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Abstract
Verification of biomedical claims is critical for healthcare decision-making, public health policy and scientific
research. We present an interactive biomedical claim verification system by integrating LLMs, transparent model
explanations, and user-guided justification. In the system, users first retrieve relevant scientific studies from a
persistent medical literature corpus and explore how different LLMs perform natural language inference (NLI)
within task-adaptive reasoning framework to classify each study as "Support," "Contradict," or "Not Enough
Information" regarding the claim. Users can examine the model’s reasoning process with additional insights
provided by SHAP values that highlight word-level contributions to the final result. This combination enables a
more transparent and interpretable evaluation of the model’s decision-making process. A summary stage allows
users to consolidate the results by selecting a result with narrative justification generated by LLMs. As a result, a
consensus-based final decision is summarized for each retrieved study, aiming safe and accountable AI-assisted
decision-making in biomedical contexts. We aim to integrate this explainable verification system as a component
within a broader evidence synthesis framework to support human-AI collaboration.
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1. Introduction

Automated biomedical claim verification systems aim to assist clinicians and researchers in combating
the potential harm of misinformation in the healthcare domain. These systems verify claims related to
treatments, clinical trial outcomes, and other medical assertions by synthesizing evidence from clinical
trial data and scientific literature. Biomedical claim verification involves assessing the veracity of such
claims through relevant studies, ensuring reliable conclusions for critical decision-making [1, 2, 3, 4].
Research in biomedical claim verification has focused on utilizing advanced natural language processing
(NLP) techniques. Fine-tuned natural language inference (NLI) models have been widely adopted for
this task [5]. These models typically follow a standard pipeline: (1) retrieve relevant studies using
the claim as query, (2) process the claim and retrieved evidence using a language model in either a
fine-tuned or in-context learning setup designed for NLI task [6, 7]. The NLI task requires determining
the logical relationship between two pieces of text: a premise (in our case, scientific studies) and
the biomedical claim to be verified. The task involves classifying this relationship into one of three
categories: Support, Contradict and No Enough Information. Related examples from Wadden et al.
[1] are shown in Table 1. In the scientific and medical domains, NLI models are required to process long
and complex documents while also a deep understanding of biomedical knowledge to interpret specific
terminologies [8, 6, 7]. In particular, scientific studies often contain complex statistical information
and precise measurements that must be interpreted accurately to avoid errors in claim verification
[9]. Large language models (LLMs) offer promising potential to address these challenges [10]. Their
effectiveness depends on two critical factors: the size of the model and the suitability of the prompts
designed for specific tasks [11, 12, 13].

Real-world applications of LLMs, especially in healthcare and scientific domains, demand high
levels of transparency, interpretability, and trustworthiness due to the high-stakes nature of decisions
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Claim Most Relevant Study Relation
76-85% of people
with severe mental
disorder receive no
treatment in low
and middle income
countries.

... RESULTS The prevalence of having any
WMH-CIDI/DSM-IV disorder in the prior year varied
widely, from 4.3% in Shanghai to 26.4% in the United
States.... Although disorder severity was correlated with
probability of treatment in almost all countries, 35.5% to
50.3% of serious cases in developed countries and 76.3%
to 85.4% in less-developed countries received no
treatment in the 12 months before the interview. Due to
the high prevalence of mild and subthreshold cases, the
number of those who received treatment far exceeds the
number of untreated serious cases in every country.

Support /
Entailment

10-20% of people
with severe mental
disorder receive no
treatment in low
and middle income
countries.

Contradict

Table 1
Examples of biomedical claim verification illustrating the logical relationship between two claims and the
retrieved most relevant study. Phrases highlighted are the critical statistic information that determines the
logical relation between the claims and study.

