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Abstract
Integrating Artificial Intelligence (AI) into Clinical Decision
Support Systems (CDSS) presents significant opportunities
for improving healthcare delivery, particularly in fields like
ophthalmology. This paper explores the usability and trust-
worthiness of an AI-driven CDSS designed to assist ophthal-
mologists in treating diabetic retinopathy and age-related
macular degeneration. Therefore, we created a CDSS and
evaluated its impact on efficiency, informedness, and user
experience through task-based semi-structured interviews
and questionnaires with 11 ophthalmologists. The usability
of the CDSS was rated highly, with a SUS of 81.75. Addition-
ally, results show that participants felt like the CDSS would
improve their efficiency and informedness with one major
aspect being integrating Electronic Health Records (EHR)
and Optical Coherence Tomography (OCT) data into a single
interface. Additionally, we explored aspects of the trustwor-
thiness of AI components, specifically OCT segmentation,
treatment recommendation, and visual acuity forecasting.
Through thematic analysis, we identified key factors influ-
encing trustworthiness and clinical adoption. Results show
that a larger degree of abstraction from input to output of a
model correlates with decreased trust. From our findings, we
propose three guidelines for designing trustworthy CDSS.
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1 Introduction
Artificial Intelligence (AI) has significantly transformed var-
ious domains, and its integration into healthcare, particu-
larly in Clinical Decision Support Systems (CDSS), holds
immense promise. In the field of ophthalmology, a variety of
accurate and effective Deep Learning (DL) - a sub-field of AI
- models have emerged due to the availability of high-quality
medical imaging data [32, 37]. However, the trust of medical
experts towards these tools remains underexplored, even
though trust is crucial for human acceptance [20]. Studies
indicate that lack of trust, alongside other factors, such as
bad usability, halts the adoption of CDSS [28, 47].

Laato et al. [30] define Trustworthiness as "end users’
perception about the truthfulness and honesty of the system, as
well as beliefs that the system works as intended". Explainable
AI (XAI) aims to improve trustworthiness by making AI
decision-making processes more transparent. Model-centric
approaches use post-hoc explanations or inherently inter-
pretable models to explain decision-making [27, 39], while
data-centric approaches revolve around information about
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the training data [3, 4]. Several studies show that medical
experts prefer data-centric explanations over model-centric
counterparts for building trust [3, 4, 9]. However, while re-
search focuses on how to explain AI, the question of what
needs to be explained remains unexplored. Castelo et al.
[10] suggest that the inherent objectivity of an algorithm’s
task plays a significant role in shaping its trustworthiness.
We argue, that an AI model can be seen as an algorithm
and, therefore, algorithm aversion applies. However, Langer
et al. [31] have shown that people perceive trust in auto-
mated decision-making systems differently depending on
the terminology used, i.e. AI or algorithm. Hence, it is un-
clear whether task-dependent algorithm aversion can be
applied to AI. In the following paper, we want to probe into
this concept by proposing the Research Question (RQ):

• RQ1: Are segmentation, classification, and time se-
ries forecast models perceived with varying levels
of trustworthiness? What influences trust in these
components?

Another key consideration is the usability of AI systems
in real-world clinical environments. Ophthalmologists, like
other specialists, often work under tight time constraints
and need tools that integrate seamlessly into their work-
flows [28]. If an AI system is difficult to use or interpret, it
can become a hindrance rather than a help. Studies have
shown that the usability of AI tools can significantly influ-
ence whether practitioners embrace or dismiss them [28, 47].
By ensuring that these systems are user-friendly and aligned
with clinicians’ needs, developers can increase the likelihood
that these tools will be adopted in clinical practice. In this
work, we want to find out which factors of a CDSS in oph-
thalmology contribute to user experience, efficiency, and
informedness:

• RQ2: How can an ophthalmologist’s efficiency, in-
formedness, and user experience be improved using
a CDSS?

To address these questions, we developed an AI-driven
CDSS supporting ophthalmologists in treating two prevalent
eye diseases: Age-related Macular Degeneration (AMD) and
Diabetic Retinopathy (DR). We implement three AI-driven
components for the tasks of semantic segmentation, treat-
ment recommendation, and time series forecasting. We eval-
uate our prototype in a qualitative user study with eleven
ophthalmologists of varying experience. Through think-
aloud task-based semi-structured interviews, we explored
the perceived trustworthiness of the AI components and
evaluated our CDSS in terms of efficiency, information con-
tent, and usability. Through thematic analysis, we identified
several themes contributing to an AI system’s acceptance.
To summarize, there are three primary research contribu-
tions presented in this paper:

(1) We present a CDSS prototype with perceived effi-
ciency, informedness, and user experience improve-
ments. The prototype serves as a starting point for
any researchers and developers working on CDSS in
ophthalmology: https://github.com/DFKI-Interactive-
Machine-Learning/ophthalmo-cdss

(2) We identify task-dependent algorithm aversion in
AI models. Our findings indicate that larger discrep-
ancies between input and output reduce trust in AI-
driven components.

(3) We define three guidelines to make AI-driven com-
ponents more trustworthy:

(a) Remind users of the non-deterministic behaviour
and limitations of AI to mitigate general algorithm
aversion.

(b) Implement XAI methods to reduce the degree of
abstraction from input to output of AI components
to mitigate task-dependent algorithm aversion.

(c) Provide quickly accessible feedback options to give
users a feeling of control over the models.

2 Related Work
In this section, we provide an overview of the relevant liter-
ature. First, we discuss the treatment practices of ophthal-
mologists and explore how AI methods can enhance their
work. Next, we review key studies on trust in AI, which led
to the formulation of our RQs.

2.1 Improving care in Ophthalmology
In ophthalmology, neovascular diseases like DR and AMD
are characterized by the accumulation of fluids inside retinal
layers. If left untreated, these conditions can lead to scars
and other occlusions, ultimately causing vision loss [19, 33].
Treatment typically involves a series of intravitreal injec-
tions of medication (IVOM) when the presence of fluids is
detected [46]. This is done manually by one or two doctors
using Optical Coherence Tomographies (OCTs), a medical
imaging technique similar to ultrasound. OCTs consist of
an "en face" view of the retina (called IRSLO1) as well as
an array of cross-sectional slices of the retina [24, 44]. The
subjective evaluation of these slices needs prolonged train-
ing, and trainees often feel unconfident, as a study from
2019 shows [15]. Even between experts, there exist certain
discrepancies in the annotations of biomarkers on OCTs
[35, 38], highlighting the need for objective analysis.

