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Resolving Symmetry Ambiguity in
Correspondence-based Methods for Instance-level

Object Pose Estimation
Yongliang Lin, Yongzhi Su, Sandeep Inuganti, Yan Di,

Naeem Ajilforoushan, Hanqing Yang, Yu Zhang, Jason Rambach

Abstract—Estimating the 6D pose of an object from a single
RGB image is a critical task that becomes additionally challeng-
ing when dealing with symmetric objects. Recent approaches
typically establish one-to-one correspondences between image
pixels and 3D object surface vertices. However, the utilization of
one-to-one correspondences introduces ambiguity for symmetric
objects. To address this, we propose SymCode, a symmetry-aware
surface encoding that encodes the object surface vertices based
on one-to-many correspondences, eliminating the problem of one-
to-one correspondence ambiguity. We also introduce SymNet,
a fast end-to-end network that directly regresses the 6D pose
parameters without solving a PnP problem. We demonstrate
faster runtime and comparable accuracy achieved by our method
on the T-LESS and IC-BIN benchmarks of mostly symmetric
objects. The code is available at https://github.com/lyltc1/SymNet.

Index Terms—object pose estimation, symmetry ambiguity,
deep learning for visual perception, representation learning.

I. INTRODUCTION

OBJECT pose estimation is a crucial task in computer
vision, which attracted significant research attention in

recent years. Our goal is to accurately estimate the 6D
poses of known objects from a single RGB image. Precise
pose perception is crucial for manipulation [1], augmented
reality [2] and autonomous driving applications [3]. Unlike
methods incorporating depth information [4]–[8], RGB-only
approaches [9]–[11] offer a broader range of applications at a
lower cost.

Currently, high performing frameworks [12], [13], establish
correspondences between 2D image pixels and 3D object
surface vertices. A Perspective-n-Point (PnP) algorithm vari-
ant [14] is then used to estimate the pose. Correspondences
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Fig. 1. Comparison of Surface Encoding. (a) Object images. (b) Textureless
models. (c) 3D coordinate encoding. (d) ZebraPose encoding [13]. (e) Our
proposed SymCode. The 3D coordinate encoding and ZebraPose encoding,
based on one-to-one correspondences, do not consider symmetry. In contrast,
SymCode, based on one-to-many correspondences, explicitly preserves sym-
metry information.

are typically utilized in two ways: (1) as auxiliary targets [13],
with the PnP algorithm applied subsequently to estimate the
pose, or (2) as intermediate variables to output the pose
through a network [12]. However, the PnP algorithm requires a
one-to-one mapping between 2D and 3D points, which poses a
challenge for symmetric objects. For instance, in the case of a
texture-less ball, any pixel in the image can be associated with
any vertex on the object’s surface. The problem becomes more
pronounced when the target correspondences are specified by
a single ground truth pose.

Previous works [13], [15], [16] demonstrated that sym-
metrical ambiguity can be mitigated by employing powerful
but computationally intensive methods like RANSAC-PnP
variants to handle high outlier correspondence ratios. Other
works [12], [17] train end-to-end networks to directly regress
pose parameters, bypassing the PnP problem. However, am-
biguity issues arise in cases of severe occlusion, leading to a
significant decline in pose estimation accuracy due to a notable
drop in the accuracy of correspondence prediction.

To address this issue, we propose SymCode, a dense
correspondence encoding that encodes one-to-many 2D-3D
correspondences, benefiting not only symmetrical objects but
also objects that are “almost symmetrical”, meaning that they
exhibit symmetry to some extent but may have slight variations
or irregularities that deviate from perfect symmetry. For asym-
metrical objects, the one-to-many 2D-3D correspondences
converge to one-to-one 2D-3D correspondences.
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SymCode vs. ZebraPose Encoding. We were inspired by
the surface encoding introduced in ZebraPose [13] to assign
a discrete code to each correspondence, which facilitates the
network training. SymCode, as shown in Figure 1, internally
captures symmetry information but does not adhere to the one-
to-one correspondence assumption of the PnP algorithm. A
similar situation is faced by SurfEmb [18], which generates
a large number of pose candidates using P3P and employs
a refinement process to obtain the final pose. However, this
process is time-consuming. In contrast, we introduce an end-
to-end network, called SymNet, to directly output the pose
from SymCode along with a segmentation mask.

To summarize, the main contributions of our work are as
follows:

1) We propose SymCode, a symmetry-aware binary surface
encoding method that allows the estimation of one-to-
many 2D-3D correspondences for pose estimation.

2) We introduce SymNet, a network that recovers object
pose from one-to-many 2D-3D correspondences without
relying on the PnP-RANSAC method, leading to signif-
icant improvements in inference time.

3) We investigate the impact of object symmetries as
well as the performance of different symmetry-aware
methods in correspondence-based object pose estimation
through experiments on high-symmetry datasets such as
T-LESS and IC-BIN.

II. RELATED WORK

In this section, we briefly review works including learning-
based methods using RGB data and methods incorporating
mechanisms for handling of symmetries.