[14, 15, 16]. In this work, we propose an interactive biomedical claim verification system as part of the
No-IDLE [17] and No-IDLE meet ChatGPT [18] projects about interactive deep learning and LLMs. The
primary functionality of the system is to assist users in validating claims by leveraging the strengths
of LLM-based verification while ensuring a transparent and reliable decision-making process. The
system builds on the Chain of Evidential Natural Language Inference (CoENLI) framework, which
enables LLMs to generate evidence-based rationales before arriving at a final relation classification. To
evaluate the framework, we use two relevant biomedical benchmarks, demonstrating that (CoENLI)
significantly improves LLM accuracy and outperforms the general Chain of Thought (CoT) approach
[19]. The evaluation results demonstrate that by explicitly outlining the evidence-based reasoning
process, CoENLI enhances both the interpretability and reliability of claim verification.

To further enhance the interpretability of the system, we integrate Shapley Additive exPlanations
(SHAP) saliency maps [20], which highlights the word-level contributions within the generated ratio-
nales. This technique provides a deeper understanding of how LLMs weigh specific evidence for arriving
at final conclusion. In addition, the system employs different LLMs to provide users with a comparative
analysis of results and reasoning. By enabling users to review different perspectives and reasoning
outputs, the system fosters a nuanced understanding of the claim verification process, ultimately in-
creasing trustworthiness of LLMs in real-world applications. Finally, users select the most appropriate
classification as the final decision after reviewing model-generated rationales and explanations. Our
main contribution in this work is the development of an iterative human-AI collaboration workflow that
ensures transparency, accountability, and adaptability to individual expert knowledge. By leveraging
LLMs with CoENLI, the system delivers transparent evidence-based evaluations while incorporating
SHAP saliency explanations. Additionally, comparative insights from multiple LLMs further enhance
understandability and reliability. Together, these innovations advance automatic biomedical claim
verification towards greater confidence and usability in the process.

2. Explainable Biomedical Claim Verification System

2.1. Overview

The system comprises several interactive components to combine the strengths of advanced language
models-driven analysis and user control. Figure 1 provides an overview of our system’s user interface.
Users initiate the verification process by selecting a claim to investigate (A) and retrieving relevant
studies from database of scientific literatures using BM25 algorithm [21] to the claim of being assessed
(B). The system employs multiple LLMs within the CoENLI framework to evaluate the relationship
between the claim and each retrieved study (C).



Figure 1: The biomedical claim verification system comprises several interactive components for the user study.



To enhance the transparency of the verification results, the interface displays model’s analysis of
evidence from the selected study that supports or contradicts the claim (D). To enhance understanding,
we use SHAP values to highlight which parts of the rationales contributed most to the model’s final
decision, revealing the model’s focus in drawing the conclusion (E) . This dual-layer interpretability,
showing both how the model analyzes evidence and how it arrives at its final classification, provides
users with a deeper understanding of the verification results (see Figure 2).

Figure 2: Components D and E provide users dual-layer interpretability for a deeper understanding of verification
results by combining evidence analysis with SHAP-based rationale highlighting.

After reviewing the generated rationales and saliency maps, if the users disagree with the initial
classification result, they can adjust it (F), prompting the model to generate a concise justification for
the updated classification (G) (see Figure 3).

Figure 3: Components F and G comprise the summary stage, where users actively engage by adjusting the
classification results and prompting the model to generate a final justification for the final decision.

This iterative approach allows for user involvement and enhanced trustworthiness in claim verifica-
tion. More details about the CoENLI framework and SHAP values are explained in the subsections 2.2
and 2.3. The evaluation of the CoENLI framework and the choice of models are to be found in the
section 3. Our study of the explainable claim verification system aims to assist human experts in
making informed decisions by clearly presenting the evidence analyzed by LLMs while also enhancing
transparency and providing comprehensive model explanations. The ultimate goal is to enable users
to effectively assess the rationale behind the system’s conclusions, fostering trust and facilitating
collaboration in complex decision-making tasks.



2.2. Chain of Evidence-Based Natural Language Inference (CoENLI)

When prompting LLMs to complete reasoning tasks, breaking down complex reasoning tasks into
simpler steps can be useful. Chain-of-Thought (CoT) strategies [19, 22], which provide exemplars of
reasoning processes have demonstrated impressive performance across different reasoning benchmarks.
Decomposition steps are useful for increasing the reliability of model generations [23]. Zhou et al. [24]
noted that step-wise prompting require task-specific design for optimal performance. Inspired by prior
works [24, 25], we propose CoENLI to refine the CoT reasoning in claim verification tasks including
the following steps and Figure 4 illustrates the reasoning process within CoENLI with the example
from Table 1.