2.1.1 Segmentation andQuantification. Recent developments
in ML and semantic segmentation, facilitate the automatic
quantification of medical images, specifically OCTs [32, 37].
Semantic segmentation describes the task of assigning each
pixel on an image a class. Many DL architectures have been
developed for this purpose. Most notable is UNet, which is
a Convolutional Neural Network (CNN) with an encoder
and decoder path connected via skip connections [41]. YNet
builds upon the structure of UNet by adding another en-
coder branch, which first transforms the image into the
Fourier domain [18]. The authors achieve state-of-the-art
performance on OCT segmentation on the Duke [12] and
UMN [40] data sets, especially regarding fluid detection. The
model is trained to segment individual slices. Commercial
software for quantifying fluids on OCTs exists (e.g. Fluid
Monitor from RetInSight2), but it has yet to be implemented
into a CDSS that gives therapy recommendations. Therefore,

1InfraRed Scanning Laser Ophthalmoscopy
2https://retinsight.com/fluid-monitor/ (Accessed: 05.01.2025)
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in this work, we implemented a quantification algorithm
based on segmentations and a recommender system that
utilizes these quantifications.

2.1.2 Time Series Forecasting. Another critical aspect of
therapy is scheduling appointments that effectively balance
the need to catch every crucial symptom emergence and
the burden of frequent visits for patients and doctors. Kim
et al. [29] found that an increased frequency of doctor visits
correlates with less life satisfaction. To address this issue,
we imagine that a time series forecast model will help iden-
tify crucial points in the disease progression, leading to less
frequent visits. We focus on one key metric: Visual Acuity
(VA). VA measures the sharpness of vision and can be mea-
sured in several different units. There are several studies
showcasing the application and benefit of time series fore-
cast models in medicine [25, 45, 48, 49]. Schlosser et al. [43]
evaluated several ML models on the task of VA forecasting
and found that their best model outperformed a trained
ophthalmologist by 19.7% on macro average F1-Score on
a Winner Stabilizer Loser scheme. However, in a medical
context, a regression might be more interesting, as the am-
plitude of change is important. For example, in the WSL
scheme, a decrease of 0.1 and 0.9 would be equally impor-
tant. Although Schlosser et al. [43] used regression for their
models, they did not share regression performance. They
found that a Multi-Layer Perceptron for VA regression with
Linear Discriminant Analysis on the regressed value per-
formed best for the classification. However, a meta-analysis
of time series prediction models in healthcare by Morid et al.
[36] has shown that Recurrent Neural Network (RNNs) [34]
architectures are more performant. Especially Bidirectional
Long Short Term Memory (BiLSTM) [21, 42] and Gated Re-
current Unit (BiGRU) [13, 42] networks performed well. In
[43], BiLSTM and BiGRU performed worse in the classifica-
tion task. However, it is unclear whether this is because of
the nature of the task. We imagine that a forecast model can
be included in the appropriate scheduling of appointments,
leading to better patient satisfaction and better availability
of doctors without loss of treatment quality.

2.1.3 Visualizing Electronic Health Records. Treatment of
DR and AMD affords careful monitoring of many aspects of
a patient’s history. These are tracked in Electronic Health
Records (EHRs). In a preliminary study, we found that EHRs
in ophthalmology usually do not offer visualizations of the
data they contain. Consequentially, doctors are required to
memorize important patterns in the data in order for them
to draw conclusions, a practice that is prone to errors. A
systematic review from 2015 [50] found that EHR data is
generally too large for manual identification of meaningful
patterns. They claim that visualizations can help with this.
However, they need to be interactive and handle several
challenges, such as missing or incorrect data. In this work,
we implemented several visualizations of EHR and OCT data
into our CDSS and evaluated their usability, informedness,
and efficiency aspects.

2.2 Trust in AI-driven Support
Although AI models can be very performant, they are not
easily accepted by users. Especially in healthcare, physi-
cians are hesitant to accept AI because of challenges such as
inefficient incorporation into workflow and low initial trust
in the system [28, 47]. Chen et al. [11] conducted an online
questionnaire and found that 78% of their participants, con-
sisting of doctors andmedical students, agreed that AIwould
boost medicine. They identified seven factors contributing
to the willingness to use AI, where accuracy, ease of use,
and efficiency were most mentioned. Notably, only 64% of
participants mentioned interpretability as an important fac-
tor. However, this study fails to analyse, whether doctors
trust AI systems to begin with. Moreover, the participants
were not presented with an actual AI system, rendering the
results highly theoretical.

Juravle et al. [26] found in a series of online question-
naires that patients trust AI less than human doctors, which
is in line with the general consent that humans prefer other
humans over algorithms, also called algorithm aversion [16].
Task-dependent algorithm aversion describes the idea that
the distrust in these systems depends on the type of task
they are used for. Castelo et al. [10] found that aversion
decreases with increasing objectiveness of the task. This
suggests, that AI components’ trustworthiness might vary
based on their task. However, to the best of our knowledge,
there are no studies examining the difference in trust in
different AI components.

3 A Clinical Decision Support System in
Ophthalmology

In this section, we explain the data set, AI components, the
composition of visual components, and the visualization
techniques used for the creation of our CDSS. The CDSS
was implemented using streamlit3. All visualizations are
made using Plotly4. The created graphs are interactive in
the sense that the user can pan, zoom, select, and deselect
data using the legend and hover over data points to get
further information. The CDSS consists of six different Vi-
sual Components (VCs 1-6), which each display different
data (see Figure 1) and a sidebar, which was used for pa-
tient selection. A video demonstration of the dashboard is
available in the supplementary materials. The code for the
CDSS is published on GitHub at: https://github.com/DFKI-
Interactive-Machine-Learning/ophthalmo-cdss.

3.1 Data
For our CDSS, we used real-world clinical data ranging from
1993 to 2023. The data stems from two eye clinics in Ger-
many. It includes the data of 913 patients with AMD and
461 patients with DR. The data can be separated into two
categories: EHR and OCT data. EHR data includes all anno-
tations done by the doctors before, during, and after patient
visits. It includes measurements like VA, but also SNOMED-
CT5 codes. The codes have been analyzed using natural
language processing techniques by a third-party company.
3https://streamlit.io/
4https://plotly.com/
5Systematized Medical Nomenclature for Medicine–Clinical Terminology
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Figure 1: VCs of the evaluated CDSS. VCs that contain AI components are marked with an asterisk.