A. Learning-based Methods using RGB Data

Learning-based methods using RGB data can be seperated
into direct methods and correspondence-based methods. Direct
methods [19]–[24] explore parameters to represent rotation and
translation with different network architectures and loss func-
tions in the early stage. Correspondence-based methods [25]–
[27] typically employ PnP/RANSAC modules to solve the
pose. The performance of such methods [13] is usually higher
and more robust to occlusion compared to direct methods [20].
Researchers employ various descriptors to represent dense
2D-3D correspondences. Pix2Pose [16], CDPN [26] consider
a pixel’s corresponding 3D vertex coordinates as descrip-
tors. GDR-Net [12] introduced a direct regression network
to estimate pose by utilizing dense correspondence-based
intermediate representations. SO-Pose [17] generates both 2D-
3D correspondences and self-occlusion information to directly
regress pose parameters. ZebraPose [13] divides the model
surface iteratively into halves and assigns binary labels. In this
manner, they simplify the learning objective to a multi-label
classification problem.

B. Handling Symmetries in Object Pose Estimation

Symmetry or pose ambiguity refers to the phenomenon
where images of an object under different poses appear

identical, making it impossible to determine the object’s pose
uniquely.

Direct methods need to compromise among all possible
poses and sometimes resort to producing the average pose,
which is not necessarily a valid solution. Early works such
as SSD6D [19] and BB8 [28] constrain the range of rota-
tion to remove ambiguity within the training set. Pitteri et
al. [29] offers a general analytic approach to map symmetrical
identities to the same pose, but results in discontinuity of
the mapped pose, potentially causing abrupt changes in the
network output. CosyPose [30] utilizes the symmetry-aware
ADD-S loss, which measures pose accuracy by considering
the closest symmetric pose of the object as ground truth.
ES6D [31] categorizes symmetry into five categories and
proposes a symmetry-invariant A(M)GPD loss based on these
categories, which outperforms the ADD(S) loss. However, this
method cannot be directly applied to correspondence-based
methods.

Recent correspondence-based methods typically learn one-
to-one correspondences as auxiliary targets. However, sym-
metry can introduce correspondence ambiguity, causing pixels
in the image to have non-unique corresponding vertices on
the model, thereby leading to pose ambiguity. Jesse Richter-
Klug et al. [32] proposes a representation called “closed sym-
metry loop” to obtain one-to-many correspondences, where
information represents the angle between different points and
the object origin. This information is fused to achieve one-
to-one correspondence. EPOS [33] utilizes surface fragments
to address symmetry and establishes one-to-many 2D-3D
correspondences. However, the final pose is estimated from
a sampled triplet of correspondences by the P3P solver. This
approach still has some limitations in continuous symmetry
for regressing 3D coordinates on fragment coordinate systems.
GDR-Net [12] guides pose regression by computing the loss
with respect to the closest symmetric pose and incorporates
surface fragments from EPOS [33]. SurfEmb [18] learns one-
to-many correspondences in a self-supervised manner but
samples one-to-one correspondences from the one-to-many
correspondences to adapt to the RANSAC-P3P algorithm
input. To the best of our knowledge, our work is the first
to directly recover pose from one-to-many correspondences.

III. METHOD

This section offers a comprehensive description of our
proposed one-to-many correspondence-based and symmetry-
aware training method for 6D object pose estimation.

We aim to address the symmetrical ambiguity issue beyond
the one-to-one correspondence approach. Drawing inspiration
from the successful application of binary codes in one-to-one
correspondence methods [8], [13], we extend this approach to
encode one-to-many correspondences, which are then fed into
a network to obtain the final pose without RANSAC or the
need of refinement.

A. Problem Definition and Notation

Given an RGB image with known intrinsic parameters and
a set of CAD models of objects, our objective is to estimate
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the pose of each object (Rotation matrix R ∈ SO(3) and
translation vector t ∈ R3) with respect to the camera in the
image.

There is only one ground-truth pose T = [R|t] for an
asymmetric object, while a symmetric object has multiple
possible ground-truth poses Tk, k = 1, 2, ..., n, where n is
the number of ground-truth poses, which can be infinite.

ZebraPose [13] constructs a binary encoding of the N object
model vertices, that defines binary codes cj of d bits that
uniquely correspond to vertices Pj . The binary encoding is
built iteratively, by splitting the mesh into parts of equal
amount of vertices at each step, and assigning a bit to each
group. In the iteration it, it ∈ {0, 1, . . . , d− 1} of the surface
partition, we have 2it+1 separate sub-groups. Given a group of
vertices, the partitioning is carried out using balanced k-means,
resulting in the formation of two sub-groups. For asymmetrical
objects, the one-to-many correspondences are equivalent to the
one-to-one correspondences since there is no ambiguity due to
symmetry.

In the following sections, we compare one-to-one corre-
spondences with one-to-many correspondences in detail. Sub-
sequently, we present our approach for estimating the 6DoF
object pose, which involves the entire process from surface
encoding to the final pose estimation.