• Semantic Grounding: A task instruction prompt contains the phrase "Interpret the key terms in the
claim". It activates specific semantic understanding of biomedical knowledge and logical patterns
in LLMs, providing a contextual foundation for the subsequent reasoning step.

• Evidence-Based Evaluation: In this step, the model extracts relevant evidence from the premise
data (e.g., scientific studies) and systematically evaluates the claim by comparing its key elements
with the extracted evidence. The process is guided by instruction prompts such as: "1. Identify
the relevant facts in the study. 2. Evaluate each piece of information in the claim against the facts.".

• Relation Prediction: In the final step, the reasoning process concludes with a concise classification
(e.g., Support or Contradict) expressed in natural language. This prediction is based on the
previously generated terms interpretations and evidence analysis, which are sequentially chained
into the input prompt to guide the model’s final decision.

Figure 4: When prompting the LLMs with CoENLI framework, the process begins with Semantic Grounding
and Evidence-based Evaluation steps. These steps help interpret key terms and assess each piece of claim against
identified relevant data points. The highlighted words and phrases in the claim, study, and generated evaluation
are intended to offer plausible insights involved in the claim verification process.



2.3. SHAP Values for Interpreting Word-Level Contributions

CoENLI enables LLMs to generate intermediate, evidence-based rationales and provide human-readable
explanations of how the model processes claims and evidence. As illustrated in Figure 4, the Evidence-
Based Evaluation step allows for broad reasoning, including identifying relevant evidence and evaluating
both supportive and contradictory information. However, consolidating this evaluation into a final
relation remains opaque, leaving interpretability gaps about which aspects of the evaluation contribute
most to the final result. To address these limitations, we incorporate SHAP explanations using mod-
ules from [26]1, specifically developed to explain language models. By analyzing the Shapley values
(SHAP) associated with the words in the input prompt, we can identify which features (words or
phrases) generated in the intermediate step had the most significant influence on the final output of
the generative model. Figure 5 illustrates feature relevancy based on SHAP values uisng a Mistral
model [27] as explainer for the final relation result of the example from Figure 4. The saliency maps
provide detailed insights into the model’s decision-making process when balancing supportive and
contradictory evidence to determine the relationship between the example claim and the study.

Figure 5: Words with positive SHAP values (highlighted in red) indicate phrases within the model-generated
evaluation that significantly contribute to the Contradict classification, while words with negative SHAP values
(highlighted in blue) indicate elements that reduce the likelihood of this classification.

3. Evaluation

Biomedical claim verification can be defined as logical relationship classification problem, where an
NLI model determines whether a claim (𝐶) logically follows from the premise evidence (𝑃 ) provided in
clinical trial or scientific study data. In our evaluation, we denote:

𝑓(𝐶,𝑃 ) =

⎧⎪⎨⎪⎩
Support if 𝐶 logically follows

from 𝑃 ;
Contradict otherwise

(1)

3.1. Datasets and Models

In order to assess the generalization capabilities of CoENLI across different LLMs, we evaluate their
performance on two related benchmarks NLI4CT [4, 9] and SciFact [1, 28]. The claims from both
datasets are written by human experts given clinical trial reports or scientific studies respectively. The
NLI4CT challenges highlighted the difficulties of applying NLI models to validate claims related to
clinical trial reports (CTRs). It requires a deep understanding of medical and scientific knowledge
to interpret implicit data points beyond simple text matching. The premises in SciFact consist of
evidence sentences extracted from the abstract of relevant studies. Wadden et al. [28] demonstrated
the advantages of incorporating document-level premises compared to sentence-level premises for the
SciFact challenge. Table 2 summarizes the number of instances for each relation class of the datasets
applied in our evaluation.

