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 A B S T R A C T

Multi-view learning (MVL) leverages multiple sources or views of data to enhance machine learning model 
performance and robustness. This approach has been successfully used in the Earth Observation (EO) domain, 
where views have a heterogeneous nature and can be affected by missing data. Despite the negative effect 
that missing data has on model predictions, the ML literature has used it as an augmentation technique to 
improve model generalization, like masking the input data. Inspired by this, we introduce novel methods for EO 
applications tailored to MVL with missing views. Our methods integrate the combination of a set to simulate all 
combinations of missing views as different training samples. Instead of replacing missing data with a numerical 
value, we use dynamic merge functions, like average, and more complex ones like Transformer. This allows 
the MVL model to entirely ignore the missing views, enhancing its predictive robustness. We experiment on 
four EO datasets with temporal and static views, including state-of-the-art methods from the EO domain. The 
results indicate that our methods improve model robustness under conditions of moderate missingness, and 
improve the predictive performance when all views are present. The proposed methods offer a single adaptive 
solution to operate effectively with any combination of available views.
1. Introduction

Nowadays, the usage of multiple data sources, sensors, or views has 
become a standard practice in ML models for various domains [1]. The 
reason is that by using multiple sources of information, the individual 
data sources can be complemented to enhance model predictions [2,3]. 
Earth Observation (EO) is a domain where Multi-View Learning (MVL) 
has been used to provide comprehensive insights in various applica-
tions [4]. In this context, our work refers to a view as all features in a 
specific data source. For example, a view can be an optical or radar 
Satellite Image Time Series (SITS), weather conditions, topographic 
information, or metadata. Thus, there can be temporal views, with multi-
temporal data, and static views, with single-date data, consisting of a 
heterogeneous scenario with different spatio-temporal resolutions. This 
diversity distinguishes research done in the EO domain from others 
such as vision and natural language [5]. For example, a multi-view 
model in EO may consider fusing a static optical image of high spatial 
resolution and a time series of optical data at low spatial resolution, as 
shown in [6]. Nevertheless, in scenarios characterized by operational 
constraints, EO views might not be a persistent source of information 
as researchers commonly assume, making it infeasible to access them 
in both training and inference stages.

∗ Corresponding author at: Computer Science, University of Kaiserslautern-Landau, Gottlieb-Daimler-Straße, Kaiserslautern, 67663, Germany.
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The EO domain faces data problems due to the finite lifespan 
of remote sensors, limited spatial coverage, noise, and cloudy condi-
tions [7]. Moreover, unexpected errors can affect the availability of 
the data, such as the Landsat 7 ETM+ SLC-off problem in 2003 [8], 
and the failure of the Sentinel-1B satellite in 2021 [9]. This is common 
in EO as data collection occurs under operational constraints in real-
world environments, where different situations and human decisions 
may affect its consistent and global availability. Hence, this leads 
to prediction scenarios with missing views, as illustrated in Fig.  1, 
where the major challenge relies on the heterogeneity of the EO data 
and its different spectral-spatio-temporal resolutions. Unlike other do-
mains, filling in or reconstructing missing views can be intractable 
or meaningless. For example, reconstructing a radar image (spectral–
spatial data) from a weather time series (temporal data) may not 
make sense based on the information each one carries. Efremova et al. 
[10] have shown that reconstructing an optical image from a radar 
one is more difficult than a radar from an optical view. Therefore, 
missing views hinders accurate predictions and introduces biases in ML 
models [2,3,11]. For instance, Mena et al. [12] evidence the negative 
impact that missing views have on model predictions over different 
vegetation applications, highlighting the lack of robustness of MVL 
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models. Even current ML models, like Transformers, are not naturally 
robust to missing views [13–15]. This leaves open questions such as 
how to increase the robustness of MVL models to missing views in the 
EO domain.

Despite the negative impact that missing data has in ML models, 
various studies actively make use of this during the learning phase. For 
instance, masking out the input data has been used for self-supervision 
(i.e. masked reconstruction) in the natural language [16], signal [17], 
and vision [18] domains. Besides, random layers can be used to in-
crease the model robustness, such as sampling random features among 
views [11]. Recently, masked reconstruction has been used with EO 
data, in models like SatMAE [19], SITS-Former [20], Presto [14], 
and OmniSat [21]. Moreover, simulating missing data can be used 
as a generalization technique, named Missing data as Augmentation 
(MAug), such as the dropout layer [22] and augmentation operations 
in the vision domain (e.g. crop). In the EO domain, MAug techniques 
are employed in MVL models to learn inter-sensor representations [23], 
to avoid overfitting to dominant sensors [15], to assess sensors contri-
bution [24], and to increase model robustness to missing data [25,26]. 
One option is to randomly simulate missing views during training by 
replacing all features associated with specific views with zero [25]. An-
other option simulates all combinations of missing views during train-
ing, as experimented by Gawlikowski et al. [27] in out-of-distribution 
detection. However, most of these works focus on masking out data 
at the input-level or using a fixed-size merge function (like concate-
nation). This translates into a fake value imputation on the missing 
features to obtain a fixed-size input [2,27]. Moreover, these works val-
idate on EO datasets with only static views, limiting their applicability 
to temporal data, which is common in the EO domain.

To overcome these disadvantages, our work introduces feature-level 
fusion models based on two major components, all Combinations of 
Missing views (CoM) and a dynamic merge function. The CoM acts as a 
parameter-free MAug technique, simulating all combinations of missing 
views in the training set, which relates to literature [25,27]. However, 
we apply the MAug technique at the feature-level instead of at the input 
as in Mena et al. [25], and we use dynamic merge functions instead 
of fixed ones as in Gawlikowski et al. [27]. Unlike models that insert 
fake data on the missing views, we find that integrating the CoM with 
a merge function that ignores missing data enhances the predictions 
and robustness of the MVL model. This dynamic merge function can be 
a simple average or a more complex function. Inspired by literature 
that uses ML models as aggregators [28–31], we include alternative 
merge functions based on a gated modeling, cross-attention layers, and 
memory-based modeling.

We validate the proposed models on four EO datasets considering 
both temporal and static views. Besides, we compare them to five state-
of-the-art models in the EO domain. To assess the model’s robustness 
to missing data, we simulate missing views during inference and com-
pare the predictions to a full-view data scenario. Unlike models in 
the literature validated on specific missing views cases [3,32,33], we 
consider diverse missing cases. Moderate missingness, when only top
views (the ones with the best individual performance) are missing, and 
extreme missingness, when only one top view is available. The evidence 
suggests that our models have better robustness than competing ones 
in moderate missingness, and even improve the predictive performance 
in some cases without missing views.

Overall, our main contributions are as follows:

• We introduce a parameter-free MAug technique at the feature 
level, named Combinations of Missing views (CoM), tailored to 
diverse missing views scenarios in MVL with EO data.

• Unlike works in the EO domain that use fixed-size merge function 
and replace missing views by zero [2,23,25–27], we adapt the 
MAug technique to ignore the features of the missing views using 
a dynamic fusion.
2 
• Contrary to standard evaluations of model robustness in classi-
fication tasks with static views [2,23,26,27], we use various EO 
datasets considering classification and regression tasks with both, 
temporal and static views.

Our work, inspired by sensor invariant design [25,34], is focused 
on allowing a model to yield adaptive and robust predictions from 
the available views in each case. Our code is available at github.com/
fmenat/com-views.