B. 2D-3D Correspondences

One-to-one Correspondences. Extracting one-to-one cor-
respondences is a key component in pose estimation, which
represents a match between a 2D point pi = (ui, vi) from the
observed image and a 3D point Pj = (xj , yj , zj) from the
object model, denoted as or = (pi,Pj), where pi ∈ R2 and
Pj ∈ R3. The correspondence can be derived based on the
ground-truth pose T point-wise:

pi = π(T ·Pj) (1)

where π(·) is the projection function of a pinhole camera
model using intrinsic matrix. We define a one-to-one corre-
spondence set O = {o1,o2, ...,om} containing m one-to-one
correspondences, where or = (pi,Pj). The Perspective-n-
Point (PnP) module aims to recover the pose T given a set
of one-to-one correspondences. Most correspondence-based
methods use the one-to-one correspondence set as an inter-
mediate geometric representation. For an asymmetric object,
the one-to-one correspondence is unique and can be recovered
without ambiguity, but this is not the case for symmetric
objects.

For each ground-truth pose Tk of a symmetric object, we
can obtain a one-to-one correspondence set using Equation (1).
However, in the training stage, setting similar images with
vastly different correspondence sets as learning targets can
lead to convergence problems. We illustrate different one-to-
one correspondence sets for a cube and a cylinder in Figure 2.

One-to-many Correspondences. We define a one-to-many
correspondence to represent a match between a 2D point
pi = (ui, vi) and a set of all possible 3D points Yj =
{Pj,1,Pj,2, ...,Pj,n}, denoted as or = (pi,Yj). The corre-
spondence should satisfy the following condition:

Fig. 2. Multiple possible one-to-one correspondence sets. Left column:
Images of an untextured cube and cylinder. Top: three possible correspondence
sets for the cube image. Bottom: three possible correspondence sets for the
cylinder image. The color of the models in the right three columns represents
the coordinates in the object frame, with red, green, and blue representing the
coordinates of the x-axis, y-axis, and z-axis, respectively. The object frame is
represented by colored arrows as coordinates. The dashed lines show 2D-3D
correspondences. Best viewed in color mode.

pi = π(Tk ·Pj,k), k = 1, 2, ..., n (2)

Tk are all the possible ground-truth poses. We define a one-
to-many correspondence set Osym = {o1,o2, ...,om} contain-
ing m one-to-many correspondences, where or = (pi,Yj),
as depicted in Figure 3. The one-to-many correspondence
demonstrate that from a pixel pi, it is impossible to determine
the matching 3D point coordinates Pj , but it is possible to
determine the corresponding 3D point set Yj . The one-to-
many correspondence presents an easier learning task for the
network compared to the one-to-one correspondences due to
its lack of ambiguity.

Fig. 3. One-to-many correspondences set. All 3D points in a one-to-many
correspondence are textured with the same color. Left: two specific one-to-
many correspondences for corners and centers of side faces, assuming the
cube has only 4 symmetries rotated along the z-axis with 0, 90, 180, 270
degrees. Invisible parts are connected by dashed lines, and visible parts are
connected by solid lines. Right: two specific one-to-many correspondences
for the side surface and top surface.

C. Symmetry-aware Surface Encoding

Our objective is to encode each one-to-many correspon-
dence or with a discrete binary code cr. Figure 4 presents
a schematic overview of the proposed one-to-many surface
encoding pipeline.

Generate One-to-Many Correspondences. When an ob-
ject possesses symmetry, there are multiple rigid motions that



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2025 4

Fig. 4. The generation process of SymCode and label rendering. (a) Object CAD models. (b) For complex models, we manually partition the model into
several parts to ensure higher accuracy in the following process. (c) Testing the symmetry type of a vertex based on symmetry priority. (d) Finding the main
vertex of each one-to-many correspondence; continuous symmetry and discrete symmetry are processed differently. (e) Each correspondence is assigned a
unique binary code ci. (f) The surface encoder encodes each vertex in the model with a binary code, which inherently preserves symmetry information. (g)
The rendered label is used as an intermediate target for the network. Optional processes are enclosed in dashed boxes.

can map one ground-truth pose to other ground-truth poses.
Formally, we consider the set as follows:

M = {m ∈ SE(3) | T1 ·m ∈ {T1,T2, ...,Tn}} (3)

where T1 represents any single ground-truth pose, Tk rep-
resents another ground-truth pose where n denotes the total
number of possible ground-truth poses.

Symmetries can be categorized into two types: discrete
and continuous. In the case of discrete symmetry, the set M
consists of a finite number of elements. For a vertex P, we
generate all other possible 3D vertices belonging to the same
one-to-many correspondence as

Pj,k = m ·P, k = 1, 2, .., n, m ∈ M (4)

In the case of continuous symmetry, the vertices on the
surface undergo rotation along the axis of symmetry, resulting
in their alignment on a plane, as illustrated in Figure 4(d).
By doing so, vertices that undergo rotation and end up at the
same position on the plane are consolidated into the same
correspondence. We can formalize the rotation process as
follows:

P̃ =
[√

x2 + y2 0 z
]T

(5)

Here, P̃ is the transferred vertex of origin vertex P, and
is referred to as the main vertex. x, y, z represent the three
components of P. It is assumed that the rotation occurs along
the z-axis, and the resulting plane is the x-y plane, as illustrated
in Figure 4(d).

