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Abstract
Contextualized embeddings based on large
language models (LLMs) are available for
various languages, but their coverage is
often limited for lower resourced languages.
Using LLMs for such languages is often
difficult due to a high computational cost;
not only during training, but also during
inference. Static word embeddings are much
more resource-efficient ("green"), and thus
still provide value, particularly for very
low-resource languages. There is, however,
a notable lack of comprehensive repositories
with such embeddings for diverse languages.
To address this gap, we present GrEmLIn, a
centralized repository of green, static baseline
embeddings for 87 mid- and low-resource
languages. We compute GrEmLIn em-
beddings with a novel method that enhances
GloVe embeddings by integrating multilingual
graph knowledge, which makes our static
embeddings competitive with LLM repre-
sentations, while being parameter-free at
inference time. Our experiments demonstrate
that GrEmLIn embeddings outperform
state-of-the-art contextualized embeddings
from E5 on the task of lexical similarity. They
remain competitive in extrinsic evaluation
tasks like sentiment analysis and natural
language inference, with average performance
gaps of just 5-10% or less compared to
state-of-the-art models, given a sufficient
vocabulary overlap with the target task, and
underperform only on topic classification. Our
code and embeddings are publicly available at
https://github.com/d-gurgurov/
GrEmLIn-Green-Embeddings-LRLs1.

1 Introduction
Word embedding methods have revolutionized
natural language processing (NLP) by captur-
ing semantic relationships between words using

1All vectors are available on Huggingface as single model
pages. Each page starts with DFKI/glove.

co-occurrence statistics from large text corpora
(Mikolov et al., 2013a; Pennington et al., 2014; Bo-
janowski et al., 2017). This data-driven approach
has significantly improved performance across nu-
merous NLP tasks (Lample et al., 2017; Xie et al.,
2018; Almeida and Xexéo, 2019).

While contextual representations like the ones
based on BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and GPT (Radford et al., 2019)
nowadays provide better performance than static
embeddings in many tasks, their training is com-
putationally expensive (Strubell et al., 2019; Bom-
masani et al., 2021) and ineffective for data-scarce
languages due to their data hunger and the curse
of multilinguality (Conneau et al., 2020). Some
approaches of efficient adaptation of especially
large language models (LLMs) to languages other
than English have been investigated in recent years
(Pfeiffer et al., 2020; Vykopal et al., 2024). How-
ever, even such approaches still require hardware
during runtime, as embeddings need to be com-
puted based on a forward pass for each new text
that is processed. This is often prohibitive in low-
resource (hardware) scenarios, and inefficient in
terms of energy use. Also, such approaches are of-
ten not tailored to low-resource languages.

In contrast, static word embeddings continue
to play a crucial role in specific tasks such as
bias detection and removal (Gonen and Goldberg,
2019; Manzini et al., 2019), explaining word vec-
tor spaces (Vulić et al., 2020b; Bommasani et al.,
2020), and information retrieval (Yan et al., 2018).
Static word embeddings have the advantage of
being parameter-free at inference time, as no
neural network needs to be loaded for comput-
ing such representations; just a dictionary lookup
is required. This makes them both attractive
for low-resource hardware scenarios, and much
more environment-friendly (Strubell et al., 2019;
Dufter et al., 2021). Existing resources for multi-
ngual embedding data bases (Ferreira et al., 2016;

https://github.com/d-gurgurov/GrEmLIn-Green-Embeddings-LRLs
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Bojanowski et al., 2017; Grave et al., 2018a) often
suffer from limited scope and outdated data, po-
tentially worsening their ability to capture the dy-
namic nature of language and adequately support
low-resource languages. We want to fill this gap by
providing GrEmLIn, a large database of static
word embeddings for 87 mid- and low-resource
languages.

As for LLMs, the training of word embeddings
suffers from the lack of high-quality data in low-
resource languages (to a smaller degree). Incor-
porating other types of data for improving word
representations is thus beneficial especially for
low-resource languages. Knowledge graphs pro-
vide such an alternative to textual knowledge, with
rich semantic and multilingual sources of infor-
mation, including synonyms, antonyms, morpho-
logical forms, definitions, etimological relations,
translations, and more (Miller, 1995; Navigli and
Ponzetto, 2012; Speer et al., 2017). Such struc-
tured and cross-lingual information can be used to
improve the quality of classical word representa-
tions (Faruqui et al., 2014; Sakketou and Ampazis,
2020), which are only trained on co-occurence
statistics.

To that end, we propose a new simple yet effec-
tive method for including graph information into
word embeddings based on Mikolov et al. (2013b).
We learn a projection matrix to map static embed-
dings to a combined space, effectively overcoming
the limitations of retrofitting approaches that only
enhance a limited vocabulary. This method com-
bines the strengths of traditional word embeddings
with the structured, multilingual information from
knowledge graphs, resulting in more accurate and
informative representations.

In summary, our contributions in this work are
two-fold: First, we present GrEmLIn, a central-
ized resource of static word embeddings for 87
mid- and low-resource languages, specifically fo-
cusing on word embeddings trained with GloVe
(Pennington et al., 2014). Second, we propose an
effective method to improve embeddings by incor-
porating more knowledge in the form of multilin-
gual knowledge graphs, which is especially impor-
tant for low-resource languages, where resources
are usually very scarce. Our code is publicly avail-
able on GitHub2.

