
Context-Aware Internet-of-Things Communication
via Retrieval-Augmented Generation

Franc Pouhela1, Dennis Krummacker1, Hans D. Schotten12

1German Research Center for Artificial Intelligence (DFKI GmbH), Kaiserslautern
Email: {franc.pouhela; dennis.krummacker; hans dieter.schotten}@dfki.de

2University of Kaiserslautern (RPTU), Germany
Email: {schotten}@rptu.de

Abstract—A major challenge to the advancement of the Inter-
net of Things (IoT) as we know it, is related to the need of a
context-aware communication framework that can dynamically
adapt to environments with constantly changing requirements.
The paper at hand presents a potential avenue to address this
limitation. The study proposes an innovative approach to enable
context-awareness in dynamic IoT settings by leveraging the
Natural Language Processing (NLP) capabilities of the Large
Language Models (LLMs) in conjunction with the Knowledge
Graphs (KGs) within a custom Retrieval-Augmented Generation
(RAG) system to enable real-time understand and processing of
the Natural Language (NL) instructions. This approach makes
the communication system flexible and holds the potential for
future innovations in the realm of IoT technologies.

Index Terms—IoT, RAG, LLM, AI, 6G

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized modern
communication systems by enabling dynamic connectivity
between devices, sensors, and networks. However, one of the
primary challenges facing the advancement of this technology
is achieving a communication framework that is both efficient
and capable of adapting to constantly changing environments
and requirements. This challenge is amplified in large-scale
IoT systems, where devices operate in dynamic conditions and
often require context-aware real-time decision making.

The emergence of Large Language Models (LLMs), with
their advanced Natural Language Processing (NLP) capabil-
ities, has unlocked new possibilities for multiple industries.
These models can generate code, database queries, and various
other Natural Language (NL) outputs, which can be leveraged
in diverse environments to enable dynamic actions. However,
a critical limitation of LLMs is their tendency to hallucinate,
introducing significant risks when applied to critical decision-
making processes.

Recently, efforts have focused on addressing this limitation,
with the integration of Knowledge Graphs (KGs) gaining
significant attention. A KG is a structured representation of
knowledge, modeling real-world entities, their attributes, and
relationships as nodes and edges. This allows for efficient
information storage, reasoning, inference, and retrieval by both
humans and machines. In mathematical terms, a knowledge
graph can be viewed as a directed graph G “ pV,Eq, where: V
is the set of vertices (nodes), representing entities or concepts.

E is the set of edges that represent the relationships between
the entities. Each edge in the graph is typically labeled with the
type of relationship, providing semantic context. This makes
KGs particularly useful in applications requiring context-aware
reasoning, such as NLP, recommendation systems, etc., where
they help encode domain-specific knowledge and facilitate
decision-making based on the underlying semantic structure.

By integrating KGs with LLMs, the model can leverage
accurate and contextually relevant information from KG, en-
suring that its responses are based on real-world knowledge
rather than speculative generation. This combination helps
validate the generated content, providing factual consistency
and reducing the chances of hallucination by supplementing
the generative process with reliable, structured knowledge.

This paper presents a context-aware IoT framework that
leverages the NLP capabilities of LLMs in conjunction
with KGs through a custom Retrieval-Augmented Generation
(RAG) technique that enables real-time understanding and
processing of Natural Language Instructions (NLIs).

The remainder of this paper is organized as follows: Sec-
tion II reviews related work relevant to the topic of this
paper. Section III describes the communication system of the
proposed framework, while Section IV details its architectural
components. Section V focuses on the implementation and ex-
perimental evaluation. Finally, Section VI concludes the paper
with a summary of findings and future research directions.

II. RELATED WORK

Context-aware IoT communication is a critical research area
driven by the growing complexity of IoT networks and the
demand for efficient, adaptable solutions. While many studies
have focused on improving the scalability and efficiency of
IoT communication systems, less progress has been made in
developing communication systems with the ability to reason
about their current state to make insightful decisions.

