Unitree Go2 quadruped [6] for experimental
evaluation. It is simulated using the Drake toolbox [24]. The
controller is implemented using ROS 2.

The MPC is implemented using the QP interface of the
acados framework [25]. It interfaces to a set of state-of-
the-art QP solvers, including HPIPM [10], which provides
the (partial) condensing routines from [21]. The WBC is
implemented in the ARC-OPT framework [26], [27], which
also comes with a set of QP solvers and different WBC im-
plementations, including the full and reduced TSID described
in Section II-B. Table II lists all solvers that are considered
in this work. A sparse interface means that a solver uses the
sparse MPC formulation as input and potentially exploits
these. In addition, the degree of sparsity of these solvers
can be controlled via the partial condensation routines. Some
solvers only accept the fully dense MPC formulation as in-
put, which means that comparison in terms of sparsity is not
possible. We recognize that adjusting the hyperparameters,
albeit time-consuming, can further improve performance.



TABLE II
QP SOLVERS COMPARED IN THIS WORK

Solver Method Interface MPC WBC

HPIPM [10] IPM Sparse, Dense ✓ ✓

OSQP [8] ADMM∗ Sparse ✓

qpOASES [7] parametric ASM Dense ✓ ✓

DAQP [28] dual ASM Dense ✓

Eiquadproq [29] dual ASM† Dense ✓

PROXQP [30] ALM Dense ✓

∗Variant of ALM, †Algorithm of Goldfarb and Idnani [31]

However, all solvers are used with the standard hyperparam-
eters to ensure better comparability. The qpOASES solver
is used with the MPC option set. The HPIPM solver has
predefined modes that adapt the underlying IPM algorithm.
Here, the modes balanced and speed abs are used and treated
as two different solvers. While the first mode provides more
accurate results, the second focuses on speed [10], which
is more suitable for smaller systems and is equivalent to the
HPMPC solver [32]. All solvers are warm-started if possible.

C. Problem Sizes

For comparison, we choose a short (N = 10) and medium
(N = 20) MPC prediction horizon. The QP dimension for
both MPC and WBC are shown in Table III. For the
MPC solvers with sparse interfaces, this work compares all
condensing levels such that the prediction horizon of the
condensed QPs are Np ∈ {N,N − 1, . . . ,1}. The prediction
horizon of the original MPC is thereby evenly distributed
into different blocks of size ⌊ N

Np
⌋. If N is not an integer

multiple of Np, the remainder of N
Np

is distributed to the
foremost blocks (one per block). The final state is always
left out during partial condensing and stays at size 1. For
the MPC solvers with the dense interface, the QP is fully
condensed (including the terminal state), which is equivalent
to partial condensing with Np = 0. Note that the size of the
constraint matrices in WBC will change dynamically when
changing the contacts during walking.

TABLE III
QP PROBLEM SIZES

Decision- Constraints
variables Equality Inequality

WBC Red. TSID 30 18 28
WBC Full TSID 42 30 28

MPC original N = 10 263 143 280
MPC original N = 20 513 273 360

MPC condensed
13Np +12N 13Np +13 28N

+ 13

D. Test Scenarios

Two distinct scenarios are evaluated for each test case.
In the first scenario, the controller performs a trotting gait,

executing various velocity profiles with a total duration of
≈40 s. This induces dynamic motions with speeds up to
0.5 ms−1 and rotational velocities up to 40 ◦ s−1. In the
second scenario the quadruped remains in standing mode,
while responding to commanded body roll, pitch, and yaw
movements up to ±30◦, as well as height adjustments of
±10 cm. Here, the total duration is ≈20 s. If the robot falls,
the attempt is repeated twice before the test case is counted
as a failure. The dynamic simulation is run on a different
computer in real time as to not affect the measurements.