2https://github.com/d-gurgurov/
GrEmLIn-Green-Embeddings-LRLs

2 Related Work

We briefly describe the most prominent graph
knowledge sources, word embeddings, and ex-
isting methods for improving embeddings with
graphs.
Graph knowledge sources. Among most used
knowledge graphs for natural language are Word-
Net (Miller, 1995) and BabelNet (Navigli and
Ponzetto, 2012). WordNet is a lexical database
that organizes English words into sets of synonyms
called synsets, providing short definitions and us-
age examples. BabelNet is a multilingual ency-
clopedic dictionary and semantic network, which
integrates lexicographic and encyclopedic knowl-
edge from WordNet, Wikipedia, etc., focused on
named entities. In our work, we use Concept-
Net (Speer et al., 2017), a multilingual, domain-
general knowledge graph that connects words and
phrases from various natural languages with la-
beled, weighted edges representing relationships
between terms. Unlike other knowledge graphs,
ConceptNet is not a monolingual collection of
named entities but focuses on commonly used
words and phrases across multiple languages.
Word embeddings. Word2Vec (Mikolov et al.,
2013a) uses shallow neural networks to produce
word vectors. It comes in two types: Continuous
Bag of Words (CBOW) and Skip-gram. CBOW
predicts a word given its context, while Skip-
gram predicts the context given a word. GloVe
(Global Vectors for Word Representation) (Pen-
nington et al., 2014) word embeddings are created
by aggregating global word-word co-occurrence
statistics from a corpus. The resulting vectors
capture both local and global semantic relation-
ships. FastText (Bojanowski et al., 2017) ex-
tends Word2Vec by representing words as bags
of character n-grams, capturing subword informa-
tion and handling out-of-vocabulary words more
effectively. FastText is particularly useful for mor-
phologically rich languages. Numberbatch, part
of the ConceptNet project (Speer et al., 2017), is
a set of word embeddings that integrates knowl-
edge from ConceptNet with distributional seman-
tics from GloVe and Word2Vec. Numberbatch
uses a retrofitting approach (Faruqui et al., 2014)
to enhance embeddings with structured semantic
knowledge. Retrofitting often results in a limited
vocabulary for underrepresented languages (Speer
and Lowry-Duda, 2017) since the retrofitting pro-
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cess relies on existing semantic relationships in
ConceptNet to adjust the original embeddings.
Improving Embeddings with Knowledge
Graphs. There are various methods to improve
word embeddings by incorporating external
knowledge graphs or semantic networks (Dieudo-
nat et al., 2020). Retrofitting (Faruqui et al.,
2014) is a post-processing technique that adjusts
pre-trained word embeddings using information
from knowledge graphs or semantic lexicons. The
key idea is to infer new vectors that are close
to their original embeddings while also being
close to their neighbors in the graph or lexicon.
This is achieved by minimizing an objective
function that balances the distance between the
new vectors and the original embeddings, as
well as the distance between connected nodes.
Expanded retrofitting (Speer et al., 2017), used
for ConceptNet Numberbatch, optimizes over
a larger vocabulary including terms from the
knowledge graph not present in the original
embeddings, but it still does not retrofit all the
words in the original embedding space. Other
existing methods that integrate contextualized
embeddings with knowledge graph embeddings
often use attention mechanisms, as demonstrated
by works such as Peters et al. (2019), Zhang
et al. (2019), and Gurgurov et al. (2024). These
methods specifically enhance BERT embeddings
by incorporating external knowledge bases.
3 Method

We propose a method for merging GloVe em-
beddings with graph-based embeddings derived
from ConceptNet knowledge, while preserving the
vocabulary size of GloVe, following two steps:
First, we use singular value decomposition (SVD)
(Eckart and Young, 1936) on concatenated word
embeddings from GloVe and pointwise mutual in-
formation (PMI) based graph embeddings (Speer
et al., 2017) to generate a shared embedding space.
We do so for the part of the vocabulary that is
shared between GloVe and the knowledge graph.
Second, we learn a linear transformation from
GloVe into this joined space to obtain embeddings
for all words in the original GloVe vocabulary.
3.1 GloVe Embeddings
We train GloVe embeddings using the origi-
nal code. The model is trained by stochasti-
cally sampling nonzero elements from the co-

occurrence matrix over 100 iterations, to produce
300-dimensional vectors. We use a context win-
dow of 10 words to the left and 10 words to the
right. Words with fewer than 5 co-occurrences are
excluded for languages with over 1 million tokens
in the training data, and the threshold is set to 2
for languages with smaller datasets. We use data
from CC1003 (Wenzek et al., 2020; Conneau et al.,
2020) for training the static word embeddings. We
set 𝑥𝑚𝑎𝑥 = 100, 𝛼 = 3

4 , and use AdaGrad optimiza-
tion (Duchi et al., 2011) with an initial learning rate
of 0.05.
3.2 Graph Embeddings
To build ConceptNet-based word embeddings, we
follow the method used for constructing Concept-
Net Numberbatch embeddings (Speer et al., 2017).
We represent the ConceptNet graph as a sparse,
symmetric term-term matrix, where each cell is the
sum of the occurences of all edges connecting the
two terms. Unlike the original method, we do not
discard terms connected to fewer than three edges,
as we deal with low-resource languages.

We calculate embeddings from this matrix
by applying pointwise mutual information (PMI)
with context distributional smoothing of 0.75,
clipping negative values to yield positive PMI
(PPMI), which follows practical recommendations
by (Levy et al., 2015). We then reduce the dimen-
sionality to 300 using truncated SVD and combine
terms and contexts symmetrically to form a single
matrix of word embeddings, called ConceptNet-
PPMI. This matrix captures the overall graph
structure of ConceptNet.

We compute ConceptNet-PPMI embeddings for
the entire ConceptNet, covering 304 languages,
which we call PPMI (All). Further, we con-
struct separate graph embedding spaces, PPMI
(Single), for each language, using only the portion
of ConceptNet for that language. This approach is
adopted since the initial co-occurence matrices for
individual languages are less sparse while still be-
ing multilingual in nature.
3.3 Singular Value Decomposition (SVD)
We first concatenate GloVe and PPMI vectors for
all words that are in the shared vocabulary, re-
sulting in 600-dimensional vectors4. Afterwards,
we reduce the dimensionality and remove some

3https://huggingface.co/datasets/cc100
4PPMI embeddings are normalized to be in the range of

the Glove embeddings
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of the variance coming from redundant features.
The matrix 𝑀 representing merged GloVe and
ConceptNet-PPMI can be approximated with a
truncated SVD:

𝑀 ≈ 𝑈Σ𝑉 𝑇

where Σ is truncated to a 𝑘′ × 𝑘′ diagonal ma-
trix of the 𝑘′ largest singular values, and 𝑈 and 𝑉
are correspondingly truncated to have only these 𝑘′
columns. 𝑈 is then used as a matrix mapping the
original vocabulary to a smaller set of features5.
3.4 Linear Transformation
To obtain embeddings for the entire vocabulary
from the original GloVe embedding space (i.e. not
only the common words), we find a linear pro-
jection matrix between the spaces and project the
GloVe embeddings onto the merged embedding
space, similar to Mikolov et al. (2013c), using a
gradient descent optimization on a linear regres-
sion model.

