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Toward Adaptive Robot Behavior for
Interdependent Human-Robot Teams

Emilia Pietras*, Stephanie Hall, Bernd Kiefer, Jeppe Langaa, Guglielmo Borzone, Mandeep Dhanda
Aljaz Kramberger, Vimal Dhokia, Norbert Kriiger, Leon Bodenhagen

I. INTRODUCTION

In manufacturing today, a gap persists in the implementa-
tion of safe and efficient human-robot teams. To implement
robot systems that truly collaborate with human teammates,
such systems must facilitate adaptive high-level robot action
planning. This adaptive robot behavior should both account
for the goal of the collaborative task and the characteristics
of their human teammate. Adapting to the human would not
only take into account interpersonal differences but also the
changes in the human’s physical and mental state throughout
the collaboration.

In this paper, we will first present the related work in
Sec. II, followed by our proposed model in Sec. III, which
describes the modules needed to implement adaptive human-
robot interaction (HRI) systems. The model consists of three
main elements: 1) the human-robot team, 2) the knowledge
base, and 3) the high-level action planning. These main parts
each contain two or more subelements, which will be described
in further detail. In Sec. IV, the method is put in the context of
three different use cases: learning from virtual demonstrations,
assembling and fixing components, and object scanning.

II. RELATED WORK
A. The Use of Ontologies in Robot Systems

The integration of robots in an environment where they
will be working closely with humans brings up issues such
as scheduling, safety, and trust between the human-robot team
due to the stochastic nature of humans and the complexity of
the interaction. Efficient collaboration between the human and
robot requires both the human and robot to understand what
each other is doing and have an awareness of what else may
be going on in the environment. Therefore, a way to structure
and store this large amount of often abstract information and
identify how it is interlinked is needed.

Ontologies can help fuse and contextualize the large amount
of information obtained from sensing devices, algorithms,
etc. during the process. General ontologies for robotics have
been developed, such as the core ontology for robotics and
automation (CORA) [1], with additional research extending
this to focus on definitions for positioning, orientation, and
robot poses [2].

Numerous ontologies have been developed to tackle au-
tonomous robotics and HRI. Lemaignan et al. [3] focus on the
cognitive skills needed in the OpenRobots ontology (ORO),
considering abilities such as symbolic reasoning, theory of

mind, working memory, desires and experiences as impor-
tant considerations. Robot Task Planning Ontology (RTPO)
focuses on separate task, environment, and robot ontologies
[4].

However, some of these approaches focus mainly on the
robot behavior, limiting the human to simple communication
and ignoring the possibility of unpredictable events or plan
changes due to human behavior [5]. Many of these ontological
approaches to model the concepts involved in manufacturing,
robotics, etc. related applications tend to have a low-level
inclusion of the collaboration between the human and robot.
David et al. [6] aim to address these limitations in their
ontology, collaborative agents for manufacturing ontology
(CAMO). They consider different modalities for communi-
cation, such as vision, whereas speech is commonly used
in previous human-robot collaboration (HRC) applications. A
far greater focus is on social attributes and teamwork and
consideration is given to the mental attitudes of the human
workers in the interaction.

B. Knowledge Processing Systems for Robotics

For flexible and general implementation of robot behavior,
robots must be equipped with the ability to reason and infer
action parametrizations. A well-known knowledge processing
system made to achieve this is KnowRob [7], a system made
for autonomous personal robots. It comprises encyclopedic
knowledge, an environment model, action-based reasoning,
and human observations. Furthermore, it allows for querying
continuous sensor data and uses a knowledge base to which
observations can be loaded into. An extension of this system,
KnowRob 2.0, has increased capabilities including an inner-
world knowledge base [8]. This knowledge base consists of
a simulated reconstruction of the robot’s environment with
physics simulation and vision capabilities, letting the robot
reason about actions and gain intuitive physics knowledge.
Furthermore, this knowledge processing system works as a
part of an even larger cognitive architecture, CRAM [9],
addressing the challenge of robots performing general manipu-
lation tasks. The knowledge base in our proposed system is in
accordance with existing systems as it has been developed with
an ontology reuse approach. Meanwhile, more specifically,
our proposed system contributes to exisitng works with its
emphasis on higher-level task planning accounting for a human
teammate.