[1] explores the state-of-the-art in IoT, where physical
objects, from everyday items to complex systems, connect
and actively exchange information via the Internet. It includes
a review of key technological drivers, potential applications,
challenges, and future research areas in IoT.

The need for dynamically adapting to changing environ-
ments has been addressed in several works, such as in [2].

This study addresses the challenge of deriving value from the
vast data generated by the rapidly growing number of IoT
sensors, emphasizing the role of context-aware computing in
understanding sensor data. It surveys context awareness in the
IoT domain, offering an overview of the IoT paradigm and
context-aware computing fundamentals.

The use of KGs in IoT systems has gained significant
traction due to their ability to encode complex relationships
and provide semantic context to data. Research by Maria
Bermudez et al. [3] tackles the integration of Industrial Internet
of Things (IIoT) data streams in Industry 4.0 through a
semantic, process-centered approach. It develops an ontology
to describe IIoT elements and constructs a Process-aware IIoT
KGs that enriches sensor data with additional context.

A Retrieval-Augmented Generation (RAG) technique com-
bines LLMs with retrieval mechanisms to enhance the relia-
bility and accuracy of generated outputs. Although RAG has
been successfully applied in various NLP tasks, its application
to IoT communication is relatively new. A study by Lewis
et al. [4] introduced RAG as a method to retrieve relevant
information from external sources, which is particularly useful
in dynamic and evolving environments such as IoT. This
technique offers a way to overcome the limitations of hal-
lucinations by grounding the model’s output in factual data.

By building on previous studies, we integrate RAG with
KGs to create an innovative framework that has the potential
to enhances context-awareness in IoT communication.

III. COMMUNICATION SYSTEM

Efficient and secure IoT communication depends heavily on
the choice of messaging pattern and protocol. The publish/sub-
scribe messaging pattern, exemplified by the widely adopted
Message Queuing Telemetry Transport (MQTT)[5] protocol,
has become the standard for IoT communication. In this study,
we introduce a novel protocol named Middleware Message
Queuing Protocol (MMQP)[6], inspired by MQTT. MMQP is
a lightweight, binary protocol specifically designed for IoT
and Machine-to-Machine (M2M) communication.

The communication pattern used in MMQP allows clients
to communicate indirectly via a central distribution node
known as the broker. Clients can act as both publishers and
subscribers. Subscribers submit interest in specific topics by
subscribing to them and publishers publish messages to these
topics, which are named channels that categorize the message
content. The broker distributes messages from publishers to
the appropriate subscribers by managing topic hierarchies.

As illustrated in the sequence diagram depicted in Figure 1,
the publisher establishes a connection with the broker by
sending a CONREQ packet, to which the broker responds with
a CONACK packet acknowledging the successful connection.
Subsequently, the subscriber subscribes to a specific topic
using the TOPREQ packet. Meanwhile, the publisher sends
a PUBREQ (publish request) packet to the broker, which can
be queued for further processing depending on the Quality of

Service (QoS) level of the message. The broker then forwards
the relevant message to the subscribers.

] Publisher + Broker � Subscriber

CONREQ

CONACK

TOPREQ

TOPACK

PUBREQ

PUBREQ

PUBACK

Fig. 1: MMQP Sequence Diagram

A. Quality of Service

MMQP supports three levels of QoS. Messages published
to the broker with a QoS level greater than 0 can be queued
until their expiry interval is reached. If new clients join, the
broker will forward the queued messages accordingly to their
subscription pattern.

QoS 0 (At most once): Or best effort delivery, ensures the
delivery without any acknowledgment (Figure 2). If the broker
is currently busy, the packet may be dropped. This QoS level
is primarily used in high data rate scenarios, such as video
streaming, where occasional packet loss is not critical.