This led to 3192 different annotation features. Some of this
data does not directly relate to diseases, such as age, gender,
or smoking behavior, and will be called metadata in the
following sections. The OCT data includes 53,410 OCTs, of
which 45,389 were quantified using the algorithm described
in section 3.2.1.

3.2 AI Components
The AI components can be divided into three categories
depending on their task: Segmentation, Classification, and
Time Series Forecast. We selected these tasks as they are
highly relevant to ophthalmologists and illustrate varying
degrees of input-output discrepancy. For semantic segmen-
tation, the input (e.g., an image) and the output (e.g., a mask)
are closely related, as the resulting mask can be overlaid
on the input image. Treatment recommendation involves a
more complex relationship, as it synthesizes diverse inputs,
such as OCT scans and EHR data, to generate a recommen-
dation that is markedly different from the input. Time series
forecasting exhibits the greatest discrepancy, as it expands
the discrepancy of the recommendation by predicting future
values, introducing an additional layer of abstraction.

3.2.1 Segmentation and Quantification. For the segmen-
tation task, we used a YNet architecture [18], which was
trained to segment images into eleven classes, which are
shown in table 1. The training and test set contained 1023
and 400 images, respectively. The model has an overall mean
dice score of 0.66, and specifically for fluids, it also has a dice
score of 0.66. The quantification directly depended on the
segmentation. It used the segmented slices to reconstruct le-
sions in three dimensions by going through them iteratively

Table 1: Class dependent Dice scores of the trained
YNet model

Class Dice
IPL 0.91
OPL 0.78
ELM 0.55
EZ 0.46
RPE 0.56
BM 0.52
Choroidea 0.85
Drusen 0.33
PED 0.62
Fluids 0.66
Background 0.98

and connecting lesion areas that lie within a distance of 50
𝜇m. Consequently, we get multiple point clouds per lesion,
which were then reconstructed to a volume by computing
their convex hull using the quickhull algorithm [2]. For the
retinal layers, we only reconstructed the surface pointing to
the top of each layer. Through this reconstruction in three
dimensions, we were able to create a 3D visualization and
quantify the thickness of layers and volumes of lesions.

3.2.2 Time Series Forecast. To predict patients’ develop-
ments and forecast critical points for therapeutic interven-
tion, we trained several BiLSTM models on the available
EHR data as well as the quantifications of the OCTs. We
forecasted VA developments for one, three, six, nine, and
twelve months and trained a model for each time target. For
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Table 2: Performance of the time series forecasting
model.

Forecast time MAE STD
1 month 0.248 0.173
3 months 0.226 0.137
6 months 0.224 0.151
9 months 0.230 0.158
12 months 0.269 0.153

the training, we used the data of 1100 patients (80%) and
created between 51,098 and 58,767 data points depending
on the forecasted time using a sliding window approach.
We always included the last twelve visits each time, and
no incomplete windows were used. The missing data was
addressed using moving average interpolation on numeric
variables, such as VA or fluid volume. In this method, the
interpolated data point is positioned at the center of the
moving average window, with weights decreasing as the
distance from the center increases. Categorical data was
imputed by using nearest neighbour imputation. Table 2
shows the performance of our models on the test set of 274
unseen patients containing between 10,778 and 16,290 data
windows.

3.2.3 Classification. The classification task entailed a treat-
ment recommendation. It can be seen in two granularity
levels: First, the model decides whether the patient should
be treated, and second, which medication should be used.
The model was realized using if-then-else conditions, which
were modeled after clinical guidelines. The flowchart of
this algorithm can be seen in figure 2. Although this imple-
mentation is not an ML model, it is based on computations
from the aforementioned models, and additionally, study
participants were not told how the model works before-
hand. The classification model’s agreement with historical
data was about 60% on the treatment decision and 85% on
the medication decision. The low agreement on whether
to administer IVOMs might be impacted by the fact that
patients do not strictly follow the therapy plan perfectly,
but postpone treatment for various reasons.

3.3 Workflow Assessment & Design
Rationale

The design of our dashboard is loosely inspired by the ap-
proach outlined by Bhattacharya et al. [3]. To refine this
foundation, we conducted a preliminary workflow assess-
ment involving an assistant doctor and an expert from one
of the clinics. During this process, the doctor provided a
detailed overview of their workplace and software. The
workspace consists of an examination room equipped with
a desktop workstation featuring two 27-inch monitors. The
software includes various programs for examining EHRs
and medical imaging. Moreover, we asked them to describe
their usual workflow. Three key tasks were identified, which
can be seen in table 3. The doctor was then asked to describe
a perfect CDSS tackling these tasks. A low-fidelity prototype

was developed in Word 6 and was refined in one feedback
iteration. An image of the prototype can be seen in the
appendix.

3.4 Visual Components
We developed six VCs to address the challenges identified
during the workflow assessment and low-fidelity prototyp-
ing process, as detailed in Table 3. These components are
designed to enhance the current solutions by providing bet-
ter visualization, data interpretation, and decision-making
support. Below, we describe each VC and its functionality
in detail:

• VC1:Metadata top bar. Metadata is displayed in this
VC. It serves as a quick overview of general patient
information, treatment status, and IVOM history.

• VC2: OCT Viewer. We visualize the OCT data in
this VC. Users can look at the IRSLO and the slices
of the OCT or the 3D reconstruction. This VC comes
with functionality for segmentations and compar-
isons for the first two visualizations. The OCT slices
can be fully segmented and compared against slices
from an older OCT, which can be seen in figure 3a.
In the IRSLO, lesions can be segmented and it can
be compared against older IRSLOs. Additionally, the
layer thickness can be inspected, which can be seen
in figure 3b. The 3D view, shown in figure 3c, shows
the 2D layers for the surface of retinal layers and 3D
volumes for lesions. An OCT slice is visualized inside
the 3D model such that users can compare the model
to the actual OCT.

• VC3: Line graphs. Important metrics such as VA, the
volume of fluids (a quantification from the OCT seg-
mentation, see section 3.2.1), and intraocular pressure
are displayed in line graphs in this VC. Additionally, a
dotted line represents the forecast model’s prognosis
of VA given the selected treatment. Vertical, colored
lines represent IVOM interventions.

• VC4: Quick Metrics. Color-coded percentages show
the change from last to current visit for the VA, the
volume of fluids, and intraocular pressure, whereas
red indicates negative influence and green positive
influence on disease parameters.