Given a set of word pairs and their associated
vector representations {𝑥𝑖, 𝑧𝑖}𝑛𝑖=1, where 𝑥𝑖 ∈ ℝ𝑑1

is the GloVe representation of word 𝑖, and 𝑧𝑖 ∈ ℝ𝑑2

is the PPMI representation from ConceptNet, our
goal is to find a transformation matrix 𝑊 such that
𝑊 𝑥𝑖 approximates 𝑧𝑖.

𝑊 can be learned by solving the following op-
timization problem:

min
𝑊

𝑛
∑

𝑖=1
‖𝑊 𝑥𝑖 − 𝑧𝑖‖

2

which we solve as a linear regression problem with
stochastic gradient descent optimization.

The resulting projection matrix is used to project
the GloVe embeddings onto the merged embed-
ding space.
4 Experiments

In this section, we describe the selected languages,
tasks, and experiments conducted to evaluate the
effectiveness of our proposed method.
4.1 Languages
We trained GloVe embeddings for 87 languages
from the CC100 dataset (Wenzek et al., 2020), fo-
cusing on languages categorized as low-resource

5We dismiss the weighting of 𝑈 by the singular values
from Σ, which was noted to work better for semantic tasks
(Levy et al., 2015)

(class 0 to 3) based on Joshi et al.’s classifica-
tion (2020). For 72 of these languages, present in
both CC100 and ConceptNet, we generated addi-
tional graph embeddings. The merging process in-
volves enhancing the original GloVe embeddings
with graph knowledge via SVD-reduced PPMI in-
tegration. Further details about these languages,
including common vocabulary size between GloVe
and ConceptNet, can be found in Part C of the Ap-
pendix.
4.2 Evaluation Data
We assess the embeddings using both intrinsic and
extrinsic evaluation tasks. The intrinsic evaluation
is performed using the MultiSimLex dataset (Vulić
et al., 2020a), which provides manually annotated
data on semantic similarity consisting of 1888 ex-
amples across 12 languages, 4 of which overlap
with our work. This task focuses on measuring
the strength of similarity between word pairs (e.g.,
"lion – cat") independently of relatedness, making
it a good test for how well embeddings capture se-
mantic similarity.

For extrinsic evaluations, we focus on three
downstream NLP tasks: Sentiment Analysis (SA),
Topic Classification (TC), and Natural Language
Inference (NLI). Due to the limited availability of
intrinsic datasets for most low-resource languages,
we prioritize these tasks to reflect real-world use
cases, where high-quality word embeddings are
crucial.

For SA, we compile data for 23 languages from
multiple open sources, prioritizing mid- and low-
resource languages for broader coverage across
typological families. The details of these data
sources are listed in Table 7 in the Appendix.
Some datasets, such as those for Swahili, Nepali,
Uyghur, Latvian, Slovak, Slovenian, Uzbek, Bul-
garian, Yoruba, Bengali, Hebrew, and Telugu, are
highly imbalanced in terms of class distribution.
To mitigate this, we apply random undersampling
to create a balanced version of the datasets. This
step allows for a more robust comparison of the
embeddings’ performance in low-data settings.

We further evaluate the embeddings on the TC
task using the SIB-200 dataset (Adelani et al.,
2024). It offers multilingual data for topic classi-
fication, covering 200 languages, and was specifi-
cally designed to improve natural language under-
standing for under-resourced languages. Our ex-
periments cover 57 languages, chosen based on
their availability in both ConceptNet and CC100.



The task is framed as a multi-label classification
with the data distributed along 7 different classes.
The dataset provides predefined train, validation
and test splits, which consist of 701, 99, and 204
examples, respectively.

Lastly, we evaluate the embeddings on the NLI
task, using the XNLI dataset (Conneau et al.,
2018). The XNLI dataset provides multilingual
NLI examples for 15 languages, and for our exper-
iments, we selected 5 of these languages: Swahili,
Urdu, Greek, Thai, and Bulgarian. These lan-
guages were selected based on the availability of
our GloVe, PPMI-enhanced embeddings, and the
NLI dataset. Evaluating embeddings on the NLI
task tests their ability to understand logical rela-
tionships between sentence pairs, an important ca-
pability for higher-level NLU tasks. Due to the
simplicity of our models, we only utilize valida-
tion and test splits, consisting of 2,490 and 5,010
examples, respectively, for training and testing, ex-
cluding the original training split of nearly 400,000
examples.
4.3 Experimental Setup
We evaluate the embeddings using a Support
Vector Machine (SVM) classifier (Boser et al.,
1992) for all extrinsic tasks—SA, TC, and
NLI—reporting macro-averaged F1 scores for fair
comparison. For the intrinsic MultiSimLex task,
we use Spearman’s Rank Correlation (Spearman,
1961) to assess how well the embeddings’ similar-
ity predictions align with human annotations.

For extrinsic tasks, sentence representations are
constructed by summing word embeddings, which
is a standard approach in NLP (Mikolov et al.,
2013d; Bowman et al., 2015; Williams et al.,
2018), and then used as input features for the SVM.
The SVM model is trained with a Radial Basis
Function (RBF) kernel, which is commonly used
for nonlinear classification problems. The regular-
ization parameter 𝐶 is fixed at 1 for GloVe-based
embeddings, balancing the trade-off between max-
imizing the margin and minimizing classification
errors. This setup minimizes the impact of hyper-
parameters on the resulting scores.