2. Related work

MVL with EO data. Recently, there has been an increment in works 
using multiple EO data sources to enhance model predictions [35]. 
The main difference in the MVL models investigated is how the data 
is fused [4]. Input-level fusion has been the common choice for this, 
i.e. merging the data before feeding it to a ML model. For instance, Kus-
sul et al. [36] feed a CNN model with just the concatenation of 
different sensors (multi-spectral and radar images) for land-use classifi-
cation, while Ghamisi et al. [37] concatenate specialized hand-crafted 
features from hyper-spectral and LiDAR images. However, learning 
view-dedicated feature extractors (encoders) has shown to improve 
predictions, since there is no need for spatio-temporal alignment [2,
3,38,39]. For example, Audebert et al. [40] propose a MVL model for 
multi-spectral and topographic images that fuses across multiple CNN 
layers (encoders). Later, Zhang et al. [41] show that including a fusion 
in the decision layer (as a hybrid fusion) improves the results for land-
use segmentation. Additionally, Ofori-Ampofo et al. [42] evidence that 
using specialized encoder architectures for optical and radar Satellite 
Image Time Series (SITS) of different lengths benefits the feature-level 
fusion in crop-type classification. Furthermore, there have been efforts 
to explore geospatial foundational models using multi-view data. For 
instance, Presto [14] is a Transformer model employing an input-level 
fusion strategy, while SkySense [31] uses a feature-level fusion based 
on encoder models that are fine-tuned based on the available views in 
the downstream tasks.
Missing data in EO applications. Different forms of missing (such as 
errors and anomalies) are present in EO data [7]. As expected, when 
the missing information in the input data increases (at spectral, spatial, 
or temporal dimensions), the predictions of ML models get worse [42–
44]. In addition, specific data sources are more relevant than others. 
For example, the lack of an optical view critically affects models’ 
accuracy [2,12]. Nevertheless, incorporating additional views in the 
modeling can supplement and increase the model robustness when a 
view is missing [2,45]. For instance, Ferrari et al. [38] and Sainte 
Fare Garnot et al. [3] show that when optical images are missing 
(affected by clouds) in SITS, placing the fusion far away from the input 
layer increases the model robustness. Furthermore, in Mena et al. [12] 
three data processing techniques that mitigate the effect of missing 
views are compared. The first is to impute the missing view with a 
numerical value. The second replaces the missing view with a similar 
sample in the training set. The last one ignores the missing views in 
the aggregation through an adaptive fusion. The latter technique shows 
greater robustness when views are missing in various EO datasets [12], 
as well when images are missing in SITS [46]. Furthermore, modifying 
model components can also increase the robustness to missing views, 
as when parameters are shared in view-dedicated layers [25,32].
Leverage missing data. Simulate missing data has been progressively 
used in ML design, from standard augmentation techniques in the vision 
domain (like crops) to masking out image patches for reconstruction 
in a self-supervised framework [18]. In the natural language domain, 
it has been used to learn token embeddings from a reconstruction 
task [16]. In the signal domain, it has been studied how to best 
impute data in time series [17,47]. In the EO domain, masking out 
input data and learning to reconstruct it has been widely used for 
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Fig. 1. Illustration of a MVL scenario with three views available during training, while at inference time, one view is missing.
self-supervised learning, such as in SatMAE [19], SITS-Former [20], 
Presto [14], and OmniSat [21]. Similarly, the dropout operator has 
not only been considered as a data augmentation [48] but has been 
used as such. For instance, Fasnacht et al. [43] introduce a spectral 
dropout to increase the model robustness to missing spectral bands 
for hyper-spectral image segmentation. In the same task, Haut et al. 
[49] use spatial dropout (random occlusion) as an effective MAug 
technique. Furthermore, randomly dropping images in SITS, i.e. Tem-
poral Dropout (TempD), has been employed to improve MVL models 
prediction [3]. Recently, the MAug has been applied in a sensor-wise 
manner, i.e. Sensor Dropout (SensD), as a way to learn inter-sensor 
representations [23], to avoid overfitting to dominant sensors [15], 
to assess sensors contribution [24], and to increase model robustness 
to missing data [25,26]. Additionally, Gawlikowski et al. [27] show 
that the MAug applied to sensors can be used for out-of-distribution 
detection in two-view image classification tasks.

Most of the works that use MAug techniques with EO data focus on 
masking out data at the input-level or using a fixed-size merge function. 
In practice, this means the missing features are imputed with a fake
value to obtain a fixed-size input. Moreover, the literature positions 
the input-level fusion as a strategy with limited predictive capacity and 
robustness [4,12]. To overcome these disadvantages, our work focuses 
on applying the MAug at the feature-level by ignoring the missing 
views. We achieve this by using dynamic merge functions, as we show 
in the following.

3. Multi-view learning with missing data

3.1. Problem setting

Notation. We use the following symbol notation in our work. For 
variables, we use 𝑎,𝒂,𝐀 for single, vector, and matrix cases respectively. 
In functions, we use  (⋅) for single-letter and function(⋅) for longer 
names. In sets, we use S, while in lists, we use 𝙻. Each sample is indexed 
in the superscript as 𝒂(𝑖), while the rest of the dimensions are indexed 
with subscript as 𝒂𝑣.

We assume a full-view training set, with expected missing views 
at inference time, as illustrated in Fig.  1. Consider the multi-view 
input data for a training sample 𝑖 as X(𝑖) = {𝐗(𝑖)

𝑣 }𝑣∈V, with V the set 
of available views for training. During inference, instead, we observe 
X̃(𝑖) = {𝐗(𝑖)

𝑣 }𝑣∈V(𝑖) , with V(𝑖) ⊆ V, the subset of available views for 
an inference sample 𝑖. Thus, the number of views is 𝑚 = |V| and 
𝑚(𝑖) = |V(𝑖)

|, with 𝑚(𝑖) > 0. We consider a view in the MVL framework as 
all features from a specific EO data source. Hence, the views 𝐗𝑣 can be 
temporal (time-series) or static (single-date) data. Here, the objective 
is to find a MVL model (⋅) that approximates the corresponding target 
𝑦(𝑖) regardless of the available views for a sample 𝑖, i.e. 𝑦̂(𝑖) = (X(𝑖)). To 
this end, the learning is through minimizing a loss function of the form 
(𝑦(𝑖),(X(𝑖))), over a training set of 𝑁 samples as D = {X(𝑖), 𝑦(𝑖)}𝑁 .
𝑖=1

3 
3.2. Basis of multi-view learning

Input-level fusion. This strategy directly merges the views at the input-
level, usually through the concatenation of the data. As EO views have 
different spatio-temporal resolutions, an alignment step is required to 
match all dimensions before the concatenation, expressed by 𝐗(𝑖)

fused =
concat(align(X(𝑖))). Then, these merged features are fed to a single ML 
model: 𝑦̂(𝑖) = (𝐗(𝑖)

fused). However, in this fusion strategy, there is no 
clear way to deal with missing views, X̃(𝑖). For instance, Hong et al. 
[2] present a zero-imputation as a data processing of the missing data, 
i.e. X(𝑖) = X̃(𝑖) ∪ {𝟎}𝑣∈V⧵V(𝑖) . Subsequent research on MAug has used the 
zero-imputation in the missing features [25–27]. Nonetheless, zero is 
an arbitrary value that creates bias depending on data normalization 
and transformations applied.
Feature-level fusion. To avoid forcing a view-alignment, and have a 
single model that handles the multi-view information, this fusion strat-
egy extracts high-level feature representation through view-dedicated 
encoders: 𝒛(𝑖)𝑣 = enc𝑣 (𝐗(𝑖)

𝑣 ) ∀𝑣 ∈ V. In addition, a normalization 
layer (with learnable parameters) is used in each encoder to scale 
and harmonize the different representations. Then, a merge function 
combines this multi-view information, obtaining a joint representation, 
𝒛(𝑖)fused = ({𝒛(𝑖)𝑣 }𝑣∈V). The merge function (⋅) can take any form, such 
as concatenation or dynamic functions. Then, a prediction head is used 
to generate the MVL model prediction as 𝑦̂(𝑖) = head(𝒛(𝑖)fused). In the 
following, we explain how we handle the missing views cases in this 
fusion strategy.

3.3. Dynamic feature-level fusion

Inspired by permutation [28] and sensor [34] invariant design, we 
rely on ignoring the features associated with the missing views. For this, 
our MVL model encodes and merges only the partial available views V(𝑖)

for a sample 𝑖:
𝒛(𝑖)𝑣 = enc𝑣 (𝐗(𝑖)

𝑣 ) ∀𝑣 ∈ V(𝑖), (1)

𝒛(𝑖)fused = 
({

𝒛(𝑖)𝑣
}

𝑣∈V(𝑖)
)

, (2)

with 𝒛(𝑖)𝑣 ∈ R𝑑 the encoded features of the view 𝑣, and 𝒛(𝑖)fused ∈ R𝑑fused

the fused representation from the available views V(𝑖) in the sample 
𝑖. Here, we define 𝑑 as the dimensionality of the per-view features 
and 𝑑fused the dimensionality of the fused features that depend on the 
merge function (⋅). Thus, in the case of fixed-size merge functions like 
concatenation, the fused dimension (𝑑fused) depends on the number of 
views (𝑚(𝑖)), depriving it of an adaptive fusion. Instead, we use merge 
functions that yield the same fused dimension regardless of the fused 
views, i.e 𝑑fused = 𝑑, named dynamic merge function. The reason is 
that it generates a 𝑑-dimensionality vector independently of the views 
available to fuse. A simple case is a linear combination with the same 
weight, i.e. the average function, given by 


({

𝒛(𝑖)𝑣
}

𝑣∈V(𝑖)
)

= 1
(𝑖)

∑

𝒛(𝑖)𝑣 . (3)

𝑚

𝑣∈V(𝑖)
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This function has an adaptive scalability of (𝑚(𝑖)) depending on the 
number of available views 𝑚(𝑖) = |V(𝑖)

| for each sample 𝑖, compared to 
a fixed-cost of (𝑚) in concatenation [27]. In the following, we present 
alternative functions.
Gated fusion. Instead of using the same weight for all views as in 
the average function, we use a data-driven weighted fusion inspired 
by Mena et al. [39]. Considering the encoded features of all views for 
a sample 𝑖 as 𝐙(𝑖) = stack({𝒛(𝑖)𝑣 }𝑣∈V), with 𝐙(𝑖) ∈ R𝑚×𝑑 , the gated merge 
function is expressed by 


(

𝐙(𝑖)) =
∑

𝑣∈V
sof tmax

(

𝐀(𝑖))⊤
𝑣 ⊙ 𝐙(𝑖)

𝑣 , (4)

with 𝐀(𝑖) the fusion weights that multiply the features of each view 𝑣, 
𝐙(𝑖)
𝑣 . Then, instead of modeling a single per-view fusion weight for all 
dimensions (𝑑) as in [39], 𝐀(𝑖) ∈ R1×𝑚, we use a per-dimension and 
per-view weight, i.e. 𝐀(𝑖) ∈ R𝑑×𝑚. These fusion weights are calculated 
with a linear layer over the encoded multi-view features, as 
𝐀(𝑖) = f latten