• VC5: Recommendation. In this VC, we display the
treatment recommendation based on clinical guide-
lines (see section 3.2.3). Recommendations are color-
coded, such that green represents therapy, red repre-
sents aborting therapy, yellow represents that more
information is needed (e.g. when the last medical
image was taken more than a month ago), and blue
represents that no therapy is needed.

• VC6: Diverse Utility. In this VC, we display less im-
portant data from the EHR and 3D reconstruction in
three different tabs. The first tab called "Reasoning"
shows the change from last to current visit, but also
the expected change in three months of our forecast
model. Visit Diff utilizes other annotations from doc-
tors for symptoms like bleeding, edema, and more.

6https://www.microsoft.com/de-de/microsoft-365/word?market=de
(Accessed: 09.01.2025)
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Figure 2: Flowchart of the treatment recommendation algorithm based on clinical guidelines.

Table 3: Task analysis and suggested improvements.

Task Current Solution Problem Improvement Involved
VC

Assessment of
Therapy Status
& Patient Infor-
mation

Scroll through EHR to
assess information

Tedious scrolling, Risk
of missing crucial infor-
mation

Display metadata; Visualize im-
portant metrics such as VA
in line graphs; Give a quick
overview for changes from last
to current visit

VC1, VC3,
VC4, VC6

OCT Analysis Separate program; Mul-
tiple instances needed
for comparison

Confusing, not easy to
compare; No support
for determining fluid
levels

Integrated OCT Viewer with
comparison functionality and
automatic segmentation and
quantification

VC2, VC3

Treatment Deci-
sion

Subjective decision
making

No support from soft-
ware

Decision support through rec-
ommendation based on clinical
guidelines

VC5

The Mean Thickness tab shows a table of the mean
thickness of each layer from the previous and the
current OCT.

4 Evaluation
In this section, we present the user study and its evalua-
tion. We start with an overview of the demographics of
the participants, followed by a detailed description of the
study procedure and the apparatus used. Finally, we outline
the evaluation method applied to analyze the results. The
transcripts and codes can be made available at reasonable
request.

4.1 Participants
Eleven ophthalmologists (three female, 27%; eight male, 73%)
participated in the study on three different days. Nine were
assistant doctors with less than five years of experience (A1-
9), one was a specialized ophthalmologist with five years
of experience (O), and one was a senior ophthalmologist

with 21 years of experience (S). All women were among A.
A1 claimed to have ten years of experience. However, they
classified themselves as A, which leads to the suspicion that
the stated experience in years is wrong. Furthermore, A7
missed filling out the questionnaire, which is why we do
not have sentiment on AI data or SUS ratings.

Participants rated their sentiment toward AI, their expe-
rience with AI, and their experience with software using
a five-point Likert scale, where 1 represented strong oppo-
sition or no experience, and 5 represented strong support
or advanced experience. The results of this questionnaire
are presented in Table 4. The data reveals a generally posi-
tive sentiment toward AI. However, experience with AI is
moderate overall, with only S and A3 reporting advanced
experience. In contrast, participants rated their experience
with software as above average, except A2, A5, and A6,
who indicated intermediate experience.
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(a) Slice with Segmentation (b) IRSLO with Thickness Map (c) 3D Reconstruction

Figure 3: Examples of the three different views of VC2.

Table 4: Summary of the questionnaire answers. Sentiment and Experience with AI and software were rated on a
Likert Scale from 1 (negative sentiment or no experience) to 5 (positive sentiment or advanced experience). The
experience in years marked with an asterisk (*) is expected to be a mistake. Additionally, one A did not submit
the questionnaire (/).

Code Experience in years Sentiment towards AI Experience with AI Experience with software SUS
S 21 5 5 4 85
O 5 4 3 5 90
A1 10* 4 3 5 90
A2 4 4 3 3 62.5
A3 4 4 4 4 82.5
A4 3 4 3 4 95
A5 3 5 3 3 85
A6 1.6 5 3 3 67.5
A7 1.2 / / / /
A8 1 4 2 4 77.5
A9 0.9 5 3 4 82.5
avg. 4.47 4.40 3.20 3.90 81.75

4.2 Study procedure
We evaluated the dashboard with eleven doctors of vary-
ing levels of experience in ophthalmology. Before starting,
participants were informed about the study procedure and
asked to sign informed consent forms. They were also in-
structed to think aloud during the session. For a full study
guide, see appendix B. The study procedure was as follows:

• Tutorial: Participants were briefly introduced to the
various components of the CDSS. Then they were
encouraged to explore the CDSS and ask any ques-
tions about its usage. The tutorial should familiarize
participants with the CDSS.

• Task 1 (T1): The first task involved analyzing meta-
data and the therapy status. Participants were asked
to provide information about the patient that might
impact therapy. They were also asked to specify how
many and which IVOMs the patient had received and
whether these treatments were part of a series.

• Task 2 (T2): The second task required the doctors
to analyze OCT data. Specifically, they were asked
to identify key biomarkers and describe trends in
the patient’s condition by comparing different OCTs.
They were also instructed to review each mode of

the OCT viewer and its functionalities (see Section
3.4).

• Task 3 (T3): Finally, in the third task, participants
were asked to make a therapy decision using any
functionality of their choice.

These tasks were developed based on the workflow as-
sessment interview (see section 3.3) and represent scenarios
that could occur in clinicians’ daily workflows. We opted
for a task-based approach due to its ability to provide valu-
able insights as demonstrated by Bhattacharya et al. [3].
The patient data shown was preselected to ensure that each
task features a different patient with all relevant informa-
tion available. Additionally, for tasks 2 and 3, we selected
patients with high-quality OCTs. All participants saw the
same data for each task. After each task, participants were
asked a fixed set of yes or no questions: "Did the CDSS
improve your efficiency, level of informedness, and user
experience compared to your current system?". Addition-
ally, we conducted semi-structured interviews during the
completion of the tasks to explore relevant themes, such as
the trustworthiness of AI components, in more depth. The
idea of a feedback system was always brought up when-
ever participants spotted an error in a prediction or after T2
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when looking at the segmentation of VC2. The interviewers
asked whether a feedback system could improve trust and
what this system should look like.

At the end of the session, participants completed a ques-
tionnaire to get demographic data and their sentiment to-
wards AI (See section 4.1. Additionally, they filled in the
System Usability Scale (SUS). The SUS is a ten-item question-
naire that rates the usability of a system using Likert scales
[8]. We used the SUS to confirm our interview findings and
obtain an objective measure of the system’s usability.

