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Abstract

Neural implicit fields have recently emerged as a
powerful representation method for multi-view surface
reconstruction due to their simplicity and state-of-the-art
performance. However, reconstructing thin structures
of indoor scenes while ensuring real-time performance
remains a challenge for dense visual SLAM systems.
Previous methods do not consider varying quality of input
RGB-D data and employ fixed-frequency mapping process
to reconstruct the scene, which could result in the loss of
valuable information in some frames.

In this paper, we propose Uni-SLAM, a decoupled 3D
spatial representation based on hash grids for indoor
reconstruction. We introduce a novel defined predictive
uncertainty to reweight the loss function, along with
strategic local-to-global bundle adjustment. Experiments
on synthetic and real-world datasets demonstrate that
our system achieves state-of-the-art tracking and mapping
accuracy while maintaining real-time performance. It
significantly improves over current methods with a 25%
reduction in depth L1 error and a 66.86% completion
rate within 1 cm on the Replica dataset, reflecting a more
accurate reconstruction of thin structures. Project page:
https://shaoxiang777.github.io/project/uni-slam/

1. Introduction

Dense visual Simultaneous Localization and Mapping
(SLAM) aims at reconstructing a dense 3D map of an
unknown environment while simultaneously estimating the
accurate camera pose. Traditional SLAM algorithms [12,
13, 37, 39] focus on localization accuracy for real-time
large-scale applications, whereas Neural Radiance Fields
(NeRFs) [35] significantly enhance dense 3D reconstruction
and novel view synthesis, spurring the development of
NeRF-based dense visual SLAM techniques.

As pioneering efforts, iMAP [55] and Nice-SLAM
[76] utilize neural representations for both tracking and
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Figure 1. The reconstructed 3D mesh on the TUM RGB-D
dataset [53], generated using our proposed method without
uncertainty-guided reweighting and strategy, is illustrated in
Fig. 1a. Conversely, Fig. 1b demonstrates the 3D mesh produced
by our method after the incorporation of the uncertainty-aware
strategy.

mapping, but slow convergence limits their low-latency
mapping capabilities. SDF-based methods [11, 19, 21, 61]
offer faster convergence and higher rendering accuracy.
But they treat all data even with varying quality equally,
alternating tracking and mapping at a constant frequency
(every n frames). However, in dense NeRF-SLAM,
the quality of RGB-D input data varies throughout the
sequence (such as invalid depth), significantly impacting
both camera pose estimation and scene reconstruction.
Furthermore, constant mapping, this simple approach may
lead to missing potentially effective information in frames
where no mapping process occurs. Therefore, treating
all data uniformly in dense NeRF-SLAM systems is
suboptimal, leading to overconfidence in poor-quality data
and inefficient use of valuable information.

Our dense SLAM method, Uni-SLAM, tackles these
challenges by: 1) Differentiating data quality through
pixel-level uncertainty analysis and loss reweighting to
identify outliers; 2) Using image-level uncertainty to
guide local-to-global bundle adjustment for comprehensive
reconstruction; and 3) Employing decoupled hash grids
to separately represent geometry and appearance, enabling
real-time capture of high-frequency details in indoor scenes.
Contributions of our method are summarized as follows:

• We introduce a novel form of uncertainty, termed



predictive uncertainty, which enables pixel-level
loss reweighting without the need for additional
training. By leveraging this uncertainty, our method
dynamically identifies and prioritizes valuable regions
in the input data, enhancing the performance of
mapping and tracking processes. This approach proves
particularly effective when dealing with varying levels
of input data quality, ensuring more robust and
accurate outcomes.

• Image-level uncertainty dynamically activates
mapping with strategic local-to-global bundle
adjustment, preserving valuable image information
and enhancing global stability while capturing local
color and geometry.

• We propose an efficient scene representation using
hash grids to decouple the scene’s geometry and
appearance. This approach enhances spatial
representation of high-frequency signals while
maintaining real-time performance. Our method
achieves state-of-the-art results on the Replica [52],
ScanNet [9], and TUM RGB-D [53] datasets.

