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Abstract— Diffusion models (DMs) have disrupted the image
super-resolution (SR) field and further closed the gap between
image quality and human perceptual preferences. They are
easy to train and can produce very high-quality samples that
exceed the realism of those produced by previous generative
methods. Despite their promising results, they also come with
new challenges that need further research: high computational
demands, comparability, lack of explainability, color shifts, and
more. Unfortunately, entry into this field is overwhelming because
of the abundance of publications. To address this, we provide
a unified recount of the theoretical foundations underlying
DMs applied to image SR and offer a detailed analysis that
underscores the unique characteristics and methodologies within
this domain, distinct from broader existing reviews in the field.
This article articulates a cohesive understanding of DM principles
and explores current research avenues, including alternative
input domains, conditioning techniques, guidance mechanisms,
corruption spaces, and zero-shot learning approaches. By offering
a detailed examination of the evolution and current trends in
image SR through the lens of DMs, this article sheds light on the
existing challenges and charts potential future directions, aiming
to inspire further innovation in this rapidly advancing area.

Index Terms— Diffusion models (DMs), super-resolution (SR),
survey.

I. INTRODUCTION

IN THE ever-evolving field of computer vision, the task
of image super-resolution (SR)—enhancing low-resolution

(LR) images into high-resolution (HR) counterparts—stands as
a longstanding challenge due to its ill-posed nature. Multiple
HR images are plausible for any given LR image, differing
in aspects such as brightness and color [1]. Its applications
span a broad spectrum, from everyday photography to refining
satellite [2] and medical images [3]. Despite notable achieve-
ments of prior generative SR models, each comes with its
own limitations. For example, the computational demands of
autoregressive models (ARMs) often outweigh their utility,
while normalizing flows (NFs) or variational autoencoders
(VAEs) struggle to match quality expectations [4], [5], [6].
Although powerful, generative adversarial networks (GANs)
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need careful regularization and optimization strategies to over-
come instability issues [7].

The advent of diffusion models (DMs) marks a significant
shift in image generation tasks, including SR, challenging
the long-standing dominance of GANs [8], [9], [10], [11].
Applications like Dall-E and stable diffusion demonstrate that
DMs have surpassed GANs in various aspects [12], [13],
[14]. Their capability to generate high-quality images from LR
inputs has shown immense promise in SR by closely aligning
with the qualitative judgments of human evaluators [15].
In other words, human raters perceive SR images generated by
DMs as more realistic than those produced by other generative
models like GANs.

However, as the volume of publications expands, staying
updated on the latest developments is becoming more chal-
lenging, particularly for those new to the field. DMs diverge
fundamentally from prior generative models and pose new
challenges while addressing the limitations of earlier models.
Identifying coherent trends and potential research directions is
challenging despite this rapid expansion. This article aims to
demystify DMs, offers a comprehensive overview that bridges
foundational concepts with the forefront of image SR, and
critically analyzes current strengths and weaknesses.

This article builds upon the previous work Hitchhiker’s
Guide to SR [16], which gives a broad overview of the
image SR field in general. Similar in spirit is the survey
of Li et al. [17], which reviews DMs on the more general
image restoration tasks like inpainting and dehazing. Both
have overlapping topics, such as the foundations and types
of DMs, namely, denoising diffusion probabilistic models
(DDPMs) [8], score-based generative models (SGMs) [11],
and stochastic differential equations (SDEs) [10]. Moreover,
both surveys highlight the introduction of conditioning strate-
gies and zero-shot diffusion as well as show potential research
directions. However, this article covers all topics related to
image SR and is, therefore, more detailed regarding recent
developments specifically developed for image SR. Moreover,
we explain SR-related challenges, such as color shifting and
cascaded image SR. We also highlight the relationship of DMs
with other generative SR models, namely, VAEs, GANs, and
flow-based methods. In addition, we review frequency-based
DMs, alternative corruption spaces, and diffusion-based image
SR applications.

Concluding with a discussion on emerging trends and their
potential for reshaping SR and DM development, this article
sets the stage for future research. By offering clarity and
direction in the rapidly evolving domain of DMs, we aim
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to inspire and inform the next wave of research, fostering
advancements that continue to push the boundaries of what
is possible in image SR with DMs.

The structure of this article is organized as follows.
Section II—SR Basics: This section provides fundamental

definitions and introduces standard datasets, methods, and
metrics for assessing image quality commonly utilized in
image SR publications.

Section III—DMs Basics: This section introduces the prin-
ciples and various formulations of DMs, including DDPMs,
SGMs, and SDEs. This section also explores how DMs relate
to other generative models.

Section IV—Improvements for DMs: Common practices for
enhancing DMs, focusing on efficient sampling techniques and
improved likelihood estimation.

Section V—DMs for Image SR: This section presents con-
crete realizations of DMs in SR, explores alternative domains
(latent space and wavelet domain), discusses architectural
designs and multiple tasks with null-space models, and exam-
ines alternative corruption spaces.

Section VII—Domain-Specific Applications: DM-based SR
applications, namely, medical imaging, blind face restoration
(BFR), atmospheric turbulence (AT) in face SR, and remote
sensing.

Section VIII—Discussion and Future Work: Common prob-
lems of DMs for image SR and noteworthy research avenues
for DMs specific to image SR.

Section IX—Conclusion: This section summarizes this
article.

II. IMAGE SR

The goal of image SR is to transform one or more LR
images into HR images. The domain can be broadly cat-
egorized into two areas [16]: single image super-resolution
(SISR) and multi-image super-resolution (MISR). In SISR,
a single LR image leads to a single HR image. In contrast,
MISR methods use multiple LR images to produce one or
many HR outputs. This section focuses on SISR and explores
relevant datasets, established SR models, and techniques to
assess image quality.