(

𝐙(𝑖)) ⋅𝐖gate + 𝒃 , (5)

with 𝐖gate ∈ R(𝑚⋅𝑑)×(𝑚⋅𝑑) and 𝒃 ∈ R(𝑚⋅𝑑) some learnable parameters. 
In case of missing views, the fusion weights of the unavailable views 
(V ⧵ V(𝑖)) are set to zero, such as sof tmax(𝐀(𝑖))𝑣 = 𝟎 ∀𝑣 ∈ V ⧵ V(𝑖). With 
this weight modification, the features associated with the missing views 
are ignored in the merging, Eq. (4). Since the fusion weights require all 
views to be calculated, Eq. (5), and we only forward over the available 
views, Eq. (1), we zero-impute the missing encoded features during the 
implementation, i.e. 𝒛(𝑖)𝑣 = 𝟎 ∀𝑣 ∈ V⧵V(𝑖). This function has a scalability 
of (𝑚), which is not adapted to the partial views available for each 
sample 𝑖.
Cross-attention fusion. Inspired by Transformer layers used to fuse EO 
data [13,15], we use a learnable parameter 𝒇 ∈ R𝑑 , called fusion token, 
to query the multi-view data. Consider the features from the partial 
available views with the fusion token as 𝐙(𝑖) = stack(𝒇 , {𝒛(𝑖)𝑣 }𝑣∈V(𝑖) ), with 
𝐙(𝑖) ∈ R(1+𝑚(𝑖))×𝑑 , the cross-attention merge function is given by 


(

𝐙(𝑖)) = sof tmax
(

𝐀(𝑖))
0 ⋅ 𝐙

(𝑖)𝐖value , (6)

with 𝐀(𝑖) ∈ R(1+𝑚(𝑖))×(1+𝑚(𝑖)) the cross-view (and token) attention weights 
that multiply the features projected with learnable parameters 𝐖value ∈
R𝑑×𝑑′  as in [50]. The values 𝐀(𝑖)

0 ∈ R1×(1+𝑚(𝑖)) are the view-attention 
weights of the fusion token used to aggregate the multi-view data. 
These weights are computed by a self-attention mechanism via the dot 
product in a projected 𝑑′-dimensional space, expressed by 
𝐀(𝑖) = 𝐙(𝑖)𝐖query ⋅ 𝐙(𝑖)𝐖key + 𝐁 , (7)

with 𝐖query ∈ R𝑑×𝑑′ , 𝐖key ∈ R𝑑×𝑑′ , and 𝐁 ∈ R𝑑′  some learnable 
parameters. As the matrix computation in Eq. (7) depends exclusively 
on the available views V(𝑖), the model naturally avoids attending to the 
missing views when merging, Eq. (6), i.e. 𝐀(𝑖)

𝑣 = 𝟎 ∀𝑣 ∈ V ⧵ V(𝑖). This 
function has an adaptive quadratic scalability of (𝑚(𝑖) ⋅𝑚(𝑖)) depending 
on the number of available views for each sample 𝑖. Furthermore, we 
use a multi-head mechanism and stacked layers to increase the learning 
of cross-view features [50]. In contrast to previous works [15,28], we 
include a view-specific positional encoding before the cross-attention is 
applied.

Memory fusion. Inspired by Recurrent Neural Networks (RNNs) used to 
fuse multi-view EO data [30], we employ a memory-based fusion. The 
memory is updated one view at a time from the encoded features per 
view 𝑣, expressed by 

𝒉(𝑖)𝑣 = 
(

𝒛(𝑖)𝑣 ,𝒉(𝑖)𝑣−1
)

𝒉0 = 𝟎, (8)

with (⋅) a RNN model receiving the previous memory 𝒉(𝑖)𝑣−1 ∈ R𝑑 , 
and the current view representation 𝒛(𝑖)𝑣 , with 𝑣 ∈ {1,… , 𝑚(𝑖)}. Then, 
the fused vector corresponds to the memory (or hidden state in RNNs) 
4 
Algorithm 1 CoM technique at feature-level
Input: D ∶ {X(𝑖), 𝑦(𝑖)}𝑁𝑖=1 - multi-view dataset
Input: (⋅) - initialized MVL model
Input: T - set of all missing views cases
Output: (⋅) - Trained MVL model
1: for (X(𝑖), 𝑦(𝑖)) ∈ D do
2:  Obtain 𝒛(𝑖)𝑣  by forwarding over all view-encoders as Eq. (1)
3:  Initialize 𝚈(𝑖) as an empty list
4:  for V(𝑗) ∈ T do
5:  Obtain 𝒛(𝑖)fused from the available views V(𝑡) with the dynamic 
function as Eq. (2)

6:  Obtain 𝑦̂(𝑖)𝑡  by applying head(𝒛(𝑖)fused)
7:  Update 𝚈(𝑖) by attaching the prediction 𝑦̂(𝑖)𝑡
8:  end for
9:  Calculate the loss function based on 𝑦(𝑖) and 𝑦̂(𝑖)𝑡 ∈ 𝚈(𝑖) as Eq. (9)
10:  Update (⋅) by gradient descent
11: end for

at the last step, i.e. ({𝒛(𝑖)𝑣 }𝑣∈V(𝑖) ) = 𝒉(𝑖)
𝑚(𝑖) . This means that the fused 

data is the memory after being recursively updated with all views. As 
the recursive operation, Eq. (8), is invariant to how many views are 
given as input, the fusion naturally ignores the missing view cases. 
Since RNNs are order-dependent, a random permutation can be used 
to avoid bias towards the order of the views. However, our MAug 
technique produces the same effect, as shown in the Appendix. This 
sequential function has an adaptive scalability of (𝑚(𝑖)) depending 
on the number of available views for each sample 𝑖. Similar to the 
cross-attention fusion, we stack multiple layers in (⋅) to increase the 
learning of cross-view features.

3.4. All combinations of missing views

As previous works have shown, randomly dropping views during 
training increases the model robustness to missing views [15,26]. How-
ever, it can negatively affect model accuracy in the full-view data 
scenario [25]. Thus, we consider augmenting the training samples by 
modeling all combinations of missing views at feature-level. Then, 
assuming a full-view training set, the augmented features extracted 
from the 𝑖th sample are {{𝒛(𝑖)𝑣 }𝑣∈V(𝑡)}V(𝑡)∈T, with T = {V(𝑡) ∶ V(𝑡) ⊆
V,V(𝑡) ≠ ∅} the set containing all sub-set combinations of the available 
views for training V. Here, the number of possible view combinations is 
the same as the power set of V minus the no-view case, i.e. ||

|

T||
|

= 2𝑚−1. 
For instance, when V = {optical, radar, elevation}, the augmented list is 
T ={{optical, radar, elevation}, {radar, elevation}, {optical, elevation}, 
{optical, radar}, {elevation}, {optical}, {radar}}. This parameter-free 
MAug technique is named Combinations of Missing views (CoM). 
The forward pass of our model during training, combining the CoM 
technique with the dynamic merge function, is illustrated in Fig.  2.

We consider the same contribution between the predictions with 
missing views and full-view data. This means that all augmented sam-
ples coming from T have the same weight in the loss function during 
training, expressed by

total =
1
𝑁

𝑁
∑

𝑖=1

1
|

|

|

T||
|

∑

V(𝑡)∈T
(𝑦(𝑖), 𝑦̂(𝑖)𝑡 ) , (9)

with 𝑦̂(𝑖)𝑡 = head
(


( {

enc𝑣
(

𝐗(𝑖)
𝑣
)}

𝑣∈V(𝑡)
))

. (10)

For the loss function (⋅, ⋅) in Eq. (9) we use a cross entropy in 
classification tasks, i.e. (𝑝, 𝑞) = −

∑

𝑘 𝑝𝑘 log 𝑞𝑘, and squared error in 
regression tasks, i.e. (𝑝, 𝑞) = (𝑝 − 𝑞)2. The training of our final model 
is illustrated in Algorithm 1.
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Fig. 2. Illustration of the forward pass during training of a feature-level fusion model using the CoM technique and dynamic merge function. The example considers 𝑚 = 3 views 
(optical, radar, and elevation), where |T| = 7 augmented samples are simulated with different missing view patterns. This means that the merge function and prediction head are 
applied |T| = 7 times on each original sample.
Computational cost. To reduce the computational operations of the 
multiple predictions, we forward over the encoders (biggest computa-
tion bottleneck) only once, while the fusion and prediction are done ||

|

T||
|

times, see Algorithm 1 for details. This allows the increase in training 
time to be less noteworthy, as shown in Section 4.6. Then, considering 
the forward pass for a sample 𝑖 during training, the computational cost 
is 𝑡 = ∑

𝑣 𝛾(enc𝑣 ) + (2𝑚 − 1) ⋅ (𝛾() + 𝛾(head)), with 𝛾(⋅) the time cost 
for each function. If we simplify by considering that all encoders have 
the same cost, i.e. ∑𝑣 𝛾(enc𝑣 ) = 𝑚 ⋅ 𝛾(enc𝑣 ), the scalability regarding 
the number of views 𝑚 is (𝑚 ⋅ 2𝑚) when using average, gated, and 
memory fusion, or (𝑚2 ⋅ 2𝑚) when using cross-attention fusion. When 
compared to models using a single augmentation or without MAug, 
where the complexity scales as (𝑚), we have an additional term based 
on all possible view combinations, 2𝑚. However, our model increases 
and diversifies the patterns of missing data, translating into better 
generalizability and robustness, as shown in Section 4.3.
Inference. The CoM technique is only used during training. Thus, at 
inference, the model employs a standard feature-level fusion with a dy-
namic merging, ignoring missing views. The computational scalability 
during inference is adapted to the available views for each inference 
sample 𝑖, (𝑚(𝑖)), as discussed in Section 4.6.