2. Related Work
The proposed method encompasses SLAM, implicit

spatial representation and uncertainty modeling. Therefore,
we focus the discussion of related work on these specific
methods to better highlight our contributions.
Dense Visual SLAM. Early dense visual SLAM
approaches, like PTAM [25] and DTAM [39], used
feature-based methods, separating tracking and mapping
tasks for efficiency. ORB-SLAM [37] further refined this
with a feature-based approach for camera trajectory and
3D map construction. DROID-SLAM [60] introduced
optical flow for precise real-time visual odometry and
dense mapping. Learning-based methods [28, 48, 72]
improved feature extraction and robustness. Recent
works [7, 26, 32, 44, 74] combine ORB-SLAM for
robust tracking with NeRF-based mapping. Others
[19,29,46,55,59,61,75,76] integrate tracking and mapping
in an interactive process. This paper explores uncertainty’s
impact in joint optimization scenarios.
Scene Representation. Most common scene representation
for dense mapping are grid-based (including voxel grids
[8, 38, 56], octrees [58, 70], voxel hashing [36, 40]),
surfel clouds [6, 64, 67] and multi layer perceptron
(MLP)-based [2, 44, 71]. Grid-based methods offer
the advantages of easy neighborhood finding and fast
tri-linear interpolation. However, they require manual grid
resolution specification and waste memory in empty regions
[70, 75, 76]. Point-based methods avoid pre-specified
resolutions but have complex neighborhood searches
and low convergence speeds, which hinder real-time

reconstruction. Additionally, they cannot fill in empty
holes or make reasonable guesses for unscanned areas
[23, 34, 46, 67, 69]. MLP-based methods suffer from slow
convergence and catastrophic forgetting in large scenes
[55, 59], as updating all weights during optimization can
cause forgetting issues.
Uncertainty Modeling in Scene Reconstruction. The
computer vision community has increasingly recognized
the importance of uncertainty estimation across fields
such as next-best-view (NBV) selection [27, 42, 57],
segmentation [16, 22, 31], depth estimation [17, 18], and
SLAM [3, 5, 47]. Uncertainty assessment enhances model
interpretability and reduces critical errors. Kendall et al.
[24] identify two types of uncertainty in Bayesian deep
learning: aleatoric (due to inherent data ambiguity) and
epistemic (arising from limited data) [1, 20, 65].

In NeRF-based novel view synthesis with known camera
pose, integrating uncertainty has led to improvements
in handling blur, dynamic objects, and confidence
visualization [14, 33, 50, 51, 68]. However, its application
in dense NeRF-SLAM with unknown camera pose remains
underexplored. Sandström et al. [47] introduce a SLAM
system that estimates aleatoric depth uncertainty, while
Rosinol et al. [45] propose fast uncertainty propagation for
cleaner 3D meshes. To our knowledge, we are the first to
use novel-defined predictive uncertainty, caused by limited
unobserved data, to reweight dense implicit SLAM and
guide local-to-global BA.

3. Method
Our overall pipeline is illustrated in Fig. 2. The input

consists of a sequence of RGB-D images and known
camera intrinsic parameters. Through a decoupled scene
representation, we estimate the camera pose, the implicit
truncated signed distance function (TSDF), depth, color
and uncertainty. In Sec. 3.1, our efficient independent
scene representation using two hash grids is described.
In Sec. 3.2, we present our novel uncertainty model and
explain how it reweights the loss function in Sec. 3.3.
Finally, Sec. 3.4 presents the uncertainty-guided strategic
BA and keyframe selection.

3.1. Neural Scene Representation

All existing implicit NeRF-based SLAM systems exhibit
various issues in scene representation: a) MLP-based [55]
forgetting problem and insufficient spatial representation
capability when using tri-planes [4, 21]. b) Coupled
geometry and appearance information [11,61,76] increases
training difficulty, resulting in poor reconstruction quality.
c) Coarse-to-fine dense grids [76] rely on heuristic
resolution selection and require longer training times and
high memory usage, failing to meet real-time requirements.
In our method, the hypothesis is that geometry and color
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Figure 2. Uni-SLAM Architecture Overview. Our framework consists of two threads, tracking and mapping. While tracking is performed
every frame for RGB-D stream, besides constant mapping is performed every n frame constantly with global BA, activated additional
mapping process is executed to capture local scene information based on uncertainty and co-visibility check with local BA and local loop
closure optimization (LLCO). Our proposed pixel-level uncertainty method adaptively filters outlier pixels and reweights the loss function,
enabling more precise localization during tracking and the reconstruction of color and geometric information in mapping.