Given an LR image x ∈ Rw̄×h̄×c, the goal is to generate
an HR counterpart y ∈ Rw×h×c with w̄ < w and h̄ < h. The
relationship is represented by a degradation mapping

x = D(y;2) = ((y⊗ k) ↓s +n)JPEGq
(1)

where D is a degradation map D : Rw×h×c
→ Rw̄×h̄×c and

2 contains degradation parameters, including aspects such as
blur k, noise n, scaling s, and compression quality q [18]. The
degradation is typically unknown, posing the main challenge
in determining the inverse mapping of D with parameters
θ , usually embodied as SR model [19], [20]. It leads to an
optimization task aimed at minimizing the difference between
the predicted SR image ŷ and the original HR image y

θ∗ = argminθ L
(
ŷ, y

)
+ λφ(θ) (2)

where L represents the loss between the predicted SR image
and the actual HR image. Here, λ is a balancing parameter,
while φ(θ) is introduced as a regularization term.

The inherent complexity arises from the ill-posed nature
of predicting θ , as several SR images can be valid for
any given LR image, i.e., they can have similar loss values
compared to the ground-truth image but are subjectively
perceived differently due to many aspects such as brightness
and coloring [1], [15], [21]. Traditional regression techniques,
like standard convolutional neural networks (CNNs), are often
adequate for lower magnifications but struggle to replicate
high-frequency details required at higher magnifications (e.g.,
s > 4). To address this, SR models must hallucinate realistic
details beyond interpolation, which typically falls under the
umbrella topic of generative models, where DMs are now at
the forefront.

A. Datasets

Several datasets offer a variety of images, resolutions,
and content types. Typically, these datasets consist of
LR and HR image pairs. However, some datasets contain
only HR images, with LR images created by bicubic
downsampling with antialiasing—a default setting for
imresize in MATLAB [22]. One famous general SR train set
is the Diverse 2K resolution (DIV2K) dataset [23], which
includes various realistic images at different resolutions
designed specifically for image SR. Classical test datasets
for SR models trained on DIV2K are Set5 [24], Set14 [25],
BSDS100 [26], Urban100 [27], and Manga109 [28] that cover
a variety of scenes and images contents such as buildings and
manga paintings. Flickr2K [23] and Flickr-Faces-HQ (FFHQ)
[29] offer diverse sets of human-centric and scene-centric
images from Flickr, respectively. While FFHQ is commonly
employed for training models for face SR tasks, Flickr2K is
usually used as a train data extension in combination with
DIV2K. Another dataset for face SR is CelebA-HQ [30],
which provides high-quality celebrity images and is typically
used to evaluate FFHQ-trained SR models. For broader
applications in CV, datasets such as ImageNet [31] and
Visual Object Classes (VOC2012) [32] are favored. ImageNet
offers an extensive range of images that help train models on
various object classes, whereas VOC2012 is vital for object
detection and segmentation. Both are valuable for multitask
learning involving SR. More datasets can be found in the
Hitchhiker’s Guide to SR [16].

B. SR Models

The primary objective is to design an SR model M :

Rw̄×h̄×c
→ Rw×h×c, such that it inverses (1)

ŷ =M(x; θ) (3)

where ŷ is the predicted HR approximation of the LR image,
and x and θ are the parameters of M. The parameters θ

are optimized using (2), i.e., minimizing the loss function
L between the estimation ŷ and the ground-truth HR image
y. Sections II-B1–II-B4 focuses on standard methods for
designing an SR model, especially deep learning methods
before we examine how DMs fulfill this role in detail.
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1) Traditional Methods: Traditional methods for image SR
define a range of methodologies, such as statistical [33], edge-
based [34], [35], patch-based [36], [37], prediction-based [38],
[39], and sparse representation techniques [40]. They funda-
mentally rely on image statistics and the information inherent
in existing pixels to generate HR images. Despite their utility,
a noteworthy drawback of these methods is the potential
introduction of noise, blur, and visual artifacts [16].

2) Regression-Based Deep Learning: Image SR signif-
icantly evolved with advancements in deep learning and
computational power. Typically, they employ a CNN for end-
to-end mapping from LR to HR. Initial models, such as
SRCNN [41], FSRCNN [42], and ESPCNN [43], utilized
simple CNNs of diverse depth and feature maps sizes. Later
models adapted concepts from the broader CV domain into
SR models, e.g., ResNet led to SRResNet, where residual
information was propagated to successive network layers [44].
Likewise, DenseNet [45] was adapted with SRDenseNet [46].
They employ dense blocks, where each layer receives addition-
ally the features generated in all preceding layers. Recursive
CNNs that recursively use the same module to learn rep-
resentations were also inspired by other CV methods for
regression-based SR methods in DRCN [47], DRRN [48],
and CARN [49]. More recently, attention mechanisms have
been incorporated to focus on regions of interest in images,
predominantly via the channel and spatial attention mech-
anisms [16], [50], [51], [52]. All those methods have in
common that they are regression-based. Commonly used loss
functions are the L1 and L2 losses. As mentioned, they often
produce satisfying results for lower magnifications but struggle
to replicate the high-frequency details required at higher
magnifications (e.g., s > 4). These limitations arise because
these models primarily learn an averaged mapping (due to L1
and L2 losses) from LR to HR images, which tends to produce
overly smooth textures lacking detail, especially noticeable
in larger upscaling factors [16]. To address this, SR models
must hallucinate realistic details beyond simple interpolation,
a challenge typically tackled by generative models.