Handling Mixture Symmetry. For the T-LESS dataset,
different objects are only annotated with the main type of sym-
metry. We can directly generate one-to-many correspondences

based on this symmetry annotation. However, many objects
consist of a mixture of symmetric parts. Consider an object
constructed by combining a cube and a cylinder together.
Although considering the entire object may suggest discrete
symmetry, utilizing correspondences constructed based on
discrete symmetry in occluded scenarios would still result in
ambiguity.

Additionally, some objects are considered “almost symmet-
rical,” meaning they exhibit symmetry except for a small
detail. To tackle these challenges, we offer an advanced
annotation tool that enables more precise labeling of object
models. This is the only part of the process that is still
manual, but can be completed within a few minutes only. If
the object is perfectly symmetrical, this step is not necessary,
making the entire annotation process fully automated, relying
on symmetry annotation information from BOP [34].

Figure 4(a) provides an example of this scenario. We
explicitly categorize points on objects into the following
four categories (1) no symmetry, (2) continuous symmetry,
(3) discrete symmetry, and (4) n-fold symmetry. The n-fold
symmetry is a special case of discrete symmetry, i.e. the angle
of symmetry is

θ = i · 2π/n, i ∈ 1, ..., n (6)

along the axis. The classification is determined by the average
distance between each vertex and its nearest vertex after
applying the transformation in Equation (4). Since different
types of symmetry inherently possess an inclusion relationship,
continuous symmetry is included within discrete symmetry,
discrete symmetry is included within n-fold symmetry, and
a vertex that does not belong to any of the aforementioned
types will be considered as having no symmetry. We assess
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symmetry in the following order: continuous symmetry, dis-
crete symmetry, n-fold symmetry, and finally, no symmetry,
which we refer to as symmetry priority. The primary symmetry
type is provided in the dataset’s meta information. However,
for the details that break the symmetry, human intervention is
required to specify them and ensure that the correct symmetry
type is identified. Additionally, thresholds of error derived
from empirical or experimental observations can also be used
to assist in identifying the symmetry type sym. For a given
symmetry type sym, we will generate the correspondence set
M based on that symmetry and calculate the error under this
specific symmetry type sym as follows:

ej,sym =
∑

m∈M
∥Pnear −mP∥ (7)

where Pnear refers to the nearest vertex to the transformed
vertex mP on the object surface.

After removing the vertices that belong to high-priority
symmetry, the remaining vertices can be classified into the
low-priority symmetry category. Any vertices that are not cat-
egorized as belonging to any symmetry type will be recognized
as having no symmetry.

In order to attain a more precise classification, the model can
be subdivided into smaller intervals, enabling the identification
of different forms of potential symmetry within each interval.
This approach allows for a more detailed analysis of the
symmetry structure, as depicted in Figure 4(b).

Encoding Correspondence. We have established the one-
to-many correspondence set Osym wherein each group Yj

comprises vertices denoted as Pj,k. Additionally, each group
Yj is associated with a symmetry type sym. We introduce
a method for encoding the one-to-many correspondence set.
The object surface is encoded by incorporating a hierarchical
binary grouping scheme for the one-to-many correspondence
set.

The encoding indicates which corresponding group Yj

this pixel matches to. The encoding should ideally meet the
following criteria: 1) To provide ample information for pose
estimation, the encoding should exhibit significant differences
for two groups Yj and Y′

j with distinct symmetry types. 2) To
facilitate easier learning for the network, correspondences that
are in close proximity should have more similar encodings.
3) Each Yj corresponds to a unique encoding. In general, we
select one 3D vertex, referred to as the main vertex, from each
correspondence while considering the spatial proximity of
neighboring correspondences. The main vertex will be utilized
for implementing binary encoding in the next step.

Next, we introduce how to obtain the main vertex for each
correspondence. For correspondences exhibiting continuous
symmetry, we select the vertex mapped to the plane as the
main vertex using Equation (5). For other types of symmetry,
we select the main vertex based on a simple criterion explained
below, which can be replaced with alternative approaches as
long as it satisfies the criteria (2). In our implementation, the
used criterion calculates the sum of the absolute values of each
coordinate component for each vertex in the correspondence.

The main vertex, denoted as P̃, is then chosen according to
the equation:

P̃ = max
Pj,k

(|xj,k|+ |yj,k|+ |zj,k|), Pj,k ∈ Yj (8)

As illustrated in Figure 4(e), the main vertices for this object
are represented by the colored vertices. Only one vertex
in the correspondence is not symmetrical, which will be
the main vertex, colored green. For continuous symmetry,
the main vertex, colored red, lies on the plane calculated
by Equation (5). Regarding 2-fold symmetry, the vertices on
the portion with higher coordinate values will serve as the
main vertices, colored blue.