4. Experiments

4.1. Datasets

We use the following pixel-wise EO datasets with static and tem-
poral views. More details on the feature description can be found in 
Appendix  A.1.
CropH-b. We use the CropHarvest dataset for crop recognition with 
four views [33]. This involves a binary task in which the presence 
of any crop growing at a given location is predicted. It has 69,800 
samples around the globe between 2016 and 2021. Each sample has 
three temporal views: multi-spectral optical SITS (11 bands), radar SITS 
(2 polarization bands), and weather data (2 bands). These series have 
5 
one value per month over 1 year. Besides, the samples have one static 
view, the topographic information (2 bands). All features have a pixel 
resolution of 10 m. Furthermore, we use a multi-class version of this 
dataset, named CropH-m. This is a subset of 29,642 samples with 10 
crop types to distinguish, and the same input views in CropH-b.

LFMC. We use a dataset for moisture content estimation with six 
views [51]. This considers a regression task in which the vegetation 
water (moisture) per dry biomass (in percentage) in a given location is 
predicted. There are 2578 samples in the western US between 2015 and 
2019. Each sample has two temporal views: multi-spectral optical (8 
bands) and radar (3 bands) SITS. These time series have one value per 
month over 4 months. In addition, the samples have four static views: 
topographic information (2 bands), soil properties (3 bands), canopy 
height (ordinal feature), and land-cover (12 classes). All features were 
interpolated to a pixel resolution of 250 m.

PM25. We use a dataset for PM2.5 estimation with three views [52]. 
This involves a regression task in which the concentration of PM2.5 
in the air (in 𝑢𝑔∕𝑚3) in a particular city is predicted. The dataset has 
167,309 samples in five Chinese cities between 2010 and 2015. Each 
sample has three temporal views: atmospheric conditions (3 bands), 
atmospheric dynamics (4 bands), and precipitation (2 bands). The data 
are at hourly resolution, of which we keep a 3-day window for the 
estimation, i.e. signals of 72 time-steps are used as input.

4.2. Setup and competing models

We named our models using the CoM technique at feature-level 
as FCoM-av (using average), FCoM-ga (using gated fusion), FCoM-cr
(using cross-attention fusion), and FCoM-me (using memory fusion). 
In the FCoM-cr model, the dynamic merge function consists of one 
attention layer with eight heads and 40% of dropout, while for the 
FCoM-me, it consists of two bidirectional layers with LSTM units and 
40% of dropout. Variations in the selection of these hyper-parameters 
are shown in the Appendix  A.2.
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Table 1
Predictive performance in the classification tasks (F1 score) for different cases (moderate and extreme) of missing views at inference time. The best and second best values are 
highlighted. In parentheses is the number of available views. 
Model CropHarvest binary (CropH-b) CropHarvest multi (CropH-m)

(4/4) No (3/4) Only missing (1/4) Only available (4/4) No (3/4) Only missing (1/4) Only available
Missing Radar Optical Optical Radar Missing Radar Optical Optical Radar

ITempD-co 0.817±0.008 0.798±0.009 0.717±0.013 0.668±0.015 0.506±0.075 0.635±0.017 0.552±0.019 0.336±0.021 0.364±0.029 0.154±0.017
ISensD-co 0.787±0.015 0.780±0.015 0.747±0.022 0.765±0.02 0.572±0.092 0.608±0.013 0.587±0.016 0.437±0.038 0.587±0.017 0.207±0.052
FSensD-cr 0.776±0.045 0.748±0.091 0.707±0.106 0.569±0.21 0.527±0.169 0.559±0.126 0.451±0.232 0.302±0.173 0.367±0.259 0.196±0.169
FCoMl-co 0.832±0.007 0.827±0.006 0.804±0.006 0.787±0.010 0.686±0.010 0.650±0.020 0.614±0.019 0.543±0.014 0.601±0.019 0.388±0.015
FEmbr-sa 0.821±0.007 0.817±0.007 0.786±0.007 0.764±0.008 0.676±0.012 0.633±0.015 0.598±0.022 0.478±0.015 0.543±0.024 0.312±0.012
ESensI-av 0.802±0.011 0.806±0.010 0.767±0.012 0.791±0.013 0.701±0.012 0.605±0.019 0.577±0.021 0.478±0.015 0.635±0.023 0.444±0.022

FCoM-av 0.837±0.005 0.834±0.005 0.804±0.007 0.809±0.006 0.615±0.040 0.686±0.018 0.648±0.020 0.549±0.011 0.649±0.018 0.428±0.017
FCoM-ga 0.839±0.005 0.834±0.006 0.810±0.008 0.805±0.006 0.681±0.018 0.678±0.016 0.642±0.015 0.566±0.015 0.595±0.139 0.399±0.093
FCoM-cr 0.826±0.007 0.823±0.007 0.799±0.007 0.801±0.008 0.693±0.008 0.660±0.019 0.637±0.019 0.549±0.013 0.632±0.017 0.439±0.015
FCoM-me 0.836±0.006 0.818±0.007 0.800±0.007 0.800±0.008 0.681±0.014 0.670±0.015 0.633±0.016 0.535±0.011 0.629±0.015 0.422±0.013
For comparison, we consider the following supervised models in 
the EO domain. Three models employing MAug techniques with zero-
imputation: ITempD-co [3], using the TempD technique, and ISensD-
co [25], using the SensD technique, both at the input-level. Besides,
FCoMl-co [27], a feature-level fusion model using the CoM technique 
at the feature-level with concatenation and a weighted loss that we ex-
tend to multiple views. In addition, we include three models that ignore 
the missing views: FSensD-cr, adapted from images [15] to pixel-wise 
time series, using cross-attention fusion at feature-level with the SensD 
technique, FEmbr-sa [11], a feature-level fusion model that randomly 
samples features from different views in the fused representation, and
ESensI-av [25], a view-invariant model using ensemble aggregation 
(averaging) without MAug. Since self-supervised models use a bunch of 
data outside the training set and more input views, we do not consider 
them as the comparison would not be fair.
Implementation. We apply a z-score normalization to the input data. 
The categorical and ordinal views (like land-cover and canopy height) 
are one-hot-vector encoded. We use the best encoder architectures for 
the selected datasets [12,53]. This corresponds to a 1D convolutional 
network encoder for temporal views, and a Multi Layer Perceptron 
(MLP) encoder for static views. We use two layers with 128 units 
on all encoder architectures, with 20% of dropout and a final layer 
normalization. After fusion, we use an MLP with one layer as the 
prediction head. For optimization, we use the Adam optimizer [54] 
with a batch-size of 128 and early stopping with a patience of five. 
The stopping criterion is applied over the full-view prediction. The 
loss function is cross-entropy in classification and mean squared error 
in regression tasks. We use a weight in the loss function (inverse to 
the number of samples in each class) to balance the class distribution 
in classification. For competing models, we use 30% of dropout in 
ITempD-co and the no ratio version in the ISensD-co model [25].
Evaluation. We use 10-fold cross-validation repeated three times to 
reduce results variability. We simulate missing views during infer-
ence, as illustrated in Fig.  1. We experiment with different degrees of
missingness: (i) moderate missingness, when only one view is missing, 
(ii) extreme missingness, when all views are missing except one. We 
include the results with no missing views (full-view scenario) for ref-
erence. For assessing the predictive performance, we use the macro 
F1 (F1) in classification and the Coefficient of Determination (𝑅2) in 
regression tasks.
Missing views analysis. To standardize the analysis of which views are 
missing in each dataset, we decide to select a few views for this. 
The selected views to be missing or available are the most effective 
for the task individually. For this, we train a model on each view to 
predict the task and then select two views by which the best individual 
results are obtained. We refer to these as the top views. For CropH-b, 
CropH-m, and LFMC these are optical and radar views, as observed 
in the literature [2,12,32], while for PM25 these are dynamic and 
condition views. The results of all the auxiliary views are in Table  A.11 
in Appendix  A.3.
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4.3. Results with missing views

In Table  1 we display the F1 score of the models in different missing 
view cases during inference for the classification tasks. We note that 
the best results are obtained by our FCoM-av and FCoM-ga models 
when there are no missing views or moderate missingness. However, 
in extreme missingness, our models become comparable to competing 
models. In these extreme cases, the ESensI-av model handles missing 
views effectively, competing with our models and outperforming them 
only when the radar view is available. On the other hand, we notice 
that the models based on the SensD and TempD are highly affected by 
missing views, i.e. they are less robust to missing data.

For the regression tasks, we display the 𝑅2 for the compared models 
in Table  2. Here, the impact of missing views is more severe than in 
classification, with most models reaching negative 𝑅2 values in extreme 
missingness. This difficulty in regression is expected as models predict 
a continuous value that disperses in different magnitudes, while in 
classification the change is only binary, see Section 4.5 for a visual dis-
play. Nonetheless, some of our models are robust enough to obtain the 
best results in extreme cases, such as the FCoM-me model. Moreover, 
the FCoM-av and FCoM-ga models effectively handle the moderate 
missingness in both datasets. Although the ITempD-co has the best 
results in the full-view scenario of PM25 data, it has poor robustness, 
strongly decreasing performance when views are missing. This outcome 
is inverse for FCoM-ga, FCoM-me, and FCoMl-co, suggesting that these 
models learned better the missing views scenarios than the full-view 
ones. Furthermore, leaving the fusion to a random view-selection as the 
FEmbr-sa model employs, does not work in the PM25 data, reaching 
negative 𝑅2 values in all extreme cases.