3) Generative Adversarial Networks: One of the most
prominent generative models is the GAN. It uses two CNNs:
A generator G and a discriminator D, which are trained
simultaneously. The generator aims to produce HR samples
that are as close to the original as to fool the discriminator,
which tries to distinguish between generated and real samples.
This framework, e.g., in SRGAN [44] or ESRGAN [53],
is optimized using a combination of adversarial loss and
content loss to produce less-smoothed images. The resultant
images of state-of-the-art GANs are sharper and more detailed.
Due to their capability to generate high-quality and diverse
images, they have received much attention lately. However,
they are susceptible to mode collapse, have a sizeable compu-
tational footprint, sometimes fail to converge, and suffer from
stabilization issues [7].

4) Flow-Based Methods: Flow-based methods employ opti-
cal flow algorithms to generate SR images [54]. They were
introduced in an attempt to counter the ill-posed nature of
image SR by learning the conditional distribution of plausible
HR images given an LR input. They introduce a conditional

normalized flow architecture that aligns LR and HR images by
calculating the displacement field between them and then uses
this information to recover SR images. They employ a fully
invertible encoder capable of mapping any input HR image to
the latent flow space and ensuring exact reconstruction. This
framework enables the SR model to learn rich distributions
using exact log-likelihood-based training [54]. This facilitates
flow-based methods to circumvent training instability but
incurs a substantial computational cost.

C. Image Quality Assessment

Image quality is a multifaceted concept that addresses prop-
erties such as sharpness, contrast, and the absence of noise.
Hence, a fair evaluation of SR models based on produced
image quality forms a nontrivial task. This section presents the
essential methods, especially for DMs, to assess image quality
in the context of image SR, which falls under the umbrella
term image quality assessment (IQA).1 At its core, IQA refers
to any metric that resembles the perceptual evaluations from
human observers, specifically, the level of realism perceived in
an image after the application of SR techniques. During this
section, we will use the following notation: Nx = w · h · c,
which defines the number of pixels of an image x ∈ Rw×h×c

and �x = {(i, j, k) ∈ N3
1|i ≤ h, j ≤ w, k ≤ c} that defines

the set of all valid positions in x.
1) Peak Signal-to-Noise Ratio: The peak signal-to-noise

ratio (PSNR) is one of the most widely used techniques to
evaluate SISR reconstruction quality. It represents the ratio
between the maximum pixel value L and the mean squared
error (MSE) between the SR image ŷ and the HR image y

PSNR
(
y, ŷ

)
= 10 · log10

(
L2

1
N

∑N
i=1

[
y− ŷ

]2

)
. (4)

Despite being one of the most popular IQA methods, it does
not accurately match human perception [15]. It focuses on
pixel differences, which can often be inconsistent with the
subjectively perceived quality: the slightest shift in pixels
can result in worse PSNR values while not affecting human
perceptual quality. Due to its pixel-level calculation, models
trained with correlated pixel-based loss tend to achieve high
PSNR values [16], whereas generative models tend to produce
lower PSNR values [15].

2) SSIM Index: The structural similarity (SSIM), like the
PSNR, is a popular evaluation method that focuses on the
differences in structural features between images. It indepen-
dently captures the SSIM by comparing luminance, contrast,
and structures. SSIM estimates for an image y the luminance
µy as the mean of the intensity, while it is estimating contrast
σy as its standard deviation

µy =
1

Ny

∑
p∈�y

yp (5)

σy =
1

Ny − 1

∑
p∈�y

[
yp − µy

]2
. (6)

1More SR-related IQA methods can be found in [16].
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To capture the similarity between the computed entities, the
authors introduced a comparison function S

S(x, y, c) =
2 · x · y + c
x2 + y2 + c

(7)

where x and y are the scalar variables being compared, and
c = (k · L)2, 0 < k ≪ 1 is a constant for numerical stability.
For an HR image y and its approximation ŷ, the luminance (Cl)
and contrast (Cc) comparisons are computed using Cl(y, ŷ) =

S(µy, µŷ, c1) and Cc(y, ŷ) = S(σy, σŷ, c2), where c1, c2 > 0.
The empirical covariance

σy,ŷ =
1

Ny − 1

∑
p∈�y

(
yp − µy

)
·
(
ŷ p − µŷ

)
(8)

defines the structure comparison (Cs), which is the correlation
coefficient between y and ŷ

Cs
(
y, ŷ

)
=

σy,ŷ + c3

σy · σŷ + c3
(9)

where c3 > 0. Finally, the SSIM is defined as

SSIM
(
y, ŷ

)
=
[
Cl
(
y, ŷ

)]α
·
[
Cc
(
y, ŷ

)]β
·
[
Cs
(
y, ŷ

)]γ
(10)

where α > 0, β > 0, and γ > 0 are the parameters that can
be adjusted to tune the relative importance of the components.

3) Mean Opinion Score: The mean opinion score (MOS) is
a subjective measure that leverages human perceptual quality
for the evaluation of the generated SR images. Human viewers
are shown SR images and asked to rate them with quality
scores that are then mapped to numerical values and later
averaged. Typically, these range from 1 (bad) to 5 (good) but
may vary [15]. While this method is a direct evaluation of
human perception, it is more time-consuming and cumbersome
to conduct compared to objective metrics. Moreover, due to the
highly subjective nature of this metric, it is susceptible to bias.

4) Consistency: Consistency measures the degree of stabil-
ity of nondeterministic SR methods, such as generative models
such as GANs or DMs. Like flow-based methods, generative
approaches are intentionally designed to generate a spectrum
of plausible outputs for the same input. However, low consis-
tency is not desirable. Minor variations lessen the influence of
a relatively consistent method in the input. Nevertheless, con-
sistency can vary depending on the requirements. One com-
monly employed metric to quantify consistency is the MSE.