information should not be sampled at the same frequency.
To verify this, we opt for a decoupled representation, using
multiresolution hash grids [36] model for each of them.
We show in our experiments that this decoupled hash grid
representation favors speed, hole-filling ability, and low
memory footprint while not sacrificing accuracy. The raw
SDF Φg(xi) and the raw color Φa(xi) are decoded via tiny
MLPs geometry decoder fg and appearance decoder fa:

Φg(xi) = fg (hg(xi)) and Φa(xi) = fa (ha(xi)) (1)

where hg(xi) and ha(xi) represent multiresolution
geometry hash grids and appearance hash grids respectively
in Fig. 2. We set the multiresolution level to L = 16,
and only visualize one resolution level hash grid here for
clarity. The decoupled representation effectively reduces
the network’s confusion when faced with appearance and
geometry information of varying complexity. For more
implementation details of hash grid, we refer readers to the
supplementary Sec. A.1, B.1 and [36].
Depth and Color Volume Rendering. We follow [76] to
render depth and color via integration along the sampling
rays as ĉ =

∑N
i=1 wiϕa (xi) and d̂ =

∑N
i=1 widi,

where di represents the distance from camera center to the
current sample point xi along this ray. xi is sampled and
guided by depth image as [61]. wi is the weight of the
current sampling point, which can be converted from the
density σ(xi) as

wi = exp

−
i−1∑
j=1

σ (xj)

 (1− exp (−σ (xi))) (2)

where σ(xi) =
1
α ·Sigmoid

(
−ϕg(xi)

α

)
is the 3D volumetric

density that can be converted from the SDF Φg(xi) [41],
α is a learnable parameter which controls the sharpness
of the model. This method of conversion through density,
compared to direct conversion [61, 70] and surface-based
conversion [62, 74], offers better interpretability, aligning
closely with the original volumetric rendering in NeRF [35].
Moreover, we leverage this representation to derive our
definition of uncertainty, which will be discussed in the
following section.

3.2. Uncertainty Modeling

Our primary objective is to derive an uncertainty
measure that can indicate the quality of the color
and depth images, allowing us to reweight the loss
functions during tracking and mapping. However, to our
knowledge, no NeRF-based dense SLAM system has yet
addressed predictive uncertainty, which reflects the model’s
confidence explicitly in its predictions for each view.

Specifically, inspired by the vanilla NeRF formulation
[35] (Eq. 3), we utilize the termination probability
concept from the volume rendering equation.

wi =

termination probability at sample i︷ ︸︸ ︷
exp

−
i−1∑
j=1

σ (xj))


︸ ︷︷ ︸

transmittance Ti

(1− exp (−σ (xi)))︸ ︷︷ ︸
occupancy oi

= Ti · oi

(3)

where Ti describes transmittance at sample point ti along
the ray from t0 to ti−1 without hitting any other particle,
occupancy oi represents the probability that the ray collides
with a particle at position ti independently of the previously
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Figure 3. Termination Probability and Uncertainty. This figure
illustrates the termination probability and uncertainty during ray
sampling. For pixel A with valid depth (sampling by Ray 1),
the sampling density is high along this ray, leading to a high
termination probability and lower uncertainty. In contrast, for
pixel B with invalid depth (sampling by Ray 2), the sampling
density is low along this ray, resulting in a lower termination
probability and higher uncertainty, as seen in the uncertainty map
(e). This leads to degraded rendering quality in regions with
high uncertainty, as shown in (f). Back-projected points A and
B correspond to the surfaces of the hit objects in 3D space. For
point B with invalid depth, we can estimate an approximate depth
value based on the model in its current state.

light path. The product of the two wi = Ti · oi represents
the termination probability, i.e. the probability that the light
can reach the spatial location ti.

We define the accumulated termination probability of N
sampling points along a current sampling ray r as

p(r) =

N∑
i=1

wi = 1− exp

(
−

N∑
i=1

σ (xi)

)
(4)

p(r) = 1 ideally when the rendering is perfect (camera
tracking is accurate and the region has been already
observed before). Conversely, in never unobserved regions
the NeRF model will estimate a low termination probability
p(r) ≈ 0 along the current ray r. The value is bounded by
(0, 1). We validate this in our experiments and visualize the
termination probability in Fig. 3 (d), and the mathematical
proof is included in the supplementary material Sec. A.2.

