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Abstract

Data augmentation is a widely used technique in deep
learning, encompassing both pixel-level and object-level
manipulations of images. Among these techniques,
Copy-Paste stands out as a simple yet effective method.
However, current Copy-Paste approaches either overlook
the contextual relevance between source and target images,
leading to inconsistencies in the generated outputs, or
heavily depend on manual annotations, which limits their
scalability for large-scale automated image generation.
To address these limitations, we propose a context-aware
approach that integrates Bidirectional Latent Information
Propagation (BLIP) for extracting content from source
images. By aligning the extracted content with category
information, our method ensures coherent integration of
target objects through the use of the Segment Anything
Model (SAM) and YOLO. This approach eliminates the
need for manual annotation, offering an automated and
user-friendly solution. Experimental evaluations across
various datasets and tasks demonstrate the effectiveness
of our method in enhancing data diversity and generating
high-quality pseudo-images for a wide range of computer
vision applications.

1. Introduction

Deep Learning-based approaches have become the major
paradigm in many computer vision tasks, ranging
from classification to segmentation. These approaches
outperform traditional ones in terms of accuracy and
generalization. However, the bottleneck of supervised
deep learning is the quality and quantity of the training
dataset. To obtain a dataset, a large volume of images
needs to be annotated, which is labour-intensive and
time-consuming. For segmentation task, annotating a single
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image is estimated to take up to 1.5 hours[7]. How to
generate high-quality, highly realistic datasets has become
an important research question in recent years. Previous

Figure 1. Comparison between the Copy-Paste method (first
row) and CACP (second row). The former overlooks the
contextual relevance between the base and target images, leading
to disharmony. Our approach leverage the semantic information
using CAM(Context-Aware-Module) to alleviate this issue.

data augmentation methods increase the diversity of images

by applying operations such as flipping, rotating, and

adding blur and noise. However, these techniques fail to
enhance the content of images at the object level. To address
this issue, the Copy-Paste method [14] was proposed. The
idea is straightforward and intuitive: objects from target
images are pasted onto source images at random positions,
resulting in images with enriched content.

However, existing Copy-Paste methods have several
drawbacks:

* Context Neglect: Methods often neglect the contextual
relationship between the copied objects and the target
images. For example, a penguin is unlikely to appear in a
desert, and a giraffe is improbable on a soccer field. Such
contextually incompatible images reduce the practical
significance of the augmented dataset.



* Dependency on Masks: The original Copy-Paste
approach depends on publicly available image-mask pairs
to generate new images, which limits its applicability and
requires additional effort to extend its use. This process is
not adaptable to scenarios where masks are unavailable.

To address the aforementioned issues, we propose a
novel approach named Context-Aware Copy-Paste (CACP),
leveraging large language models (LLMs) and vision
foundation modles. Our method integrates several
NLP-based models to ensure contextual relevance between
the source and target images. The main procedure
is as follows: A vision-language model is used to
generate captions for the source images (the images to be
augmented). Object365, a dataset containing 365 distinct
classes, serves as the target image set. For a given source
image, a similarity score is computed between its caption
and the category names in Object365 using a semantic
similarity model based on a transformer architecture. The
category with the highest similarity score is selected, and an
image from this category is randomly chosen as the target
image. An object detection model is then employed to
identify objects in the target image. The bounding box of
the detected object is processed by a segmentation model to
obtain a pixel-level mask. Finally, the object, guided by the
mask, is pasted onto the source image.

Our approach can be applied to several computer
vision tasks, including classification, object detection, and
segmentation. Without requiring extra manual annotation,
the target gallery can be easily extended to adapt to specific
tasks. Our contributions can be summarized as follows:

e We propose a data augmentation mechanism called
Context-Aware Copy-Paste (CACP), which semantically
bridges the source and target images. Additionally, this
approach is easily extendable to custom tasks without
requiring extra annotation.

* We demonstrate that robust segmentation results can
be achieved by combining object detector and class
activation mapping as prompt generators.