C. HRI and Cobots in Manufacturing

HRI can be categorized into human-robot coexistence, coop-
eration, and collaboration [10]. HRC commonly encompasses
the human and the robot sharing their workspace and task.
It is thus more involved and proximate than cooperation
and coexistence, as they do not require a shared workspace
or manipulating the same objects simultaneously [10]. The
need for HRC in manufacturing is particularly evident in
tasks where automated systems are unable to execute complex
processes without humans and is also a prospect of improving
efficiency and reducing human workload [10].

However, a gap remains in implementing HRC in manu-
facturing today [11]. One of the main challenges within HRC
in manufacturing is safety, which comprises physical safety
(e.g., avoiding collisions) and psychological safety, focusing
on minimizing potential discomfort caused by the robot [12].
Human-related adaptation (e.g., basing the robot’s strategies on
the human operators’ skill and experience level) may assist
in keeping the human in a desired physical and psycho-
logical state. Nevertheless, this remains difficult to develop
and implement due to interpersonal differences and human
unpredictability [11]. Our proposed method aims to contribute
to the work within human-related adaptation through the
knowledge base and high-level robot action planning.

III. METHOD

In the following, we describe our system in which a
robot can adapt to the user’s preferences and internal state
during collaboration. The full system is illustrated via a block
diagram, shown in Fig. 1. In sum, as the human-robot team
performs a collaborative task, some form of interaction occurs
(communication, manipulation of shared objects, physical in-
teraction, etc.). Meanwhile, the internal state of the human user
is inferred from physiological and behavioral data. The RDF
store!, which inherits domain knowledge from the ontology,
is responsible for storing this data and updating the user
profile. Based on the collaborative task and the inferred state,
a decision framework is used to select the appropriate strategy.
Lastly, a Behavior Tree controls the flow of the robot’s task
while facilitating reactive task switching.

A. The Human-Robot Team: User and Robotic System

1) User: the user interacts with the robotic system through
several modalities:

o The robot arm: e.g., physical interaction, manipulation of
shared objects.

e The multimodal interface: e.g., Graphical User Interface
(GUI), vision- or audio-based communication.

« Indirect interaction: the human and the robot coexisting
in the same workspace implies the presence of indirect
interaction. One example is proxemics, which necessitates
that the robot plans for collision avoidance and respecting
the human space.
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Fig. 1. Block diagram presenting a model for a robot system that adapts to the
user’s needs, preferences, and internal state during collaboration. During the
interaction between the robot and the user, the RDF store, which incorporates
class information from the ontology, is updated based on user data, and the
human modeling block infers the user’s internal state. Based on the task and
the user, the optimal robot strategy is selected and executed.

In addition to the physical and communicative aspects of
the collaboration, the multimodal interface may encompass
physical, visual, or audio-based sensors to record physiological
and behavioral data. These recordings serve as observations to
model the human’s internal state. It is often also relevant to
account for recurring users, meaning that long-term informa-
tion about their preferences and past sessions with the system
must be kept in the RDF store. Here, a database is dynamically
updated to store information about the user and the session.

2) Robot: in our proposed framework, the robotic system is
implemented as a composite of the robot proper (a simulated
or real robot) and a multimodal interface. In either case, the
Behavior Tree sends the next high-level robot action to be
executed by the robot (e.g., moving to a specified location or
sharing information with the human teammate).

3) Multimodal interface: this part of the robotic system also
interacts with the user as it is the module that handles commu-
nication. For instance, it may be a GUI from which the user
can make decisions and the robot can share information. The
interface may involve various forms of communication, e.g.,
speech, gestures, and expressions. Apart from communication,
the multimodal interface sends physiological and behavioral
information about the user to the RDF store, from the real-time
output of various monitoring devices. Since it is part of the
robotic system, the multimodal interface receives robot actions
from the Behavior Tree, such as speech output. Actions may
result in some perception output, e.g., a scanning action that
results in a point cloud. Such outputs and other events, such as
user decisions, are sent to the execution engine, which handles



all outputs from the user and the robot.