] Publisher + Broker � Subscriber

PUBREQ

PUBREQ

Fig. 2: Publishing with QoS level 0

QoS 1 (At least once): Here, the sender publishes the
message, and the receiver (broker or subscriber) acknowledges
its receipt. If the acknowledgment is not received, the publisher
may resend the message (see Figure 3).

QoS 2 (Exactly once): This QoS level guarantees that
the message is delivered exactly once. It involves a two-step
process as depicted in (Figure 4).

In the sequence diagrams shown in Figures 2,3, and 4,
it is assumed that the subscriber receives messages with
QoS level 0. Consequently, no acknowledgment is sent from
the subscriber to the broker. This assumption was made to
optimize the use of space available in the paper.

] Publisher + Broker � Subscriber

PUBREQ

PUBREQ

PUBACK

Fig. 3: Publishing with QoS level 1

] Publisher + Broker � Subscriber

PUBREQ

PUBSYN

PUBSYN

PUBREQ

PUBACK

Fig. 4: Publishing with QoS level 2

B. Message Routing

Topics in MMQP function as key identifiers for organizing
and distributing messages. These topics are managed hier-
archically by brokers and are represented as strings with
multiple levels separated by forward slashes (”/”). When a
client publishes a message, the broker analyzes the topic
hierarchy to identify the appropriate subscribers. The broker
then forwards the message to subscribers who are interested
in the exact topic or any of its parent levels. For example,
publishing a message under home/room1/light would prompt
the broker to deliver the message not only to subscribers of
home/room1/light but also to those subscribed to home/room1
and home. See [6] for a thorough description.

IV. ARCHITECTURAL COMPONENTS

The architecture of the proposed communication framework,
shown in Figure 5, illustrates its key components. As previ-
ously discussed, the framework utilizes a central middleware
referred to as the broker or a cluster of brokers to facilitate
communication between multiple publishers and subscribers.
To efficiently handle a high volume of transactions, the bro-
ker employs a service worker pool, enabling the concurrent
processing of incoming and outgoing messages.

A. Software Architecture

By leveraging the Entity-Component-System (ECS) [7]
design pattern, the broker can support a large number of
sessions without significant performance degradation. ECS
is a software design pattern frequently used in developing
complex and scalable systems, particularly in the space of

game development. It enables code reuse by decoupling data
from behavior. Entities typically consists of unique identifiers
such as a 32-bit integer, Components model the behavior of
entities and Systems, implement the behavior’s logic.

As illustrated in the architecture, the broker can extend
its operational capabilities through optional modules. These
modules are notified whenever specific events of interest are
triggered, allowing them to react appropriately and perform
their designated tasks. The Event Dispatcher component en-
sures the propagation of these events across different layers of
the application. While our design showcases three modules,
the architecture can support additional modules as needed. In
order to interact with the KG and LLMs, modules can leverage
the built-in, Python Application Programming Interface (API)
that enables loading and running custom Python scripts.

The Knowledge Module is responsible for capturing both
transactional and internal events from the broker to populate
the KG with contextual data. This data can then be leveraged
by the Reasoning Module to perform basic reasoning tasks.
This can be crucial in scenarios where multiple brokers in a
cluster collaborate to serve a large number of IoT devices.
As the specific topics to which clients will subscribe are
not known in advance, brokers would typically need to be
interconnected to ensure message delivery across all brokers.
However, by sharing the same KG, brokers can dynamically
establish connections based on the context data provided in
the KG, significantly reducing the overhead associated with
managing multiple inter-broker connections.

The Scripting Module enables the generation of scripts
from NLIs provided by a system administrator. Each client
connection to the broker is represented as an entity to which
various components can be added. These scripts can be asso-
ciated with specific clients to perform targeted actions, such as
monitoring traffic behavior or analyzing subscription patterns.
By embedding or referencing the Python API documentation
as a system prompt, the LLM can generate scripts tailored to
the specific needs of the system.