5) Learned Perceptual Image Patch Similarity: Contrary to
the pixel-based evaluation of PSNR and SSIM, the learned
perceptual image patch similarity (LPIPS) utilizes a pretrained
CNN ϕ, e.g., VGG [55] or AlexNet [56], and generates L
feature maps from the SR and HR image, and subsequently
calculates the similarity between them. Given hl and wl as
the height and width of the lth feature map respectively, and
a scaling vector αl ∈ RCl , the LPIPS metric is formulated as
follows:

LPIPS
(
y, ŷ

)
=

L∑
l=1

∑
p

∥αl ⊙
(
ϕl
(
ŷ
)
− ϕl(y)

)
p∥

2
2

hl · wl
. (11)

LPIPS operates by projecting images into a perceptual fea-
ture space through ϕ and evaluating the difference between
corresponding patches in SR and HR images, scaled by αl .

This methodology allows for a more human-centric evaluation,
given that it is better aligned with human perception than
traditional metrics such as PSNR and SSIM [16].

6) No-Reference Metrics: All IQA metrics discussed so
far require a reference (ground-truth) image. However, there
are cases where no reference images are available, e.g.,
in unsupervised settings. Fortunately, we can assess an
image by measuring the distance of statistical features from
those obtained from a collection of high-quality images
of a similar domain, i.e., natural images. This can be
opinion- and distortion-aware like BRISQUE [57] or opinion-
and distortion-unaware like NIQE [58]. Another intriguing
way to assess no-reference image quality is to exploit the
visual-language pretrained CLIP model [59]. One example
is CLIP-IQA, which calculates the cosine similarity of the
encoded image with two prompts of opposing meaning, i.e.,
“good photography” and “bad photography” [60]. The result-
ing relative similarity metric for one or the other prompts
determines the image quality. CLIP-IQA shows results compa-
rable to those of BRISQUE without the hand-crafted features
and surpasses other no-reference IQA methods like NIQE.
Another way to exploit deep learning models is to train them
to predict subjective scores using IQA datasets like TID2013
[61]. Examples are DeepQA [62], NIMA [63], or MUSIQ [64].
Others can be found in the learning-based perceptual quality
section of the Hitchhiker’s Guide to SR [16].

III. DMS BASICS

DMs have profoundly impacted the realm of generative AI,
and many approaches that fall under the umbrella term DM
have emerged. What sets DMs apart from earlier generative
models is their execution over iterative time steps, both for-
ward and backward in time and denoted by t , as depicted
in Fig. 1. The forward and backward diffusion processes are
distinguished as follows.

1) Forward q: degrade input data using noise iteratively,
forward in time (i.e., t increases).

2) Backward p: denoise the degraded data, thereby revers-
ing the noise iteratively, backward in time (i.e., t
decreases).

The time step t increases during forward diffusion, whereas
it propagates toward 0 during backward diffusion. Let D =
{xi , yi }

N
i=1 be a dataset of LR–HR image pairs. For each time

step t , the random variable zt describes the current state, a state
between the image and corruption space. In the literature, there
is no clear distinction between zt in the forward diffusion
and zt in the backward diffusion. During forward diffusion,
we assume zt ∼ q(zt | zt−1). Conversely, in the backward
diffusion, we assume zt−1 ∼ p(zt−1 | zt ). We will denote T
with 0 < t ≤ T as the maximal time step for finite cases. The
initial data distribution (t = 0) is represented by z0 ∼ q(x),
which is then slowly injected with noise (additive). Vice versa,
DMs remove noise therein by running a parameterized model
pθ (zt−1 | zt ) in the reverse time direction that approximates
the ideal (but unattainable) denoised distribution p(zt−1 | zt ).

The explicit implementation of the forward diffusion q and
backward diffusion p, approximated by pθ , is defined by the
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Fig. 1. Principle of DMs. The forward diffusion adds noise iteratively (red),
which translates an image from the image space to the corruption space.
The backward diffusion, the iterative refinement process, reverts the process
(blue) back to the image space. Shown are three different implementations of
DMs, namely, DDPMs, SGMs, and SDEs with their respect formulation of
the forward and backward diffusions.

specific DM in use. There are three types: Two discrete forms,
namely DDPMs and SGMs, and the continuous form by SDEs,
which are shown in Fig. 1 and will be discussed next.

A. Denoising Diffusion Probabilistic Models

DDPMs [8] use two Markov chains to enact the forward
and backward diffusions across a finite amount of discrete
time steps.

1) Forward Diffusion: It transforms the data distribution
into a prior distribution, typically designed manually (e.g.,
Gaussian), given by

q(zt | zt−1) = N
(

zt |
√

1− αt zt−1, αt I
)

(12)

where the hyperparameters 0 < α1:T < 1 represent the
variance of noise incorporated at each time step. While the
Gaussian kernel is commonly adopted, alternative kernel types
can also be employed. This formulation can be condensed to
a single-step calculation, as shown by

q(zt | z0) = N
(
zt |
√

γt z0, (1− γt )I
)

(13)

where γt =
∏t

i=1(1−αi ) [66]. Consequently, zt can be directly
sampled regardless of what ought to happen on previous time
steps by

zt =
√

γt · z0 +
√

1− γt · ϵ, ϵ ∼ N (0, I). (14)

2) Backward Diffusion: The goal is to directly learn the
inverse of the forward diffusion and generate a distribution
that resembles the prior z0, usually the HR image in SR.
In practice, we use a CNN to learn a parameterized form of
p. Since the forward process approximates q(zT ) ≈ N (0, I),
the formulation of the learnable transition kernel becomes

pθ (zt−1 | zt ) = N (zt−1 | µθ (zt , γt ), 6θ (zt , γt )) (15)

where µθ and 6θ are learnable. Similarly, the conditional
formulation pθ (zt−1 | zt , x) conditioned on x (e.g., an LR
image) is using µθ (zt , x, γt ) and 6θ (zt , x, γt ) instead.