IV. EXPERIMENTAL RESULTS

A. MPC Solve Time Analysis

The mean MPC solve time for the different solvers, target
platforms and condensing levels for the trotting experiment is
depicted in Fig. 3. The plotted time includes the condensing
time, which is less than 1 ms. Overall, solve time increases
with increasing density of the QP. For N = 20, the dense
formulation takes too long to solve for certain solvers leading
to failed experiments, as indicated by red circles in Fig. 3. For
the sparse solvers that support different levels of condensing
(HPIPM, OSQP), for Np ≤ N

2 the solve time increases
exponentially with higher density, while it is approximately
constant for Np >

N
2 . The dense solvers (qpOASES, DAQP)

perform better for fully condensed QPs, but are outperformed
by solvers that exploit sparsity. As expected, all solvers show
lower solve times for N = 10 than for N = 20. For all
computer architectures, condensing levels, and horizons, the
best-performing solver is HPIPM speed abs. For N = 20, the
second-fastest solver is OSQP, followed by HPIPM balance,
although the difference is marginal on x86 systems. DAQP
and qpOASES are much slower for this prediction horizon.
For N = 10, however, both qpOASES and DAQP perform
almost as well as OSQP with Np = 20 (sparse problem).
The x86 desktop architecture is the fastest among the target
systems compared, with HPIPM speed abs achieving sub-
ms solve times. The Jetson and the LattePanda perform
similarly, with the LattePanda being only slightly faster.
To compare the MPC solve time between different test
scenarios (standing, trotting), we use the normalized solve
time histograms for all solvers on all computer architectures
(see Fig. 4). The histograms show that the mean solve time
is less for the standing scenario than for trotting on all
solvers. The most significant differences can be seen in
DAQP, OSQP and qpOASES, where the histogram peaks
are separated from each other. This effect is most prominent
for qpOASES. For the individual scenarios in themselves,
the solution times for HPIPM are approximately normally
distributed, while they show two significant peaks for the
other solvers in trotting. When comparing target computers,
the slowest system (LattePanda) shows the highest variance
in solve times.

B. WBC Solve Time Analysis

Fig. 5 shows the total computation time for one WBC
cycle (set up time for the QP + solve time) using different
solvers and two different WBC types. The set up time



0 2 4 6 8 10 12 14 16 18 20

0.001

0.01

0.1

sparse →←  dense

0 2 4 6 8 10 12 14 16 18 20

sparse →←  dense

0 2 4 6 8 10 12 14 16 18 20

sparse →←  dense

Condensed size Np

M
PC

 m
ea

n 
so

lv
e 

tim
e 

(s
)

Jetson Orin Desktop LattePanda

MPC solver

DAQP HPIPM
(balance)

HPIPM
(speed_abs) OSQP qpOASES

Prediction horizon

N=10 N=20
 

Exp. failed

Fig. 3. Mean MPC solution time for all solvers, target platforms and condensation levels for N = 20 and N = 10 in the trotting experiment. The qpOASES
and DAQP solvers only show single points, as no comparison of condensation levels is possible here. Note that higher Np means the QP is sparser.

0

1

0

1

0

1

0

1

2 4 6
0

1

0.5 1.0 1.5 2.0 2 4 6
MPC solve time (ms)

N
or

m
al

iz
ed

 c
ou

nt

Jetson Orin Desktop LattePanda

DAQP
(dense)

                   

HPIPM
balance
(sparse)

                   

HPIPM
speed_abs
(sparse)

                   

OSQP
(sparse)

                   

qpOASES
(dense)

                   

Standing Trotting

Fig. 4. Histogram of the MPC (N = 10) solve times for selected solvers
on all target platforms for dynamic trotting compared to standing.

for the QP is solver-independent and thus not considered
here separately. The plots show that the Eiquadprog solver
performs best in all comparisons. However, all solvers show
a rather low computation time with < 0.5ms on average.
The computation time is slightly larger for the full TSID, as
compared to the reduced TSID formulation on average.

C. Efficiency Analysis

Table IV shows the efficiency (measured in Solve Fre-
quency per Watt (SFPW)) of different solvers in dynamic
trotting over different target computers, planning horizons

0.0 0.1 0.2 0.3 0.4 0.5

Je
ts

on
 O

rin
D

es
kt

op
La

tte
Pa

nd
a

0.0 0.1 0.2 0.3 0.4 0.5
Mean WBC total time (ms)

Ta
rg

et
 c

om
pu

te
r

Reduced TSID Full TSID

Eiquadprog HPIPM PROXQP qpOASES

Fig. 5. Computation time for different solvers using the reduced and full
TSID WBC in the trotting scenario.

(N = 10 and N = 20), and WBC formulations. The most
efficient solver per target computer is marked in bold.
The results the show that the efficiency of the solvers per
target system scales inversely with the solve time. Therefore,
HPIPM speed abs has the highest efficiency on all systems
for MPC and Eiquadprog in case of the WBC.