In [57] Sünderhauf et al. define uncertainty based on
deep ensembles. However, full deep ensembles require
training multiple models with different initializations, and

are unsuitable for real-time systems like SLAM due to the
high computational cost of maintaining several models. For
a given image with an estimated pose, a pixel with index m
is associated to a corresponding ray rm. Inspired by [57],
based on the probability p(rm), we defined the pixel-level
predictive uncertainty as

βm = (1− p(rm))
2 (5)

As shown in Fig. 3(a), pixel B with invalid depth, we
can only estimate an approximate depth value based on
the model in its current state. Using this estimated
depth for ray sampling results in a rendering with low
accumulated termination probability in Fig. 3(d), indicating
higher uncertainty as seen in Fig. 3(e) the uncertainty map.

For a rendered image associated with M sampled rays,
we introduce a novel image-level predictive uncertainty β
defined as

β =
1

M

M∑
m=1

βm (6)

This image-level uncertainty β indicates the model’s
confidence in its current position estimate. A low β value
suggests that the model is familiar with the area because
of the accurate estimated camera position and sufficient
sampling rays. Conversely, a high β value indicates that
the model is less familiar with the area, suggesting that it
should be more cautious and attentive in this region.

This predictive uncertainty, reflecting the model’s
knowledge limitations on the current camera pose, can be
reduced by gathering more data, such as by taking data
slowly to avoid drastic changes in motion state. How to use
the defined uncertainty in the loss function and keyframe
selection will be discussed in Sec. 3.3 and Sec. 3.4.

We also compared our model-free uncertainty approach
with a learnable uncertainty model, based on Gaussian
assumptions, as in BayesRays [15]. Our experiments show
that this idea not only brings undesirable increased model
complexity, making the model much slower, but also leads
to poorer results in terms of reconstruction quality. Details
can be found in the supplementary material Sec. B.3.

3.3. Uncertainty-guided Loss Function

Our mapping and tracking processes are carried out
by minimizing our objective functions with respect to
the network parameters θ and the camera parameters
{Ri|ti} as [61]. We hypothesize that pixels with invalid
depth or motion blur, caused by sensor issues or sudden
motion changes, should exhibit high uncertainty, while
well-observed regions should display low uncertainty. This
premise enables us to effectively incorporate predicted
uncertainty into the objective function, with the goal of
progressively filtering out outliers to enhance localization
accuracy and rendering quality. Inspired by the definition



of SSIM loss in NeRF on-the-go [43] and the masked
uncertainty learning in DebSDF [66], we define pixel-level
binary confidence function as

CFm = 1 (1− βm) =

{
1 if βm ≤ βuncm

0 if βm > βuncm

(7)

where βuncm is a threshold for pixel-level uncertainty.
Near the surface we set hyperparameter truncation

distance τtrunc and approximate the ground truth SDF of
sampling point xi by b (xi) = Dm − Dray

m,i , where Dm

is current ray depth, Dray
m,i is the distance from camera

center w.r.t. sampling point. The points that lie within
the truncation distance [−τtrunc , τtrunc ], i.e.|b (xi) | < τtrunc
form the set Xtr.

The loss associated to the points belonging to Xtr is

Ltr(Xtr) =
1

M∗

M∑
m=1

CFm

|Xtr|
∑

xi∈Xtr

(Φg(xi)τtrunc − b (xi))
2

(8)
where M is the number of sampled points, M∗ is the
number of valid sampled points after reweighting by Eq. (7).

We further refine the set of sampling points inside the
truncation distance in two subgroups. Assuming accurate
valid depth ground truth, we assign greater weights to
sample points at the center (closer to the surface) Xtr

c =
{xi | |b (xi) | ≤ 0.4τtrunc} to accelerate convergence and
achieve more accurate geometry, while points at the tail of
the truncation region constitute Xtr

t , and associate different
losses to these two groups as follows:

Ltr
c = Ltr(Xtr

c ) and Ltr
t = Ltr(Xtr

t ) (9)

Considering the points outside the truncation distance
as the free space set Xfs, which are far from the surface
|b (xi) | > τtrunc. In this area the loss function encourages
Φg(xi) to have the value equal to one as

Lfs =
1

M∗

M∑
m=1

CFm

|Xfs|
∑

xi∈Xfs

(Φg(xi)− 1)
2 (10)

The color and depth losses are defined as follows:

Ltrack
rgb =

1

M∗

M∑
m=1

(C[u, v]− ĉm)
2 · CFm (11)

Lmap
rgb =

1

M

M∑
m=1

(C[u, v]− ĉm)
2 (12)

Ldep =
1

M∗

M∑
m=1

(
D[u, v]− d̂m

)2
· CFm (13)

where C[u, v] and D[u, v] are the ground-truth values
for color and depth respectively. Note the reweighting
confidence function CFm is not applied to color loss in the
mapping process.