* The experiments results demonstrate that our method
outperforms the original Copy-Paste technique and
enhances model performance.

2. Related Work
Copy-Paste for Data Augmentation

Copy-Paste has been widely used in semi-supervised
scenarios due to its efficiency [15, 16]. Dvornik et al.[12]
first proposed the copy-paste approach for object detection
tasks based on visual context, which significantly boosted
performance on the VOCO7 [13] dataset. However, they
only used VOC2012[13] as their target gallery, making
it challenging to apply the method to other specific
scenarios. Additionally, they used a CNN classifier to

obtain context information(describing an image only by a
word), which is less effective compared to our BLIP-based
approach(describing an image by a sentence). Golnaz
et al.[14] was the first to propose the Copy-Paste data
augmentation method for instance segmentation. They
claim that simply pasting objects randomly provides
substantial gains over baselines. Although their approach
is easy to implement, the random pasting generates
images that lack the grounding of real images, as the
distribution of object co-occurrences is ignored. Zhao
et al. [33] proposed X-Paste, which leverages zero-shot
recognition models like CLIP to make the approach
scalable. X-Paste demonstrated impressive improvements
over CenterNet2. Viktor Olsson el al.[24] introduced
ClassMix, which generates augmentations by mixing
unlabeled samples based on the network’s predictions
to respect object boundaries. Inspired by their work,
we combined vision-language models with copy-paste to
generate augmented images efficiently.

Vision Language Models and Zero-shot

Segmentation

Vision-Language Pre-training (VLP) has recently made
significant breakthroughs. The zero-shot capability and
image-text alignment make it an ideal support for the
copy-paste pipeline.

CLIP [26] is a neural network trained on a variety
of (image-text) pairs. It can be instructed in natural
language to predict the most relevant text snippet for a
given image, without direct task-specific optimization.
MaskCLIP[11]incorporates a newly proposed masked
self-distillation into  contrastive  language-image
pretraining, it distills representation from a full image
to the representation predicted from a masked image. BLIP
[22] is a new VLP framework that flexibly transfers to
both vision-language understanding and generation tasks.
Utilizing noisy web data, BLIP achieves state-of-the-art
results on several benchmarks and performs exceptionally
well on zero-shot tasks.

SAM is a promptable instance segmentation model
trained on the largest segmentation dataset to date [20]. It
can generalize to new, unseen distributions and tasks, with
competitive or even superior performance compared to prior
fully supervised results. However, SAM’s performance
depends heavily on the quality of prompts; insufficient
prompts can lead to unstable or unintended segmentation
results. SAM is widely used to guide data augmentation.
For example, [8] introduced SAMAug, a novel visual point
augmentation method for SAM that enhances interactive
image segmentation performance. The above approach
could be improved by introducing semantic tool to bridge
the source and target objects.
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Figure 2. Our method’s pipeline involves leveraging BLIP and BERT to select the best-matched target image from a gallery. Subsequently,
the corresponding mask is obtained using YOLO and SAM. A single base-target pair can generate multiple augmented images based on

user preferences .

3. Motivation

Although copy-paste data augmentation methods have
significantly improved computer vision tasks[14],
traditional crop-paste pipelines have two notable
limitations. First, the crop-paste method is challenging to
scale effectively. Second, the semantic gap between the
source image and the target image remains unaddressed.

3.1. Scalability and Extendability

Previous copy-paste methods heavily relied on image-mask
pairs to perform operations. However, preparing masks for
images is costly and time-consuming, making it challenging
to apply these methods in a generic manner. To address
this issue, previous copy-paste approaches have resorted to
using public datasets with pixel-level annotations such as
VOC2007 and CamVid[2, 13].