When comparing the efficiency of the three target com-
puters, the Jetson Orin performs best: In case of MPC, it is
more than twice as efficient as the LattePanda and around
three times as efficient as the desktop PC. In case of WBC,
it is roughly four times faster than the others.

V. DISCUSSION
The experimental results provide valuable insights into

the performance of different solvers in dynamic quadrupedal
walking regarding (1) sparsity, (2) variance over different
tasks, and (3) HW efficiency.



TABLE IV
EFFICIENCY OF MPC AND WBC SOLVERS ON DIFFERENT HW

Mean SFPW (HzW−1)

Jetson Orin Desktop LattePanda

M
PC

N
=

10

DAQP 77.47 17.41 24.69
HPIPM balance (sparse) 70.08 22.01 26.75
HPIPM speed abs (sparse) 159.40 50.80 66.65
OSQP (sparse) 90.35 17.68 24.22
qpOASES 93.94 18.70 25.33

N
=

20

DAQP 8.82 1.20 2.64
HPIPM balance (sparse) 22.35 7.50 8.80
HPIPM speed abs (sparse) 67.30 23.19 31.06
OSQP (sparse) 42.79 8.58 11.77
qpOASES 11.36 2.46 2.20

W
B

C Fu
ll

T
SI

D

Eiquadprog 958.93 212.66 257.58
HPIPM 576.14 177.92 200.99
Proxqp 795.34 190.80 216.11
qpOASES 713.63 142.82 180.80

R
ed

.T
SI

D Eiquadprog 1259.37 304.99 319.45
HPIPM 753.73 198.35 234.55
Proxqp 954.99 231.86 265.41
qpOASES 977.83 238.09 263.70

a) Sparsity: For larger QPs, as they occur in MPC,
sparse formulations, when tackled by sparse solvers, gener-
ally seem to be advantageous over dense formulations. This
effect becomes more significant with increasing prediction
horizon. Here, condensing the QP and solving it has the
opposite effect: the solution time increases significantly. This
finding is in line with the theory of [21] and [12] that in
MPC, if the input vector has almost the same size as the
state vector, the fully sparse formulation is a good choice.
For robots with fewer control inputs, however, condensing
could improve performance. The results also indicate that
for even smaller prediction horizons than N = 10 or smaller
formulations, as in [13], ASM solvers such as qpOASES
could be advantageous. The MPC problem analyzed here
seems to be at the limit of the problem size where ASM is
outperformed by other methods. It should also be considered
that the HPIPM speed abs solver, which outperforms the
other solvers even at N = 10, does not provide accurate
results for some applications. In the case of WBC, where
significantly smaller problems are considered, the dense
solvers and especially ASM perform well for the reduced
formulation. The results for the full TSID formulation show
that if the problem gets bigger, other methods such as IPM
could indeed be considered as an option. In contrast to MPC,
the choice of the QP solver is not of great relevance for
WBC problems. Instead, efforts should be directed towards
researching robust and stable QP formulations for WBC.

b) Variance over different tasks: The comparison of
different motion tasks shows that in static cases such as
standing, the ASM-based solvers, especially qpOASES, has

a lower solve time than when trotting. This is in line
with the general finding that ASM benefit from a stable
problem structure, as the active-set can be warm-started [33],
[34]. The same finding applies to OSQP. IPM solvers, here
HPIPM, show a certain robustness against changing problem
structures, as already stated by [10]. In contrast to all other
solvers, HPIPM does not exhibit a second peak in the solve
time histogram while the robot is trotting. The compromise
could be that, for robot tasks where the problem is very
dynamic, IPM provides constant performance, while for in
static tasks ASM or ALM might be advantageous.

c) HW efficiency: The comparison of the different
computer architectures shows that the solution times of the
Jetson Orin and the Latte Panda are comparable, while
the desktop delivers significantly faster solutions. However,
the efficiency measurement shows that the faster solution
times come at the expense of power consumption, resulting
in a comparable efficiency for both x86 systems, with the
LattePanda being more efficient in the range of 10HzW−1

depending on the prediction horizon and selected solver. On
the other hand, the Jetson Orin is at least twice as efficient as
the Desktop, and for the fastest solver and N = 10 even up to
three times as efficient. This makes the Jetson Orin and ARM
an ideal platform for applications with energy constraints,
which is almost always the case in legged robotics.

VI. CONCLUSIONS

This work describes a benchmark for QP solvers in MPC
and WBC in dynamic quadrupedal walking. The benchmark
involves different QP formulations (sparse to dense), several
solvers, robot tasks and HW architectures.