Iterative code generation. This part is inspired by the
binary encoding used in the one-to-one correspondence
method [13]. Given the one-to-many correspondences set, we
want to represent each correspondence oi with a binary code
ci ∈ 0, 1d, where d is the length of the binary code. We
construct such encodings based on the main vertex of each
correspondence.

In Figure 4(e), we illustrate the process of performing d
iterations of grouping the main vertices. The grouping iteration
begins with collections of all main vertices G. For a group Gi

with a binary code ci, we divide it into two groups using k-
means. The resulting groups are assigned codes ci ≪ 1 and
(ci ≪ 1)+1, where the operation ≪ denotes binary left shift.
Eventually, we obtain 2d groups, each with its binary code.
These binary codes can be represented in decimal form from
0 to 2d − 1. The surface encoder is depicted in Figure 4(f),
where the color represents the decimal value of the binary
code ci.

D. Network Architecture

Our network is inspired by ZebraPose [13] and GDR-
Net [12]. In Figure 5, we provide the Binary Encoding Module
with a zoomed-in region of interest (RoI) with dimensions
256 × 256 × 3. The outputs, namely the amodal mask Mamo
with dimensions 128 × 128, visible mask Mvis with dimen-
sions 128× 128, and SymCode maps Mcode with dimensions
128×128×16, serve as intermediate variables. Subsequently,
these intermediate variables are utilized as inputs to the
Correspondence-based Pose Regression (CPR) module.

The Binary Encoding Module includes a ResNet-34 back-
bone [35] and utilizes Atrous Spatial Pyramid Pooling (ASPP)
[36], which employs several atrous convolutions in parallel
that are effective for resampling features at different scales.
We also experimented with different convolution strategies
and upsampling methods as part of the network architecture
from CDPN [26], but the results did not show significant
differences.

We utilize a straightforward Correspondence-based Pose
Regression (CPR) module to directly regress the 6D pose from
the visible mask Mvis, amodal mask Mamo, and SymCode maps
Mcode. The CPR module comprises three convolutional layers,
each followed by Group Normalization and ReLU activation.
Subsequently, two fully connected layers are applied to the
flattened features. Finally, two parallel fully connected layers
output the 3D rotation parameterized as R6d [37] and the 3D
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Fig. 5. Framework of SymNet. Given an RGB image, our SymNet takes the zoomed-in Region of Interest (RoI) as input and predicts intermediate features,
including masks and binary code maps. The CPR module then directly regresses the 6D object pose. The entire process is an end-to-end procedure, eliminating
the need for refinement or RANSAC processes for PnP.

translation parameterized as tSITE [26], respectively. In all, the
total parameters of our network amount to 63.2M .

We utilize L1 loss for both the visible mask, amodal mask
and SymCode maps. Our training loss is defined as

Loss = Lmasks + Lcode + Lparams + LADD-S (9)

Lparams corresponds to the loss for end-to-end training utilizes
the L1 loss for R6d and tSITE. Additionally, the term LADD-S
is derived from the work of PoseCNN [38].

In terms of the training process, all losses are trained
simultaneously without any parameters being frozen. In our
preliminary experiments, we also explored a non-end-to-end
training strategy, where Lmasks + Lcode was used to train the
Binary Encoding Module, while Lparams + LADD-S was used
solely to train the CPR module; however, this led to a slight
decrease in results.

IV. EXPERIMENTS
In this section, we introduce evaluation metrics and briefly

introduce a symmetry-aware version of ZebraPose [13] - Ze-
braPoseSAT, then compare our method with other model-based
approaches on the T-LESS [39] and IC-BIN [40] datasets.
These datasets encompass a variety of symmetric objects,
while a large synthetic-to-real domain gap exists because of
texture mismatch. This makes T-LESS and IC-BIN particularly
suitable for evaluating the performance of methods on sym-
metric objects. Furthermore, we present ablation experiments
on various hyperparameters and visualizations to intuitively
demonstrate the impact of SymCode.

A. Evaluation Protocol
The Visible Surface Discrepancy (VSD) evaluates the pro-

portion of visible pixels for which the depth absolute discrep-

ancy falls below a threshold of τ = 20mm. We report the
recall of correct 6D object poses at eV SD < 0.3 [29]. We
also adhere to the evaluation protocol outlined in the BOP
challenge [34] using three metrics: Visible Surface Discrep-
ancy (VSD), Maximum Symmetry-aware Surface Distance
(MSSD), and Maximum Symmetry-aware Projection Distance
(MSPD).