For the NLI task, sentence representation fol-
lows the same method as above, but with an added
step. We concatenate the sentence embeddings of
the two input sentences (premise and hypothesis)
to form the final input representation for the SVM.
This approach enables the model to capture the re-
lationship between the two sentences.

As for baselines, we use three strong pre-trained
models:

• FastText (Grave et al., 2018b), a word embed-
ding model that extends the traditional skip-
gram model by representing words as bags of
character n-grams, allowing it to effectively
handle out-of-vocabulary words.

• XLM-R-base (Conneau et al., 2020), a
transformer-based multilingual model. We
obtain sentence embeddings by summing the
model’s last hidden states.

• E-5-base (Wang et al., 2024), a state-of-the-
art multilingual sentence embedding model
known for its strong performance in multi-
lingual tasks. This serves as a high-quality
benchmark for our comparisons.

For the XLM-R-base and E-5 embeddings, we
adjust the regularization parameter 𝐶 to 100. This
adjustment accounts for the higher dimensionality
of these embeddings, as lower 𝐶 values constrain
their performance.
5 Results

We distinguish between static and contextualized
embeddings by first comparing the static embed-
dings against each other, and then comparing them
to the contextualized ones. The results from E-5-
B are provided for reference but cannot be directly
compared to our static embeddings due to the rea-
sons outlined in Section 6.
5.1 Semantic Similarity
We evaluate the performance of the embeddings on
the lexical semantics task using the MultiSimLex
dataset, focusing on 4 languages: Estonian, Welsh,
Swahili, and Hebrew.

As shown in Table 1, the GloVe+PPMI (Sin-
gle) embeddings achieve the highest correlation
scores for 3 out of 4 languages, demonstrating
their ability to capture semantic similarities. For
Swahili, FastText achieves the best result, al-
though GloVe+PPMI remains competitive. In
contrast, contextual embeddings such as XLM-
R-base struggle in this intrinsic evaluation task,
achieving lower correlation scores across all lan-
guages, which supports Vulić et al. (2020a). E-5
performs better than XLM-R but does not surpass
the best-performing static embeddings.



Co
v. ISO Contextualized Static

E-5-B X-B FT G GP(S) GP(A)

>9
0% et .19 .03 .447 .341 .452 .422

he .218 .057 .426 .336 .436 .429
Avg. .204 .044 .437 .339 .444 .426

<9
0% cy .112 .039 .346 .276 .366 .357

sw .212 .011 .408 .24 .319 .324
Avg. .162 .003 .377 .258 .343 .341
All avg. .183 .034 .407 .298 .393 .383

Table 1: Spearman’s correlation scores on MultiSimLex across 4 languages, for E-5-B, XLM-R-B, FastText, GloVe
(G), GloVe + PPMI (GP), Single and All, sorted by GloVe vocabulary coverage. The horizontal solid line separates
languages with over 90% coverage (above) from those with less (below). Bold numbers indicate the maximum per
line, for static and contextualized.

These results underscore the continued rele-
vance of graph-enhanced static embeddings in lex-
ical semantic tasks, particularly for low-resource
languages where training data may be scarce.

5.2 Sentiment Analysis

We evaluate the performance of the proposed
GloVe+PPMI embeddings on the SA task for
23 mid- and low-resource languages. Table 2
presents the results for this task. Our find-
ings show that both GloVe+PPMI (Single) and
GloVe+PPMI (All) embeddings consistently out-
perform the original GloVe embeddings across
most languages. GloVe+PPMI (Single) improves
performance for 19 out of 23 languages, while
GloVe+PPMI (All) improves results for 18 out of
23 languages when compared to GloVe.

When comparing GloVe with FastText embed-
dings, we observe that GloVe outperforms Fast-
Text in 12 out of 23 languages, with some lan-
guages showing comparable results.

In contrast, XLM-R-base performs better than
all static embedding configurations for 9 out of
23 languages, and E-5 outperforms most static
embedding variants. While this underscores the
power of contextualized models, the enhanced
GloVe+PPMI embeddings remain competitive,
with a drop of only 5% in performance, espe-
cially in low-resource settings. This suggests that
static embeddings, when enriched with multilin-
gual graph knowledge, remain competitive and
provide a lightweight and efficient zero-parameter
alternative for resource-constrained environments.

5.3 Natural Language Inference
In the NLI task using the XNLI dataset, we again
observe consistent improvements in performance
with the enhanced GloVe embeddings (Table 3).
While GloVe outperforms FastText for only 2 out
of 5 languages, the use of PPMI (Single) and PPMI
(All) results in better performance for all 5 lan-
guages.

In comparison, XLM-R performs better than
the static embedding variants for 1 out of the
5 languages, and E-5 outperforms all models in
all languages. While transformer models like
XLM-R excel in capturing complex semantic re-
lationships between sentences, the performance of
GloVe+PPMI remains competitive, with a drop of
only 6% given a sufficient vocabulary overlap, es-
pecially in improving sentence-level reasoning and
inference capabilities in low-resource languages.
5.4 Topic Classification
The results of the topic classfication task using
the SIB-200 dataset are the only results where the
contextualized models seem to have a clear ad-
vantage. The drop for a vocabulary coverage of
over 95% is only at 10%, but over all languages
the drop averages at 20% when comparing the best
contextualized with the best static model (Table
4). GloVe embeddings outperform FastText for 27
out of 57 languages, using GloVe+PPMI (Single)
boosts performance for 37 out of 57 languages, and
GloVe+PPMI (All) enhances performance for 48
out of 57 languages.