4.3 Apparatus
The study was conducted in an examination office at the
eye clinic of Sulzbach7. Participants accessed the CDSS via
a laptop. A 27-inch monitor displaying a web page interface
of the CDSS and a computer mouse were connected to the
laptop for ease of use and to mimic their usual setup. Au-
dio of interviews was recorded for later transcription. Two
interviewers were present: one conducted the study, while
the other observed, took notes on notable behaviours, and
assisted as a co-interviewer.

4.4 Thematic Analysis
Thematic analysis is a qualitative research method used to
identify, analyze, and report patterns or themes within data.
It was introduced by Clarke and Braun in 2006, who have
continually refined and improved the method [5–7]. This
approach is particularly effective for interpreting complex
textual data, such as interview transcripts, by systematically
categorizing and organizing the data to uncover recurring
themes that address the research questions.

The process involves several steps: familiarization with
the data, generating initial codes, searching for themes
among the codes, reviewing and refining the themes, and
producing the final report. In this study, thematic analysis
was conducted on the interview transcripts by two authors
in a joint coding session. Since thematic analysis is inher-
ently subjective, Cohen’s Kappa (𝜅) [14] was used to evalu-
ate the level of agreement between two independent raters,
each of whom classified the codes into themes and assigned
text passages to codes. Unlike simple percentage agreement,
Cohen’s Kappa accounts for agreement occurring by chance,
providing a more accurate measure of interrater reliability.

5 Results
In the following section, we present the results of the user
study, starting with the results of the questionnaire and the
SUS, then show the answers to the fixed set of questions
and, finally, show the uncovered codes and themes of the
thematic analysis.

5.1 Systems Usability Scale
The average SUS score from ten participants was 81.75, with
a standard deviation of 10.1, indicating good usability [1].
The individual SUS scores can be found in table 4. The high-
est rating was 95 (A4). A2 and A6 with intermediate soft-
ware knowledge (i.e. 3 on the Likert scale) gave the lowest

7https://www.augenklinik-sulzbach.de/ (Accessed: 05.01.2025)

Figure 4: Agreement to the question of whether the
CDSS could improve efficiency, informedness or us-
ability for the specific task. Answers from S and O are
marked by bold frames and dotted patterns, respec-
tively.

ratings of 62.5 and 67.5, while those who rated themselves
as having advanced or expert knowledge (i.e. 4 and 5 on
the Likert scale) gave generally higher ratings. They also
rated their need for a technical person to help them use the
dashboard higher than all others (i.e. 3 and 4 on the Likert
scale).O and S gave ratings of 90 and 85, respectively, which
is above the average rating among all participants.

5.2 Task Ratings
A fixed set of yes or no questions was asked after the com-
pletion of each task, whose results can be seen in figure
4. Although the questions were yes or no in nature, many
times, participants did not answer with yes or no. Hence,
through coding, we categorized their answers into yes, no,
or no sufficient answers.

For T1, all except A2, who did not sufficiently answer,
felt more efficient than usual. S did not feel more informed,
and A7 did not give a clear answer, while the remaining
participants felt more informed. Furthermore, A4, A6, and
A7 did not give a clear answer to whether their user experi-
ence was improved. The rest felt like their user experience
was improved.

The analysis of the OCT data from T2 was rated as more
efficient by everybody but A2-4 and A6-7. A2 and A4 did
not give clear answers to any of the questions. A3 and A6-7
did not feel more efficient. S did not feel more informed,
while the rest, that sufficiently answered, did. For user expe-
rience, A2-8 did not answer clearly, while the rest felt that
it improved.

For T3, S did not answer clearly for all three aspects of
this task. Everybody butA3 felt more efficient. Furthermore,
only A2 said they did not feel more informed, while the
rest did. Everybody but S, A3, and A5-6 felt like the user
experience was improved. S, A3 and A5-6 did not give a
clear answer here.
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5.3 Qualitative Analysis
Thematic analysis was conducted on the transcripts of the in-
terview sessions. In total, 66 codes were generated with 320
annotations in the transcripts. They were then categorized
into four major categories: Trust, Efficiency, Informedness,
and User experience. Two unaffiliated participants were
asked to fill in a questionnaire for the interrater-reliability
measurement. They were asked to assign 15 codes to the
respective categories and 21 text passages to their respective
codes. The assignment of codes to categories and transcript
snippets to codes had Cohen’s𝜅 of 0.91 and 0.57, respectively.
This shows that raters agree with the given categorization
and coding of the transcripts. Quotes are translated from the
German transcripts, and only grammar is corrected. Parts
that were already included in section 5.2 were not consid-
ered during the thematic analysis unless they contained
information which goes beyond what was already estab-
lished.

5.3.1 RQ1: Are segmentation, classification, and time series
forecast models perceived with varying levels of trustwor-
thiness? We found that overall, everybody mentioned low
perceived trustworthiness of the system in some way. The
most common reason for distrust was a lack of experience
with the CDSS. This was highlighted by everyone except
O, A3, and A5-6. As A1 explained: "The more I would use it,
the more I would get a feeling for what the program is doing.
And then it would increase my trust.". A1-4, A6-7 and O
mentioned that the system needs to provide the raw data
to be controllable: "[...] If I only saw this [quantification]
data [without the OCT], then I would be missing a control
opportunity for the system" (A4); "As I have seen from this
patient, I could trust the system. [...] But [...] I would always
try to clinically comprehend it."(O). All participants agreed
that they would never rely on the system but primarily on
their skills and the clinical guidelines.

A6 did not initially trust the segmentation: "It seems useful
[...], but [...] I would not rely on it". S and A1-2 mentioned
low trust in the 3D view after discovering errors, which also
implies mistrust in the segmentation: "If there was a mistake
in the computation, [it will make] the same mistake for each
[OCT]. [...] I would not use the 3D view to make a decision.
I would use the OCT slices." (S). Other participants did not
mention low trust in the segmentation.We proposed the idea
of a feedback system to the participants, where they could
provide feedback when dissatisfied with the segmentation.
S, O and A1, A3, A6 and A8-9 said that this would increase
trust. However, S and A1 said that such a system would not
be used due to clinicians’ time constraints: "The time just is
not there" (S). Furthermore, a federate feedback system was
mentioned as beneficial for trust by A3, A6, A8 and O: "You
would have an additional control, which would be good."
(A8).