From this work’s findings, three main conclusions follow:
(1) For MPC, sparse solvers and especially solvers based
on IPM (here HPIPM) perform best in dynamic quadrupedal
walking and should be considered especially for long predic-
tion horizons. These solvers also show certain robustness to
changing problem structures, e.g., when changing contacts
or between different tasks, and are therefore better suited
for dynamic quadrupedal walking than other methods. (2)
In WBC, any of the regarded open-source solvers performs
well; the engineering effort should rather be put into the for-
mulation of the WBC problem itself. (3) ARM architecture
(here Jetson Orin) shows better efficiency than x86 when
considering the Solve Frequency per Watt as a metric. Thus,
they should be preferred in resource-constrained applications
like autonomous quadrupedal walking.

Future work includes extending the benchmark to other
HW architectures (e.g. CUDA), additional solvers to verify
the results obtained, and possibly more complex systems
(e.g. humanoids) to investigate the impact of system com-
plexity on performance.

REFERENCES

[1] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso,
V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Bloesch,
H. Kolvenbach, M. Bjelonic, L. Isler, and K. Meyer, “ANYmal -
toward legged robots for harsh environments,” Advanced Robotics,
vol. 31, no. 17, pp. 918–931, Sept. 2017, publisher: Taylor



& Francis eprint: https://doi.org/10.1080/01691864.2017.1378591.
[Online]. Available: https://doi.org/10.1080/01691864.2017.1378591

[2] B. Dynamics, “Boston Dynamics Spot,” 2024. [Online]. Available:
https://bostondynamics.com/products/spot/

[3] G. Robotics, “Ghost Robotics VISION 60,” 2024. [Online]. Available:
https://www.ghostrobotics.io/vision-60

[4] S. Katayama, M. Murooka, and Y. Tazaki, “Model predictive control
of legged and humanoid robots: models and algorithms,” Advanced
Robotics, vol. 37, no. 5, pp. 298–315, Mar. 2023, publisher: Taylor
& Francis eprint: https://doi.org/10.1080/01691864.2023.2168134.
[Online]. Available: https://doi.org/10.1080/01691864.2023.2168134

[5] J. Carpentier and P.-B. Wieber, “Recent Progress in Legged
Robots Locomotion Control,” Current Robotics Reports, vol. 2,
no. 3, pp. 231–238, Sept. 2021. [Online]. Available: https:
//doi.org/10.1007/s43154-021-00059-0

[6] U. Robotics, “Unitree Go2 Quadruped.” [Online]. Available:
https://www.unitree.com/go2

[7] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and
M. Diehl, “qpOASES: a parametric active-set algorithm for quadratic
programming,” Mathematical Programming Computation, vol. 6,
no. 4, pp. 327–363, Dec. 2014. [Online]. Available: https:
//doi.org/10.1007/s12532-014-0071-1

[8] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An Operator Splitting Solver for Quadratic Programs,”
Mathematical Programming Computation, vol. 12, no. 4, pp.
637–672, Dec. 2020, arXiv:1711.08013 [math]. [Online]. Available:
http://arxiv.org/abs/1711.08013

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends® in Machine
Learning, vol. 3, no. 1, pp. 1–122, July 2011, publisher: Now
Publishers, Inc. [Online]. Available: https://www.nowpublishers.com/
article/Details/MAL-016

[10] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic
programming framework for model predictive control*,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 6563–6569, Jan. 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2405896
320303293

[11] J. L. Jerez, E. C. Kerrigan, and G. A. Constantinides, “A sparse and
condensed QP formulation for predictive control of LTI systems,”
Automatica, vol. 48, no. 5, pp. 999–1002, May 2012. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0005109
812001069

[12] D. Axehill, “Controlling the level of sparsity in MPC,” Systems &
Control Letters, vol. 76, pp. 1–7, Feb. 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167691114002680

[13] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive
Control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2018, pp. 1–9, iSSN: 2153-0866.
[Online]. Available: https://ieeexplore.ieee.org/document/8594448

[14] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly
Dynamic Quadruped Locomotion via Whole-Body Impulse Control
and Model Predictive Control,” Sept. 2019, arXiv:1909.06586 [cs].
[Online]. Available: http://arxiv.org/abs/1909.06586