B. ZebraPoseSAT: Alternative Symmetry-aware Solution

To provide a symmetry-aware version of ZebraPose [13] for
comparison, we additionally implement ZebraPoseSAT (SAT
standing for Symmetry-Aware Training), which utilizes an
analytical approach [29] to map all ground truth poses Ti to a
unique T based on the Frobenius norm, prior to generating the
ZebraPose encoding. ZebraPoseSAT emerged as the winner of
the Best RGB-Only Method in the BOP 2023 challenge [34],
providing a strong comparison baseline for SymNet.

C. Comparison to State of the Art

Results on T-LESS. In Table I, we show a comparison with
previous methods on the T-LESS dataset for eV SD < 0.3
recall. We generate the 2D detections using the FCOS [43]
detector. The results demonstrate that SymNet outperforms all
other methods, achieving a remarkable 25.0% improvement
over the results in RGB setting reported by Pitteri et al. [29].
It is worth noting that the number of recent works providing a
comparison based on this specific metric is limited, as the BOP
metric offers a more comprehensive and accurate evaluation
pipeline. Pitteri et al. [29] provide the most recent results
of eV SD < 0.3 recall we could find in an RGB setting.
Unfortunately, the Retina detector code is outdated and unable
to locate detection results. Therefore, we have included results
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TABLE I
T-LESS: OBJECT RECALL FOR errvsd < 0.3 ON ALL PRIMESENSE TEST SCENES. THE RESULTS FOR THE 30 OBJECTS ARE GROUPED BASED ON THEIR

SYMMETRY TYPE.

Method AAE [41] Pix2Pose [16] EdgeEnhance [42] Pitteri [29] CosyPose [30] Ours(pbr) Ours(pbr+real)

Detector SSD Retina Retina Retina Faster-RCNN Retina FCOS(pbr) FCOS(pbr+real)
Symmetry type RGB RGB RGB RGB RGB RGB-D RGB RGB

Asymmetry (3) 25.98 16.95 24.73 28.76 36.533 - 66.36 69.47
Continuous (11) 11.90 17.98 36.27 39.05 46.65 - 61.52 63.72

Discrete (16) 14.45 18.86 25.79 32.77 38.47 - 69.51 78.02

Mean 14.67 18.35 29.5 34.67 41.27 62.6 66.27 71.92

TABLE II
BOP RESULTS ON DATASET T-LESS. THE TIME IS THE RUNTIME PER IMAGE AVERAGED OVER THE DATASET.

6D object pose estimation method Input type Training type AR ARV SD ARMSSD ARMSPD Time(s)

CDPNv2 [26] RGB pbr 0.407 0.303 0.338 0.579 1.849
CosyPose [30] RGB pbr 0.640 0.571 0.589 0.761 0.493
EPOS [33] RGB pbr 0.467 0.380 0.403 0.619 1.992
ZebraPose [13] RGB pbr 0.677 0.597 0.636 0.466 0.25
ZebraPoseSAT-EffnetB4 [13] RGB pbr 0.723 0.659 0.695 0.817 0.25
SurfEmb [18] RGB pbr 0.735 0.661 0.686 0.857 9.043
SymNet(Ours) RGB pbr 0.736 0.631 0.693 0.883 0.093

DPODv2 [44] RGB-D pbr 0.699 0.646 0.716 0.736 0.320

ZebraPose [13] RGB real+pbr 0.775 0.696 0.740 0.889 0.25
SymNet(Ours) RGB real+pbr 0.767 0.674 0.739 0.883 0.058

TABLE III
BOP RESULTS ON DATASET IC-BIN [40]. THE TIME IS THE RUNTIME PER IMAGE AVERAGED OVER THE DATASET.

6D object pose estimation method Input type Training type AR ARV SD ARMSSD ARMSPD Time(s)

CRT-6D [45] RGB pbr 0.537 0.477 0.517 0.618 0.120
ZebraPoseSAT-EffnetB4 [13] RGB pbr 0.545 0.475 0.535 0.625 0.25
SymNet(Ours) RGB pbr 0.547 0.450 0.511 0.678 0.088

from CosyPose [30], which also provides BOP scores and
eV SD < 0.3 recall simultaneously. We provide these results
to facilitate comparisons with earlier works. Moreover, we
have also included results obtained using real images for
training. The performance gap between the models trained
solely on synthetic data and those incorporating real images
is not substantial. This demonstrates the strong generalization
capabilities of our method across synthetic and real-world
domains. The objects of T-LESS are grouped in 3 categories
based on their symmetry type and we provide the average
scores for all objects in each category.

Results on BOP Benchmark. We compare our results
to other methods that are fully trained on synthetic data, as
shown in Table II and Table III. We use the default detections
provided by BOP challenge 2023 [34]. Since our method
does not rely on a time-consuming pose refinement step and
directly obtains the pose for every detection, our runtime is
significantly reduced compared to the other methods. Our
method achieves excellent results in terms of both accuracy
and runtime. Specifically, our results match the accuracy of
ZebraposeSAT-EffnetB4 but with a smaller backbone, and only
at one third of the runtime. Note that we compare the run-
time per object instance. However, it should not significantly
increase the run-time if inferring multiple objects through

parallelization.