Tracking Loss Function. The loss function for the tracking
process is achieved by the following weighting scheme:

Lt = λrgbLtrack
rgb + λdepLdep + Lsdf (14)

where Lsdf = λtr
c Ltr

c + λtr
t Ltr

t + λfsLfs.
During tracking, the scene representation remains

unchanged and only the camera pose is optimized (as
shown by the magenta dashed line in Fig. 2). CFm

helps us select the most confidently estimated data for
optimal optimization. If certain pixels are already predicted
incorrectly, continuing to assign them a high weight is
not beneficial. Therefore, when applying the tracking loss
function, it is crucial to focus on pixels that are correctly
estimated with high confidence. This means that the loss
for pixels which are misestimated with high uncertainty can
be neglected.

Mapping Loss Function. The total loss function for
mapping loss is defined as:

Lm = λrgbLmap
rgb + λdepLdep + Lsdf (15)

Unlike tracking, the mapping process relies more
on RGB information to compensate for invalid depth,
requiring a distinct treatment of Ltracking

rgb and Lmap
rgb .

Additionally, since scene representation is optimized only
during mapping, we do not reweight Lmap

rgb with the
confidence function CFm in Eq. (12).

3.4. Strategic Bundle Adjustment

In bundle adjustment (BA), keyframes are selected
first, followed by joint optimization of camera poses and
scenes. Traditional dense SLAM techniques require storing
keyframe images for dense pixel-level loss calculation.
Recent NeRF-based SLAM methods like iMap [55] and
Nice-SLAM [75] use local BA, selecting a small fraction of
keyframes and points through a sliding window. In [19,61],
global BA optimizes all keyframes. However, none of
these NeRF-based SLAM methods incorporate uncertainty
management in keyframe selection or BA. Performing
mapping process every n frames is unreasonable due to the
random motion states and varying quality of depth and color
images, which provide different information to the scene
representation. Any misestimation (e.g., outlier pose) will
have a global impact and might cause false reconstruction.
Therefore, corrective and remedial strategies are needed.
To better balance efficiency and accuracy, we propose an
uncertainty-guided local-to-global bundle adjustment, as
depicted in Fig. 4. Tracking operations are executed for
every frame, while mapping with global BA occurs every
n frames constantly. In order to capture local information,
our Uni-SLAM system can activate additional mapping
processes with local BA based on image-level uncertainty
β if β > βunc, where βunc is the threshold for image-level
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Figure 4. Strategic BA. While the tracking process is performed
at every frame, we perform a constant mapping with global bundle
adjustment (GBA) at a fixed frequency. Thus, the pose and map are
optimized using all keyframes from the start to the end of the frame
sequence. If an outlier frame is detected based on its uncertainty, a
local bundle adjustment (LBA) is performed, as shown in red. If a
loop closure is detected, a local loop closure optimization (LLCO)
is performed, as shown in green in the figure.

uncertainty. In local BA, we use only keyframes that
visually overlap with the current frame, mitigating the
impact of outlier frames. Fig. 5 illustrates this necessity.

For local BA keyframe selection, we first initialize
spatial sample points in 3D space using the current frame’s
camera pose. These points are then back-projected onto
previous keyframes to check how many fall within image
boundaries, determining overlap. Prioritizing local over
global information, this method enables efficient local
map updates with a limited number of M sample points
and informs our co-visibility check. Eq. (16) defines
the overlapping coefficient of co-visibility OCcov(i, c)
between i-keyframe Ii and current frame Ic, Ii ∈
Keyframe Database {I1, I2, . . . , In}

OCcov(i, c) =
|Ii ∩ Ic|
|Ic|

(16)

At the end of the tracking process for every frame,
we calculate the co-visibility with negligible computational
overhead. If the co-visibility is larger than threshold τcov
(set at 0.95), it indicates a loop closure. In this case,
the additional mapping process with local loop closure
optimization (LLCO) is performed immediately. This
process optimizes only the keyframes from the current
frame to the loop closure point, as shown in green circle
in Fig. 4. This approach enables efficient use of M sample
points and improves system stability.