However, these datasets are limited in the number
of categories they cover, thereby restricting the diversity
of content in generated images. Tab. | provides a
listing of properties of several public segmentation datasets
(ADE20K [34], COCO [23], VOC2007 [13]). These
datasets often cannot meet the specific requirements of
scenarios. For instance, in a foreign object detection
task[29], foreign objects may span hundreds of categories,
making it impractical to rely on public datasets or manual
annotation to prepare the dataset. An entirely automated
copy-paste pipeline is needed to generate large quantities of
high-quality images.

dataset images classes  resolution
VOC2007[13] 9963 20 -
CamVid[1] 701 32 480%*360
CityScape[6] 20000 30 2024*1048
coco[23] 330k 80 640%480
ADE20K[34] 25574 150 1650%2220

Table 1. Summary of properties of common public segmentation
datasets

3.2. Content Discrepancy

Previous work has often overlooked the issue of content
relevance in the data augmentation process. Irrelevant
objects are frequently pasted onto source images, providing
minimal training benefit. As depicted in Fig. 4 , images
generated by traditional copy-paste methods contribute less
to person-related computer vision tasks, as evidenced by
corresponding Grad-CAM results. In addition, models
trained on such images failed to learn scene context, i.e.
which classes are likely to co-exist in an image.

We propose that incorporating highly relevant objects
into source images at appropriate positions and scales can
enrich the image content and expedite the training process.
Experimental results validate our hypothesis: traditionally
pasted elements often fail to activate appropriately. In
contrast, our method successfully triggers activations, as
demonstrated by GradCam visualization techniques Fig. 3,
enhancing the content relevant to the desired classes.
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Figure 3. GradCam comparison between the Copy-Paste(top row)
and our context-aware copy paste(bottom row). CACP contributes
more in person related vision tasks compared to copy-paste.

4. Method

Our CACP approach can be split into the following
parts: Gallery Preparation, Context-Awareness Module and
Copy-Paste. In the Gallery preparation part, target images
are selected to provide object-level content enhancement;
In the context aware stage, source image and target image
are bridged using a BLIP and BERT-based similarity
measurement tool. Once the preferred target image category
is determined, object of interests in target image will be
cropped and pasted onto the source image considering the
size and position. An object detector model and SAM
will be leveraged to make the crop-paste process fully
automatic. The details of each procedure will be described
in follow paragraphs.

4.1. Problem Formulation

Given a source image set Dg and a target image I, our
task is to find the most relevant image Is € Dg and most
relevant object obj € O, where O is the collection of
objects in Ig. Specifically, Is can be obtained as follow:

I, = argmin (1, Ir) (1)

i

where ¢(-) is the function to measure the semantic
similarity between two images. Once Ig is determined, obj
and corresponding mask M can be inferred as follow:

obj, M = 1(Is) 2)

where 1(-) are deep learning models, which take images
as input and output coordinates(detection task) or labels of
each pixel(segmentation task).

Iyn =Is®@ M+ I ® (1 — M) 3)

where I,,, is the generated image, ® is pixel-wise
multiplication.

4.2. Data preparation

To enhance the diversity of our dataset, a substantial
collection of images is essential for our gallery. In this
study, we utilize Object365 [29] as our image gallery.
Object365 encompasses 365 classes, featuring over 2
million images and 30 million bounding boxes. These
images are characterized by high resolution and quality
annotations. In contrast, COCO offers only 80 classes.
Object365 significantly expands the range of target objects
available for augmentation.

Additionally, we propose an alternative method to
leverage images without bounding box annotations, thereby
enhancing the applicability of our approach. Specifically,
we assume that all images in the galleries are presented
without bounding boxes or masks, and each image is
labeled solely with its category name. This approach
enables users to extend custom categories and adapt them
to specific scenarios.

4.3. Context Awareness Module

Image Captioning

To establish semantic coherence between the source and
target images, it is crucial to recognize the contents of
both images beforehand. Rather than solely detecting
objects within the images, we employ a state-of-the-art
Visual-Language pre-training (VLM) model as the content
extractor. In this role, we utilize BLIP[22]. Compared
to object-detection methods, BLIP generates smooth and
natural descriptions of input images, rather than isolated
words. Furthermore, while object-level approaches
may struggle to provide meaningful information when
encountering unseen objects, BLIP consistently offers
general information applicable to common scenarios.