Fig. 5: Framework Architectural Components

B. Augmented Retrieval

As previously mentioned, this framework employs a custom
RAG system to retrieve contextual data from a KG. RAG,
or Retrieval-Augmented Generation, is a technique that inte-
grates information retrieval with NL generation to enhance
the response quality of LLMs. In such a system, a model
retrieves relevant documents or data from external sources,
such as a knowledge graph, and leverages this information
to generate more accurate and informed responses, thereby
reducing potential hallucinations.

Figure 6 illustrates the data flow of the RAG process. The
process begins with an Admin or a client with administrative
rights issuing an NL command to the system. This command
could be a simple question, a reasoning task, or a request
to generate a script for a specific task. For example, the
admin may ask the question, ”How many clients are currently
online?” or request the creation of a script with the prompt:
”Write a script to disconnect any client with a message rate
higher than 10”. The command is then combined with the
appropriate context data, such as the KG ontology or the script
API description to generate a Cypher Query (CQ) as depicted
in the sequence. In this specific case, the LLM generates the
CQ, which is then used by the Executor to query the KG.
The result of the query is then given back to the LLM, along
with some additional instructions on how to formulate the final
answer, which is sent back to the requester.

Fig. 6: Augmented Context Retrieval

V. IMPLEMENTATION AND EVALUATION

The proposed framework is implemented in C++17 and can
run on both Windows and Linux Operating Systems (OSs). It
uses Asio [8] to manage low level network operations. Asio
is a cross-platform C++ library for network and low-level I/O
programming that provides developers with a consistent asyn-
chronous model using a modern C++ approach. It has a built-in
task manager to concurrently handle multiple transactions.

To efficiently manage entities and their related components
and systems, We integrated a well established ECS library
known as: EnTT [9]. EnTT is a header-only, tiny and easy to
use library for game programming and much more written in
modern C++. The popular game Minecraft [10] uses EnTT to
efficiently manage millions of game objects.

The integrated Python API is achieved with the help of
pybind11 [11]. Pybind11 is a lightweight, header-only library
that exposes C++ types to Python and vice versa, allowing
the creation of Python bindings for existing C++ code. This
enabled us to integrate the Python interpreter directly into the
broker, allowing it to load, manage and execute Python scripts
seamlessly at runtime.

The KG database used in the framework is called:
Neo4j [12], which is a graph database management system
designed to store and manage data in a graph structure.
It is optimized for handling complex and highly connected
data, enabling efficient querying and analysis of relationships
between nodes. It uses the Cypher Query Language (CQL), a
declarative query language, and is widely used in applications
such as social networks, recommendation systems, etc.

Figure 7 depicts a KG from our study, illustrating re-
lationships between brokers, clients, and topics. Each node
has underlying attributes not visible in the graph such as
brokers having IP addresses and ports, topics having names
and identifiers. etc. A client’s subscription to a topic is repre-
sented by the relationship: IS_SUBSCRIBER_OF, similarly,
IS_CONNECTED_TO represents a client’s connection to a
broker. Relationships can also have additional attributes.

Fig. 7: Knowledge Graph Visualization

Our RAG setup uses Large Language Model Meta AI
(LLaMa) [13] models to generate NL responses. LLaMa is
a family of open-source LLMs developed by Meta for various
NL tasks. These models are designed to generate human-like
text, enabling applications such as text and code generation,
summarization, Q&A, and more. They utilize the transformer
architectures and are optimized for efficiency in terms of size
and computational resources, making them suitable for both
research and practical applications.

We successfully ran the models listed in Table I locally on
an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz with

32GB of RAM using Ollama [14]. Ollama is a platform for
running and interacting with LLMs on local devices. It allows
users to download and run models directly on their systems,
enabling privacy, customization, and offline capabilities. It
supports various LLMs and provides.

While any compatible models can be used, the ones selected
are among the most widely adopted open-source options
available. The only model parameter adjusted during our study
was the temperature, set to 0.1. This parameter controls the
randomness of the model’s outputs, where higher values result
in more diverse and creative responses, while lower values
produce more focused and deterministic outputs.