All participants initially checked treatment parameters
themselves before consulting the recommendation implying
a low perceived trustworthiness of this component. A1, A4,
and O mentioned they trusted the recommendation after
validating it but would keep cross-checking. A2, A5, andA7
said they do not trust the recommendation because they do
not understand how it works.

The forecast model was widely ignored in the treatment
decision. Furthermore, S had strong negative sentiment to-
wards the forecast: "That is total bullshit. [...] How can some-
one make a prognosis over clinical findings? That is basically
like reading coffee grounds". A7 echoes similar concerns:
"One can maybe use it as an idea [...], but it is too individual
[...], how people react to therapy".

After an explanation of the treatment recommendation,
the forecast model and their training processes, A1, A3-4
and A9 said that their trust in the recommendation system
was increased: "If I have a system, where I know it makes
decisions similarly to myself, then that makes it easier to rely
on it" (A4). A9 was the only participant who mentioned
including the forecast in their decision-making after the
explanation.

5.3.2 RQ2: How can an ophthalmologist’s efficiency, informed-
ness, and user experience be improved using a CDSS?. Every-
body but A2 mentioned that they felt more efficient using
the dashboard in some way. A1, A3-4, A6, A8 and O men-
tion the improved metadata display as a reason for this: "[In
the EHR] you have to search significantly longer than here"
(A4). Moreover, A1, A4-9 and S say that the integration
of OCT and EHR into one clear overview would bring an
efficiency improvement: "I find the most useful, that I have a
complete overview, such that I do not need to open the OCT in
a separate program." (A9). A5 and A9 also say that agree-
ment with the recommendation would improve efficiency.
A1, A7 and A9 mentioned that having to read unnecessary,
non-critical factors decreases efficiency: "The intraocular
pressure is not relevant for treatment [...][and it is] an addi-
tional information I have to read, and that costs me time" (A1).
For OCT analysis, A3 and A6-7 said that the CDSS brings
no efficiency bonus if we disregard the loading times and
the missing "Scrolling through slices" feature.

In the informedness category, all except A7 found that
the dashboard provides them with more information than
they would usually have. This is due to the practical 3D
view (A1 and A9), the quantifications (A1-4, A6, A8 and
S), the segmentation (A1, A3, A5, O and S) and the forecast
(A9): "I think [the 3D view] is handy" (A9), "Such solid data
[...] that is going to be the future [of indication]" (S), "I can
see [multiple biomarkers] with the segmentation much better,
than without." (A5). A3, A5-7, A9 and O said that the CDSS
is particularly helpful in borderline cases: "For many patients,
it is fairly obvious, but especially in those borderline cases [...]
I think it is useful." (A9). Furthermore, A3, A6-7 and A9
think that disagreement with the CDSS would push for a
more thorough analysis: "This brings a certain treatment
quality if the system says something else than I do. Then I can
cross-check and maybe consult someone with more experience
than me." (A3). More information was wished for regarding
drug prices (A1), reason for drug switches (A2), number
and times of IVOMs (A9, O) and concurrent diseases or
surgeries (A5, A6).

Finally, everybody but A2mentioned some improvement
in user experience. Similar to efficiency, this was largely
due to the integration of OCT and EHR data, but also due to
other factors such as intuitiveness of the CDSS (A1,O), easy
comparison of scans (A1, A5, A9, O and S), good looking
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Table 5: Trustworthiness codes and which participants mentioned them.

Code Participant

Relies primarily on skills and guidelines A1-9, O, S
Recommendation initially ignored A1-9, O, S
Forecast initially ignored A1-9, O, S
Experience builds trust A1, A2, A4, A7, A8, A9, S
Controllable via raw data A1, A2, A3, A4, A6, A7, O
Feedback increases trust A1, A3, A6, A8, A9, O, S
No trust in segmentation A1, A2, A6, S
Explanation of model enables trust A1, A3, A4, A9
Manual agreement improves trust A1, A4, O
Lack of understanding reduces trust A2, A5, A7
Feedback not adoptable due to time A1, S
Forecast cannot work A7, S
Negative sentiment towards forecast S
Would include forecast in decisions A9

visualizations, which can also be shown to patients (A1,
A3) or positive reinforcement through the recommendation
(A3, A7). As a feature, everybody but A4-5 and A8 missed
scrolling through the slices.

6 Discussion
In this section, we discuss the results of our user study, relate
them to current literature, and answer the proposed RQs.
Then, we propose guidelines for designing trustworthy and
efficient AI-driven CDSS. Finally, we cover limitations and
future work.

6.1 RQ1: Are segmentation, classification,
and time series forecast models
perceived with varying levels of
trustworthiness?

In this study, we examined the impact of an AI components
task domain on the trust of experts. Segmentation was the
least initially distrusted AI component, although mistakes
in this component made users lose trust quickly, as demon-
strated by S: "If there was a mistake in the computation, [it
will make] the same mistake for each [OCT]". Although it has
been known that errors decrease trust in AI models much
more than they would in humans [17], this also indicates,
contrary to Langer et al. [31], that doctors might view AI as
algorithms with defined rules, which it cannot deviate from.
This point of view hinders the adoption of AI components.
We argue that CDSS should implement reminders that high-
light the non-deterministic nature of AI and that one error
does not conclude the model to be inherently erroneous.

Since the recommendation was not used until after par-
ticipants had formed their own decision, we think that the
recommendation was widely distrusted. However, this could
also be attributed to not being used to the CDSS, as sixA and
S said that they would only build trust by using the CDSS
and cross-checking whether they align with its decisions.
A2,A5, andA7 said that they cannot trust the recommenda-
tion because they do not understand it, which again shows
a missing understanding of how AI works to be an issue for

trust. Provided an explanation of the model and its training,
trust increased for four A. It seems especially important for
experts to know that the set of considered features was com-
plete. Hence, we can support the findings of Bhattacharya
et al. [3] or Cai et al. [9], that users need to know about the
AI’s training process and data to build a mental model of it.

The recommendation was distrusted at first, but partici-
pants were open to trusting it in the future, given it performs
as they expect. The forecasting component, however, while
also being widely ignored for completion of T3, received
negative sentiment by S. Additionally, S and A7 mentioned
that its goal is impossible and, hence, we find its perceived
trustworthiness is worse than the recommendations. We
argue that the abstraction from input to output plays a role
in how trustworthy AI components are perceived. The de-
gree of abstraction between OCT slices and segmentation
masks is minimal, which is why participants seem to trust
it more. Expanding to a 3D reconstruction, segmentation al-
ready loses trust, as now the abstraction degree is larger. The
recommendation abstracts from EHR data and OCT quan-
tifications of one visit to a treatment decision and, hence,
receives less trust, as again abstraction increases. Finally,
the forecasting expands this by also including past visits and
predicting a metric for a future date. Consequently, it has
the largest degree of abstraction and the worst perceived
trustworthiness of the evaluated AI components. Hence,
this finding identifies task-dependent aversion [10] in the
degree of abstraction of AI components.