XLM-R gives better performance than all static
embedding configurations for only 24 out of 57
languages, but E-5 performs better than all static
embeddings, showcasing some strengths of con-



Co
v. ISO Contextualized Static

E-5-B X-B FT G GP(S) GP(A)
>9

0%

ka .9 .845 .855 .861 .87 .861
sl .881 .832 .743 .749 .779 .788
ro .926 .872 .803 .805 .85 .847
Avg. .902 .85 .8 .805 .833 .832

>8
0%

he .929 .811 .782 .788 .824 .822
si .895 .831 .846 .848 .85 .857
sw .773 .665 .697 .68 .701 .714
ug .881 .61 .792 .746 .811 .811
lv .801 .74 .749 .783 .787 .787
te .854 .831 .798 .806 .808 .817
sk .911 .854 .73 .756 .806 .805
mr .912 .886 .888 .903 .905 .902
bg .884 .721 .793 .786 .801 .805
mk .817 .736 .682 .716 .711 .7
Avg. .866 .769 .776 .781 .8 .802

<8
0%

su .855 .829 .805 .798 .822 .812
am .861 .782 .815 .881 .86 .88
ne .666 .519 .666 .643 .674 .688
da .972 .927 .895 .863 .908 .903
uz .858 .807 .822 .808 .806 .806
bn .938 .837 .889 .875 .881 .878
ur .818 .757 .678 .676 .746 .745
az .787 .762 .75 .744 .746 .745
cy .834 .795 .798 .77 .789 .801
yo .764 .634 .696 .721 .709 .738

Avg. .835 .765 .781 .778 .794 .8

All avg. .857 .778 .781 .783 .802 .805

Table 2: Macro Average F1 Scores for Sentiment Anal-
ysis per language, sorted by GloVe vocabulary cover-
age. Horizontal solid lines indicate 90% and 80% cov-
erage by GloVe. Bold numbers indicate the maximum
per line, for static and contextualized.

textualized embeddings in multilingual tasks.
5.5 Additional Experiment: Graph-enhanced

GloVe Improvement
To explain the improvements from injecting graph
knowledge into static embeddings, we hypothe-
size that the size of the common vocabulary be-
tween GloVe and PPMI spaces contributes to per-
formance gains: a larger vocabulary may lead to a
better linear transformation fit, resulting in more
precise projections. We investigate the relation-
ship between common vocabulary size and embed-
ding improvements by calculating Pearson (Co-
hen et al., 2009) and Spearman (Spearman, 1961)
correlations across all tasks (SID-200, SA, XNLI,
SimLex).

Table 5 shows the correlation coefficients for
each task and embedding configuration. For SID-
200, the GloVe+PPMI (Single) embeddings have
a Spearman correlation of 0.364, indicating a mod-
erate monotonic relationship between common vo-
cabulary count and improvement. However, the
Pearson correlation of 0.096 suggests a weak lin-

Co
v. ISO Contextualized Static

E-5-B X-B FT G GP(S) GP(A)

>8
0%

bg .563 .465 .465 .441 .481 .477
el .546 .455 .484 .456 .496 .488
sw .539 .437 .471 .438 .466 .468

Avg. .549 .452 .473 .445 .481 .478

<8
0% ur .540 .472 .412 .44 .473 .471

th .538 .461 .275 .284 .292 .3

Avg. .539 .467 .344 .362 .383 .386

All avg. .545 .458 .421 .412 .442 .441

Table 3: Macro Average F1 Scores for Natural Lan-
guage Inference per language, sorted by GloVe vocab-
ulary coverage. The horizontal solid line separates lan-
guages with over 80% coverage (above) from those with
less (below). Bold numbers indicate the maximum per
line, for static and contextualized.

ear relationship. A similar pattern can be ob-
served in the other tasks, where Spearman correla-
tions are generally higher than Pearson, highlight-
ing the non-linear nature of the relationship. In
contrast, tasks like SimLex show high correlations
in both metrics, especially in the Single configura-
tion, with Pearson and Spearman scores of 0.879
and 0.8, respectively.

When comparing results for Single and All con-
figurations, the Single configurations tend to show
stronger correlations. The All configurations have
higher vocabulary overlaps between the embed-
ding spaces due to contributions from various lan-
guages (C of the Appendix). This is because Single
configurations focus on one language, whereas All
configurations include words from multiple lan-
guages, which dilutes the strength of the relation-
ship between vocabulary overlap and performance
improvement and may suggest that the Single em-
bedding spaces provide a better representation of
graph knowledge when working in a monolingual
setting.

These results suggest that while improvement
scores moderately depend on vocabulary coverage,
the relationship isn’t strictly linear. This implies
that while a larger common vocabulary can en-
hance performance, other factors such as graph-
based semantic knowledge may play a more signif-
icant role. Figure 1 in the Appendix visualizes the
correlations for SA and SID-200 across all models.
6 Discussion: Contextual vs. Static

Embeddings

While being far behind on the tested intrinsic task,
the sentence embeddings extracted from E-5, a



Co
v. ISO Contextualized Static

E-5-B X-B FT G GP(S) GP(A)

>9
5%

ro .891 .707 .405 .561 .686 .704
sk .866 .707 .522 .67 .667 .725
bg .869 .751 .447 .645 .711 .723
el .872 .66 .387 .531 .712 .702
lt .861 .704 .534 .713 .775 .797
uk .904 .717 .542 .682 .722 .745
lv .858 .709 .608 .737 .732 .742
sl .848 .705 .544 .628 .715 .734
gl .865 .723 .522 .53 .663 .699
da .864 .724 .423 .446 .743 .717
he .824 .701 .67 .759 .739 .784
mk .855 .779 .598 .611 .694 .719
ms .846 .748 .634 .694 .738 .769

Avg. .863 .718 .526 .631 .715 .735

>9
0%

et .823 .655 .583 .589 .572 .605
be .836 .698 .674 .58 .597 .621
az .853 .742 .667 .698 .668 .711
eo .844 .665 .57 .504 .567 .588
hy .809 .622 .411 .551 .609 .644
kk .838 .69 .64 .664 .647 .69
is .798 .651 .442 .423 .49 .534
ka .763 .694 .591 .684 .689 .689
ur .804 .648 .451 .42 .627 .643
cy .704 .638 .615 .564 .608 .694
af .865 .721 .573 .454 .56 .59
si .809 .682 .647 .678 .613 .695