Model Size Length Max. Context Parameters
LLama3.1:8B 4.7GB 4096 tokens 128K tokens 8.0B
LLama3.2:3B 2.0GB 3072 tokens 128K tokens 3.2B
LLama3.2:1B 1.3GB 2048 tokens 128K tokens 1.2B

TABLE I: Models properties

A. Cypher System Prompt
Listing 1 presents the system prompt utilized during our

evaluation of the RAG system to generate CQs based on NL
instructions. This enables the models to grasp the context
of the question and produce queries based on the properties
defined in the KG description. This system prompt contains
approximately 2711 characters, which is way below the
maximal context length of all our models described in Table I.
It is also possible to retrieve the KG schema directly from
Neo4j, eliminating the need to write it manually.

You are an expert in generating Cypher queries for Neo4j
knowledge graphs. Your task is to generate precise Cypher
queries based strictly on the knowledge graph schema and
the instruction provided below.

STRICT INSTRUCTIONS TO FOLLOW:

1. Do not infer or introduce any nodes, attributes,
or relationships not explicitly described in the
knowledge graph schema.

2. Only Cypher query output|no explanations, newline
characters, special characters, comments, or
additional text.

3. Never include additional characters such as newlines,
codeblock format characters, etc., only the cypher
code.

4. Ensure that any query deleting a node detaches all
relationships associated with that node.

5. Ensure that the query is fully grounded in the
knowledge graph schema and the provided instruction.

6. If you cannot generate a query, return an empty
string.

7. You can get inspiration from the provided examples

NODE TYPES:

- Broker: Represents a server that manages client
connections and message routing.

- Attributes: ‘name‘, ‘ip‘, ‘tcp_port‘, ‘ws_port‘.

- Client: Represents a client connecting to a broker to
send or receive messages.

- Attributes: ‘name‘, ‘uid‘, ‘ip‘, ‘port‘.

- Topic: Represents a message channel for publishing or
subscribing.

- Attributes: ‘name‘, ‘uid‘, ‘nbr_publishers‘,
‘nbr_subscribers‘.

- Group: Represents a collection of clients subscribed to
a common topic.

- Attributes: ‘name‘, ‘nbr_members‘.

NODE RELATIONSHIPS:

- ‘(Client)-[:IS_CONNECTED_TO]->(Broker)‘: A client
connects to a broker.

- ‘(Client)-[:IS_SUBSCRIBER_OF]->(Topic)‘: A client
subscribes to a topic.

- ‘(Client)-[:IS_PUBLISHER_OF]->(Topic)‘: A client
publishes to a topic.

- ‘(Client)-[:IS_MEMBER_OF]->(Group)‘: A client belongs to
a group.

- ‘(Topic)-[:HAS_GROUP]->(Group)‘: A topic has an
associated group.

- ‘(Topic)-[:IS_PARENT_OF]->(Topic)‘: A parent-child
relationship between topics.

EXAMPLES OF OUTPUTS:

- Question: Retrieve all clients connected to the broker
hosted at the IP address 192.168.1.1.

- Output: MATCH (c:Client)-[:IS_CONNECTED_TO]->(b:Broker
{ip: "192.168.1.1"}) RETURN c

- Question: Find all topics a client with the id
"7463644344" is subscribed to.

- Output: MATCH (c:Client {uid:
"Client1"})-[:IS_SUBSCRIBER_OF]->(t:Topic) RETURN t

- Question: List all groups associated with the topic
named "TopicA".

- Output: MATCH (t:Topic {name:
"TopicA"})-[:HAS_GROUP]->(g:Group) RETURN g

- Question: Retrieve all clients who belong to the group
named "GroupAlpha".