4. Experiments and Results
4.1. Experimental Setup

Datasets. We evaluate Uni-SLAM using diverse
benchmarks, including the synthetic Replica dataset [52]
with 8 high-quality indoor scene reconstructions, as well
as the realistic ScanNet [9] and TUM RGB-D datasets [53].
Metrics. We assess the quality of our reconstruction from
multiple perspectives. For tracking accuracy, we adopt ATE
RMSE [cm] [54]. We analyze the reconstruction quality

Big
Movement

Figure 5. Activated additional local BA. From position Pi

to Pi+1, sudden large movements lead to difficulties in pose
estimation and increased uncertainty due to unseen areas. The
initialization of Init Pi+1 based on the constant speed assumption
is hard to optimize. Therefore, besides constant global BA, we
activate additional local BA based on image-level uncertainty to
optimize local information. This simulates slowing down the
movement. Its effectiveness can be found in Fig. 8 and Tab. 7.

using 3D and 2D metrics. For 3D metrics, the meshes
produced by marchingcubes [30] are evaluated by Depth
L1 [cm], Accuracy [cm], Reconstruction completion [cm],
and Completion ratio [1cm ]%. Those meshes are culled
following [2] before evaluation. For 2D rendering, we
provide the peak signal-to-noise ratio (PSNR), SSIM [63],
and LPIPS [73]. The rendering metrics are evaluated every
5 frames on full-resolution images.
Baselines and Implementation. We primarily compare our
method to existing state-of-the-art dense implicit RGB-D
SLAM systems such as Nice-SLAM [76], Co-SLAM [61],
ESLAM [21], and BSLAM [19]. For BSLAM we produce
results with their novel proposed hybrid model. We
reproduce their results using the open-source code and
report the middle value after 5 runs. The results of
iMAP∗ [55] are adopted from Nice-SLAM. For a fair
comparison, we extract mesh at 1cm resolution. In our
pipeline implementation, we set the hash grid level to 16 for
both geometry and appearance grids. We randomly select
4,000 sampling points for the mapping process and 2,000
for the tracking process. The truncation distance is set to 6
cm. Additional details can be found in Supp. Sec. A.1.

Method Rm 0 Rm 1 Rm 2 Off 0 Off 1 Off 2 Off 3 Off 4 Ave.
iMAP∗ [55] 5.23 3.09 2.58 2.4 1.17 5.67 5.08 2.23 3.24
Nice-SLAM [76] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.06
MIPS-Fusion [59] 1.10 1.20 1.10 0.70 0.80 1.30 2020 1.10 1.19
Co-SLAM [61] 0.66 2.25 1.07 0.65 0.53 2.12 1.32 0.85 1.18
ESLAM [21] 0.69 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63
BSLAM [19] 0.71 0.88 1.5 0.61 0.49 2.14 1.63 1.66 1.19
Ours 0.49 0.48 0.40 0.37 0.36 0.48 0.56 0.44 0.45

Table 1. Tracking performance on Replica [52](RMSE ↓ [cm]).

4.2. Qualitative and Quantitative Evaluation

Reconstruction & Rendering. Fig. 6 compares the
mesh reconstructions of Co-SLAM [61], BSLAM [19]
and ours to ground truth mesh on Replica. Our method
can achieve more accurate thin geometric details and
high-fidelity colors, such as captured chair legs and thin
tables. Quantitatively, Tab. 2 compares reconstruction and
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Figure 7. Mesh Evaluation on ScanNet [9]. The estimated pose is shown in red, and the ground truth camera pose is shown in green. Our
method stands out with its more accurate trajectory and higher quality reconstruction, such as the corners of the kitchen.
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Figure 8. Mesh Evaluation on TUM RGB-D [53]. Our method
stands out with its geometry details and higher texture fidelity.
Without strategic BA (only with global BA), the performance can
be suboptimal due to missing local information.

rendering performance on the Replica dataset and shows
best among 3D metrics and 2D metrics, beating all implicit
dense SLAM. In Fig. 7 we show that our method can
achieve more accurate localization and finer realistic details
on ScanNet. We attribute this to our sufficient model