3) Optimization: To guide the backward diffusion in learn-
ing the forward process, we minimize the Kullback–Leibler
(KL) divergence of the joint distribution of the forward and
reverse sequences

pθ (z0, . . . , zT ) = p(zT )

T∏
t=1

pθ (zt−1 | zt ), and (16)

q(z0, . . . , zT ) = q(z0)

T∏
t=1

q(zt | zt−1) (17)

which leads to minimizing

KL(q(z0, . . . , zT )∥pθ (z0, . . . , zT ))

= −Eq(z0,...,zT )

[
log pθ (z0, . . . , zT )

]
+ c

(i)
= Eq(z0,...,zT )

[
− log p(zT )−

T∑
t=1

log
pθ (zt−1 | zt )

q(zt | zt−1)

]
+ c

(i i)
≥ E

[
− log pθ (z0)

]
+ c (18)

where (i) is possible because both terms are products of
distributions and (i i) is the product of Jensen’s inequality. The
constant c is unaffected and, therefore, irrelevant in optimizing
θ . Note that (18) without c is the variational lower bound
(VLB) of the log-likelihood of the data z0, which is commonly
maximized by DDPMs.

B. Score-Based Generative Models

SGMs, much like DDPMs, utilize discrete diffusion pro-
cesses but employ an alternative mathematical foundation.
Instead of using probability density function p(z) directly,
Song and Ermon [10] propose to work with its (Stein) score
function, which is defined as the gradient of the log proba-
bility density ∇z log p(z). Mathematically, the score function
preserves all information about the density function, but
computationally, it is easier to work with. Furthermore, the
decoupling of model training from the sampling procedure
grants greater flexibility in defining sampling methods and
training objectives.

1) Forward Diffusion: Let 0 < σ1 < · · · < σT be a finite
sequence of noise levels. Like DDPMs, the forward diffusion,
typically assigned to a Gaussian noise distribution, is

q(zt | z0) = N
(
zt | z0, σ

2
t I
)
. (19)

This equation results in a sequence of noisy data densities
q(z1), . . . , q(zT ) with q(zt ) =

∫
q(zt )q(z0)dz0. Consequently,

the intermediate step zt = z0+ σt · ϵ with ϵ ∼ N (0, I) can be
sampled agnostic from previous time steps in a single step.

2) Backward Diffusion: To revert the noise during the
backward diffusion, we need to approximate ∇zt log q(zt ) and
choose a method for estimating the intermediate states zt

from that approximation. For the gradient approximation at
each time step t , we use a trained predictor, denoted as sθ

and called noise-conditional score network (NCSN), such that
sθ (zt , t) ≈ ∇zt log q(zt ) [11].
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The training of the NCSN will be covered in the next
section; for now, we focus on the sampling process using
NCSN. Sampling with NCSN involves generating the inter-
mediate states zt through an iterative approach, using sθ (zt , t).
Note that this iterative process is different from the iterations
done during the diffusion as it addresses solely the generation
of zt . This is a key difference to DDPMs as zt needs to be sam-
pled iteratively, whereas DDPMs directly predict zt from zt+1.

There are various ways to perform this iterative generation,
but we will concentrate on a specific method known as
annealed Langevin dynamics (ALD), introduced by Song and
Ermon [10]. Let N be the number of estimation iterations for
zt at time step t and αt > 0 be the corresponding step size,
which determines how much the estimation moves from one
estimate z(i)

t−1 toward z(i+1)
t−1 . The initial state is z(N )

T ∼ N (0, I).
For each 0 < t ≤ T , we initialize z(0)

t−1 = z(N )
t ≈ zt , which is

the latest estimation of the previous intermediate state. In order
to get z(N )

t−1 ≈ zt−1 iteratively, ALD uses the following update
rules for i = 0, . . . , N − 1:

ϵ(i)
← N (0, I) (20)

z(i+1)
t−1 ← z(i)

t−1 +
1
2
αt−1sθ

(
z(i)

t−1, t − 1
)
+
√

st−1ϵ
(i). (21)

This update rule guarantees that z(N )
0 converges to q(z0) for

αt → 0 and N →∞ [67].
Similar to DDPMs, we can turn SGMs into conditional

SGMs by integrating the condition x, e.g., an LR image, into
sθ (zt , x, t) ≈ ∇zt log q(zt |x).

3) Optimization: Without specifically formulating the back-
ward diffusion, we can train an NCSN such that sθ (zt , t) ≈
∇zt log q(zt ). Estimating the score can be done by using the
denoising score matching method [68]

E
t∼U(1,T )
z0∼q(z0)zt∼q(zt |z0)

[
λ(t)σ 2

t ∥∇zt log q(zt )− sθ (zt , t)∥2]
(i)
= E

t∼U(1,T )
z0∼q(z0)

zt∼q(zt |z0)

[
λ(t)σ 2

t ∥∇zt log q(zt |z0)− sθ (zt , t)∥2]
+ c

(i i)
= E

t∼U(1,T )
z0∼q(z0)zt∼q(zt |z0)

[
λ(t)∥ −

zt − z0

σt
− σt sθ (zt , t)∥2

]
+ c

(i i i)
= E

t∼U(1,T )
z0∼q(z0)
ϵ∼N (0,I)

[
λ(t)∥ϵ + σt sθ (zt , t)∥2]

+ c (22)

where λ(t) > 0 is a weighting function, σt is the noise level
added at time step t , (i) is derived by Vincent [68], (i i) is
from (19), (i i i) is from zt = z0 + σtϵ and with c again a
constant unaffected in the optimization of θ . Note that there
are other ways to estimate the score, e.g., based on score
matching [69] or sliced score matching [70].

C. Stochastic Differential Equations

So far, we have discussed DMs that deal with finite time
steps. A generalization to infinite continuous time steps is
made by formulating these as solutions to SDEs, also known
as Score SDEs [11]. In fact, we can view SGMs and DDPMs
as discretizations of a continuous-time SDE. SDEs are not

entirely bound to DMs, as they are a mathematical concept
describing stochastic processes. As such, they fit perfectly
to describe the processes we want to simulate in DMs. Like
previously, data are perturbed in a general diffusion process
but generalized to an infinite number of noise scales.