Feedback systems were mentioned as beneficial for trust,
but concerns about their usage due to time constraints were
raised. This is contrary to Honeycutt et al. [23], who found
that giving feedback decreases trust in the system. However,
in this study, users were forced to give feedback on errors,
while in our study, they had the option to give feedback. We
argue that the inconvenience of having to deal with system
errors decreases trust. According to our study participants,
federated feedback would increase trust because users feel
like the AI is being controlled. These systems must be op-
tional and fast to not be a burden for the user. The option
to give more detailed feedback should also be given.
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To conclude, we propose three guidelines:
• Remind users of the non-deterministic nature
of AI components: Users might associate AI with
erroneous algorithms and develop algorithm aver-
sion. Reminding them that AI is non-deterministic
might mitigate this issue.

• Explain AI components with a large degree of
abstraction: Models, whose output is significantly
abstracted from their input, must be explained to a
degree where users can easily verify the correctness
of the prediction.

• Implement quick feedback options: Provide op-
tions for feedback that can be used swiftly without
interrupting clinicians’ workflow. Mandatory feed-
back might be perceived as an inconvenience and,
hence, decreases trust, while optional feedback gives
a feeling of control over the system without being a
burden on the user.

6.2 RQ2: How can an ophthalmologist’s
efficiency, informedness, and user
experience be improved using a CDSS?

We found that the developed CDSS has improved efficiency,
informedness, and user experience in multiple aspects.

The integrated display of OCT data and the visualizations
of EHR data decrease the time and effort needed for analysis.
We argue that CDSS should integrate standard functionality
and AI components to improve efficiency. However, this
also represents a barrier for researchers and developers, as
integration into existing systems is rarely possible, and inte-
grating the entire workflow means additional development
work.

As anticipated, participants felt more informed due to
the visualization of the EHR data. Additionally, AI com-
ponents were mentioned as helpful for improving patient
care. The segmentation locates regions of interest and helps
with borderline cases. The recommendation motivates users
to cross-check with more experienced clinicians when dis-
agreeing with the system. However, the forecast was not
positively received. User experience also improves when ef-
ficiency or informedness improves. Additionally, our study
found that good-looking visualizations, positive reinforce-
ment of decisions, and an intuitive system enhanced users’
experience.

In conclusion, the main perceived improvement of our
CDSS over clinicians’ standard setup was the integration of
EHR and OCT data, as well as the visualization of EHR data.
While other factors also influenced efficiency, informedness,
and user experience, it is hard to generalize these findings.
Especially the influence of AI components needs to be stud-
ied further. Our CDSS reaches an average SUS score of 81.75
and, hence, according to Bangor et al. [1], has good usability.
We provide the code of our CDSS as a foundation for future
research at: https://github.com/DFKI-Interactive-Machine-
Learning/ophthalmo-cdss.

6.3 Limitations
This study provides an overview of key considerations when
designing an AI-supported CDSS that integrates into the

therapy workflow of ophthalmologists. However, there are
several limitations to our study:

(1) Indirect comparison: It was not possible to inte-
grate our prototype into a real hospital information
system and compare it with clinicians’ actual setup.
Instead, our study reveals only perceived improve-
ments, which might not exist. Additionally, it lacks
objective measurements, such as completion times
of tasks.

(2) Imperfect system: Our CDSS came with several
issues, such as slow processing times and missing
fine-tuning of ML models. Both could have affected
usability and trust ratings, as demonstrated by the
frequent wish for "scrolling through the OCT slices",
a feature that the current setup supports but ours
could not do performantly.

(3) Replicability: Our data is not publicly available and,
hence, it is difficult to re-run the experiments.

(4) Generalizability: While our guidelines should facil-
itate trust in AI components of CDSS, it is unclear
how well they generalize to other fields of medicine.
Also, all our participants come from one institution.

(5) Missing quantifications: We did not quantify our
findings using questionnaires. For example, the trust-
worthiness of AI components could be quantified
using the Cahour-Forzy scale questionnaires [22].
Additionally, it remains unclear which specific expla-
nation methods are most effective in increasing trust
for different AI components.

(6) SUS limitation: The SUS provides only a general
assessment of usability and does not capture specific
usability issues or nuances in user experience, such
as the ease of learning or efficiency in specific tasks.
Additionally, the SUS scores may be influenced by
users’ familiarity with similar systems or their biases
toward AI-based tools, which could skew the results.

6.4 Future Work
In future work, we hope to address the limitations while also
exploring ways to properly explain different AI components
to achieve maximal perceived trustworthiness without mak-
ing doctors overly reliant on the system. The results of such
a study could offer valuable insights for designing more
trustworthy and user-friendly CDSS, ultimately improving
adoption and clinical outcomes. With further development,
our tool could be integrated into hospitals and compared to
standard setups to further quantify the impact.

7 Conclusion
In this study, we developed an AI-driven CDSS to support
ophthalmologists in the treatment of AMD and DR. Through
semi-structured, task-based interviews with eleven ophthal-
mologists we evaluated our CDSS in terms of efficiency, in-
formedness, and user experience. Additionally, we explored
the trustworthiness of AI-driven segmentation, treatment
recommendation, and VA forecasting.

Our CDSS was perceived as more efficient, more informa-
tive, and more usable by the study participants compared
to their standard setup. Major factors were the integration
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of OCT and EHR data, visualizations of EHR data, and fluid
quantification. Additionally, we identified key factors influ-
encing the trustworthiness of AI in CDSS: Users need to be
reminded of the non-deterministic nature of AI to not lose
trust when discovering errors, a large degree of abstraction
from input to output decreases perceived trustworthiness,
and feedback can increase trust, when it is fast and optional.

We highlighted the limitations of our work and discussed
potential future research directions. Additionally, we made
our CDSS publicly available as a foundation for future de-
velopments and research on GitHub at: https://github.com/
DFKI-Interactive-Machine-Learning/ophthalmo-cdss.
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Figure 5: The low-fidelity prototype was developed in
collaboration with one doctor from the eye clinic in
Sulzbach.