B. The Knowledge Base: Ontology and RDF Store

1) Ontology: The knowledge base in this framework uses
information gained from other blocks of the system to infer
contextualized knowledge about the current state of the pro-
cess. This can be used to determine the current cognitive and
physical state of the worker or robot, whether certain tasks
can be actionable, which events may be occurring, etc.

The role of the ontology in this system is to store a formal,
structured map of all possible domain knowledge, including
the key concepts, properties, relationships, and axioms. This
model consists of a formal way to describe both the physical
aspects of the human and robot, their skills and capabilities,
and additionally for the human, their previous experience,
behavior, social and emotional features. Use case objects, task
specifications, and actions are also contained in the ontology,
linking and constraining these concepts to the more abstract
features of the human and robot.

2) RDF Store: The RDF store is a dynamic knowledge base
and customizable reasoner containing information about all
interactions, such as a given user’s previous preferences. The
RDF store makes use of world knowledge from the ontology,
information about the task progression from the execution
engine, and real-time physical and behavioral information
about the human user from the multimodal interface. All task
and user information is updated in the RDF store database
and the relevant updates are passed on to the human modeling
block. Since the store not only contains the present state, but
also previous states by assigning each triple the transaction
time when it was added to the database. In this way, a long-
term history is kept that opens up lots of possibilities for
personalized and social behaviour through adaptation.

C. The High-Level Action Planning

1) Human modeling: the human modeling block infers the
internal state of the user based on data collected from the
user profile (if it is a recurring user) and the data collected
on-the-fly during the task. To model the state of the human,
we may want to know something about their user profile (e.g.,
what is their skill level? What are their previous preferences?),
user decisions, and physiological data. The human model
receives these observations about the user from the RDF store
throughout the duration of the collaborative task. Based on
these observations, the output of the human modeling block
is the inferred state or preference in the form of a probability.
The probability distribution is sent to the strategy selection
block.

2) Strategy selection: this block takes input from the Be-
havior Tree, informing the next task which is the upcoming
action the robot should execute. The block also receives input
from the human modeling block, providing the inferred inter-
nal state of the user, and the RDF store, providing possible
action strategies and relevant task information. The purpose of
the strategy selection block is to select the appropriate robot
action strategy given the task and the user’s state. The strategy

may meet a condition that is always checked by the Behavior
Tree or it can change the outcome of the next robot action,
varying the execution speed, level of proximity, etc. A practical
example is the following: from the human modeling block the
inferred state of the user is a state of high fatigue. The highest-
reward option found by the strategy selection method is to
suggest a break, so the condition ”"SuggestBreak?” is updated
to True and is read by the execution engine.

3) Action learning: this module is responsible for using the
trajectories demonstrated by the user for robot learning. These
trajectories could come from the human moving the physical
robot in free-drive mode or potentially from moving the robot
in Virtual Reality (VR) via controllers, as further described in
Sec. IV-A. These trajectories would then be kept to the RDF
Store and provided to the action learning module.

4) Execution engine: the purpose of the execution engine is
to serve as an abstraction from the Behavior Tree, making sure
the Behavior Tree does not itself take care of directly receiving
and managing input from the human-robot team or the strategy
selection. The Behavior Tree should be as simple as possible as
it is only a procedural structure and simultaneously managing
events will make it more complex. Thus, the execution engine
handles the output from the multimodal interface about any
interaction or task events. Such events may include input from
the user or the status of ongoing robot actions. A practical
example is the following: the human teammate abruptly orders
the robot to stop in the middle of a task. This event is
handled on-the-fly in the execution engine and passed on to
the Behavior Tree, which will immediately request the robot
to halt.

5) Behavior Tree: this block represents the state machine
that allows the robot to switch between tasks and trigger robot
actions based on the hierarchical, sequential, and conditional
structure of the tree. The Behavior Tree takes information
about the selected strategy and the task events handled by
the execution engine to then determine and trigger the next
robot action to be performed by the robot or communicated
through the multimodal interface.