1) Forward Diffusion: We can represent the forward diffu-
sion by the following SDE:

dz = f (z, t)dt + g(t)dw (23)

where f and g are the drift and diffusion functions, respec-
tively, and w is the standard Wiener process (also known
as Brownian motion). This generalized formulation allows
uniform representation of both DDPMs and SGMs. The SDE
for DDPMs is given by

dz = −
1
2
α(t)zdt +

√
α(t)dw (24)

with α((t/T )) = T αt for T →∞. For SGMs, the SDE is

dz =

√
d
[
σ(t)2]
dt

dw (25)

with σ((t/T )) = σt for T → ∞. From now on, we denote
with qt (z) the distribution of zt in the diffusion process.

2) Backward Diffusion: The reverse-time SDE is formu-
lated by Anderson [71] as

dz =
[

f (z, t)− g(t)2
∇z log qt (z)

]
dt + g(t)dw̃ (26)

where w̃ is the standard Wiener process when time flows
backward and dt an infinitesimal negative time step. Solutions
to (26) can be viewed as diffusion processes that gradually
convert noise to data. The existence of a corresponding
probability flow ordinary differential equation (ODE), whose
trajectories possess the same marginals as the reverse-time
SDE, was proven by Song et al. [11] and is

dz =
[

f (z, t)−
1
2

g(t)2
∇z log qt (z)

]
dt. (27)

Thus, the reverse-time SDE and the probability flow ODE
enable sampling from the same data distribution.

3) Optimization: Similar to the approach in SGMs,
we define a score model such that sθ (zt , t) ≈ ∇z log qt (z).
Additionally, we extend (22) to continuous time as follows:

E
t∼U(0,T )
z0∼q(z0)

zt∼q(zt |z0)

[
λ(t)∥sθ (zt , t)−∇zt log qt (zt | z0)∥

2] (28)

where λ(t) > 0 is a weighting function.

D. Relation Between DMs

As highlighted in the SDE section, we can describe both
variations, namely, SGMs, and DDPMs, with SDEs. We can
also showcase this close relationship by reformulating the
optimization targets. For DDPMs, we saw in (18) that

KL(q(z0, . . . , zT )∥pθ (z0, . . . , zT ))

(i i)
≥ E

[
− log pθ (z0)

]
+ c
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Fig. 2. Conceptual overview of generative models (GANs, VAEs, NFs, and
DMs).

is minimized. By reweighting the VLB, as Ho et al. [8]
recommend for improved sample quality, we can further derive

E
t∼U(1,T )
z0∼q(z0)
ϵ∼N (0,I)

[
λ(t)∥ϵ − ϵθ (zt , t)∥2]

where λ(t) > 0 is a weighting function. If we now take the
optimization target in (22) of SGMs, which was

E
t∼U(1,T )
z0∼q(z0)
ϵ∼N (0,I)

[
λ(t)∥ϵ + σt sθ (zt , t)∥2]

+ c

the connection between DDPMs and SGMs becomes clear
once we set ϵθ (zt , t) = −σt sθ (zt , t). As the constant c is
irrelevant for the optimization, we can see once again that there
is a mathematical connection between DDPMs and SGMs.

E. Relation to Other Image SR Generative Models

Generative models in image SR differ primarily in how they
approach the task of generating HR images from LR inputs and
are illustrated in Fig. 2. These differences stem from the under-
lying architecture and training objectives. While they offer
significant advantages, they come with an individual set of
challenges, such as training stability and computational costs.

1) GAN: One prominent category of generative models
is GANs [72], which have demonstrated the state-of-the-art
performance in various vision-related tasks, including text-to-
image (T2I) synthesis [7] and image SR [44]. GANs are known
for their adversarial training, where a generator competes
against a discriminator. Although DMs do not employ a dis-
criminator, they utilize a similar adversarial training strategy
by iteratively adding and removing noise to enable realistic
data generation. However, approaches with GANs often suffer
from nonconvergence, training instability, and high computa-
tional costs. They require careful hyperparameter tuning due
to the interplay between the generator and the discriminator.

2) VAE: VAEs [73] are designed as autoencoders with
a variational latent space, which is especially interesting in
addressing the ill-posedness of image SR. The core objective
of a VAE centers around establishing the VLB of the log
data likelihood, akin to the fundamental principle underlying
DMs. In a comparative context, one can consider DMs as a
variation of VAEs but with a fixed VAE encoder responsible
for perturbing the input data, while the VAE decoder resembles
the backward diffusion process in DMs. Still, unlike VAEs,
which compress the input into smaller dimensions in the latent
space, DMs often maintain the same spatial size.

3) ARM: ARMs treat images as sequences of pixels and
generate each pixel based on the values of previously gen-
erated pixels in a sequential manner [6]. The probability
of the entire image is given as the product of conditional
probability distributions for each individual pixel. This makes
ARMs computationally expensive for HR image generation.
Conversely, DMs generate data by gradually diffusing noise
into an initial data sample and then reverse this process. Noise
is diffused across the entire image simultaneously rather than
sequentially.

4) NF: NFs [74] are a distinct category of generative mod-
els renowned for their capacity to represent data as intricate
and complex distributions. Like DMs and VAEs, these models
are optimized based on the log-likelihood of the data they gen-
erate. However, what sets NFs apart is their unique ability to
learn an invertible parameterized transformation. Importantly,
this transformation possesses a tractable Jacobian determinant,
making it feasible to compute. The concept of DiffFlow [75]
enters the picture as an innovative algorithm that marries the
principles of DMs with those of NFs. This combination offers
the promise of enhanced generative modeling capabilities. Yet,
while promising, NFs are often considered challenging to train
and can be computationally demanding [76].