In order to increase the trustworthness of LLMs’ outcomes, our system employs different lightweight
open-source LLMs [29, 27, 30, 31]. The models applied are instruction-tuned [32] and compatible with
the FastLanguageModel modules of unsloth.ai [33] for faster running on a single NVIDIA A100–80GB

1https://shap.readthedocs.io/en/latest/text_examples.html
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Dataset Support / Entailment Contradict
NLI4CT (test set) 250 250
SciFact (dev set) 216 122

Table 2
The number of evaluation instances. SciFact’s test set withholds ground truth labels for leaderboard submissions
[1], here we use its dev set as substitute.

GPU. Table 4 in Appendix A provides the version information about the applied models. In the evaluation,
we compared their performance with two low-cost GPT models [34].

3.2. Results

To evaluate the reasoning capabilities of LLMs in a straightforward manner, We report prediction
accuracy using F1 scores as detailed in Table 3.

𝐹1 = 2 · Precision · Recall
Precision + Recall

The F1 scores are calculated using the scikit-learn library2. Our evaluation compares the performance
of CoENLI against two baseline prompting methods:

• Simple prompt: A task-specific prompt template "Return the logical relation between the provided
claim and study: <Support> or <Contradict>.". This represents a minimal and direct approach to
the task with LLMs.

• zero-shot CoT: Building on the simple prompt, we introduce an additional instruction: "Eval-
uate the relation step by step." as proposed by Kojima et al. [22], prompting LLMs to deliver an
intermediate reasoning process before responding the final relationship.

The comparison highlights the impact of task-adaptiveCoENLI framework on the prediction accuracy
of LLMs.

Model NLI4CT SciFact

Simple CoT CoENLI CoENLI* Simple CoT CoENLI CoENLI*

GPT3.5 0.52 ± 0.01 0.53 ± 0.00 0.75 ± 0.01 0.82 ± 0.00 0.51 ± 0.03 0.76 ± 0.00 0.86 ± 0.00 0.88 ± 0.01
GPT4o-mini 0.67 ± 0.01 0.77 ± 0.02 0.86 ± 0.01 - 0.83 ± 0.01 0.88 ± 0.00 0.94 ± 0.01 -

Llama3.1-8B 0.47 ± 0.00 0.54 ± 0.01 0.67 ± 0.02 0.80 ± 0.00 0.53 ± 0.02 0.80 ± 0.01 0.84 ± 0.05 0.90 ± 0.01
Gemma2-9B 0.63 ± 0.00 0.67 ± 0.03 0.75 ± 0.03 0.80 ± 0.00 0.57 ± 0.01 0.73 ± 0.00 0.86 ± 0.02 0.89 ± 0.01
Mistral-12B 0.55 ± 0.00 0.65 ± 0.01 0.75 ± 0.01 0.82 ± 0.00 0.65 ± 0.01 0.83 ± 0.00 0.87 ± 0.02 0.89 ± 0.00
Phi3-14B 0.62 ± 0.01 0.64 ± 0.00 0.75 ± 0.02 0.82 ± 0.00 0.76 ± 0.03 0.80 ± 0.01 0.88 ± 0.02 0.90 ± 0.01

Table 3
F1 Scores (mean ± standard deviation) for three benchmarks in zero-shot scenario. We compare the performance
across the cost-effective GPT models and open sourced lightweight LLMs. CoENLI* represents the results of
applying GPT4o-mini in the Evidence-Based Evaluation step. All the results demonstrate the high accuracy of the
inference capability of GPT4o-mini model in the CoENLI framework in zero-shot setting.

While CoENLI demonstrates the enhanced performance of LLMs in the claim verification task
compared to the baseline methods, a performance gap persists between GPT4o-mini and small-scale
LLMs. Lightweight LLMs face challenges in delivering high-quality text analysis and often require
fine-tuning with additional task-specific training examples [35]. Despite these limitations, smaller open-
source models offer flexibility for SHAP explanations and can be optimized for specific tasks through
the collection of training data during long-term development, increasing the controllability of the
system. The choice between fine-tuning lightweight LLMs or incorporating GPT4o-mini’s evaluations

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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into the CoENLI pipeline depends on the application’s requirements and resource constraints. For our
user study, we leverage GPT4o-mini’s robust reasoning capabilities for the Evidence-Based Evaluation
step. These outputs are then passed to small-scale models, which focus on generating final decisions
and adding a second layer of interpretability using SHAP values. This hybrid approach combines the
strengths of advanced and lightweight models to achieve both accuracy and transparency.