Method Reconstruction [cm] Rendering
Depth L1↓ Acc.↓ Comp.↓ Comp. Ratio [%] ↑ PSNR[dB] ↑ SSIM↑ LPIPS↓

iMAP* [55] 8.23 7.16 5.83 20.33 17.32 0.6535 0.3425
Nice-SLAM [76] 3.18 1.90 1.53 36.93 24.42 0.8091 0.2335
Co-SLAM [61] 2.15 1.16 1.12 55.94 30.27 0.9396 0.2468
ESLAM [21] 1.18 0.97 1.05 63.99 30.19 0.9421 0.2433
BSLAM [19] 2.52 1.12 1.10 57.18 29.55 0.9335 0.2361
Ours 0.89 0.92 0.92 66.86 31.62 0.9584 0.1853

Table 2. Reconstruction and Rendering Performance on
Replica [52]. To reflect the ability to reconstruct geometric details,
we report completion ratio [< 1cm%]. For the details of the
evaluations for each scene, refer to the supplementary material.

Method Sc.00 Sc.59 Sc.106 Sc.169 Sc181 Sc.207 Ave.
iMAP* [55] ICCV 21 42.7 17.8 15.0 39.1 24.7 20.1 26.6
Nice-SLAM [76] CVPR 22 12.0 14.0 7.9 10.9 13.4 6.2 10.7
MIPS-Fusion [59] SA 23 7.9 10.7 9.7 9.7 14.2 7.8 10.0
ESLAM [21] CVPR 23 7.3 8.5 7.5 6.5 9.0 5.7 7.4
Co-SLAM [61] CVPR 23 7.2 12.3 9.6 6.6 13.4 7.1 9.4
BSLAM [19] CVPR 24 7.29 12.2 9.0 8.8 13.4 6.65 9.56
Ours 6.12 7.77 7.41 5.82 9.77 5.21 7.01

Table 3. Tracking Performance on ScanNet [9](RMSE [cm]) .
On average, our method achieved the best results.

capability and online uncertainty-aware activated additional
mapping process, which can capture more details locally.
The reconstructed mesh on TUM RGB-D is shown in Fig. 8.
The results show that our reconstruction quality benefits
from strategic BA.



Tracking. Tab. 1 compares our methods to state-of-the-art
implicit dense RGB-D neural SLAM system on 8
scenes of Replica datasets [52] in tracking performance.
We outperform on all scenes and achieve an average
improvement of 62%, 29% and 62% on RMSE over
Co-SLAM, and ESLAM and BSLAM respectively. The
tracking performance on ScanNet and TUM RGB-D
is shown in Tab. 3 and Tab. 4 respectively. We
primarily attribute this to the uncertainty reweighted loss
function, where only the most reliable information is
emphasized. Although classic methods are still showing
state-of-the-art accurate tracking on TUM RGB-D, our
method outperforms neural methods on average and bridges
the gap between those two categories.

Method fr1/ fr2/ fr3/ Ave.desk xyz office

NeRF-Based

iMAP∗ [55] 5.15 2.39 5.76 4.43
Nice-SLAM [76] 5.00 3.17 5.05 4.41
MIPS-Fusion [59] 3.00 1.40 4.6 3.0
Co-SLAM [61] 3.05 1.88 2.85 2.59
ESLAM [21] 2.54 1.13 2.75 2.14
BSLAM [19] 2.87 1.38 2.95 2.39
Ours 2.37 1.17 2.62 2.05

Classic
ORB-SLAM2 [37] 1.6 0.4 1.0 1.0
BundleFusion [10] 1.6 1.1 2.2 1.63
BAD-SLAM [49] 1.7 1.1 1.7 1.5

Table 4. Tracking Performance on TUM RGB-D [53] (RMSE
[cm]) .

4.3. Analysis on Design Choices

Runtime and Memory Analysis In Tab. 5, we compare
runtime and memory usage, benchmarking all methods on
NVIDIA GeForce RTX 4090 GPU using room0 of Replica
[52]. We report tracking and mapping times per iteration
and compare iteration steps to show convergence speed.
Our model achieves real-time performance on par with
SOTA results at speeds exceeding 8 FPS.

Method Tracking Mapping FPS↑ Time Params.↓[ms x it.] ↓ [ms x it.] ↓ Mins↓
Nice-SLAM [76] 6.5 x 10 29.3x60 1.8 18.51 12.13M
Co-SLAM [61] 4.6 x 10 6.6 x 10 9.07 3.67 1.72M
ESLAM [21] 7.9 x 8 18.8 x 15 5.55 6.01 6.78M
BSLAM [46] 11 x 20 15 x 20 1.66 20.3 17.38M
Ours 7.0 x 8 8.1 x 13 8.37 4.02 12.69M

Table 5. Runtime and Memory Usage Comparison.