- Output: MATCH (c:Client)-[:IS_MEMBER_OF]->(g:Group
{name: "GroupAlpha"}) RETURN c

Based strictly on the provided instructions and the graph
description above, generate the Cypher query for this
instruction:

Listing 1: Cypher System Prompt

B. Language Model Program

The code in Listing 2 is an example of a Language Model
Program (LMP). A LMP is a structured approach to building
applications that utilize LLMs for specific tasks. This approach
harnesses the capabilities of language models in a way that
aligns with the intended application behavior.
import EmpyMQ as eMQ

@eMQ.Tool()
def RunQuery(self, cypher):

return self.Graph.run(cypher).data()

@eMQ.Action(model="llama3.2:latest", temperature=0.01)
def GenerateCypher(self, question):

return [
eMQ.System(self.Prompt1),
eMQ.User(f"{question}")

]

@eMQ.Chain(model="llama3.2:latest", temperature=0.01,
tools=[RunQuery])

def GenerateAnswer(self, cypher, question):
return [

eMQ.System(self.Prompt2),
eMQ.User(f"{question}")

]

def OnAttach(self):
self.Prompt1 = eMQ.LoadFile("Prompts/Prompt1.pt")
self.Prompt2 = eMQ.LoadFile("Prompts/Prompt2.pt")

Listing 2: Language Model Programming

With this framework, we can implement regular functions
as usual, while internally integrating calls to various language
models. In addition, functions can be equipped with tools
that the model can invoke to retrieve additional information
required for its response. To streamline this process, we
developed a custom module (EmpyMQ) combining our C++
application and a Python module known as ell [15].

The GenerateCypher(...) function generates a
Cypher query based on the provided system prompt and the
user’s question. System prompts are loaded from external files
and stored as attributes, ensuring that they are readily available
when needed. The GenerateAnswer(...) function then
formulates a response using the results obtained from the
RunQuery(...) tool, which executes the generated Cypher
query. These interactions are triggered by C++.

C. Results Evaluation

Table II presents a set of questions and their corresponding
responses, which were used to evaluate the models’ ability
to generate Cypher queries based on a knowledge graph
schema provided in the system prompt. The results reveal that
LLama3.1:8B performed exceptionally, achieving a perfect
score by correctly answering the 5 questions. In comparison,
LLama3.2:3B managed to answer only 2 out of 5 correctly.
The smallest model, LLama3.2:1B, demonstrated the worst
performance with a score of 0. (Figure 8).

LLama3.1:8B LLama3.2:3B LLama3.2:1B
0

1

2

3

4

5

4 4

5
5.2

1.2
1

5

2

0

Repeatability (5 times)
Avr. Response Time (s)
Correct Answer Count

Fig. 8: Evaluation Results

During our study, we observed the importance of properly
formulating system prompts. Smaller models often struggled
to grasp the dynamics of relationships between different nodes.
For example, they frequently misrepresented the direction
of the relationship between a client and a topic, incorrectly
assigning a topic as a subscriber or publisher to a client, rather
than recognizing that the reverse is the only valid relationship.
We also recognized that the formulation of the questions
played an important role. The model sometimes misinterpreted
the order of information, leading to inverted results. For

example, asking, How many clients are connected to the broker
with the IP address 192.168.2.177? could confuse the model,
leaving it unclear whether the IP address referred to the clients
or the broker. A clearer prompt, such as ”How many clients are
connected to the broker hosted at IP address 192.168.2.177?”,
would help avoid such confusion.

Our evaluation also included a repeatability test designed
to assess the consistency of the models’ responses, regardless
of their correctness. This test is crucial because we expect
the model to maintain a certain level of consistency across
multiple runs. With the model temperature set to a low value of
0.1, we anticipated that the models would produce consistent
outputs. This expectation was met, as shown in Figure 8,
where all models achieved a relatively high consistency score.
Surprisingly, the smallest model proved to be the most con-
sistent in this test. It is important to note that while the results
produced by the largest models slightly varied, the differences
were still minor and did not affect their correctness. This
highlights the dynamic nature of these models and how their
behavior can change with different configurations. The largest
model LLama3.1:8B took considerably longer to generate
answers but also demonstrated the highest level of consistency.