IV. IMPROVEMENTS FOR DMS

In the broader research community, there are several ways to
improve DMs for image generation, as presented, for example,
by Karras et al. [77]. This section, however, focuses on
enhancements particularly interesting for image SR: efficient
sampling and enhanced likelihood estimation.

A. Efficient Sampling

Efficient sampling refers to strategies that generate samples
from noise more quickly, i.e., in fewer time steps, without
compromising the quality of the produced image significantly.
For instance, a DDPM takes about 20 h to sample 50 000
32× 32 images, in contrast to a GAN’s less than one minute
on a Nvidia 2080 Ti GPU; for larger 256× 256 images, this
extends to nearly 1000 h [78]. Fortunately, the independence
between training and inference schedules is often leveraged
in image SR. For example, a model may undergo training
with 1000 time steps, but the subsequent inference phase may
require only a fraction, i.e., 200 [15], [79]. However, the
broader community of DM research has made further attempts
focusing on either training-based or training-free sampling.
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Training-based sampling methods speed up data genera-
tion using a trained sampler that approximates the backward
diffusion process instead of a traditional numerical solver.
This process may be complete or partial. For example, Wat-
son et al. [80] developed a dynamic programming algorithm
that identifies optimal inference paths using a fixed number
of refinement steps, significantly reducing the computa-
tion required. Diffusion sampler search [81] offers another
approach, optimizing fast samplers for pretrained DMs by
adjusting the kernel inception distance. Another technique
is truncated diffusion, which improves speed by prematurely
ending the forward diffusion process [82], [83]. This early
termination results in outputs that are not purely Gaussian
noise, presenting computational challenges. These challenges
are addressed using proxy distributions from pretrained VAEs
or GANs, which match the diffused data distribution and facili-
tate efficient backward diffusion. Lastly, knowledge distillation
is also used to accelerate sampling. It involves transferring
knowledge from a complex, slower sampler (the teacher
model) to simpler, faster models (student models) [84], [85].
As demonstrated by Salimans and Ho [86], this method
progressively reduces the number of sampling steps, trading
off a slight decrease in sample quality for increased speed.
Similarly, Xiao et al. [87] addressed the slow sampling issue
associated with the Gaussian assumption in denoising steps,
which is usually only effective for small step sizes. They
proposed denoising diffusion GANs that use conditional GANs
for the denoising steps, allowing for larger step sizes and
faster sampling. For image SR, an application for exploiting
knowledge distillation can be found in AddSR [88]. Similarly,
YONOS-SR [89] uses knowledge distillation, but instead
of training faster samplers, they transfer different scaling
task knowledge and use the training-free denoising diffusion
implicit models (DDIMs) for efficient sampling, which is
presented in the next section.

Training-free sampling methods aim to speed up sampling
by minimizing the number of discretization steps while solv-
ing the SDE or probability flow ODE [90], [91]. DDIMs
introduced by Song et al. [90] generalizes the Markovian
forward diffusion of DDPMs into non-Markovian ones. This
generalization allows the DDIMs to learn a Markov chain
to reverse the non-Markovian forward diffusion, resulting in
higher sampling speeds with minimal loss in sample quality.
Jolicoeur-Martineau et al. [91] have devised an efficient SDE
solver with adaptive step sizes for the accelerated generation of
score-based models. This method has been found to generate
samples more rapidly than the Euler–Maruyama method with-
out compromising sample quality. Building upon DDIM and
Jolicoeur-Martineau et al. [91], the DPM-solver [92], inspired
by the AnalyticalDPM [93], approximates the error prediction
via Taylor expansion and thus achieves efficient sampling
by analytically resolving the linear component of the ODE
solution instead of relying on generic black-box ODE solvers.
This method significantly reduces the sampling steps to 10–
20. In a later work, Lu et al. [94] introduced an improved
version with DPM-solver++ that essentially approximates
the predicted image instead of the error. Lately, a more

general formulation and extension of the DPM-solver++ was
introduced by UniPC [95].

B. Improved Likelihood

Log-likelihood improvement is directly coupled with
enhancing the performance of various applications and
methods, including but not limited to compression [96], semi-
supervised learning [97], and image SR. Given that DMs do
not directly optimize the log-likelihood, e.g., SGMs utilize a
weighted combination of score-matching losses, an objective
that forms an upper bound on the negative log-likelihood
needs to be optimized. Song et al. [98] proposed a method
called likelihood weighting to address this need. This method
minimizes the weighted combination of score-matching losses
for score-based DMs. A carefully chosen weighting function
sets an upper bound on the negative log-likelihood in the
weighted score-matching objective. Upon minimization, this
results in an elevation of the log-likelihood. Kingma et al. [99]
explored methods that simultaneously train the noise schedule
and diffusion parameters to maximize the VLB within
variational DMs. Additionally, the improved denoising
diffusion probabilistic models (iDDPMs) proposed by Nichol
and Dhariwal [100] implement a cosine noise schedule. This
gradually introduces noise into the input, contrasting with the
linear schedules that tend to degrade the information quicker.
Using the cosine noise schedule leads to better log-likelihoods
and facilitates faster sampling.

V. DMS FOR IMAGE SR

So far, we introduced the theoretical framework of DMs.
This section reviews practical applications and recent advances
in image SR. We will discuss concrete realizations of DMs,
which are predominantly DDPMs. We then discuss guidance
strategies to enhance conditioning usage, represent condi-
tioning information in alternative state domains for DDPMs,
and incorporate various conditioning methods. Additionally,
we explore SR-specific research areas, including corruption
spaces, color-shifting, and architectural designs. Fig. 3 pro-
vides a topological overview of this section.