3.3. User Study

In constructing the datasets, Wadden et al. [1] reported a Cohen’s kappa of 0.75 as inter-annotator
agreement. Similarly, Jullien et al. [4] conducted a human evaluation of the NLI4CT task with three
experts, achieving an average accuracy of 85% against the gold labels, the inter-annotator agreement
with a Cohen’s kappa of 0.83 . These results highlight the inherent variability in human judgement.
This variability is often due to task uncertainty and differences in individual knowledge.

To evaluate the utility of the explainable claim verification system, we employ four medical students,
each tasked with selecting a verdict for 20 claims from the SciFact test set (which lacks ground truth
annotations) against five retrieved studies independently, resulting in 100 claim-study pairs in total.
The user interface used for the study is shown in Figure 1. We observed an increase in inter-annotator
agreement, with Cohen’s kappa rising from 0.74 (without the Evidence-Based Explanation and SHAP
values explanation) to 0.81. This improvement suggests that the system’s enhanced interpretability
fosters trust in the LLM outcomes and less modification of the initial results generated by the LLM,
therefore promoting better alignment among users.

To assess the transparency and understandability of the model’s reasoning process leading to the
final relation classification, participants rated the model-generated rationales on a scale from 1 to 5.
A score of 1 indicated that the reasoning process was confusing, with no clear connection between
the rationales and the final classification, while a score of 5 indicated that the reasoning was fully
transparent and easy to follow. All participants rated the reasoning transparency as a 4, suggesting
that the model’s reasoning process is generally perceived as transparent. When asked what could be
improved, participants provided feedback indicating the need for better quality in the intermediate
reasoning steps generated by the LLMs. One participant noted, "The NLI model sometimes overlooked the
smallest details in the claim.". This highlights how enhanced interpretability can help identify limitations
in reasoning of LLM. As emphasized by [36], improving the functionality of these model-generated
explanations is crucial for fostering user confidence in the system.

3.4. Feedback Loop Integration

Based on the results of the user study, which revealed that the model sometimes misses small details
in claim verification, we integrate a feedback loop into the verification system. This enhancement
directly addresses the identified gaps by allowing users to provide detailed feedback on specific errors
or overlooked aspects of the model’s reasoning. Through this mechanism as illustrated in Figure 6,
users can highlight inconsistencies or missing details with concise guidance, enabling the system
to regenerate both the relationship classification and the corresponding justifications. This iterative
process not only helps to correct errors in real time, but also guides the model to refine its reasoning,
ultimately improving its accuracy and reliability in verifying biomedical claims.

Furthermore, these feedback-driven rationales can be leveraged to fine-tune the model, enhancing its
ability to recognize and account for nuanced details, particularly in logical consistency comparisons.
This human-in-the-loop approach fosters greater user engagement, promotes collaborative verification,
and ultimately strengthens the reliability of LLM-based biomedical claim verification systems.



Figure 6: Consider the following verification result of one claim - "All the primary trial participants do not receive
any oral capecitabine, oral lapatinib ditosylate or cixutumumab IV, in conrast all the secondary trial subjects receive
these." from NLI4CT: {"relation": "Entailment", "rationales": "The claim can be logically inferred from the clinical
trial data points provided. The data clearly show that primary trial participants do not receive any oral capecitabine,
oral lapatinib ditosylate, or cixutumumab IV, while all secondary trial subjects receive these medications in either
Arm A or Arm B of the trial. This conclusion is supported by the specific interventions outlined for each group in
the trial."}. However, this result overlooks quantitative consistency—specifically the mismatch between "all the
secondary trial subjects" in the claim and the different medications in "Arm A" and "Arm B" of the secondary
trial subjects. This inconsistency highlights the difficulty of accurately aligning numerical or quantifier details
within the reasoning process of LLMs. Hence, we integrate a feedback loop to empower users to actively refine
the model’s reasoning process.