Overall, we observe that the FCoM-av model obtains the best pre-
dictive performance without missing data and in moderate missingness, 
despite using the simplest aggregation function in our models. For the 
extreme missingness, the best combination for the merge function in the 
CoM depends on the task type. In classification, the best predictions are 
obtained with FCoM-av and FCoM-cr models, while in regression is with 
FCoM-ga and FCoM-me models. Furthermore, some models are greatly 
affected in these extreme cases. For instance, the FCoM-av model gets 
a significant performance drop in regression. In addition, the FCoMl-
co model has poor results in most regression cases, reflecting the poor 
transferability and effectiveness of the zero-imputation as noted in the 
literature [25,46].

4.4. Results with a fraction of missing views

In Fig.  3 we display the predictive performance when one top view 
for prediction is missing in some samples. We include the results when 
another top view is missing in the Appendix  B.1. We present our two 
best models in each dataset. In classification, our FCoM-ga model has 
the best results along the percentages of missing views, competing with 
FCoM-av and FCoMl-co. However, the competing model FCoMl-co has a 
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Table 2
Predictive performance in the regression tasks (𝑅2 score) for different cases (moderate and extreme) of missing views at inference time. The best and second best values are 
highlighted. In parentheses is the number of available views. 
Model Live Fuel Moisture Content (LFMC) Particulate Matter 2.5 (PM25)

(6/6) No (5/6) Only missing (1/6) Only available (3/3) No (2/3) Only missing (1/3) Only available
Missing Radar Optical Optical Radar Missing Condition Dynamic Dynamic Condition

ITempD-co 0.691±0.052 0.036±0.100 0.036±0.100 −0.036±0.06 −0.036±0.06 0.866±0.093 0.074±0.035 −0.124±0.14 0.073±0.035 −0.124±0.14
ISensD-co 0.546±0.053 0.537±0.047 0.349±0.053 0.315±0.057 0.121±0.049 0.511±0.058 0.319±0.065 0.083±0.056 0.318±0.066 0.083±0.056
FSensD-cr 0.433±0.178 0.383±0.243 0.123±0.147 −0.031±0.557 −0.264±0.47 0.187±0.289 −1.046±2.77 −0.971±5.10 −1.091±2.78 −1.202±5.07
FCoMl-co −0.643±2.14 −0.505±2.17 −0.434±2.00 −0.661±2.13 −1.172±1.93 −0.316±0.30 0.157±0.186 −0.010±0.12 0.358±0.391 0.125±0.104
FEmbr-sa 0.559±0.065 0.532±0.060 0.270±0.058 −5.300±1.80 −0.796±0.52 −1.366±4.39 −0.389±2.51 −0.135±0.42 a −1.077±1.52
ESensI-av 0.321±0.038 0.294±0.036 0.239±0.035 0.194±0.224 −0.130±0.36 0.231±0.077 0.255±0.059 0.069±0.106 0.334±0.078 0.034±0.135

FCoM-av 0.628±0.051 0.606±0.066 0.435±0.058 −9.633±12.90 −7.425±7.24 0.660±0.103 0.556±0.162 −0.441±0.65 −6.570±3.81 0.409±0.147

FCoM-ga 0.700±0.043 0.683±0.044 0.491±0.05 0.326±0.09 0.165±0.094 0.046±0.151 0.096±0.133 0.135±0.122 0.239±0.345 0.237±0.155
FCoM-cr 0.425±0.154 0.139±1.187 0.227±0.153 −2.403±4.533 −2.292±3.112 0.414±0.108 0.374±0.126 −0.130±0.222 −0.279±2.271 −0.203±0.717
FCoM-me 0.644±0.066 0.641±0.06 0.479±0.061 0.330±0.072 0.169±0.077 −0.033±0.172 0.079±0.133 −0.004±0.137 0.430±0.087 0.230±0.141

a Represent values below −10.
Fig. 3. Predictive performance when varying percentages of samples during inference time have a top view missing.
curious behavior in regression, focusing only on the missing views cases 
and obtaining poor results overall. Besides, the FEmbr-sa model has a 
strange behavior in the PM25 data, being ineffective for this scenario. 
In the PM25 data, the ITempD-co model has the best results until 30% 
of the samples have the condition view missing, from there, our FCoM-
av model becomes the best. This is due to the greater robustness of 
our model to missing views. Overall, we notice that our models have 
the best robustness behavior when the number of samples with missing 
views increases. This behavior corresponds to a good balance between 
a small slope and a high value in the predictive performance curve.

4.5. Prediction shift due to missing views

We analyze how the model predictions are shifted because of miss-
ing views, regardless of the target values. To this end, we plot the 
class change ratio and the deformation score at different percentages 
of missing views in the CropH-m and LFMC data in Fig.  4. The de-
formation is calculated as the error difference in the prediction with 
and without missing views divided by the deviation of the full-view 
prediction, i.e. RMSE(𝑦̂full, 𝑦̂miss)∕std(𝑦̂full). These graphs show the shift 
of the model predictions when there are more missing views during 
inference. We observe that the prediction shift curves of our models 
are among the three lower values in the models compared, together 
with FCoMl-co and ESensI-av models.
7 
As qualitative support for previous results, we plot the class change 
in the CropH-m data in Fig.  5, and the shift in the real-value predicted 
in the LFMC data in Fig.  6. We notice that in moderate missingness, the 
prediction change in our models is insignificant, while in extreme cases 
is shifted to a greater extent. As the predicted value in classification 
is categorical, the change in prediction is binary (the class changes to 
another one or not), while in the regression task, the predicting value 
is continuous. Therefore, we can see how the prediction disperses from 
the original value to different degrees in each sample, which could 
be associated with the increased difficulty of robustness in regression 
tasks.

4.6. Computational scalability

We depict the computational usage of all compared models in Table 
3. As expected, the models employing the input-level fusion have the 
lowest number of parameters, based on the single encoder architecture 
these models use. Conversely, the model with more number of param-
eters is the FCoM-me, as this model uses two layers in the dynamic 
merge function, followed by the FCoM-ga model and the ones based on 
the cross-attention fusion, FCoM-me, and FSensD-cr. Among the models 
using multiple encoders, the FCoM-av model has the lowest number 
of parameters, as well as FEmbr-sa and ESensI-av models. The same 
pattern is followed in the memory usage of the models. This is because 
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Fig. 4. Prediction shift score in classification (class change ratio) and regression (deformation score) tasks.
Fig. 5. Class prediction shift with moderate (radar view missing), and extreme (optical view available) missingness. The FCoM-ga model is shown in the CropH-m data. The overall 
class change ratio is 12.5% in the moderate and 20.4% in the extreme cases.
Fig. 6. Real-value prediction shift with moderate (radar view missing), and extreme (only optical view available). The FCoM-ga model is shown in the LFMC data. The overall 
deformation score is 0.208 in moderate and 0.722 in extreme cases.
Table 3
Computational use of MVL models, where MB stands for the megabytes unit. The 
forward usage considers the model usage and adds the memory use of the batch (128-
size) in the forward pass of each model.
 Model Parameters (millions) Model usage (MB) Forward usage (MB) 
 ITempD-co 1.05 4.01 42.67  
 ISensD-co 1.05 4.01 42.67  
 FSensD-cr 3.20 12.24 96.05  
 FCoMl-co 3.15 12.04 96.38  
 FEmbr-sa 3.10 11.86 96.77  
 ESensI-av 3.10 11.85 90.10  
 FCoM-av 3.10 11.86 96.77  
 FCoM-ga 3.36 12.86 108.34  
 FCoM-cr 3.20 12.24 135.38  
 FCoM-me 3.76 14.37 204.38  