Avg. .812 .676 .572 .567 .604 .642

>8
0%

tl .85 .624 .656 .65 .707 .709
bn .814 .595 .567 .604 .617 .681
ga .704 .441 .585 .411 .532 .547
mr .838 .64 .567 .627 .608 .676
ky .783 .665 .633 .593 .571 .59
gu .79 .613 .663 .544 .589 .631
ml .812 .664 .641 .651 .574 .608
pa .807 .556 .566 .474 .521 .565
kn .803 .604 .672 .652 .581 .658
ne .796 .699 .553 .542 .563 .605
ha .708 .449 — .421 .489 .546
ja .802 .608 .656 .511 .523 .541
ug .723 .606 .642 .556 .583 .622
am .781 .559 .585 .515 .472 .555
Avg. .787 .595 .614 .554 .566 .61

<8
0%

su .765 .561 .572 .467 .446 .526
so .642 .388 .442 .363 .403 .459
ps .73 .542 .532 .351 .431 .493
ht .717 .318 .531 .392 .496 .523
yi .538 .36 .532 .341 .384 .453
gd .54 .341 .404 .23 .397 .418
xh .641 .324 — .388 .32 .341
yo .663 .185 .341 .199 .211 .264
sa .762 .542 .452 .206 .261 .251
qu .561 .245 .294 .175 .167 .153
my .791 .564 .171 .228 .207 .163
km .74 .631 .114 .125 .117 .109
ku .657 .202 .09 .11 .098 .095
lo .743 .704 — .183 .185 .18
wo .594 .238 — .058 .139 .122
Avg. .672 .41 .373 .254 .284 .303
All avg. .779 .591 .529 .497 .535 .566

Table 4: Macro Average F1 Scores for Topic Classifi-
cation per language, sorted by GloVe vocabulary cov-
erage. The horizontal solid lines indicate 95%, 90%,
and 80% coverage by GloVe. Bold numbers indicate
the maximum per line, for static and contextualized.

state-of-the-art multilingual sentence embedding
model, consistently outperform many other config-
urations across all languages on the extrinsic tasks.
This superior performance can be attributed to
E-5’s ability to generate context-aware, sentence-
level representations that capture nuanced mean-
ings, which static embeddings, like GloVe or Fast-
Text, struggle to achieve. Unlike static word em-
beddings that sum individual word vectors, E-5
learns richer representations by incorporating con-
textual information across languages.

However, direct comparisons between E-5 and
static word embeddings overlook key differences
in design and use cases. E-5 is extensively
trained on multilingual corpora and excels in tasks
requiring complex, context-sensitive representa-
tions. In contrast, static embeddings, though sim-
pler, are a valid alternative in low-resource or
efficiency-critical scenarios, as they are effectively
parameter-free during inference time. The cover-
age of task-specific data plays a crucial role: GloVe
embeddings performe well in sentiment analysis
due to broader language coverage, but poorer re-
sults in topic classification are partly linked to
lower coverage in some languages. Static embed-
dings remain competetive across most tested ex-
trinsic tasks and most languages, given a good
vocabulary coverage.

Static embeddings enriched with external
knowledge sources, such as graph-based informa-
tion, provide significant advantages, especially
in resource-limited applications where com-
putational costs are critical. Computationally
lightweight word vectors are invaluable in settings
where models like E-5 are prohibitively expensive
to deploy (Strubell et al., 2019; Bommasani
et al., 2021). Static embeddings also perform
competitively in simpler tasks that do not heavily
rely on contextual understanding (Dufter et al.,
2021), making them ideal for large-scale or
real-time applications (Gupta and Jaggi, 2021).
Additionally, static embeddings offer a level of
transparency often lacking in complex models
(Vulić et al., 2020b; Bommasani et al., 2020).
Their word-level semantic relationships are
easy to interpret, making them useful in
applications such as bias detection or model
auditing.

Furthermore, Dufter et al. (2021) demonstrated
that FastText outperformed BERT on a modified
LAMA task (Petroni et al., 2019) across ten lan-
guages while generating just 0.3% of BERT’s car-



Task P S
SID-200 (Single) 0.096 0.364
SID-200 (All) 0.284 0.115
SA (Single) 0.116 0.261
SA (All) 0.254 0.186
XNLI (Single) 0.075 0.205
XNLI (All) 0.054 0.300
SimLex (Single) 0.879 0.800
SimLex (All) 0.399 0.105

Table 5: Pearson and Spearman Correlations between
Common Vocabulary Count and Improvement Scores

bon footprint (Strubell et al., 2019; Dufter et al.,
2021), despite their simplicity. This highlights the
overlooked value of static embeddings when evalu-
ating resource-intensive models, rendering them
useful as "green" baselines that are environ-
mentally highly efficient.
7 Conclusion

In this work, we developed GrEmLIn, a cen-
tralized repository of graph-enhanced GloVe em-
beddings for 87 mid- and low-resource languages,
addressing the need for high-quality word embed-
dings in underrepresented languages. By merg-
ing GloVe with graph-based knowledge from Con-
ceptNet, we enhanced the semantic richness of em-
beddings, leading to improved performance across
tasks like semantic similarity, sentiment analy-
sis, topic classification, and natural language infer-
ence.

Our results show that graph-enhanced GloVe
outperforms the original GloVe, FastText, and
even contextualized embeddings from XLM-R, of-
fering a lightweight and environmentally efficient
alternative to transformer-based models. Static
embeddings have been recognized as "green" base-
lines, offering competitive performance at a frac-
tion of computational cost of LLMs. This makes
them ideal for low-resource settings where both
computational efficiency and sustainability are
key.
Limitations

While our contribution provides baseline and
graph-enhanced GloVe models for many lan-
guages, several limitations exist. First, the qual-
ity and availability of training data, particularly for
low-resource languages, remain key challenges.
Despite leveraging large corpora like CC100 and
ConceptNet, data diversity and coverage are still
limited.

