
Queuing Theory-Based Modeling and Optimization
of a Publish/Subscribe IoT Communication System

Franc Pouhela1, Anthony Kiggundu1, Hans D. Schotten12

1German Research Center for Artificial Intelligence (DFKI GmbH), Kaiserslautern
Email: {franc.pouhela; anthony.kiggundu; hans dieter.schotten}@dfki.de

2University of Kaiserslautern (RPTU), Germany
Email: {schotten}@rptu.de

Abstract—This paper presents a comprehensive Queuing
Theory-based model of a Publish/Subscribe Internet of Things
(IoT) communication system. Using a Markovian (M/M/1) queu-
ing process, we model, analyze, and optimize the message delivery
of a Middleware Message Queuing Protocol (MMQP)-broker.
We derive key performance metrics such as average waiting
time, system utilization, and the effects of multi-threading on
performance. Our model aims to optimize the throughput and the
efficiency of the system by determining the optimal service rate
of the broker in relation to the overall arrival rate of messages.
Through experimental evaluation, we demonstrate the model’s
accuracy and its relevance in providing valuable insights for
improving IoT communication.

Index Terms—IoT, Queuing Theory, Modeling, 6G

I. INTRODUCTION

The growing demand for efficient, scalable, and continuous
data collection and processing in distributed systems has
received significant attention over the past decade, especially
in the context of next-generation mobile networks such as 5G
and the anticipated 6G. A major factor driving this trend is the
extensive desire to achieve context-aware Internet of Things
(IoT) communication by integrating Artificial Intelligence (AI)
in different layers of network operations.

A promising avenue is found in a Context Management Sys-
tem (CoMaS) [1], [2]. A CoMaS is a framework that leverages
network context data and applies various AI algorithms to gain
deeper insights into the network’s state. This knowledge is
then utilized to optimize and enhance network operations. The
success of such a system hinges on the efficient and seamless
acquisition and distribution of contextual data, a process that
becomes increasingly challenging with the exponential growth
of connected devices, as predicted in IoT.

The Message Queuing Telemetry Transport (MQTT) [3]
protocol, widely recognized as a lightweight messaging
protocol, is extensively used in IoT and Machine-to-
Machine (M2M) scenarios where scalability and efficiency are
paramount. However, upon a closer examination of MQTT, we
identified several areas with room for improvement. To address
the limitations of MQTT, we designed a similar protocol
called: Middleware Message Queuing Protocol (MMQP) [4]
that enhances efficiency, flexibility, scalability, and security.

To ensure optimal performance and reliability of the broker
under varying network conditions, it was crucial to mathemati-

cally model its behavior. Queuing theory offers a robust frame-
work for analyzing and predicting performance by modeling
message flow through the system. This approach enables the
evaluation of key performance metrics such as latency, queue
size, system utilization, etc., which are essential for assessing
the efficiency and scalability of our framework.

The remainder of this paper is organized as follows: Sec-
tion II reviews the related work. Section III provides a concise
introduction to the MMQP protocol. Section IV presents
our queuing model, and Section V offers a comprehensive
evaluation of this model. Finally, Section VI concludes the
study and outlines potential directions for future research.

II. RELATED WORK

The Publish/Subscribe communication paradigm has been
widely studied, particularly in the context of distributed sys-
tems and IoT applications. MQTT [3] and Advanced Message
Queuing Protocol (AMQP) [5] are prominent implementations
of this paradigm, with similar mechanisms for message distri-
bution and Quality of Service (QoS) management.

Queuing theory has been extensively applied to model and
optimize various aspects of communication systems. Kleinrock
[6] pioneered the use of queuing models to analyze network
performance, laying the foundation for subsequent work in the
field. More recently, authors in [7], [8] have utilized queuing
models to analyze the performance of wireless and mobile
networks. These studies provide a robust framework for un-
derstanding system behavior under different traffic conditions.

Eugster et al. [9] provided a comprehensive survey of the
publish/subscribe paradigm, outlining various design choices
and their implications for system performance. Specific to
MQTT, authors in [10], [11] have examined the protocol’s
design and implementation, highlighting its suitability for
resource-constrained environments such as IoT.