4. Related Work

Biomedical claim verification falls into the broader task of Fact-Checking [37]. Automated claim
verification is seen as a potential solution to enhance the speed and comprehensiveness of fact-checking
in high-demand healthcare field [15, 38]. Additional datasets have been constructed and advanced
machine learning methods to drive progress in automated biomedical claim verification system [1, 3, 2, 4].
However, in real-world scenarios, the verdict of claims is rarely either Support or Contradict, but
often partially correct, contextually dependent, or misleading without additional explanation. Nakov
et al. [39] argued that automated claim verification systems may aim to provide nuanced understanding
rather than binary classifications. Li et al. [40] introduced a self-checker framework leveraging LLMs,
which includes an evidence-seeker module to extract relevant evidence sentences for a given claim from
retrieved passages. The framework allows human workers to validate the verdict prediction alongside
the presented evidence, ensuring a more reliable verification process.

Chen and Shu [41] discussed the opportunities and challenges introduced by LLMs for automated
claim verification with LLMs. While LLMs have demonstrated robust reasoning capabilities and
human-readable explanations, they also pose significant threats through the generated misinformation,
raising concerns about the trustworthiness of applying LLMs in claim verification tasks. Huang
et al. [36] also emphasized that transparency in both the models and the underlying technologies is
crucial for fostering trustworthiness and proposed principles spanning multiple dimensions to examine
LLMs’ trustworthiness. Through an extensive analysis of 16 LLMs across over 30 datasets based
on these principles, they found that proprietary LLMs generally outperform open-source models in
trustworthiness, largely due to their superior functional capabilities.



5. Conclusion

In this work, we present an explainable biomedical claim verification system that integrates iterative
human-AI collaboration, evidence-based rationales, SHAP saliency explanations, and comparative
insights from multiple LLMs. Our approach introduces the CoENLI framework to improve transparency,
accountability and adaptability so that domain experts can better trust and use the results provided
by LLMs. SHAP values further clarify how specific components of the model-generated rationales
contribute to the final prediction, enhancing interpretability and user confidence. We explore the
combination of advanced reasoning capabilities with the most advanced LLMs, such as GPT4o-mini
and the open-source lightweight LLMs for interpretability, to achieve a balance between accuracy
and transparency in the verification process. Additionally, our user study demonstrates the system’s
practical benefits, as indicated by an increase in inter-annotator agreement and feedback emphasizing
the usability and trustworthiness of the model’s reasoning process. Nevertheless, there are areas for
refinement of the intermediate reasoning steps to address user concerns about overlooked details in
claims.

In future work, we aim to integrate this explainable verification system as a component within a
broader evidence synthesis framework to support human-AI collaboration in tasks such as combating
misinformation in healthcare domain. Future work will also focus on refining intermediate reasoning
quality, optimizing lightweight LLMs through task-specific fine-tuning to further enhance system
performance, accessibility, and trustworthiness in biomedical claim verification and beyond.

Limitations

First, the reliance on GPT4o-mini in the Evidence-Based Evaluation step imposes computational resource
demands that may limit accessibility in low-resource settings. Furthermore, the current framework may
still struggle with claims requiring highly nuanced or specialized domain knowledge, where additional
fine-tuning or inclusion of external expert input may be necessary. Small-scale LLMs, though flexible,
exhibit performance limitations without additional task-specific training data. Finally, while SHAP
values provide an interpretive layer, their effectiveness depends on the quality and granularity of the
generated rationales.
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A. Models

Model Version Context Window Parameters

GPT3.5 gpt-3.5-turbo-0125 16K 175B
GPT4o-mini gpt-4o-mini-2024-07-18 128K ?

Llama3.1-8B Meta-Llama-3.1-8B-Instruct 128K 8B
Gemma2-9B gemma-2-9b-bnb-it 8K 9B
Mistral-12B Mistral-Nemo-Instruct-2407 1024K 12B
Phi3-14B Phi-3-medium-4k-instruct 4K 14B

Table 4
List of low-cost GPT models and lightweight open-source LLMs used in our experiments, and a comparison of
model size and initial context window length. The model size of the open source LLMs is limited to 14 billion
parameters. All models are the instruct fine-tuned version.
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