Second, while our method of merging GloVe
embeddings with graph-based knowledge has
yielded promising results, there is room for fur-
ther refinement. Future work could explore more
advanced fusion and projection techniques to en-
hance representations for low-resource languages.

Lastly, static embeddings, even with graph
enhancements, cannot fully capture contextual
nuances compared to transformer-based models,
which may limit their performance on tasks re-
quiring deep contextual understanding. Balanc-
ing simplicity and efficiency with improved perfor-
mance remains an ongoing challenge.
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Appendix

A Language Details

ISO code Language Size Class ConceptNet ISO code Language Size Class ConceptNet
ss Swati 86K 1 sc Sardinian 143K 1
yo Yoruba 1.1M 2 gn Guarani 1.5M 1
qu Quechua 1.5M 1 ns Northern Sotho 1.8M 1
li Limburgish 2.2M 1 ln Lingala 2.3M 1

wo Wolof 3.6M 2 zu Zulu 4.3M 2
rm Romansh 4.8M 1 ig Igbo 6.6M 1
lg Ganda 7.3M 1 as Assamese 7.6M 1
tn Tswana 8.0M 2 ht Haitian 9.1M 2
om Oromo 11M 1 su Sundanese 15M 1
bs Bosnian 18M 3 br Breton 21M 1
gd Scottish Gaelic 22M 1 xh Xhosa 25M 2
mg Malagasy 29M 1 jv Javanese 37M 1
fy Frisian 38M 0 sa Sanskrit 44M 2
my Burmese 46M 1 ug Uyghur 46M 1
yi Yiddish 51M 1 or Oriya 56M 1
ha Hausa 61M 2 la Lao 63M 2
sd Sindhi 67M 1 ta_rom Tamil Romanized 68M 3
so Somali 78M 1 te_rom Telugu Romanized 79M 1
ku Kurdish 90M 0 pu/pa Punjabi 90M 2
ps Pashto 107M 1 ga Irish 108M 2
am Amharic 133M 2 ur_rom Urdu Romanized 141M 3
km Khmer 153M 1 uz Uzbek 155M 3

bn_rom Bengali Romanized 164M 3 ky Kyrgyz 173M 3
my_zaw Burmese (Zawgyi) 178M 1 cy Welsh 179M 1

gu Gujarati 242M 1 eo Esperanto 250M 1
af Afrikaans 305M 3 sw Swahili 332M 2
mr Marathi 334M 2 kn Kannada 360M 1
ne Nepali 393M 1 mn Mongolian 397M 1
si Sinhala 452M 0 te Telugu 536M 1
la Latin 609M 3 be Belarussian 692M 3
tl Tagalog 701M 3 mk Macedonian 706M 1
gl Galician 708M 3 hy Armenian 776M 1
is Icelandic 779M 2 ml Malayalam 831M 1
bn Bengali 860M 3 ur Urdu 884M 3
kk Kazakh 889M 3 ka Georgian 1.1G 3
az Azerbaijani 1.3G 1 sq Albanian 1.3G 1
ta Tamil 1.3G 3 et Estonian 1.7G 3
lv Latvian 2.1G 3 ms Malay 2.1G 3
sl Slovenian 2.8G 3 lt Lithuanian 3.4G 3
he Hebrew 6.1G 3 sk Slovak 6.1G 3
el Greek 7.4G 3 th Thai 8.7G 3
bg Bulgarian 9.3G 3 da Danish 12G 3
uk Ukrainian 14G 3 ro Romanian 16G 3
id Indonesian 36G 3

Table 6: Details of the reproduced CC-100 corpus available on HuggingFace, including languages with their ISO
codes, data set sizes, low-resource classifications, and language availability in the ConceptNet knowledge graph.



B SA Data Details

Language ISO code Source #pos #neg #train #val #test

Sundanese su Winata et al., 2023 378 383 381 76 304
Amharic am Tesfa et al., 2024 487 526 709 152 152
Swahili sw Muhammad et al., 2023a; Muhammad et al., 2023b 908 319 738 185 304
Georgian ka Stefanovitch et al., 2022 765 765 1080 120 330
Nepali ne Singh et al., 2020 680 1019 1189 255 255
Uyghur ug Li et al., 2022 2450 353 1962 311 530
Latvian lv Spro ‘gis and Rikters, 2020 1796 1380 2408 268 500
Slovak sk Pecar et al., 2019 4393 731 3560 522 1042
Sinhala si Demotte et al., 2020 2487 2516 3502 750 751
Slovenian sl Bučar et al., 2018 1665 3337 3501 750 751
Uzbek uz Kuriyozov et al., 2019 3042 1634 3273 701 702
Bulgarian bg Martínez-García et al., 2021 6652 1271 5412 838 1673
Yoruba yo Muhammad et al., 2023a; Muhammad et al., 2023b 6344 3296 5414 1327 2899
Urdu ur Maas et al., 2011; Khan et al., 2017; Khan and Nizami, 2020 5562 5417 7356 1812 1812
Macedonian mk Jovanoski et al., 2015 3041 5184 6557 729 939
Danish da Isbister et al., 2021 5000 5000 7000 1500 1500
Marathi mr Pingle et al., 2023 5000 5000 8000 1000 1000
Bengali bn Sazzed, 2020 8500 3307 8264 1771 1772
Hebrew he Amram et al., 2018 8497 3911 8932 993 2483
Romanian ro Tache et al., 2021 7500 7500 10800 1200 3000
Telugu te Marreddy et al., 2022b; Marreddy et al., 2022a 9488 6746 11386 1634 3214
Welsh cy Espinosa-Anke et al., 2021 12500 12500 17500 3750 3750
Azerbaijani az LocalDoc, 2024 14000 14000 19600 4200 4200