A Low-Fidelity Prototype
B Interview Guide
We conducted a semi-structured task-based interview to
find out whether our CDSS could improve efficiency, in-
formedness, and user experience. Additionally, we evalu-
ated the trustworthiness of several AI components. In the
following section, we outline the interview process and the
instructions provided to participants. All instructions and
information given to participants are presented as quotes
(translated into English).

B.1 Introduction
We introduced the purpose and the concept of the study to
the participants, i.e. gathering participants’ feedback and
insights into the CDSS and its usability. We explained that
they would have to complete three tasks and instructed
them to think aloud.

"Thank you for participating in our study. The
purpose of our study is to evaluate a Clini-
cal Decision Support System for ophthalmolo-
gists in the treatment of Diabetic Retinopathy
and Age-related Macular Degeneration. In the
course of this study, you will complete three
tasks, which are modeled after tasks, that you
would encounter in your workflow. Please al-
ways say, what you think, aloud. We will ask
you open-ended questions. There are no right
or wrong answers; we are interested in your
honest opinions and perspectives. Feel free
to take your time to consider your responses,
and don’t hesitate to ask any questions you
may have. Is there anything you would like to
know before we begin?"

B.2 Tutorial
Before the participants started with the Tasks, they got five
to ten minutes to familiarize themselves with the CDSS. One
of the interviewers gave a short introduction to the CDSS
followed by the participant using the CDSS as they wished
while asking questions about its usage:

"Here you can see the developed CDSS. It sep-
arates into six distinct visual components. The
first one gives you an overview of metadata
and the treatment status. The second one shows
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you the OCT data. It has functionality in the
toolbox to the left of it, one of which is the
segmentation. Segmentation is an AI tool. The
third visual component shows line graphs of
some selected metrics such as visual acuity.
The dotted line represents a forecast of an-
other AI component of the CDSS. The fourth
visual component shows how some metrics
changed from the last to the current visit. In
the fifth, you can see the treatment recom-
mendation, which is another AI tool. The last
visual component shows you other relevant
data, namely a reasoning for our recommenda-
tion, a thickness table, and visit diff. Feel free
to explore all of these components on your
own now and ask questions, whenever you
feel the need to. Remember to always speak
your mind, as we are interested in any insight
you can provide."

B.3 Tasks
The tasks were modeled after actual tasks from an ophthal-
mologist’s everyday workflow. They were determined in
a preliminary workflow study with one ophthalmologist.
The patient data shown was preselected to ensure that each
task features a different patient with all relevant informa-
tion available. Additionally, for tasks 2 and 3, we selected
patients with high-quality OCTs. All participants saw the
same data for each task. After each task, we asked three
questions:

(1) "Could the CDSS improve your efficiency regarding
this task compared to your usual setup? Why/ why
not?"

(2) "Could the CDSS improve your informedness regard-
ing this task compared to your usual setup? Why/
why not?"

(3) "Could the CDSS improve your user experience re-
garding this task compared to your usual setup?Why/
why not?"

B.3.1 Task 1: Metadata Analysis. The first revolved around
metadata analysis. The instructions for the participants
were:

"Imagine you got a new patient. Find out all
relevant metadata. Specifically, find out:
• The patient’s gender, age, BMI, and smoking
behavior.

• Which disease does the patient have?
• How is the patient’s visual acuity? How has
it changed?

• Has the patient already received treatment?
How often and which medication has been
given? Since when has the patient been in
treatment? Was treatment effective regard-
ing visual acuity?

• What else has changed since the last visit?
Please use the CDSS to solve this task. For
this task, please ignore visual component 2. If
you have any questions or need the task to be
repeated, feel free to ask."

After completion, we asked about efficiency, informedness,
and user experience as mentioned above. Additional follow-
up questions were:

• "Was the data visualized in an intuitive and compre-
hensible way? Why/ why not?"

• "How would your answers change, if you already
knew this patient?"

B.3.2 Task 2: OCTAnalysis. The second task revolved around
the analysis of OCT data. The instructions were as follows:

"In this task, you want to analyze the OCT
data of the patient. For that please look at the
current OCT and describe biomarkers. After-
ward, find out how those biomarkers changed
over time. Feel free to use any features from
visual component 2."

If the participants did not use all functionalities by them-
selves, the interviewers showed them the missed function-
ality. Again we asked about efficiency, informedness, and
user experience for this task. Additional follow-up questions
were:

• "How do segmentation, thickness map, and 3D re-
construction help you? Would you use them in your
everyday workflow?"

• "Do you trust the segmentation? Why/ why not?"

B.3.3 Task 3: Treatment Decision. In the last task, partic-
ipants were asked to decide on treatment for this patient.
The instructions were:

"For the final task, please use the full CDSS
to decide whether to treat this patient or not.
Which medication would you administer?"

After they finished the task, we asked the following ques-
tions:

• "Do you agree with the recommendation? Why/ why
not? Do you understand, why the system gives this
recommendation? Is its reasoning valid? Why/ why
not?"

• "How reliable do you find the segmentation, recom-
mendation, and forecast? Do you trust these com-
ponents? Would you include them in your decision-
making? Why/ why not?"

Afterward, we explained the AI components:
"We would like to explain how the AI compo-
nents work to you. Please ask any questions,
if you do not understand something. The seg-
mentation and forecast are both Deep Learn-
ing models. The segmentation was trained on
1023 images to predict segmentations. The
ground truth masks came from your peers.
For the forecast model, we extracted 17 fea-
tures such as bleeding, edema, etc. from the
EHR data. Additionally, we fed the forecast
model the quantifications of lesions and reti-
nal thickness as well as the visual acuity, in-
traocular pressure,e and metadata such as age,
gender, and so on. The forecast model was
trained on about 50,000 samples and has seen
the data of about 1000 different patients.
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The recommendation algorithm uses the EHR
data, the quantifications from the 3D recon-
struction, and the time series forecast. Its base
algorithm resembles clinical guidelines. First,
it checks whether abort criteria are fulfilled.
If not, it checks whether the OCT is active. If
yes, then it recommends treatment, where the
recommended medication can deviate from
the previously given medication, if the fore-
cast predicts a significantly better outcome.

Otherwise, it will simply recommend to not
treat.
Does this explanation influence your trust in
these components? Please explain why."

B.4 Questionnaire
At the end of the interview, we thanked the participants
again and asked them to fill in an online questionnaire re-
garding the demographics, sentiment on AI and SUS.
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