D. Ablation Studies

TABLE IV
COMPARE CPR MODULE WITH PNP MODULE ON DATASET T-LESS.

CPR EPnP AR ARV SD ARMSSD ARMSPD

✓ 0.283 0.166 0.190 0.493
✓ 0.736 0.631 0.693 0.883

Compare with PnP solver. In Table IV, We compare the
performance of our CPR module with that of RANSAC/PnP.
To the best of our knowledge, this is the only approach to solv-
ing one-to-many correspondence scenarios, as demonstrated in
SurfEmb [18]. We randomly sample a one-to-one match from
each one-to-many correspondence. Following ZebraPose, we
employ the EPnP algorithm [14], using 150 iterations, with all
correspondences utilized in a single computation step. We be-
lieve that with more parallel processing, like that in SurfEmb,
we can achieve higher accuracy using RANSAC/PnP, albeit at
the cost of time. The results reveal that using PnP alone is
challenging in terms of obtaining accurate correspondences,
which are crucial for achieving reliable pose estimation. On
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Fig. 6. ZebraPose(real) vs. ZebraPose(pbr). Left: input image. The green box indicates the ground truth, the red box shows the ZebraPose encoding trained
with real data, and the blue box represents the ZebraPose encoding trained with synthetic data. We visualize two cases for the T-LESS obj04 object, which
features a red section (indicated by the yellow arrow) at the top and two dents (indicated by the red arrows) in the middle, disrupting its continuous symmetry.
It can be observed that the results of the model trained on real data are closer to the ground truth, as the network can leverage subtle surface distinctions to
avoid ambiguity during training with real images. These subtle distinctions exist in the simulation data but are less pronounced; for instance, color information
is absent in the T-LESS synthetic training data.

the other hand, our CPR module is capable of accurately
calculating the final pose in real-time.

Compare with ZebraPose. Due to the limitation of one-
to-one correspondence, we initially assumed that ZebraPose
would not perform well on symmetrical objects. However, in
the BOP benchmark, we observe that ZebraPose achieves a
satisfactory average recall score of 0.775, which is higher
than our result of 0.767 when trained with real data. We
attribute this to the utilization of real images during train-
ing. Since most objects are not perfectly symmetrical, the
network trained with real data can capture subtle variations
and mitigate the symmetry problem. We compare ZebraPose
trained on real images with that trained on synthetic images
in Figure 6 to support our claims. The results we can access
are specifically for the model with a larger backbone, referred
to as ZebraPoseSAT-EffnetB4, which has been trained solely
on PBR data. However, the results for the ZebraPose model
trained exclusively on PBR data are not publicly available. We
performed the experiment ourselves using open-source project
code, and the average recall score is 0.677. In the same setting,
our score 0.736 exhibits improvements in both accuracy and
inference time.

Length of SymCode. The default setting of length for d
is 16 as used in ZebraPose [13]. We investigate the impact of
varying d on the training process, as illustrated in Figure 7. The
results indicate that our approach is robust to variations in the
length of the binary code. Indeed, the accuracy achieved with
different values of d can be unpredictable, and there is no clear
way to determine an optimized value beforehand. As a result,
in our main results, we have chosen to fix the length of the
binary code to the default value of 16. As shown in Figure 8,
the network performs poorly on the last few bits, which can
also be observed in ZebraPose. From Figure 7, it is evident
that a length of 16 is the worst choice. This suggests that there
is still room for optimization in the length of the code. So we
performed comparisons using lengths of 16 and 10 for the
add-s metric on YCB-V dataset, with results improving from
73.68 to 74.66. Since this improvement was not substantial,

we did not explore other lengths further.

Fig. 7. We performed an ablation study on object 27 from T-LESS dataset,
which exhibits discrete symmetry, to determine the optimal length of the
binary code d. We normalized the BOP score to represent accuracy. The
resulting curve demonstrates that even with a small number of bits (8 bits),
our method is capable of capturing the object’s pose.

Fig. 8. Left: Ground truth of the 16-bit SymCode. Right: Estimated SymCode.
This suggests that there is still room for optimization in the length of the code.

Challenge of learning one-to-one correspondences. We
conducted experiments involving training our end-to-end net-
work using ZebraPose encodings, which is an efficient way to
encode one-to-one correspondences. In this case, the network
achieved a BOP recall of 0.612, which is relatively weaker
compared to SymNet’s performance of 0.736. When we re-
moved all the end-to-end loss and focused solely on training
the ZebraPose encodings, Figure 9 illustrates the challenges
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associated with learning one-to-one correspondence-based en-
codings.

Fig. 9. The challenge of learning one-to-one correspondences. First line:
The images with similar viewpoints. Second line: the 2nd bit prediction of
SymCode. Third line: the 2nd bit prediction of ZebraPose Code. In order to
achieve high accuracy pose estimation, ZebraPose Code relies on RANSAC-
PnP to filter out inconsistent correspondences. However, there are still cases
(second column) where ZebraPose struggles due to the ambiguity arising
from symmetries. Please note that the result was obtained using our SymNet
network trained with ZebraPose Code. To achieve a clear visualization, we
have applied a mask based on the predicted mask to remove the background.
In the visualization of the predictions, we have represented a value of 0 as
black and a value of 1 as white. Any value between 0 and 1 is displayed as
a shade of gray.