Several works have explored optimization techniques in the
context of IoT communication. Bonomi et al. [12] introduced
the concept of Fog Computing, which optimizes resource
allocation in IoT networks through localized processing.

While significant progress has been made in both queuing
theory and publish/subscribe systems, there is a notable gap in
research that integrates these fields for system optimization.

III. COMMUNICATION SYSTEM

Efficient and secure IoT communication depends heavily
on the choice of messaging pattern and protocol. The pub-
lish/subscribe messaging pattern, exemplified by the widely
adopted MQTT[3] protocol, has become the standard for
IoT communication. In this study, we introduce a novel
protocol named MMQP[4], inspired by MQTT. MMQP is a
lightweight, binary protocol specifically designed for IoT and
M2M communication. MMQP allows clients to communicate
indirectly via a central distribution node known as the broker.
Clients can act as both publishers and subscribers. Subscribers
submit interest in specific topics by subscribing to them
and publishers publish messages to these topics, which are
named channels that categorize the message content. The
broker distributes messages from publishers to the appropriate
subscribers by managing topic hierarchies.

] Publisher + Broker � Subscriber

CONREQ

CONACK

TOPREQ

TOPACK

PUBREQ

PUBREQ

PUBACK

Fig. 1: MMQP Sequence Diagram

As illustrated in the sequence diagram depicted in Figure 1,
the publisher establishes a connection with the broker by
sending a CONREQ packet, to which the broker responds with
a CONACK packet acknowledging the successful connection.
Subsequently, the subscriber subscribes to a specific topic
using the TOPREQ packet. Meanwhile, the publisher sends
a PUBREQ (publish request) packet to the broker, which can
be queued for further processing depending on the QoS level
of the message. The broker then forwards the relevant message
to the subscribers.

A. Message Routing

Topics in MMQP function as key identifiers for organizing
and distributing messages. These topics are managed hier-
archically by brokers and are represented as strings with
multiple levels separated by forward slashes (”/”). When a
client publishes a message, the broker analyzes the topic
hierarchy to identify the appropriate subscribers. The broker
then forwards the message to subscribers who are interested
in the exact topic or any of its parent levels. For example,
publishing a message under home/room1/light would prompt

the broker to deliver the message not only to subscribers of
home/room1/light but also to those subscribed to home/room1
and home. See [4] for a thorough description.

B. Quality of Service

MMQP supports three levels of QoS. Messages published
to the broker with a QoS level greater than 0 can be queued
until their expiry interval is reached. If new clients join, the
broker will forward the queued messages accordingly to their
subscription pattern.

QoS 0 (At most once): Or best effort delivery, ensures the
delivery without any acknowledgment (Figure 2). If the broker
is currently busy, the packet may be dropped. This QoS level
is primarily used in high data rate scenarios, such as video
streaming, where occasional packet loss is not critical.

] Publisher + Broker � Subscriber

PUBREQ

PUBREQ

Fig. 2: Publishing with QoS level 0

QoS 1 (At least once): Here, the sender publishes the
message, and the receiver (broker or subscriber) acknowledges
its receipt. If the acknowledgment is not received, the publisher
may resend the message (see Figure 3).

] Publisher + Broker � Subscriber

PUBREQ

PUBREQ

PUBACK

Fig. 3: Publishing with QoS level 1

QoS 2 (Exactly once): This QoS level guarantees that
the message is delivered exactly once. It involves a two-step
process as depicted in (Figure 4).

In the sequence diagrams shown in Figures 2,3, and 4,
it is assumed that the subscriber receives messages with
QoS level 0. Consequently, no acknowledgment is sent from
the subscriber to the broker. This assumption was made to
optimize the use of space available in the paper.