Target object matching

In the last step we obtain the caption of the source
image,namely C(Ig). Due to the large amount of the
target image gallery, as a trade-off, we take the class
name as the caption of the target image, annotated as
C(Ir,(i = 1,2,..,n)),where n is the total number of
categories. To determine the correlation between the
C(Ig) and C(Ir,), Bert-embedding[10] is leveraged as our
measurement tool. In Table 2 we present examples of
samples using Bert-embedding to calculate the similarity
in our work compared to traditional approaches. From
the Tab. 2 we can find that Bert-based distance metric is
preferred.

4.4. Copy-Paste

Once the category with the highest similarity score is
determined, we randomly select an image from this class
as the target image. The SAM is then employed as
the pixel-level mask extractor. SAM is a single-shot



Figure 4. Comparison of SAM segmentation results using different prompts: Single bounding box prompts (upper row) tend to produce
incomplete masks, while combining bounding boxes with Grad-CAM points generates more accurate and robust masks.

Image caption
“Two teams are playing

category Bert
soccer  0.94

football games” pig 0.41

”A boy is dancing person  0.89
with a girl in the garden” goose 0.46
”A boy is standing flower  0.51
near a red car” truck 0.89

Table 2. Comparison between BERT-similarity and
Cosine-similarity.

segmentation model capable of segmenting any object
based on prompts, such as bounding boxes or multiple
points indicating the intended objects.

4.4.1. Prompt generation

To obtain the prompts for segmentation, we utilize
YOLO-365, a model trained on the Object365 dataset, to
detect objects within the target images. For instance, if
the YOLO-365 model detects a ’"dog’ within a target image
categorized under dogs, the bounding box of the dog is
then forwarded to the SAM model along with the target
image. SAM subsequently generates the corresponding
segmentation mask for the detected object. Finally, guided
by this generated mask, the pixels representing the dog are
pasted onto the source images.

In our experimental trials, we observed that feeding pure
bounding boxes into the Segment Anything Model (SAM)

often results in unintended or incomplete masks for the
corresponding target objects. To mitigate this issue, we
propose an approach based on Grad-CAM [28] to achieve
more accurate segmentation masks.

By inputting the target image into the Grad-CAM
module, the resulting heatmap provides valuable positional
information about the target. We then use this heatmap
to sample points, which are combined with the bounding
box as prompts for the SAM model. This hybrid
approach, illustrated in Figure 4, improves the accuracy
of segmentation results compared to using bounding boxes
alone.

4.4.2. Scale and Position

To enhance the realism and harmony of the generated
image, rescaling and rendering techniques are implemented.
The cropped objects are rescaled according to a ratio
interval based on our statistical analysis of the Object365
dataset. We traverse the images in Objects365, and record
ratios of image pair, namely objl — 0bj2 — ratio. Before
pasting the object onto the source images, we extract object
pair names and obtain the ratio?’1,°%7% and ratio?? !>
from record.

S. Experiments

5.1. Configuration

The experiments are conducted in the pytorch platform.
GPU is RTX 3090ti with 24GB memory. For the