Fig. 10. Comparison of code maps. Detailed binary code maps representing
SymCode and ZebraPose are visualized for two objects. The first and third
rows depict the code maps for ZebraPose, while the second and fourth rows
illustrate those for SymCode. The final columns aggregate the results for all
the bits.

Visualization. Detailed binary code maps representing
SymNet and ZebraPose are visualized in Figure 10, which
shows our binary codes contain symmetry information. Qual-
itative results on T-LESS [39] can be found in Figure 11.
A visual representation of the ground truth and predicted
code maps for ZebraPose and SymNet is shown in Figure 12.
From the visualization, it is evident that ZebraPose struggles
to accurately reproduce the ground truth, whereas SymNet
exhibits better performance in this regard.

V. CONCLUSION
Our method incorporates a symmetry discrete surface en-

coding technique to effectively handle symmetries. Further-
more, we demonstrate the ability to recover the pose from

Fig. 11. Qualitative Result on T-LESS [39]. We render the objects with
the estimated pose on top of the original images. The presented confidence
scores are from the 2D object detection provided by BOP challenge 2023 [34].
Each column represents a scene captured from a different viewpoint. The
visualizations demonstrate that our method is capable of effectively handling
severe occlusion in cluttered environment.

Fig. 12. Comparison with ZebraPose. Upper Left: Ground truth of
ZebraPose. Upper Right: Predicted output of ZebraPose. Bottom Left: Ground
truth of SymCode. Bottom Right: Predicted output of SymCode. Only the first
8 bits are displayed. It appears that SymNet tends to be more confident in its
outputs, often producing predictions closer to extreme values of 0 or 1. On
the other hand, ZebraPose’s predictions tend to be more centered around 0.5,
indicating a lower level of confidence.

one-to-many 2D-3D correspondences. This approach holds
the potential to influence not only other correspondence-
based methods but also various other fields related to pose
estimation.
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APPENDIX A
RESULTS ON YCB-V

In Table V, we compare our results to other methods on
YCB-V dataset. The objects with relatively poor experimental
results include 036 wood block, 037 scissors, 024 bowl, and
010 potted meat can. Interestingly, among these objects, 036
and 024 are symmetrical. So, we further visualized the correct
and incorrect examples, as seen in Figure 13. We found
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TABLE V
BOP RESULTS ON DATASET YCB-V [38]. THE TIME IS THE RUNTIME PER IMAGE AVERAGED OVER THE DATASET.

6D object pose estimation method Input type Training type AR ARV SD ARMSSD ARMSPD Time(s)

CDPNv2 [26] RGB pbr 0.532 0.396 0.570 0.631 0.143
EPOS [33] RGB pbr 0.499 0.411 0.464 0.621 0.764
SurfEmb [18] RGB pbr 0.647 0.548 0.620 0.773 5.427
ZebraPoseSAT-EffnetB4 [13] RGB pbr 0.691 0.607 0.686 0.780 0.25
Symnet(Ours) RGB pbr 0.653 0.557 0.646 0.758 0.085

that under significant occlusion, the output binary codes still
exhibit characteristics of a specific pose, although this pose is
incorrect. We suspect that this issue arises from insufficient
occlusion in the training data, and we suggest to investigate
this further in the future.

Fig. 13. Visualization of the YCB-V dataset. The first column is the ground
truth, and the second column shows the estimated poses. The first example
is a correctly estimated case, while the second example is one of incorrect
estimation. The first and third rows on the right side show the ground truth
of SymCode, while the second and fourth rows display the estimations. We
found that under significant occlusion, the output binary codes still exhibit
characteristics of a specific pose, although this pose is incorrect.

APPENDIX B
DETAILS OF LOSSES

The 6D rotation parameter R6d, as proposed in Zhou et
al. [37], is defined as the first two columns of the rotation
matrix R:

R6d = [R.1|R.2] (10)

Given a 6-dimensional vector R6d = [r1|r2], the rotation
matrix R = [R.1|R.2|R.3] can be computed as follows:

R.1 = ϕ(r1)

R.3 = ϕ(R.1 × r2)

R.2 = R.3 ×R.1

(11)

We employ a Scale-Invariant representation for Translation
Estimation (SITE), as proposed by CDPN [26]. Specifically,
considering the size s and center (cx, cy) of the detected
square bounding box, and the zoom-in size szoom, the network
regresses the scale-invariant translation parameters tSITE =
[δx, δy, δz]

T , where 
δx = (ox − cx) / s

δy = (oy − cy) / s

δz = tz × s / szoom

(12)

Here, (ox, oy) is the projected 3D centroid in the image and
tz denotes the distance of the object from the camera.
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