IV. SYSTEM MODELING

As introduced in (Section I), queuing theory is a mathemat-
ical study of waiting lines, or queues, which is used to model
the behavior of systems that provide services to randomly
arriving customers. It is a fundamental aspect of operations

] Publisher + Broker � Subscriber

PUBREQ

PUBSYN

PUBSYN

PUBREQ

PUBACK

Fig. 4: Publishing with QoS level 2

research and is widely applied in various fields, including
telecommunications, computer networks, manufacturing, and
service systems.

The origins of queuing theory can be traced back to the
work of A.K. Erlang in the early 20th century, who developed
models to describe the congestion and waiting times in tele-
phone networks [13]. Since then, queuing theory has evolved
significantly, and its application has expanded to a wide range
of domains. The theory provides essential tools for analyzing
systems where there is a need to understand and predict system
behavior under different load conditions, which is crucial for
optimizing reliability and performance.

A typical queuing system is characterized by the arrival
process of customers, the service process, and the queue
discipline, which determines the order in which customers
are served [14]. The simplest and most studied model is
the M/M/1 (where the ”M” in the first and second octets
denote Markovian arrival and service schemes respectively
for a single queue (third octet). The arrivals follow a Poisson
process, service times are exponentially distributed, and there
is a single server [6]. This basic model forms the foundation
for more complex queuing systems.

A. System Dynamics

To effectively model our communication system, it is es-
sential to establish several key assumptions to simplify the
complexity of the system while ensuring that the model
accurately reflects its behavior. Following are the assumptions
made as well as the state variables representing the system:

‚ First-In-First-Out (FIFO) queue discipline.
‚ Messages are reliably delivered to subscribers.
‚ The broker operates as a single-server queue.
‚ The system is assumed to be in a steady-state, allowing

the of steady-state probability distributions.
‚ K and S represent the set of publishers and subscribers.
‚ µs ě 0 is the service rate of the subscriber s P S.
‚ λk ě 0 is the arrival rate of the publisher k P K.

B. Overall Arrival Rate

Figure 5 illustrates the queuing model of our communication
system. On the left is the set of publishers K characterized by

Fig. 5: System Queuing Model

their stochastic message arrival rate λ1, . . . , λk. On the right
is the set of subscribers S, each associated with its respective
and independent service rate µ1, . . . , µs and in the middle is
the broker acting as a service node in a M/M/1 queue model.
Each publisher k broadcasts messages at an independent rate
λk, which follows a Poisson distribution. This is described
in Equation 1, where Mkptq “ m represents the number of
messages sent by the publisher k in the time interval t.

PkpMkptq “ mq “
e´λktpλktq

m

m!
(1)

The overall arrival rate of the system can be described as
the sum of the arrival rates of all publishers:

λ “

K
ÿ

k“1

λk

This also results in Poisson distribution as characterized in
Equation 2, where K represents the total number of publishers,
Nptq represents the total number of messages sent by all
publishers combined in the time interval t.

P pNptq “ nq “

K
ÿ

k“1

PkpMkptq “ mkq “
e´λtpλtqn

n!
(2)

The overall arrival rate effectively combines the independent
rates of all publishers, allowing us to model the total message
flow as a single Poisson process that reflects the stochastic
nature of message arrivals.

C. Overall Service Rate

We have a single broker that forwards messages to a set
of subscribers S. Each subscriber s has an exponentially dis-
tributed service time characterized by its service rate µs. The
service time Ts for each subscriber follows the distribution:

FspTs ď tq “ e´µst

where µs is the service rate (or the mean rate of message
processing) for subscriber s. This exponential distribution
implies that the probability of a message being processed by
time t increases with t, but the rate of increase slows down as t
grows, which reflects the memory-less property of exponential
distributions. The overall effective system’s service rate µ can
be defined as:

µ “

S
ÿ

s“1

µs

This combined service rate µ indicates the expected rate
at which messages are processed collectively across all sub-
scribers. This summation is valid under the assumption that
each subscriber is independent and that the system operates in
a load-balanced manner with messages distributed uniformly
across subscribers. The service completion time for S sub-
scribers, where each subscriber’s service time is defined by
an exponential distribution with rate µs, follows an Erlang
distribution given by:

F pT ď tq “
µse

´µstpµstq
S´1

ΓpSq
(3)

where ΓpSq is the Gamma function, often expressed as
ΓpSq “ pS´1q! for integer values of S. This formula describes
the probability density function of the time it takes for a
message to be fully processed by S subscribers, accounting
for the multi-subscriber, concurrent processing model. Because
each service time Ts is exponentially distributed, the expected
service time for each subscriber can be represented as:

Ts “ 1{µs

D. Steady-State Indicators

The traffic intensity ρ is defined as: ρ “ λ{µ. It helps
determine the system’s load. When ρ ă 1, the system is stable,
meaning the broker can handle incoming messages without in-
definitely growing the queue. If ρ ě 1, the system is unstable,
with the queue length potentially growing unbounded.

The probability that there are n messages in the system
(being processed or in the queue) in steady-state is given by:

P pnq “ p1 ´ ρqρn

This formula is valid for ρ ă 1 and describes the probability
of the system having n messages waiting or being processed.
The average number of messages in the system is:

L “
ρ

1 ´ ρ

The average time a message spends in the system (both
waiting and processing time) is:

W “
1

µ ´ λ

The average time a message spends waiting in the queue
(before being processed by the broker) is defined as:

Wq “
ρ

µ ´ λ
“

λ

µpµ ´ λq

E. Optimization Constraint

To optimize our communication system, we can formu-
late an optimization problem that minimizes latency (average
waiting time) while ensuring system stability and maximizing
throughput. The key goal here is to optimize the broker’s
service rate (µ) of messages while keeping the waiting time
within acceptable limits. However, a growing service rate µ
usually comes with additional operational cost (e.g., more
processing power, higher network bandwidth, higher memory
usage, etc.). So, we need to incorporate a cost term associated
with the service rate growth in the optimization objective.

a) Stability Constraint: ρ “ λ{µ ă 1 ùñ µ ą λ
b) Service Rate Bound: Hardware limitations µ ď µmax

c) Cost Constraint: In our previous study described
in [15], our measurements demonstrated that the power con-
sumption of the broker exhibited a linear increase with grow-
ing traffic intensity. Based on this observation, let Cpµ, tq
represent the cost of maintaining a service rate µ, we define
the cost function as:

Cpµ, tq “ c0 ` c1ptq ¨ µ

where c0 is the base cost and c1ptq is per unit increase in
µ. Assuming the worst-case scenario where every incoming
message from publisher k P K has to be forwarded to every
subscribers s P S, we could define c1ptq as:

c1ptq “
c0

λptq ¨ |S|
ùñ Cpµ, λq “ c0 `

c0
λ ¨ |S|

¨ µ (4)

The cost constraint can be define in relation to µ and λ as:

Cpµ, λq “ c0 `
c0

λ ¨ |S|
¨ µ (5)

F. Optimization Problem

The optimization problem is formulated in equation (6),
where W pµ, λq represents the latency, and ϵ ¨ Cpµ, λq in-
troduces a penalty for higher service rates. By adjusting
the parameter ϵ, the system can be tuned to prioritize ei-
ther reducing latency or minimizing operational costs (power
consumption). This balance allows for flexibility in aligning
system performance with specific application requirements,
such as low-latency demands or cost-efficiency goals.

Opµ, λq “ min
µ

rW pµ, λq ` ϵ ¨ Cpµ, λqs

subject to:
ϵ ą 0

λ ď λmax,

λ ă µ ď µmax,

W pµ, λq “
1

µ ´ λ
,

Cpµ, λq “ c0 `
c0

λ ¨ |S|
¨ µ

(6)

1) Objective Function: The objective function Fpµ, λq

depicted in (7) depends on both µ and λ. To find the optimal
service rate µ in relation to the arrival rate λ, we can calculate
the partial derivative of the objective function with respect to
µ and equate it to zero to find the critical point.