Ablation of Model Design. We encoded geometry and
appearance using different structures and validated our
design choices on the Replica dataset [52], as shown in
Tab. 6. By ablating various combinations of hash grids
[36] and tri-planes [4], we found that using two hash grids
without a third learnable uncertainty grid (h-h-n) produced
the best results. Introducing a third learnable uncertainty
grid (h-h-u) under the Gaussian assumption made training
and convergence more complex. Further details can be
found in Supplementary Sec. B.3.

Method Reconstruction [cm] Rendering/Tracking/Time
Depth L1↓ Acc.↓ Comp.↓ Comp. Ratio [%] ↑ PSNR[dB] ↑ RMSE[cm] ↓ Mins↓

h-h-u 3.75 1.79 1.65 31.52 27.33 1.51 6.53
h-t-n 0.93 1.01 1.15 64.69 30.98 0.47 4.79
t-h-n 0.97 1.17 1.09 63.82 31.32 0.50 4.65
Ours(h-h-n) 0.89 0.92 0.92 66.86 31.62 0.45 3.97

Table 6. Ablation of model design.

Ablation on Reweighting. In Fig. 9, we present a
quantitative analysis of the application of model uncertainty
to various loss terms on TUM RGB-D [53]. Configuration
(d) achieves the highest localization accuracy and rendering
quality. During tracking, reweighting all terms to focus
on only low-uncertainty information improves localization.
In mapping, color information can compensate for invalid
depth values, so reweighting is not applied to the color
term. This strategy enhances reconstruction quality in both
geometry (lower depth L1) and appearance (higher PSNR)
compared to configuration (e).

Method Reweighting Term Tracking/Rendering
SDF Depth Color RMSE [cm] ↓ PSNR [dB] ↑ Depth L1[m]↓

a) Tracking ✗ ✗ ✗ 7.18 16.76 0.347Mapping ✗ ✗ ✗

b) Tracking ✗ ✗ ✗ 2.32 19.82 0.111Mapping ✓ ✓ ✗

c) Tracking ✓ ✓ ✓ 6.57 17.25 0.281Mapping ✗ ✗ ✗

d) Tracking ✓ ✓ ✓ 2.05 21.23 0.099Mapping ✓ ✓ ✗

e) Tracking ✓ ✓ ✓ 2.21 20.17 0.115Mapping ✓ ✓ ✓

a) 17.01dB b) 19.35 dB

c) 15.93 dB d) 20.17 dB

e) 15.81 dB GT

Figure 9. Ablation on loss term reweighting

Ablation of strategic BA. Tab. 7 shows localization
accuracy and rendering quality under different BA
strategies on 6 ScanNet scenes. Experimental results
demonstrate that our uncertainty-guided strategic BA
method achieves optimal performance by dynamically
activating the mapping process and selecting keyframes.
Fig. 8 ablates the reconstructed mesh without strategic BA.

Method Keyframe Selection Camera ATE [cm] PSNR↑Local Global LC pose RMSE↓ Mean↓
w/o BA ✗ 17.58 15.15 17.63
LBA ✓ ✓ 8.77 7.23 20.62
GBA ✓ ✓ 8.35 7.17 21.52
LBA + GBA ✓ ✓ ✓ 7.23 6.56 21.59
LBA + GBA + LLCO ✓ ✓ ✓ ✓ 7.01 6.15 21.77

Table 7. Ablation of strategic BA: LBA selects 20 local keyframes,
GBA includes all keyframes, and LLCO focuses on keyframes in
loop closure.

5. Conclusion
We present Uni-SLAM, a novel uncertainty-guided

dense implicit SLAM approach. In decoupled scene
representation, we propose utilizing model-free predictive
uncertainty to reweight the loss function at the pixel level
to capture effective information, achieving high-frequency
geometric reconstruction. By leveraging image-level
uncertainty, we strategically perform bundle adjustment to
balance local-to-global information. Overall, our method
achieves state-of-the-art high-fidelity mapping and accurate
tracking in real-time among dense SLAM.
We accept a trade-off in efficiency through random
sampling in a real-time required SLAM system. However,
active sampling based on uncertainty should further
improve efficiency and yield finer edge structures. We leave
this for future work.
Acknowledgements: This research has been partially
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