IV. EXAMPLES OF USE CASES
A. Use Case 1: Learning from virtual demonstrations

In the industrial world, it is usually possible to access 3D
models of the parts used within a certain task. Furthermore,
the workcells are often meticulously set up and may even be
calibrated. This makes it easy to replicate within a virtual
scene and to simulate the task. Recreating the industrial task
in a virtual setting allows the use of VR to traverse the scene
and inspect the task or to interact with the task and the robot
in a variety of ways. One way to interact with the robot is to
use the controllers of the VR setup within the simulation to
demonstrate a task by letting the tool center point (TCP) of
the robot follow the target of the controllers. This allows the
user to demonstrate a trajectory without being in the vicinity
of the robot, which lowers the risk level and lets the human
operator demonstrate tasks that are normally too heavy for the
human body. The usual method of kinesthetic teaching does



not allow the human operator to stay in a safe area of the
workspace and is usually not appropriate for tasks requiring
heavy loads. Furthermore, it is possible to demonstrate a robot
task within the correct action and state space as there is
no external disturbances in the form of a human operator.
This eases the learning as the training domain is the same
as the test domain. Combining an off-policy Reinforcement
Learning (RL) algorithm that includes an expert replay buffer
for the demonstrated data, along with the demonstrations
from a VR headset, one can demonstrate an arbitrary task
while allowing the operator to correct future behavior by
recording new demonstrations. The robot behavior will be
bootstrapped from the initial demonstrations of the operator
and will develop as the robot gets experience by carrying out
the task. The continuous learning of the robot can be corrected
by the human operator by recording new demonstrations, as
the expert demonstrations are more substantial to the robot
than its own experience.

B. Use Case 2: Assembling and fixing components

One of the use cases for this HRI system is the assembly
of a mechanical component which will be assembled into a
ring, used for the construction of jet engines (see Fig. 2). In
this task, two metal parts have to be precisely aligned and
joined together. The robot and the human will cooperate in
a shared workspace, with the human assessing the quality of
the assembly and adjusting it to achieve the best result. A
simulation of the workspace will be available to the operator,
making it possible to review the robot’s next course of action
before issuing the command to the real system. All of the
actions performed by the robot are activated by the user
through a graphical user interface (GUI).

The task can be broken down as follows:

1) The robot picks up the first component and moves it

above one of the two fixtures, as chosen by the user.

2) The robot attempts to insert the component into the
fixture unassisted.

3) In case of failure, the robot asks the human to help place
the component and the robot enters free-drive mode. The
human helps the robot place the component and notifies
it when the part is in place.

4) When prompted by the user, the robot picks up the
second component and holds it above the second fixture.

5) The robot repeats steps 2, 3 and 4.

6) The robot picks up the joint plaque and holds it in place,
attempting to align the holes of the plaque with the holes
in the left and right parts.

7) The robot enters free-drive mode, allowing the user to
make final adjustments to further align the parts.

8) The human holds the second plaque and completes the
task by riveting the parts.

In the current setup, the human communicates with the robot
through a GUI, which could be extended with a voice interface,
increasing the speed and ease of communication. Furthermore,
to integrate the robot system with adaptive behavior, a learning
algorithm could be implemented in the part where the robot

3) Left fixture
4 4) Right fixture
@ 5) Joint plaque 1
@ ) Jointplaque 2

Fig. 2. Image of the physical setup with a UR robotic arm and the components
used for the assembly of the ring. The two components are placed into the
left and right fixtures and the two sides are joined using the joint plaques.
Once the human-robot team has finished the assembly, the human rivets the
parts to fix the components in place.

tries to place the object by itself: the human guides the robot,
which has entered free-drive mode while the robot registers
and learns from the trajectory that the human made it follow.
Additionally, more control could be provided to the human.
In such a proxmiate HRI task, the human worker could feel
intimidated by the vicinity of the robot. A way to make
the robot more trustworthy would be to provide the human
with controls such as adjusting the robot’s proximity so that
an inexperienced user could take their time to familiarize
themselves with the system.