the memory usage is directly related to the number of parameters the 
models have. In the forward usage of the models, we notice that all 
competing models have a memory use of less than 100 MB, with FCoM-
av the only one of our models that accomplishes this. All other variants 
using the CoM technique with sophisticated merge functions (-ga, -cr, 
and -me suffix), have a forward usage of more than 100 MB, even 200 
MB in the case of the FCoM-me model. This shows the capacity of our 
FCoM-av model to match the efficiency of methods from the literature.
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We depict the execution time of all compared models in Fig.  7. 
During training, we note that models ignoring missing views led to the 
most efficient training time, such as FSensD-cr, ESensI-av, and FCoM-av 
models. Comparing FSensD-cr and FCoM-av, both using dynamic merge 
functions in feature-level fusion models, our FCoM-av model has a small 
training time increase of 33% per epoch. This is a special case in FCoM-
av and its simple aggregation function, as our models using the CoM 
technique scale with all combinations of missing views, 2𝑚, as discussed 
in Section 3.4. Thus, we notice that the combination of the CoM 
technique with sophisticated merge functions (-ga, -cr, and -me suffix) 
increases the training time (per epoch) by almost the double, from 
around 4 s per epoch in FCoM-av to more than 7 s. However, the high-
est computation time is associated with the forward over the encoders, 
which occurs only once in our methods. On the inference time, the 
most efficient prediction time over the entire dataset is associated with 
the models employing input-level fusion, i.e. ITempD-co and ISensD-
co. This outcome is related to the low number of parameters in these 
models, as displayed in Table  3. Nevertheless, our CoM-based models 
have a more efficient prediction time when more data is missing. This 
is caused by the dynamic merge function, as it allows ignoring missing 
views and performing calculations on just the available data (no fake 
data insertion). This relates to the adaptable scalability of our dynamic 
merge functions during inference based on the available views 𝑚(𝑖) for 
each sample inference 𝑖, discussed in Section 3.3.
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Fig. 7. Execution time of different MVL models. The times are calculated in the CropH-m data with 4 views. Prediction times are separated into no missing (4/4), only one view 
missing (3/4), and only one view available (1/4).
Table 4
Different MAug techniques applied at the input (concatenation) and feature (average) level. 
 MAug Level CropH-m (F1 scores) LFMC (𝑅2 scores)
 (4/4) No (3/4) Only missing (1/4) Only available (6/6) No (5/6) Only missing (1/6) Only available
 Missing Radar Optical Optical Radar Missing Radar Optical Optical Radar  
 – Input 0.655 0.569 0.359 0.230 0.081 0.638 0.593 0.262 0.293 0.057  
 SensD Input 0.566 0.522 0.422 0.401 0.206 0.506 0.468 0.342 0.305 0.134  
 CoM Input 0.652 0.637 0.385 0.602 0.123 0.515 0.484 0.355 0.317 0.118  
 – Feature 0.647 0.561 0.492 0.269 0.224 0.648 0.531 0.151 a a  
 SensD Feature 0.634 0.615 0.526 0.590 0.386 0.511 0.496 0.302 a −1.709 
 CoM Feature 0.679 0.646 0.549 0.645 0.430 0.625 0.604 0.437 −9.632 −8.362 
a A value below −10.
5. Discussion

MAug variations. First, we compare different ways of applying the 
MAug techniques. We consider the random-wise version (SensD, [15,
26]), and the all-combinations one (CoM), applied at the input-level 
like literature [23,25] or at the feature-level. The results are shown in 
Table  4. We zero-impute views if they are missing at input-level, and 
ignore them if missing at feature-level via average as fusion. Similar re-
sults are observed when other merge functions are used (see Appendix 
B.2). We notice an increase in the robustness of different scenarios of 
missing views when the CoM is used, compared to SensD and without 
MAugs. Randomly dropping sensors, used in Chen et al. [15], Mena 
et al. [25] and Xu et al. [26], have good relative robustness but quite 
low overall performance, unlike CoM, which improves overall. The 
CoM technique even allows improving the full-view performance in 
the CropH-m data. Moreover, we notice that the CoM technique works 
better at the feature-level by ignoring missing views than at the input-
level with zero imputation. In addition, the SensD technique has the 
additional step of finding the optimal dropout parameter, while the 
CoM is a parameter-free MAug alternative. The evidence suggests that, 
in most cases, our usage of CoM at feature-level and dynamic fusion is 
optimal for model robustness.
Outlook on transformer-based modeling. We remark that Transformer 
models are not naturally robust to missing data [13]. They can handle 
missing data without intervention, but that does not imply they will 
obtain the same performance as when there is no missing data [15,47]. 
For instance, we show that using the cross-attention fusion (based on 
Transformer models) is not optimal in our evaluation of different tasks 
and missing data cases.
Results variation. Along the experimentation, we note a slight variation 
in which model obtains the best results in each dataset and missing 
view scenario. However, this variability is expected in the EO domain, 
as the data is quite heterogeneous and region-dependent [2,5,35,42,
55]. In addition, this variation depends on the metrics used to assess the 
models. In our study, standard performance metrics are used from the 
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literature. However, additional values are included in the Appendix  C. 
Nevertheless, our combination of CoM with the simple average function 
(FCoM-av) shows good overall results, without significantly increasing 
the training time, as well as having an adaptive prediction time based 
on the available views.
Limitation on the validation scope. In our work, we assess the effect of 
missing views only at inference time, assuming a full-view training 
dataset. However, based on the dynamic fusion, it could be easily 
extended to other settings. Nevertheless, recently, there has been more 
focus on research and infrastructure for model inference and its prac-
tical energy consumption [56]. This aligns with our research to make 
models adaptive to the available data for their inference. Furthermore, 
we validate our models using only pixel-wise EO datasets. Although this 
validation is conducted across four datasets, its effectiveness in other 
domains needs to be verified.
Extension beyond EO data. The individual components presented in our 
work can be applied to other domains where the views complement 
each other, but at the same time, they can be replaceable. Thus, the 
dynamic merge functions can be included in any MVL model imple-
menting feature-level fusion where the encoded representations have 
the same dimensionality. For instance, in text–image–audio data, the 
text, image, and audio can be independently encoded into a vector of 
the same dimensionality and then the dynamic merge function can be 
applied, as mentioned in Section 3.3. Moreover, the CoM technique 
can be included in any multi-view dataset to augment the training 
samples by simulating missing views, as described in Section 3.4. For 
the same example mentioned, all combinations of missing audio, image, 
or text can be simulated and replaced by zero (or the mean features). 
In addition, this can be combined with the dynamic merge function 
and ignore the features coming from text, image, or audio if they are 
dropped.

General outlook. Throughout the experimentation it can be noted that 
there is no single model that is best for all cases, one does not fit 
all. However, our models (FCoM-av, FCoM-ga, FCoM-cr, FCoM-me) 
have a consistent advantage in various scenarios of missing views 
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(moderate and extreme), different top views missing, as well as when 
different percentages of samples have missing views. In addition, our 
validation is not only on classification using static views as in the 
literature [2,26,27], but considers broader settings including regression 
tasks and temporal views data. However, there is an increase in com-
putational complexity during training when the CoM technique is used. 
The complexity scales with an additional factor associated with the 
number of missing views that can be simulated, (𝑚 ⋅ 2𝑚) for FCoM-av 
compared to (𝑚) for other feature-level fusion models like FSensD-
cr, and FEmbr-sa. However, this increase occurs only at training time 
and can be reduced by forwarding over the encoders only once. During 
inference, FCoM-av, FCoM-cr, and FCoM-me scale as any feature-level 
fusion model but, unlike models based on fixed-size merge function, 
(𝑚) [23,25–27], are adaptable to the available views as (𝑚(𝑖)).

6. Conclusion

The lack or unavailability of views during inference is intrinsic in 
the EO domain. This is because data collection occurs under real-world 
operational constraints, such as limited spatial coverage, maintenance, 
or errors. In the literature, limited exploration has been done into the 
robustness of Multi-View Learning (MVL) models to these potential 
missing views. For example, most models rely on randomly simulating 
missing views based on a dropout ratio and replacing data with zeros. 
To address these limitations, we introduce a parameter-free Missing 
data as Augmentation (MAug) technique tailored to missing views in 
MVL, named Combinations of Missing views (CoM). Contrary to the 
literature, we apply this technique at the feature-level in combina-
tion with four dynamic merge functions. For evaluation, we simulate 
missing views during inference to assess model robustness in two
missingness scenarios, moderate (single-sensor missing) and extreme 
(single-sensor available). The findings show that our models outper-
form competing models in moderate missingness, particularly with an 
average-based fusion. Moreover, due to the MAug effect, we observe 
a classification improvement in the full-view scenario. In addition, 
we identify challenging scenarios, particularly in regression tasks and 
extreme missingness. For these challenges, future work should consider 
designing models that operate with any available data at decision-level 
fusion, such as weighing predictions with missing data.
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Table A.5
Name of features in each view in the PM25 data [52]. The source of the views are 
ground-based stations.
 View Features  
 Conditions Dew point, temperature, and humidity  
 Dynamics Pressure, combined wind direction, cumulated wind speed, season 
 Precipitation Precipitation, and cumulated precipitation  

Table A.6
Name of features in each view in the CropH-b and CropH-m data [33]. The views are 
at 10 m spatial resolution.
 View Source Features  
 Optical Sentinel-2 (level 1C) B2 (blue), B3 (green), B4 (red), 

B5, B6, B7, B8, B8A, B9, B11, 
B12, NDVI

 

 Radar Sentinel-1 (C-band) VV and VH polarization bands  
 Weather ERA5 Temperature and precipitation  
 Topographic NASA’s SRTM Elevation and slope  

Table A.7
Name of features in each view in the LFMC data [51]. The views are at 250 m spatial 
resolution.
 View Source Features  
 Optical Landsat 8 Red, green, blue, near 

infrared, short-wave infrared, 
NDVI, NDWI, NIRv

 

 Radar Sentinel-1 (C-Band) VV, VH, and VH/VV 
polarization bands

 

 Topographic National Elevation Database Elevation and slope  
 Soil Unified North American Soil Map Silt, sand, and clay  
 LiDAR Global Laser Altimetry System Canopy height (ordinal value)  
 Land-cover GLOBCOVER Class label between 12 options 

Appendix A. Initial setup

A.1. Dataset description

We show the features from each view in the different datasets in 
Tables  A.5, A.6, and A.7 for PM25, CropHarvest, and LFMC data respec-
tively. The abbreviations used in the tables correspond to: normalized 
difference vegetation index (NDVI), normalized difference water index 
(NDWI), and near infrared vegetation index (NIRv).