On the question of hallucination, the smallest model,
LLama3.2:1B, was the only one to generate non-existent re-
lationships or attributes not defined in the KG schema provided
in the prompt. Concerning compliance with the instructions
in the system prompt, the two smaller models occasionally
included special characters, such as ‘‘ or similar, around
the generated Cypher queries. In contrast, the largest model,
LLama3.1:8B, consistently adhered to all instructions.

VI. CONCLUSION AND FUTURE WORK

This study presents an architectural and practical framework
for incorporating context awareness into a publish/subscribe
IoT communication system. The proposed approach integrates
the NLP capabilities of LLMs within a custom RAG system
to access and utilize context data in subsequent system stages
for specific tasks.

The evaluation of the RAG approach reveals that the larger
model, LLama3.1:8B, outperforms the smaller models but
requires significantly more time to generate responses. It
also underscores the challenges of crafting effective system
prompts to elicit accurate outputs from models. Additionally,
the repeatability tests highlight the necessity of validating
model consistency, even when their answers are incorrect, as
a key measure of reliability. An important observation from
the study pertains to the hallucination issue shows that one
model generated non-existent information. This highlights a
limitation of small models with limited internal knowledge.
As LLMs continue to evolve, their ability to handle NL and
reason effectively is expected to improve considerably.

In conclusion, this work provides valuable insights into de-
veloping robust, context-aware communication systems. lever-
aging fine-tuning or adapter-based training methods could
enhance the model’s ability to handle domain-specific tasks

Question 1: How many clients are connected to the broker hosted at IP address 192.168.2.177?
LLama3.1:8B MATCH (c:Client)-[:IS_CONNECTED_TO]->(b:Broker ip: "192.168.2.177") RETURN COUNT(c) ✔

LLama3.2:3B MATCH (b:Broker ip: "192.168.2.177")-[:HAS_CLIENT]->(c) RETURN c COUNT(c) ✖

LLama3.2:1B MATCH (b:Broker ip: "192.168.2.177")-[:IS_CONNECTED_TO]->(c:Client) RETURN count(c) ✖

Question 2: List all topics and their associated groups for which the group has more than 10 members.
LLama3.1:8B MATCH (t:Topic)-[:HAS_GROUP]->(g:Group) WHERE g.nbr_members > 10 RETURN t, g ✔

LLama3.2:3B MATCH (t:Topic)-[:HAS_GROUP]->(g:Group) WHERE g.nbr_members > 10 RETURN t, g ✔

LLama3.2:1B MATCH (g:Group)-[:HAS_GROUP]->(t:Topic) WHERE t.id > "0" AND g.nbr_members > 10 RETURN
t.name, g.nbr_members

✖

Question 3: Delete the topic with the name ”DeprecatedTopic” and detach all relationships associated with it.
LLama3.1:8B MATCH (t:Topic name: "DeprecatedTopic") DETACH DELETE t ✔

LLama3.2:3B MATCH (t:Topic name: "DeprecatedTopic") DETACH DATA OPTIONAL MATCH (t)-[r]-(n) SET [...] ✖

LLama3.2:1B MATCH (t:Topic name: "DeprecatedTopic")-[:HAS_GROUP]->(g:Group) DETACH DELETE [...] ✖

Question 4: Count the number of clients in each group for all groups associated with the topic ”TopicZ”.
LLama3.1:8B MATCH (t:Topic name: "TopicZ")-[:HAS_GROUP]->(g:Group) OPTIONAL MATCH

(c:Client)-[:IS_MEMBER_OF]->(g) RETURN g.name AS groupName, COUNT(c) AS clientCount
✔

LLama3.2:3B MATCH (t:Topic name: "TopicZ")-[:HAS_GROUP]->(g:Group) WITH g, COUNT(DISTINCT c) AS
nbr_members RETURN g.name, nbr_members