[15] D. Dimitrov, A. Sherikov, and P.-B. Wieber, “A sparse model
predictive control formulation for walking motion generation,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sept. 2011, pp. 2292–2299, iSSN: 2153-0866. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6095035

[16] S. Caron, A. Zaki, P. Otta, D. Arnström, J. Carpentier, and
F. Yang, “qpbenchmark: Benchmark for quadratic programming
solvers available in Python,” Feb. 2024. [Online]. Available:
https://github.com/qpsolvers/qpbenchmark

[17] C. C. Attila Kozma and M. Diehl, “Benchmarking large-scale
distributed convex quadratic programming algorithms,” Optimization
Methods and Software, vol. 30, no. 1, pp. 191–214, 2015. [Online].
Available: https://doi.org/10.1080/10556788.2014.911298

[18] A. Spiridonov, F. Buehler, M. Berclaz, V. Schelbert, J. Geurts,
E. Krasnova, E. Steinke, J. Toma, J. Wuethrich, R. Polat,
W. Zimmermann, P. Arm, N. Rudin, H. Kolvenbach, and M. Hutter,
“SpaceHopper: A Small-Scale Legged Robot for Exploring Low-
Gravity Celestial Bodies,” Mar. 2024, arXiv:2403.02831 [cs]. [Online].
Available: http://arxiv.org/abs/2403.02831

[19] P. Arm, R. Zenkl, P. Barton, L. Beglinger, A. Dietsche, L. Ferrazzini,
E. Hampp, J. Hinder, C. Huber, D. Schaufelberger, F. Schmitt,
B. Sun, B. Stolz, H. Kolvenbach, and M. Hutter, “SpaceBok: A
Dynamic Legged Robot for Space Exploration,” in 2019 International
Conference on Robotics and Automation (ICRA). Montreal, QC,
Canada: IEEE, May 2019, pp. 6288–6294. [Online]. Available:
https://ieeexplore.ieee.org/document/8794136/

[20] Y. Ding, A. Pandala, and H.-W. Park, “Real-time Model Predictive
Control for Versatile Dynamic Motions in Quadrupedal Robots,” in
2019 International Conference on Robotics and Automation (ICRA),
May 2019, pp. 8484–8490, iSSN: 2577-087X. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8793669

[21] G. Frison, D. Kouzoupis, J. B. Jørgensen, and M. Diehl, “An
efficient implementation of partial condensing for Nonlinear Model
Predictive Control,” in 2016 IEEE 55th Conference on Decision
and Control (CDC), Dec. 2016, pp. 4457–4462. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7798946

[22] A. Del Prete, N. Mansard, O. E. Ramos, O. Stasse, and F. Nori,
“Implementing Torque Control with High-Ratio Gear Boxes and
Without Joint-Torque Sensors,” International Journal of Humanoid
Robotics, vol. 13, no. 01, p. 1550044, Mar. 2016. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/S02198436155004
49

[23] S. Hemmert, “Green HPC: From Nice to Necessity,” Computing in
Science & Engineering, vol. 12, no. 6, pp. 8–10, Nov. 2010. [Online].
Available: http://ieeexplore.ieee.org/document/5624674/

[24] R. Tedrake and Drake-Development-Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[25] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“acados—a modular open-source framework for fast embedded
optimal control,” Mathematical Programming Computation, vol. 14,
no. 1, pp. 147–183, Mar. 2022. [Online]. Available: https:
//doi.org/10.1007/s12532-021-00208-8

[26] D. Mronga, “ARC-OPT: Adaptive Robot Control using Optimization,”
Sept. 2024. [Online]. Available: https://github.com/ARC-OPT/wbc/

[27] D. Mronga, S. Kumar, and F. Kirchner, “Whole-Body Control of
Series-Parallel Hybrid Robots,” in 2022 International Conference on
Robotics and Automation (ICRA), May 2022, pp. 228–234. [Online].
Available: https://ieeexplore.ieee.org/document/9811616

[28] D. Arnstrom, A. Bemporad, and D. Axehill, “A Dual Active-Set
Solver for Embedded Quadratic Programming Using Recursive
LDL$ˆ{T}$ Updates,” IEEE Transactions on Automatic Control,
vol. 67, no. 8, pp. 4362–4369, Aug. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9779534/

[29] G. Buondonno, “eiquadprog,” Toulouse, France, Oct. 2019, original-
date: 2019-10-08T19:39:57Z. [Online]. Available: https://github.com
/stack-of-tasks/eiquadprog