Methods

CamVid

Car Pedestrian Building Road Sky Tree T
U-Net[27] 0.776 0.447 0.764 0.872 0.872 0.834
U-Net+CACP 0.789(+ ) 0.481(+ ) 0.783+ 0.893(+ ) 0.875(+ ) 0.841(+ )+
FPN[19] 0.792 0.432 0.783 0.897 0.884 0.867
FPN+CACP 0.813(+ ) 0.479(+ ) 0.797(+ ) 0.903(+ ) 0.885(+ ) 0.881(+ )+
PSPNet[32] 0.788 0.445 0.792 0.886 0.875 0.843
PSPNet+CACP 0.803(+0.015)  0.487(+0.013)  0.799(+0.007) 0.901(+0.015) 0.873(+0.002) 0.862(+0.019) +
DeepLabV3[4] 0.792 0.461 0.803 0.908 0.891 0.875
DeepLabV3+CACP 0.811(+ ) 0.493(+ ) 0.812(+ ) 0.922(+ ) 0.887(-0.004)  0.89(+ )+
DeepLabv3plus[5] 0.803 0.471 0.817 0.927 0.907 0.871
DeepLabv3plus+CACP  0.817(+ ) 0.497(+ ) 0.826(+ ) 0.933(+ ) 0.912(+ ) 0.883(+ )+
PANI[21] 0.794 0.501 0.806 0.931 0.883 0.868
PAN+CACP 0.812(+0.008)  0.513(+0.012) 0.821(+0.015) 0.937(+0.006) 0.891(+0.008) 0.891(+0.023) +
Table 3. CACP provides robust gains across popular segmentation architectures in CamVid except SKy in DeeplabV3.
classification task, the batch size is set to 16 and the Cat-Dog CityPersons
loss function is cross entropy. Adam[18] is used as the Methods (Acc)  (mloU) (mAP)
optimizer with learning rate of 0.001 over 50 epochs.
For the segmentation task, batch size is set to 8, loss B 0.927 0.914 0.557
function is dice loss,epochs are set to 20. For the B+CP 0.941 0.897 0.561
detection task, we set batch size as 8, and epochs are set B-+aug 0.957 0.903 0.567
to 50. For segmentation task and object detection task B-+aug+cp 0.962 0.911 0.571
we use the segmentation pytorch model and yolov5-s[30], B+CACP 0.969 0.929 0.577
respectively. Our segmentation models are implemented by B+CACP+aug 0.974 0.938 0.591

Segmentation-Models-Pytorch(SMP) library[17].
5.2. Metric

Precision is selected as the metric for classification task,
which is calculated as given below:

Number_correct_predictions

Accuracy =
4 Total_number_of _Predictions
For the segmentation task, the mean Intersection over
Union (mloU) is used to evaluate the model’s performance,
computed as follows:

TP
I =
V= P TFPTFN )
1 C
mlIoU = o Z_; IoU., (6)

To evaluate the performance of the object detection model,
we use (mean Average Precision)mAP as our metric. Here
we set the threshold as 50%, which means IoU over 0.5 will
be considered as correct detection.

C

- AP;
mAP = L% )
5.3. Evaluation Datasets

To comprehensively assess the viability of our proposed
approach, we conducted experiments across two distinct

Table 4. Results between copy-paste(CP) and context-aware
Copy- Paste(CACP) in classification, segmentation and detection
tasks.

datasets: Cat-Dog classification[25], and CityPersons[31].
These datasets are representative of key tasks in the
computer vision field: classification, segmentation, and
object detection, respectively.

The Cat-Dog dataset contains 25,000 images, each
labeled as either a cat or a dog. The CityPersons[31]
dataset is a subset of Cityscapes, focusing solely on person
annotations. It includes 2,975 images for training and 500
images for validation. The Cambridge driving Labeled
Video Database(CamVid)[2] is the first collection of videos
with object class semantic labels, complete with metadata.
The dataset contains over 700 images with pixel-level
annotation. The annotation of images cover 32 class labels
from urban and non-urban driving scenes.

5.4. Results

5.4.1. Across Initialization

To validate the robustness of CACP across different
initialization, we conduct experiments on CamVid based
on two different initialization configurations, namely
ImageNet[9] pretrained and normal initialization.  As
illustrated in Fig .5, the results with CACP outperform the



one without CACP in both configurations.
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Figure 5. CACP provides gains that are robust to training
configurations. We train DeepLabv3 on CamVid for varying
number of epochs. The CACP is helpful under with and without
pretraining configurations.

5.4.2. Across Tasks

We conduct experiments on different computer vision
tasks to validate the usage scenarios of CACP, namely
image classification tasks on Cat-Dog, image segmentation
and object detection on CityPersons. As illustrated
in Table 4, the items in the column Methods indicate
different combinations. B indicates base model. In the
classification task this is a Resnet-50 and in segmentation
it is DeepLabv3[4], while in object detection it is
YOLOVS5-s[30]. CP and CACP indicate random crop-paste
and context-aware copy-paste, respectively. aug is a
combination of traditional data augmentation techniques,
including flip, Color jittering, random noise, which is
provided by lib Albumentation[3]. All augmentation
techniques have the ability to boost the model. CACP
outperforms CP and aug across all three tasks.