✖

LLama3.2:1B MATCH (g:Group)-[:HAS_GROUP]->(t:Topic name: "TopicZ")-[:IS_PARENT_OF]*->(pg:Group) [...] ✖

Question 5: List all parent-child topic pairs where the parent has more than 5 publishers and the child has fewer than 3 subscribers.
LLama3.1:8B MATCH (p:Topic nbr_publishers: gt: 5)-[:IS_PARENT_OF]->(c:Topic nbr_subscribers: lt: 3)

RETURN p, c
✔

LLama3.2:3B MATCH (p:Topic)-[:IS_PARENT_OF]->(c:Topic) WHERE p.nbr_publishers > 5 AND c.nbr_subscribers
< 3 RETURN p, c

✔

LLama3.2:1B MATCH (t:Topic)-[:HAS_GROUP]->(g:Group) WHERE g.nbr_members < 3 AND t.nbr_publishers > 5
RETURN t.name, g.name

✖

TABLE II: Cypher Queries Generation Results

with greater accuracy. Future studies could also investigate the
scalability of the framework in large-scale IoT systems, exam-
ining its performance under diverse workloads and real-time
constraints. Ultimately, integrating more advanced reasoning
capabilities and incorporating user feedback mechanisms will
further improve the system’s adaptability and reliability. By
addressing these challenges, the proposed approach can pave
the way for highly efficient and intelligent context-aware
communication systems in IoT environments.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Ger-
man Federal Ministry for Education and Research (BMBF)
within the projects Open6GHub {16KISK003K} & 6G-
Terafactory {16KISK186}.

REFERENCES

[1] Bandyopadhyay, S. and Sen, J., “Internet of things: Applications and
challenges in technology and standardization,” Wireless personal com-
munications, vol. 58, no. 1, pp. 49–69, 2011.

[2] Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D., “Context
aware computing for the internet of things: A survey,” IEEE Communi-
cations Surveys and Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[3] Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., and Taylor, K., “Iot-lite:
a lightweight semantic model for the internet of things and its use with
dynamic semantics,” Personal and Ubiquitous Computing, vol. 21, pp.
475–487, 2017.

[4] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N.,
Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T. et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” in Advances
in Neural Information Processing Systems, vol. 33, 2020, pp. 9459–
9474.

[5] OASIS. Mqtt version 5.0, oasis standard. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[6] Pouhela, F., Sanon, S. P., Krummacker, D., and Schot-
ten, H. D., “Everything Interconnected via Cyberspace,” in
MMQP: A Lightweight, Secure and Scalable IoT Commu-
nication Protocol, IEEE. IEEE, 8 2024. [Online]. Avail-
able: https://www.researchgate.net/publication/381742313 MMQP A
Lightweight Secure and Scalable IoT Communication Protocol

[7] Pouhela, F., Krummacker, D., and Schotten, H. D., “Entity component
system architecture for scalable, modular, and power-efficient
iot-brokers,” in 2023 IEEE 21st International Conference on Industrial
Informatics (INDIN), 2023, pp. 1–6. [Online]. Available: https://www.
researchgate.net/publication/373318000 Entity Component System
Architecture for Scalable Modular and Power-Efficient IoT-Brokers

[8] Asio c++ library. [Online]. Available: https://think-async.com/Asio/
[9] Entt. [Online]. Available: https://github.com/skypjack/entt

[10] Minecraft. Minecraft. [Online]. Available: https://www.minecraft.net/
en-us

[11] pybind11 community. pybind11. [Online]. Available: https://github.com/
pybind/pybind11

[12] Neo4j. Genai apps, grounded in your data. [Online]. Available:
https://neo4j.com/

[13] AI, M. Introducing llama 3.2. [Online]. Available: https://www.llama.
com/

[14] Team, O. Get up and running with large language models. [Online].
Available: https://ollama.com/

[15] ell. The language model programming library. [Online]. Available:
https://docs.ell.so/