A.2. Architecture selection

In Table  A.8 we compare the MAug techniques to a view-
permutation in the memory-based fusion with a LSTM architecture. 
Since views are processed sequentially, the view-permutation is in-
cluded to prevent the model from overfitting the views order [28]. We 
observe that the usage of the MAug technique has a greater positive 
effect on the predictive performance than the view-permutation in 
the full-view scenario and with missing views. This suggests that the 
memory fusion with the MAug does not require an explicit permutation 
to become order invariant and increase generalization. Nevertheless, 
the good behavior without permutation in LFMC data might be just 
overfitting, caused by the small dataset (less than 2000 samples to 
train).

In Table  A.9 we compare different architectures in the memory 
fusion. We notice a tendency to get better results (in full-view and with 
missing views) with a more complex network. Overall, the best results 
are obtained with two bidirectional LSTM layers, while the second-best 
results are associated with an architecture based on GRU layers.

In Table  A.10 we compare different architectural options of the 
cross-attention fusion, based on Transformer layers. We observe an 

https://github.com/fmenat/com-views


F. Mena et al. Neurocomputing 638 (2025) 130175 
Table A.8
Memory fusion-based MVL model with different configurations of view-permutation and 
MAug techniques.
 MAug Permutation CropH-m (F1) LFMC (𝑅2)

 No missing Missing optical No missing Missing optical 
 – – 0.656 0.503 0.735 0.095  
 – All 0.649 0.487 0.706 0.192  
 SensD All 0.643 0.536 0.551 0.353  
 – Random 0.643 0.496 0.666 0.224  
 SensD Random 0.641 0.531 0.507 0.327  
 CoM Random 0.666 0.555 0.595 0.428  
 CoM – 0.672 0.559 0.613 0.412  

Table A.9
Memory fusion-based MVL model with different network architectures. ‘‘Bi’’ stands for 
bidirectional layer.
 Gate Layers CropH-m (F1) LFMC (𝑅2)

 No missing Missing optical No missing Missing optical 
 GRU 1 0.666 0.554 0.627 0.422  
 GRU 1 (Bi) 0.671 0.554 0.636 0.451  
 GRU 2 (Bi) 0.663 0.552 0.634 0.468  
 GRU 3 (Bi) 0.661 0.546 0.626 0.450  
 LSTM 1 (Bi) 0.670 0.552 0.634 0.461  
 LSTM 2 (Bi) 0.677 0.557 0.657 0.477  

Table A.10
Cross-attention fusion-based MVL model with different network architectures.
 Heads Layers CropH-m (F1) LFMC (𝑅2)

 No missing Missing optical No missing Missing optical 
 1 1 0.637 0.468 0.545 0.375  
 2 1 0.622 0.462 0.551 0.380  
 4 1 0.650 0.511 0.553 0.380  
 4 2 0.654 0.511 0.536 0.351  
 8 1 0.659 0.520 0.569 0.400  
 8 2 0.650 0.504 0.541 0.371  
 8 3 0.652 0.519 0.541 0.362  

Table A.11
Predictive performance of individually trained models (per view). The F1 
scores are shown in classification tasks and 𝑅2 scores in the regression 
tasks. The best and second best values are highlighted. 
View CropH-b CropH-m LFMC PM25

Optical 0.791±0.013 0.635±0.023 0.194±0.224

Radar 0.752±0.012 0.444±0.022 0.050±0.360
Topographic 0.631±0.044 0.095±0.028 −0.124±0.590
Weather 0.701±0.012 0.346±0.013
Soil −0.245±0.557
LiDAR −0.033±0.147
Land-cover −0.021±0.102
Conditions 0.034±0.135
Dynamics 0.334±0.078

Precipitation −0.072±0.068

optimal value across datasets and missing scenarios with eight heads 
and just one layer. Besides, we notice a slight tendency to get better 
results when using a more complex network architecture.

A.3. Individual view performance

In order to detect the top views for prediction in each dataset, we 
train an individual model on each view. The results for each dataset 
are shown in Table  A.11. For CropH-b, CropH-m, and LFMC these are 
optical and radar views, while for the PM25 dataset the top views are 
dynamic and condition. We note that the static views usually have a 
low predictive performance, only serving as a complement to the top
views for prediction.
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Appendix B. Additional results

B.1. Another top view missing

In Fig.  B.8 we display the predictive performance in all datasets 
when additional views are missing in some samples, as a complement 
to Fig.  3. We present our two best models in each dataset. In the clas-
sification tasks, the proposed FCoM-ga model has the best predictive 
performance along the percentage of missing data, as observed when 
the top view is missing (Fig.  3). Overall, our models show the best 
behavior (of a good balance between a small slope and a high value) 
when increasing the level of samples with missing views. Furthermore, 
most of the models have a high robustness to missing the radar view in 
the classification tasks. Surprisingly, FCoM-av has a strange behavior 
in the PM25 data, being the only one greatly affected by missing 
the precipitation view. Perhaps our model learned a prediction quite 
dependent on this view in that dataset.

B.2. Dynamic merge function comparison

We analyze the effect of applying two MAug techniques at different 
levels of the MVL models, similar to Table  4 that shows this analysis 
for average fusion. The Tables  B.12, B.13, and B.14 include the results 
when using gated fusion, cross-attention fusion, and memory fusion 
respectively. When views are missing at input-level, they are imputed, 
and when views are missing at feature-level, they are ignored. We 
notice the same behavior observed for the average, i.e. (i) tendency 
to increase the model robustness to missing data when the CoM tech-
nique is used, compared to SensD and without MAug techniques, (ii) 
generalization behavior (increase in performance) of MAug techniques 
when there is no missing views. Nevertheless, we notice that in some 
cases the MAug technique impairs the model performance due to the 
difficulty in estimating the target with missing views.

Appendix C. Results with additional metrics

We assess the predictive performance with alternative metrics: area 
under the curve (AUC) of the precision–recall plot in classification, and 
mean average percentage error (MAPE) in regression tasks. In addition, 
for assessing the robustness, we use the Performance Robustness Score 
(PRS) presented in [57]. The PRS is based on the predictive error with 
missing views relative to the predictive error in the full-view scenario: 

PRS(𝑦, 𝑦̂𝑚𝑖𝑠𝑠, 𝑦̂𝑓𝑢𝑙𝑙) = exp

(

1 −
RMSE(𝑦, 𝑦̂𝑚𝑖𝑠𝑠)
RMSE(𝑦, 𝑦̂𝑓𝑢𝑙𝑙)

)

, (C.1)

then it is normalized as 𝑃𝑅𝑆 = min(1, 𝑃𝑅𝑆). The results for the CropH-
b, CropH-m, LFMC, and PM25 data are in Tables  C.15, C.16, C.17, 
and C.18 respectively. We notice that the model robustness cannot be 
assessed only with relative robustness metrics, such as PRS. This is 
because the relative metrics hide the overall predictive performance. 
For instance, a horizontal line behavior in Fig.  3, such as from ISensD-
co, will get a PRS of one, independently of the position of this line on 
the 𝑦-axis (performance). Even, in some cases, the prediction shift due 
to missing views can go towards correcting the original prediction, as 
shown in FCoMl-co in Fig.  3. In our work, we include these metrics for 
further analysis, but metrics that can mix these concepts could allow a 
more succinct analysis.

We plot the PRS value when different numbers of samples have the 
top views missing in Fig.  C.9. We notice a different behavior in this 
relative score compared to the results in Fig.  3. In the PRS analysis, the 
best results are obtained by the ESensI-av model followed by FCoMl-
co. The curve of our models is between the third and fourth best in 
this relative score. This reflects that, despite the good behavior of our 
models in the predictive performance, there is still a gap in reaching the 
predictive robustness (based on PRS) of the competing models, such as 
the one of ESensI-av.
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Fig. B.8. Predictive performance and robustness when varying percentages of validation samples have a top view missing.
Table B.12
Different configurations of the MAug technique applied at input or feature level with gated fusion. The F1 scores are shown in the CropH-m data and 𝑅2 scores in the LFMC 
data. 
 MAug Level CropH-m (F1) LFMC (𝑅2)

 (4/4) No Only missing (3/4) Only available (1/4) (6/6) No Only missing (5/6) Only available (1/6)
 missing Radar Optical Optical Radar missing Radar Optical Optical Radar  
 – Input 0.643 0.506 0.354 0.189 0.073 0.735 0.631 0.238 0.215 −0.011  
 SensD Input 0.592 0.562 0.479 0.505 0.323 0.545 0.522 0.324 −3.148 −5.625  
 CoM Input 0.662 0.619 0.417 0.565 0.089 0.615 0.620 0.292 0.234 0.012  
 – Feature 0.653 0.574 0.494 0.355 0.250 0.738 0.660 0.225 a a  
 SensD Feature 0.668 0.632 0.538 0.610 0.387 0.532 0.499 0.336 −3.151 −0.550  
 CoM Feature 0.678 0.647 0.568 0.627 0.418 0.684 0.678 0.471 0.326 0.158  
a A value below −10.
Table B.13
Different configurations of the MAug technique applied at input or feature level with cross-attention fusion. The F1 scores are shown in the CropH-m data and 𝑅2 scores in the 
LFMC data. The † is a value below −10.
 MAug Level CropH-m (F1) LFMC (𝑅2)