Fpµ, λq “
1

µ ´ λ
` ϵ ¨

ˆ

c0 `
c0

λ ¨ |S|
¨ µ

˙

(7)

The partial derivative with respect to µ is:
BF
Bµ

“ ´
1

pµ ´ λq2
`

ϵc0
λ|S|

(8)

Settings BF
Bµ “ 0, give us:

µ˚ “ λ `

d

λ ¨ |S|

c0 ¨ ϵ
(9)

We can approximate c0 by setting the optimal service rate
to its minimum µ˚pλq « 0 and the penalty parameter to ϵ “ 1.
This implies:

c0 «
|S|

λ
(10)

Inserting (10) into (9) gives us:

µ˚pλ, ϵq “ λ

˜

1 `

c

1

ϵ

¸

with λ ă µ, ϵ ą 0 (11)

This solution allows us to minimize costs while adhering to
the constraints, ensuring that µ remains close to λ for stability
and minimal additional expense. The penalty parameter ϵ helps
prioritize latency over resource and vice-versa.

V. EXPERIMENTAL EVALUATION

For our experimental evaluation, we utilized a custom
MMQP-broker, with similar results expected from an MQTT
broker. The broker is implemented in C++17, compatible with
both Windows and Linux Operating Systems (OSs), and lever-
ages the Asio library [16] for cross-platform, asynchronous
network and low-level I/O operations. To ensure flexible and
scalable behavior, the broker’s software architecture is based
on the Entity-Component-System (ECS) design pattern [17].
This architecture decouples object (entities) from their data
(component) and behavior or logic (systems).

A. Measurement Setup
The dataset (Table I) used in this evaluation was collected

on a laptop equipped with an 11th Gen Intel(R) Core(TM)
i7-11800H @ 2.30GHz processor and 32GB of RAM. In our
setup, publishers sent messages every 100ms (10Hz) with
payload size ranging from 10B to 10K to the broker, which
forwards them to subscribers while measuring arrival and
service rates of messages and bytes. Similar measurements
was also performed with varying number of threads ranging
from 1 to 8 (Sections: V-C) to evaluate the impact of multi-
threading on system performance.

TABLE I: Datasets Snippet

clients message (µ) message (λ) byte (µ) byte (λ)
5 230.3 46.0 2360239.2 472047.8
10 914.2 91.4 9367771.4 936777.1
15 2063.5 137.5 21143352.8 1409556.8
20 3674.2 183.7 37646731.4 1882336.5
25 5732.1 229.2 58731535.7 2349261.4
30 8271.4 275.6 84749057.1 2824968.5
35 11252.4 321.4 115293115.0 3294089.0
40 14662.8 366.5 150235634.2 3755890.8

B. Measurements for n-Clients

This scenario evolves an equal number n of publishers and
subscribers in single-threaded mode. The expectation in this
case is that for m incoming messages, n ¨ m-messages will
be processed and forwarded by the broker. Figure 6 a linear
growth of the arrival rate which suggests that each additional
client contributes an almost constant increase in the message
load arriving at the broker. A similar pattern is observe with
different payload sizes. This can also be represented as:

λpnq “ 9.17 ˚ n ` 0.055 (12)

10 20 30 40

100

200

300

n-Clients

λ
pn

q

Model
Dataset

Fig. 6: Arrival rate growth with 10K payload

As the number of clients (n) increases, the service rate
increases significantly (Figure 7). This makes sense since
more clients connected to the broker should generate more
messages, which the system has to process. The relationship
between the number of clients n and µ appears to be quadratic
or exponential. An approximated formulation for the growth
of µ can be described as:

µquadpnq “ 9.14n2 ` 1.62n ´ 12.12

µexppnq “ 3317.75 ¨ e0.0435n ´ 4121.82
(13)

The decreasing values of system utilization ρ “ λ{µ in
Figure 8 suggest that the broker’s service capacity is scaling ef-
fectively, allowing the system to maintain low utilization, high
responsiveness, and operational stability as traffic increases.