C. Use Case 3: Object Scanning

Another use case for the proposed adaptive HRI system is an
object scanning case, in which the robot scans an object with a
scanner in hand while supervised by a human. Our setup is in
virtual reality (VR), meaning that the human is presented with
a simulated worktable along with the robot and the object. A
GUI is also present in the VR scene, providing the human
with guidance as well as an interface for making decisions.
To interact with the GUI, the human uses the available VR
controllers. An example of the simulated setup is shown in
Fig. 3. Independent of the user’s profile or state, the general
interaction is the following:

1) The robot determines the object dimensions (height,
width, and length).



Is the resolution ok?

Fig. 3. Example of setup with simulated robotic arm and a small object on a
worktable. The red beam from the robot’s end-effector shows where the robot
is scanning while the red dots in space are the scanning point to which the
robot will move to scan the object. In the background is a display showing a
simple GUIL

2) The robot suggests an initial scan plan (a set of poses
for scanning).

3) The human accepts the scan plan or makes modifications
(increasing/decreasing the number of poses or adding
poses manually).

4) The robot scans the object and displays the final scan to
the user.

5) The human decides if the scan is complete (done),
incomplete (goes back to step 3 to modify the scan plan),
or failed (goes back to step 1 to start over the scanning
process).

However, beyond the sequence just described, several hu-
man variables should result in a different experience for the
user. One example is that the robot should adapt its instructions
to the user’s level of experience with the task. The system
should introduce inexperienced users to the workspace, the
terminology used, the goal of the task, and the user’s options
for quality check (determining scan complete, incomplete,
or failed). In contrast, an experienced user may become
bored or frustrated from receiving unnecessary instructions.
To reach adaptive communication, the system benefits from its
RDF store which stores the user’s session history. Storage of
previous user sessions will allow a database of user profiles,
informing the system about the user’s previous preferences
(e.g., choosing to skip instructions in past sessions) and level
of complacency (e.g., rate of accepting system suggestions
for the scan plan or accepting the final scan). This could also
allow the system to suggest scan plans according to the user’s
previous preferences.

V. DISCUSSION
A. Contributions

Our contributions include the presentation of a model for
general robot systems in various mediums, specifically with a
focus on true collaborative tasks that require mutual adaptation
in a human-robot team. The model’s use of an ontology allows
for structuring the large amount of often abstract information
about the interaction and the task environment and identifying
how this information is interlinked. Meanwhile, the dynamic
knowledge base (the RDF store) is separated but inherits from
the ontology, storing information from sensors and observed
behaviors. In addition to the collaborative aspect of robot
action planning, this storing of information also accounts for
long-term interaction. Moreover, the proposed model com-
prises modules responsible for robot action planning and
execution in a way that allows for variation in complexity
(i.e., variation in the complexity of the inference and strategy
selection methods). Finally, the described use cases lay the
groundwork for the future implementation of adaptive robot
teammates in real and virtual mediums.

B. Challenges

Although the proposed system contains the modules needed
for an adaptive robot system, it also allows for a great
variation. For the practical implementation, one will still need
a clear understanding of the desirable human states and the
appropriate robot strategies to accommodate for interpersonal
differences and changes in the human’s state. On the same
note, there needs to be an overall accounting for human safety
and unpredictability. Thus, to ensure that the robot adapts
its behavior appropriately to overall benefit the collaboration,
suitable methods for human state inference and robot action
planning must be determined and applied.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a system facilitating the
implementation of human-robot teams with mutual adaptation.
It allows for the robot to account for and adapt its behavior to
the human teammate while the latter familiarizes themselves
with the task and gains experience. The proposed model can
apply to real robot setups as well as VR setups, which in
particular show potential for smooth multimodal interaction
in a minimal setup. Furthermore, it aims to improve gener-
alizability to other HRI tasks and extended knowledge about
the human worker through the ontology-based framework. In
future work we plan to implement a robotic system in VR that
adapts its action strategies based on a given user’s interaction
history, exemplifying the architecture framework described in
this workshop paper.
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