 (4/4) No Only missing (3/4) Only available (1/4) (6/6) No Only missing (5/6) Only available (1/6)
 missing Radar Optical Optical Radar missing Radar Optical Optical Radar  
 – Input 0.646 0.585 0.239 0.432 0.072 0.575 0.521 0.289 0.242 0.053  
 SensD Input 0.569 0.54 0.438 0.523 0.302 0.522 0.503 0.303 −0.005 −0.205  
 CoM Input 0.655 0.636 0.216 0.620 0.071 0.554 0.481 0.361 0.295 0.089  
 – Feature 0.637 0.589 0.495 0.506 0.287 0.579 0.539 −0.388 −0.058 −2.702  
 SensD Feature 0.639 0.616 0.510 0.617 0.403 0.536 0.525 0.315 0.013 0.019  
 CoM Feature 0.665 0.636 0.547 0.638 0.441 0.520 0.471 0.278 −0.363 −1.005  
Table B.14
Different configurations of the MAug technique applied at input or feature level with memory fusion. The F1 scores are shown in the CropH-m data and 𝑅2 scores are shown in 
the LFMC data.
 MAug Level CropH-m (F1) LFMC (𝑅2)

 (4/4) No Only missing (3/4) Only available (1/4) (6/6) No Only missing (5/6) Only available (1/6)
 missing Radar Optical Optical Radar missing Radar Optical Optical Radar  
 – Input 0.651 0.572 0.492 0.287 0.237 0.735 0.634 0.072 −4.165 †  
 SensD Input 0.586 0.547 0.471 0.490 0.319 0.568 0.549 0.359 −0.015 −0.383  
 CoM Input 0.662 0.630 0.556 0.618 0.413 0.648 0.630 0.420 0.346 0.146  
 – Feature 0.641 0.568 0.499 0.316 0.235 0.741 0.671 0.022 −0.753 −3.337  
 SensD Feature 0.638 0.610 0.533 0.594 0.378 0.557 0.547 0.372 −0.410 −0.045  
 CoM Feature 0.661 0.624 0.558 0.617 0.421 0.548 0.563 0.410 0.342 0.155  
12 
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Table C.15
Additional results for different cases of missing views (moderate and extreme) in the CropH-b data. We highlight the best and second best value in each scenario. The value in 
parentheses is the number of available views. 
 Model AUC value (↑) PRS value (↑)
 (4/4) No (3/4) Only missing (1/4) Only available (3/4) Only missing (1/4) Only available
 Missing Radar Optical Weather Optical Radar Weather Radar Optical Weather Optical Radar Weather 
 ITempD-co 0.920 0.908 0.813 0.755 0.772 0.666 0.604 0.958 0.810 0.751 0.761 0.606 0.600  
 ISensD-co 0.903 0.899 0.864 0.801 0.869 0.736 0.676 0.984 0.930 0.815 0.982 0.739 0.790  
 FSensD-cr 0.876 0.847 0.798 0.734 0.687 0.637 0.542 0.950 0.861 0.790 0.783 0.665 0.645  
 FCoMl-co 0.930 0.925 0.903 0.858 0.889 0.791 0.697 0.996 0.948 0.863 0.906 0.733 0.707  
 FEmbr-sa 0.923 0.917 0.889 0.843 0.866 0.763 0.676 0.987 0.915 0.814 0.800 0.651 0.648  
 ESensI-av 0.907 0.907 0.879 0.858 0.900 0.805 0.691 0.996 0.943 0.911 0.995 0.863 0.794  
 FCoM-av 0.933 0.931 0.912 0.875 0.908 0.800 0.714 0.991 0.890 0.780 0.859 0.478 0.701  
 FCoM-ga 0.934 0.931 0.915 0.876 0.904 0.801 0.711 0.986 0.908 0.781 0.897 0.645 0.723  
 FCoM-cr 0.925 0.922 0.903 0.866 0.901 0.800 0.706 0.991 0.922 0.849 0.919 0.672 0.733  
 FCoM-me 0.932 0.921 0.908 0.865 0.903 0.800 0.707 0.944 0.899 0.769 0.904 0.682 0.711  
Table C.16
Additional results for different cases of missing views (moderate and extreme) in the CropH-m data. We highlight the best and second best value in each scenario. The value in 
parentheses is the number of available views. 
 AUC value (↑) PRS value (↑)
 (4/4) No (3/4) Only missing (1/4) Only available (3/4) Only missing (1/4) Only available
 Model Missing Radar Optical Weather Optical Radar Weather Radar Optical Weather Optical Radar Weather 
 ITempD-co 0.962 0.946 0.837 0.888 0.850 0.661 0.740 0.893 0.674 0.788 0.716 0.649 0.558  
 ISensD-co 0.904 0.869 0.732 0.949 0.760 0.595 0.762 0.937 0.759 0.979 0.821 0.718 0.706  
 FSensD-cr 0.928 0.864 0.796 0.874 0.779 0.673 0.692 0.905 0.769 0.895 0.834 0.695 0.676  
 FCoMl-co 0.964 0.958 0.937 0.954 0.945 0.856 0.872 0.953 0.894 0.978 0.950 0.776 0.748  
 FEmbr-sa 0.956 0.950 0.911 0.938 0.929 0.797 0.847 0.937 0.820 0.860 0.761 0.562 0.704  
 ESensI-av 0.948 0.945 0.912 0.950 0.957 0.885 0.867 0.971 0.895 0.997 0.991 0.884 0.813  
 FCoM-av 0.967 0.962 0.937 0.960 0.954 0.864 0.873 0.929 0.810 0.945 0.851 0.622 0.601  
 FCoM-ga 0.967 0.962 0.944 0.938 0.932 0.854 0.861 0.938 0.838 0.951 0.885 0.661 0.620  
 FCoM-cr 0.962 0.958 0.935 0.959 0.953 0.875 0.879 0.949 0.820 0.987 0.941 0.703 0.632  
 FCoM-me 0.965 0.959 0.934 0.959 0.954 0.873 0.880 0.942 0.824 0.975 0.943 0.738 0.669  
Table C.17
Additional results for different cases of missing views (moderate and extreme) in the LFMC data. We highlight the best and second best value in each scenario. The value in 
parentheses is the number of available views. 
 Model MAPE value (↓) PRS value (↑)
 (6/6) No (5/6) Only missing (1/6) Only available (5/6) Only missing (1/6) Only available
 Missing Radar Optical Optical Radar Radar Optical Optical Radar  
 ITempD-co 0.157 0.293 0.293 0.335 0.335 0.465 0.465 0.433 0.433  
 ISensD-co 0.191 0.189 0.230 0.249 0.292 0.980 0.819 0.794 0.674  
 FSensD-cr 0.211 0.221 0.287 0.327 0.377 0.966 0.772 0.727 0.627  
 FCoMl-co 0.406 0.368 0.333 0.378 0.510 0.999 0.977 0.926 0.793  
 FEmbr-sa 0.191 0.196 0.265 0.721 0.381 0.964 0.748 0.073 0.381  
 ESensI-av 0.254 0.276 0.278 0.252 0.283 0.980 0.943 0.911 0.769  
 FCoM-av 0.173 0.178 0.235 0.907 0.623 0.968 0.791 0.073 0.093  
 FCoM-ga 0.150 0.156 0.198 0.252 0.297 0.971 0.737 0.608 0.513  
 FCoM-cr 0.217 0.228 0.250 0.405 0.429 0.920 0.847 0.432 0.383  
 FCoM-me 0.167 0.165 0.198 0.268 0.299 0.981 0.806 0.685 0.586  
Table C.18
Additional results for different cases of missing views (moderate and extreme) in the PM25 data. We highlight the best and second best value in each scenario. The value in 
parentheses is the number of available views. 
 Model MAPE value (↓) PRS value (↑)
 (3/3) No (2/3) Only missing (1/3) Only available (2/3) Only missing (1/3) Only available
 Missing Condition Dynamic Dynamic Condition. Condition Dynamic Dynamic Condition  
 ITempD-co 0.439 0.439 1.242 1.033 1.594 0.186 0.146 0.185 0.146  
 ISensD-co 0.879 0.878 1.301 1.151 1.644 0.835 0.690 0.834 0.690  
 FSensD-cr 1.003 1.149 1.301 1.147 1.300 0.783 0.862 0.757 0.832  
 FCoMl-co 1.281 0.713 1.088 0.747 1.422 0.994 1.000 0.984 1.000  
 FEmbr-sa 0.717 0.712 0.976 1.038 1.330 0.933 0.903 0.591 0.693  
 ESensI-av 0.953 0.754 1.223 0.699 1.561 0.989 0.906 0.991 0.889  
 FCoM-av 0.581 0.561 2.891 4.957 1.162 0.869 0.408 0.080 0.720  
 FCoM-ga 0.651 0.658 1.030 0.672 1.051 0.980 0.995 0.996 0.992  
 FCoM-cr 0.597 0.614 0.728 0.651 0.805 0.949 0.680 0.847 0.701  
 FCoM-me 0.672 0.653 0.884 0.803 1.318 0.979 0.980 1.000 1.000  
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Fig. C.9. Predictive robustness results when the top views are missing for a given percentage of samples at inference.
Data availability

The data used in this manuscript corresponds to public benchmark 
datasets released in Tseng et al. [33],Rao et al. [51],Chen [52]. We 
provide functions to facilitate the processing of these to a machine 
learning ready structure. This is available on our GitHub at https://
github.com/fmenat/com-views/tree/main/data.
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