5.4.3. Across Architectures

As illustrated in Table 3, to validate the effectiveness of
our method across different architectures, we conduct
experiments on CamVid[l] dataset using popular
encoder-decoder  architectures, namely  U-net[27],
FPN[19], PSPNet[32], DeepLabv3[4], DeepLabV3+[5],
and PAN[21]. The experiment is conducted with or
without our CACP augmentation operation. To observe
the effect of different categories, we select six classes:
[car,pedestrian,building,tree,sky,road]. It can be noticed
that almost all classes results are improved with CACP
augmentation (except Sky in DeepLabV3 configuration).

5.4.4. Across Partition

To validate the effect of the number of augmented images,
we conduct experiments on CamVid as illustrated in Table
5. 1/nindicates 1/n of training images have been augmented
using CACP. It is important to note that the total number
of training image is fixed, only the ratio of augmented
to non-augmented varies. The result illustrates that the
performance increases with the rise of partition from 1/8
to 1/2, the trend is stable in all 4 experiments. The increase
is saturated when partition is over 1/2.

5.4.5. Speed Up Convergence

We have noticed that CACP contributes to speed up the
training process. We trained DeepLabv3 on Camvid with
20 epochs. As illustrated in Fig. 6, the CACP augmented
one converges rapidly compared to the wo-CACP one. The
loss is stable around epoch 15, while the wo-CACP is still
not fully converged after epoch 19.

e —e— Ww/CACP
0.404 '\ -®- wo CACP

0.30

°
N
)

dice loss

e
N
=3

0.15

0.10

epochs

Figure 6. During training, the Dice loss with the CACP
configuration converges faster compared to the process without the
CACP configuration.

5.4.6. Effect of GradCAM Prompt

To improve the robustness and stability of the output masks
of SAM, we propose the GradCAM-guided approach to
generate points+bounding box prompts. During our trials,
we notice that the number of selected points in GradCAM
affects the final segmentation mask. To determine the best
point numbers, we conduct the following experiment on
CamVid. Rand indicates the point is sampled randomly
inside bounding box. CAM(n) means n points are extracted
in GradCAM map with high value. Table 6 indicates
that extra prompts can improve the accuracy of SAM;
CAM-based point prompts are better than random points.
The preferred number of points is around 3 to 5.



DeepLabv3
Methods 1/8 1/4 12 Full
PSPNet 0.872 0.891 0.887 0.893
U-NET 0.851 0.873 0.879 0.877
PAN 0.862 0.871 0.877 0.874
DeepLabv3 plus | 0.883 0.903 0.901 0.907

Table 5. Results between copy-paste(CP) and context-aware
Copy- Paste(CACP) in classification, segmentation and detection
tasks.

bbox +rand(1) +CAM(1) +CAM@3) +CAM(S)

0.734  0.841 0.927 0.934 0.933

Table 6. mloU across different prompts.The performance
improves with the number of CAM-generated point prompts and
stabilizes when the number of point prompts exceeds three.

6. Discussion

In this paper, we propose a context-aware copy-paste

(CACP) data augmentation approach, designed as a

versatile plug-and-play module for various computer

vision tasks, eliminating the need for additional manual
annotation. CACP is particularly effective for custom

segmentation in semi-supervised learning, offering a

time-efficient and scalable solution that allows users to

tailor their target gallery to specific task requirements.
Future research directions include the following:

* Integration with diffusion models to generate synthetic
augmented images with  well-crafted prompts,
particularly for privacy-sensitive objects, thereby
mitigating privacy concerns.

* Adaptation to downstream industrial applications, such as
obstacle detection and pedestrian detection.

* Enhancement through advanced image composition
techniques, including object placement, image blending,
image harmonization, and shadow generation, to improve
the realism and consistency of augmented images
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