[30] A. Bambade, S. El-Kazdadi, A. Taylor, and J. Carpentier, “PROX-
QP: Yet another Quadratic Programming Solver for Robotics and
beyond,” in Robotics: Science and Systems XVIII. Robotics:
Science and Systems Foundation, June 2022. [Online]. Available:
http://www.roboticsproceedings.org/rss18/p040.pdf

[31] D. Goldfarb and A. Idnani, “A numerically stable dual method
for solving strictly convex quadratic programs,” Mathematical
Programming, vol. 27, no. 1, pp. 1–33, Sept. 1983. [Online].
Available: https://doi.org/10.1007/BF02591962

[32] G. Frison, H. H. B. Sørensen, B. Dammann, and J. B. Jørgensen,
“High-performance small-scale solvers for linear Model Predictive
Control,” in 2014 European Control Conference (ECC), June 2014,
pp. 128–133. [Online]. Available: https://ieeexplore.ieee.org/abstract
/document/6862490

[33] S. Kuindersma, F. Permenter, and R. Tedrake, “An Efficiently
Solvable Quadratic Program for Stabilizing Dynamic Locomotion,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA), May 2014, pp. 2589–2594, arXiv:1311.1839 [cs]. [Online].
Available: http://arxiv.org/abs/1311.1839

[34] R. Bartlett, A. Wachter, and L. Biegler, “Active set vs. interior point
strategies for model predictive control,” in Proceedings of the 2000
American Control Conference. ACC (IEEE Cat. No.00CH36334),
vol. 6, June 2000, pp. 4229–4233 vol.6, iSSN: 0743-1619. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/877018

https://doi.org/10.1080/01691864.2017.1378591
https://bostondynamics.com/products/spot/
https://www.ghostrobotics.io/vision-60
https://doi.org/10.1080/01691864.2023.2168134
https://doi.org/10.1007/s43154-021-00059-0
https://doi.org/10.1007/s43154-021-00059-0
https://www.unitree.com/go2
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1007/s12532-014-0071-1
http://arxiv.org/abs/1711.08013
https://www.nowpublishers.com/article/Details/MAL-016
https://www.nowpublishers.com/article/Details/MAL-016
https://www.sciencedirect.com/science/article/pii/S2405896320303293
https://www.sciencedirect.com/science/article/pii/S2405896320303293
https://www.sciencedirect.com/science/article/pii/S0005109812001069
https://www.sciencedirect.com/science/article/pii/S0005109812001069
https://www.sciencedirect.com/science/article/pii/S0167691114002680
https://www.sciencedirect.com/science/article/pii/S0167691114002680
https://ieeexplore.ieee.org/document/8594448
http://arxiv.org/abs/1909.06586
https://ieeexplore.ieee.org/abstract/document/6095035
https://github.com/qpsolvers/qpbenchmark
https://doi.org/10.1080/10556788.2014.911298
http://arxiv.org/abs/2403.02831
https://ieeexplore.ieee.org/document/8794136/
https://ieeexplore.ieee.org/abstract/document/8793669
https://ieeexplore.ieee.org/abstract/document/7798946
https://www.worldscientific.com/doi/abs/10.1142/S0219843615500449
https://www.worldscientific.com/doi/abs/10.1142/S0219843615500449
http://ieeexplore.ieee.org/document/5624674/
https://drake.mit.edu
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://github.com/ARC-OPT/wbc/
https://ieeexplore.ieee.org/document/9811616
https://ieeexplore.ieee.org/document/9779534/
https://github.com/stack-of-tasks/eiquadprog
https://github.com/stack-of-tasks/eiquadprog
http://www.roboticsproceedings.org/rss18/p040.pdf
https://doi.org/10.1007/BF02591962
https://ieeexplore.ieee.org/abstract/document/6862490
https://ieeexplore.ieee.org/abstract/document/6862490
http://arxiv.org/abs/1311.1839
https://ieeexplore.ieee.org/abstract/document/877018

	INTRODUCTION
	DYNAMIC WALKING CONTROLLER
	mpc
	Formulation
	Partial Condensing

	wbc

	EXPERIMENTAL SETUP
	Performance Metrics
	Implementation and Solvers
	Problem Sizes
	Test Scenarios

	EXPERIMENTAL RESULTS
	mpc Solve Time Analysis
	WBC Solve Time Analysis
	Efficiency Analysis

	DISCUSSION
	CONCLUSIONS
	References