C. Multi-Threaded Measurement

This scenario involved testing the impact of multi-threading
on the Key Performance Indicatorss (KPIs). By progressively

10 20 30 40

0

0.5

1

1.5

¨104

n-Clients

µ
pn

q

Exponential
Quadratic
Datasets

Fig. 7: Service rate growth with 10K payload size

10 20 30 40

5 ¨ 10´2

0.1

0.15

0.2

n-Clients

ρ “ λ
µ

Fig. 8: System utilization with 10K payload size

increasing the number of worker-threads w with a fixed pay-
load size and number of clients, we measured the arrival and
service rates of the broker.

2 4 6 8

85

90

w-Threads

λ
pw

q

λpwq

Fig. 9: Multi-threaded arrival rate for 10K payload size

The arrival rate λ (Figure 9) decreases slightly as the
number of threads increase. It starts at around 91.43 for
1 thread and drops to 81.57 for 7 threads, before slightly
increasing again to 83.71 for 8 threads. This slight reduction
in λ can be caused by the context switch between threads.
In addition to reading messages, the system now has to also
manage concurrent threads.

The service rate µ (Figure 10) remains relatively stable,
hovering around 914 messages per second, with slight fluc-

2 4 6 8

905

910

915

920

w-Threads

µ
pw

q

µpwq

Fig. 10: Multi-threaded service rate for 10K payload size

tuations as the number of threads w increases. Increasing the
number of threads has a minimal (not positive) impact on the
overall service rate of the broker.

D. Optimization Results

Table II provides some computed values based on the
optimization model describe in Section IV. From this dataset,
we can observe how the optimal service rate µ˚ responds to
variations in the penalty parameter ϵ and the arrival rate λ.
As λ increases, we see (Figure 11) a clear, consistent rise in
the optimal service rate µ˚. This relationship suggests that µ˚

must scale with λ to maintain system stability, likely to ensure
that the service rate remains sufficiently higher than the arrival
rate, minimizing latency and keeping the system responsive.

0 500 1,000 1,500 2,000 2,500

0

2

4

¨104

n-Clients

µ˚

λ

Fig. 11: Optimal service rate µ˚ growth compared to arrival rate λ

Figure 12 shows that the optimal service rate µ˚ grows
significantly with increases in λ and ϵ, but it is more sensitive
to changes in λ than in ϵ. This is advantageous, as it avoids
excessive penalization of the system, reducing the need to drop
messages excessively to maintain low operational costs.

VI. CONCLUSION AND FUTURE WORK

In conclusion, this study demonstrates the potential ben-
efits of applying queuing theory to model and optimize the
performance of a publish/subscribe communication system.
The findings from our experimental evaluation suggest that

TABLE II: Optimization Results

number clients (n) service rate (µ) arrival rate (λ) penalty parameter (ϵ) cost parameter (c0) optimal service (µ˚)
5 224.48 45.91 0.10 0.108920597 191.06
10 918.08 91.76 0.20 0.108985886 296.92
20 3676.28 183.46 0.30 0.109018560 518.39
40 14676.68 366.86 0.40 0.109034905 946.90
80 58613.48 733.66 0.50 0.109043079 1771.19

160 234231.08 1467.26 0.60 0.109047166 3361.47
320 936442.28 2934.46 0.70 0.109049210 6441.79
640 3744768.68 5868.86 0.80 0.109050232 12430.43
1280 14977037.48 11737.66 0.90 0.109050743 24110.22
2560 59904039.08 23475.26 1.00 0.109050999 46950.51

´4
´2 0 2 4

2

4´10

0

10

λ

ϵ

µ
˚

Fig. 12: Optimal service rate µ˚ growth compared to arrival rate λ

the arrival rate λ primarily drives the growth of the optimal
service rate µ˚ to ensure stability, while the penalty parameter
ϵ adjusts this growth by balancing between latency reduction
and cost efficiency. The proposed optimization methodology
provides a foundation for developing more efficient algorithms
for managing message queues.