Table 7: Sentiment Analysis Data Details



C Common Vocabulary Counts

ISO code GloVe and PPMI (Single) GloVe and PPMI (All)

af 9,177 85,270
am 1,105 14,217
az 7,215 80,761
be 7,623 73,750
bn 3,962 38,221
bg 92,436 368,232
ku 3,762 32,499
cy 7,774 57,522
da 38,095 450,290
el 19,710 197,647
eo 59,476 161,634
et 14,815 163,666
gd 6,415 24,430
ga 13,871 65,169
gl 29,654 215,868
gu 3,198 24,575
ht 1,557 13,304
ha 671 33,824
he 16,032 153,731
hy 14,951 60,756
is 27,007 143,567
ja 2,607 41,471
kn 2,181 24,783
ka 17,869 96,066
kk 8,292 64,494
km 2,654 34,014
ky 2,234 29,915
lo 269,010 373,012
lt 12,485 200,404
lv 17,450 183,088
ml 4,092 38,864
mr 3,211 33,552
mk 21,692 93,121
my 3,189 24,319
ne 2,650 21,479
pa 2,282 16,068
ps 847 15,904
ro 25,704 366,809
sa 3,336 12,101
si 943 27,536
sk 14,694 268,576
sl 45,153 229,429
so 533 18,088
su 1,236 26,068
sw 6,425 59,906
ta 4,596 60,906
tl 12,563 42,653
ug 764 4,798
uk 16,397 327,563
ur 4,662 44,530
uz 3,229 37,704
xh 1,650 15,709
yi 5,177 18,572
ms 34,022 152,500
yo 558 5,254
qu 2,056 11,046
wo 999 18,509
th 45,975 238,502

Table 8: Common Vocabulary between GloVe and PPMI Embedding Spaces



D Vocabulary Coverage

ISO code SA SIB XNLI MultiSimLex

G (%) F (%) G (%) F (%) G (%) F (%) G (%) F (%)

am 78.22 99.48 84.36 99.73 – – – –
su 78.66 99.92 79.39 99.94 – – – –
sw 88.24 100.00 91.32 99.98 83.68 99.98 73.94 100.00
si 89.18 99.99 91.63 99.97 – – – –
ka 97.19 99.99 94.71 100.00 – – – –
ne 77.91 99.82 84.93 99.99 – – – –
ug 88.28 99.92 82.87 99.96 – – – –
yo 22.37 99.18 46.50 99.73 – – – –
ur 62.54 99.72 92.97 99.95 73.42 99.86 – –
mk 82.90 99.92 95.84 99.99 – – – –
mr 84.06 99.94 87.13 99.99 – – – –
bn 66.55 99.75 89.58 100.00 – – – –
te 85.66 99.99 – – – – – –
uz 71.17 99.94 83.61 99.99 – – – –
az 60.60 100.00 94.03 100.00 – – – –
bg 84.18 99.91 98.16 100.00 96.47 99.98 – –
sl 91.79 100.00 97.92 100.00 – – – –
lv 87.04 99.41 97.43 99.97 – – – –
sk 84.74 99.75 98.29 99.99 – – – –
ro 90.16 99.94 98.71 100.00 – – – –
he 89.72 99.74 97.57 100.00 – – 91.79 100.00
cy 51.87 99.91 90.76 99.98 – – 82.73 100.00
da 75.48 99.71 96.76 100.00 – – – –
el – – 98.15 99.94 97.34 100.00 – –
th – – – – 22.29 100.00 – –
af – – 90.05 99.95 – – – –
be – – 94.59 99.95 – – – –
eo – – 93.83 100.00 – – – –
et – – 94.50 100.00 – – 94.70 99.99
gd – – 70.48 99.85 – – – –
ga – – 89.97 99.93 – – – –
gl – – 97.33 99.98 – – – –
gu – – 87.11 99.97 – – – –
ht – – 75.89 99.74 – – – –
ha – – 87.20 – – – – –
hy – – 92.70 99.92 – – – –
is – – 92.22 99.94 – – – –
ja – – 82.97 99.98 – – – –
kn – – 86.82 100.00 – – – –
kk – – 93.11 100.00 – – – –
km – – 24.06 99.92 – – – –
ky – – 87.29 100.00 – – – –
lo – – 19.17 – – – – –
lt – – 97.70 100.00 – – – –
ml – – 85.13 100.00 – – – –
my – – 31.18 99.96 – – – –
pa – – 85.15 99.98 – – – –
ps – – 78.72 99.91 – – – –
sa – – 46.87 99.94 – – – –
so – – 79.48 99.89 – – – –
tl – – 89.07 100.00 – – – –
uk – – 97.72 100.00 – – – –
xh – – 62.39 – – – – –
yi – – 73.63 99.87 – – – –
ms – – 95.71 100.00 – – – –
qu – – 36.33 99.96 – – – –
wo – – 54.05 – – – – –

Table 9: Vocabulary Coverage by GloVe FastText Embeddings for 4 Evaluation Tasks - Sentiment Analysis, Topic
Classification, Natural Language Inference, and MultiSimLex



E Correlation Between Improvement Scores and Vocabulary Overlap

Figure 1: Scatter plots illustrating the relationship between vocabulary overlap and performance improvements
across various language tasks using GloVe and graph-enhanced embeddings (G+P). Each plot shows the improve-
ment in performance (G+P - GloVe) versus the common vocabulary size (log-scaled). Solid lines represent the
best-fit log-linear trend.


	Introduction
	Related Work
	Method
	GloVe Embeddings
	Graph Embeddings
	Singular Value Decomposition (SVD)
	Linear Transformation

	Experiments
	Languages
	Evaluation Data
	Experimental Setup

	Results
	Semantic Similarity
	Sentiment Analysis
	Natural Language Inference
	Topic Classification
	Additional Experiment: Graph-enhanced GloVe Improvement

	Discussion: Contextual vs. Static Embeddings
	Conclusion
	Language Details
	SA Data Details
	Common Vocabulary Counts
	Vocabulary Coverage
	Correlation Between Improvement Scores and Vocabulary Overlap