Future research should focus on using more real-world
data to improve the optimization’s accuracy. Additionally,
implementing various Machine Learning (ML) algorithms
to predict traffic growth and determine the optimal penalty
parameter could further enhance the balance between latency
and resource utilization.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Ger-
man Federal Ministry for Education and Research (BMBF)
within the projects Open6GHub {16KISK003K} & 6G-
Terafactory {16KISK186}.

REFERENCES

[1] Pouhela, F., Krummacker, D., and Schotten, H. D., “Towards 6G
Networks,” in A Context Management Architecture for Decoupled
Acquisition and Distribution of Information in Next-Generation Mobile
Networks, ser. ITG, vol. 157, VDE. IEEE, 5 2023. [Online].
Available: https://www.researchgate.net/publication/373328855 A
Context Management Architecture for Decoupled Acquisition and
Distribution of Information in Next-Generation Mobile Networks

[2] Pouhela, F., Sanon, S. P., and Schotten, H. D., “Ngna 2023,”
in A Differential Privacy Approach for Context-Aware Service
Provisioning in Mobile Networks, 12 2023. [Online]. Available:
https://www.researchgate.net/publication/377307205 A Differential
Privacy Approach for Context-Aware Service Provisioning in
Mobile Networks

[3] OASIS. Mqtt version 5.0, oasis standard. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[4] Pouhela, F., Sanon, S. P., Krummacker, D., and Schot-
ten, H. D., “Everything Interconnected via Cyberspace,” in
MMQP: A Lightweight, Secure and Scalable IoT Commu-
nication Protocol, IEEE. IEEE, 8 2024. [Online]. Avail-
able: https://www.researchgate.net/publication/381742313 MMQP A
Lightweight Secure and Scalable IoT Communication Protocol

[5] OASIS. Advanced message queuing protoco. [Online]. Available:
https://www.amqp.org/

[6] Kleinrock, L., Queueing Systems, Volume 1: Theory. Wiley-
Interscience, 1975.

[7] Singh, J. P. and Dutta, P., “Temporal behavior analysis of mobile ad
hoc network with different mobility patterns,” in Proceedings of the
international Conference on Advances in Computing, Communication
and Control, 2009, pp. 696–702.

[8] Bisnik, N. and Abouzeid, A., “Queuing network models for delay
analysis of multihop wireless ad hoc networks,” in Proceedings of the
2006 international conference on Wireless communications and mobile
computing, 2006, pp. 773–778.

[9] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M., “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[10] Hunkeler, U., Truong, H. L., and Stanford-Clark, A., “Mqtt-s—a pub-
lish/subscribe protocol for wireless sensor networks,” in Communication
Systems Software and Middleware and Workshops, 2008. COMSWARE
2008. 3rd International Conference on. IEEE, 2008, pp. 791–798.

[11] Light, R. A., “Mosquitto: server and client implementation of the mqtt
protocol,” Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[12] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S., “Fog computing and
its role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[13] Erlang, A., “The theory of probabilities and telephone conversations,”
Nyt Tidsskrift for Matematik B, vol. 20, pp. 33–39, 1909.

[14] Gross, D., Shortle, J. F., Thompson, J. M., and Harris, C. M., Funda-
mentals of Queueing Theory. John Wiley & Sons, 2008.

[15] Pouhela, F., Arabshahi, M., and Schotten, H. D., “Everything
Interconnected via Cyberspace,” in Analyzing and Predicting the
Power Consumption of a Publish/Subscribe IoT-Broker, IEEE. IEEE,
8 2024. [Online]. Available: https://www.researchgate.net/publication/
381742346 Analyzing and Predicting the Power Consumption of a
PublishSubscribe IoT-Broker

[16] Asio c++ library. [Online]. Available: https://think-async.com/Asio/
[17] Pouhela, F., Krummacker, D., and Schotten, H. D., “Entity component

system architecture for scalable, modular, and power-efficient
iot-brokers,” in 2023 IEEE 21st International Conference on Industrial
Informatics (INDIN), 2023, pp. 1–6. [Online]. Available: https://www.
researchgate.net/publication/373318000 Entity Component System
Architecture for Scalable Modular and Power-Efficient IoT-Brokers