A. Concrete Realization of DMs

While SGMs provide considerable design flexibility, the
image SR trend leans toward DDPMs. DDPMs benefit from
a straightforward implementation, which reduces the entry
barrier. It is a significant advantage, as it allows quicker devel-
opment cycles and replication of results. In addition, while the
flexibility of SGMs is advantageous in creating customized
solutions, it introduces design complexity due to the multitude
of design variables that need to be considered. This poses a
challenge in research settings, where rigorously evaluating the
impact of each variable (e.g., different sampling algorithms)
becomes cumbersome. Moreover, the growing DDPM liter-
ature contributes to their popularity. As more studies adopt
DDPMs, a virtuous cycle is created, where familiarity and
proven effectiveness encourage further adoption.
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Fig. 3. Topology of this work. Conditioning (Section V-D) leads the backward
diffusion, whereas guidance (Section V-B) is a training strategy to improve
the incorporation of conditioning into DMs. The state domain (Section V-C)
describes the representation of states zt . The corruption space (Section V-E)
describes the target of the forward diffusion process or the start of the
backward diffusion.

Among the pioneering DM efforts is SR3 [15], which
concretely realizes DDPMs for image SR. Like typical for
DDPMs, it adds Gaussian noise to the LR image until zT ∼

N (0, I) and generates a target HR image z0 iteratively in T
refinement steps. SR3 employs the denoising model to predict
the noise ϵt . The denoising model, ϕθ (x, zt , γt ), takes the LR
image x, the noise variance γt , and the noisy target image zt

as inputs. With the prediction of ϵt provided by ϕθ , we can
reformulate (14) to approximate z0 as follows:

zt =
√

γt · ẑ0 +
√

1− γt · ϕθ (x, zt , γt )

⇐⇒ ẑ0 =
1
√

γt
·

(
zt −

√
1− γt · ϕθ (x, zt , γt )

)
. (29)

The substitution of ẑ0 into the posterior distribution to param-
eterize the mean of pθ (zt−1|zt , x) leads to

µθ (x, zt , γt ) =
1
√

αt

[
zt −

1− αt
√

1− γt
· ϕθ (x, zt , γt )

]
. (30)

In SR3, the authors simplified the variance 6θ to (1− αt ) for
ease of computation. Consequently, each refinement step with
ϵt ∼ N (0, I) can be represented as

zt−1 =
1
√

αt

[
zt −

1− αt
√

1− γt
· ϕθ (x, zt , γt )

]
+

√
1− αt · ϵt .

(31)

Concurrent work focused on a similar implementation of SR3
but shows different variations implementing the denoising
model ϕθ (x, zt , γt ), which we will discuss later. A notable
mention is SRDiff [79], published around the same time
and follows a close realization of SR3. The main distinction
between SRDiff and SR3 is that SR3 predicts the HR image
directly, whereas SRDiff predicts the residual information
between the LR and HR images, i.e., the difference. Thus,
it has an alternative state domain, which will be discussed next.

B. Guidance in Training

The backbone of diffusion-based image SR is the learning
of conditional distributions [15], [101]. As such, the condi-
tion x, e.g., the LR image, is integrated into the backward

diffusion, i.e., pθ (zt−1 | zt , x) for DDPMs or in sθ (zt , x, t) for
SGMs/SDEs. However, this simple formulation can result in a
model that overlooks the conditioning. A principle known as
guidance can mitigate this issue by controlling the weighting
of the conditioning information at the expense of sample
diversity. It can be categorized into classifier and classifier-free
guidance. To the authors’ knowledge, while effectively used
for improving DMs, they have not been applied to image SR.

1) Classifier Guidance: Classifier guidance employs a clas-
sifier to guide the diffusion process by merging the score
estimate of the DM with the gradients of the classifier during
sampling [12]. This process is similar to low temperature or
truncated sampling in BigGANs [102] and facilitates a tradeoff
between mode coverage and sample fidelity. The classifier is
trained concurrently with the DM to predict the conditional
information x from zt . For weighting of the conditioning
information, the score function becomes

∇zt log q(zt | x) = ∇zt log q(zt )+ λ∇zt log q(x | zt ) (32)

where λ ∈ R+ is a hyperparameter for controlling the
weighting. The downside of this approach is its dependence
on a learned classifier that can handle arbitrarily noisy inputs,
a capability most existing pretrained image classification mod-
els lack.

2) Classifier-Free Guidance: Classifier-free guidance aims
to achieve similar results without a classifier [103]. It modi-
fies (32) into

∇zt log q(zt |x) = (1− λ)∇zt log q(zt )+ λ∇zt log q(zt | x).

(33)

As a result, we have a standard unconditional DM and a
conditional DM that has the score estimate ∇zt log q(zt | x).
The unconditional DM remains when λ = 0, and for λ =

1, it aligns with the vanilla formulation of the conditional
DM. The interesting scenario arises when λ > 1, where
the DM prioritizes conditional information and moves away
from the unconditional score function, thus reducing the
likelihood of generating samples disregarding conditioning
information. However, the major downside of this approach
is its computational cost for training two separate DMs. This
can be mitigated by training a single conditional model and
substituting the conditioning information with a null value in
the unconditional score function [104].

C. State Domains

So far, we have discussed methods that operate directly on
the pixel space. This section introduces different methods that
map the input into alternative state domains: latent, frequency,
and residual space. Apart from particular challenges arising
from the alternative state domain, these methods incur an
additional step that maps the pixel domain into their own,
as illustrated in Fig. 4.

1) Latent Space: Models such as SR3 [15] and SRDiff [79]
have achieved high-quality SR results by operating in the
pixel domain. However, these models are computationally
intensive due to their iterative nature and the high-dimensional
calculations in RGB space. To reduce computational demands,
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Fig. 4. Overview of state domains. The green bar shows the vanilla DM
operating in pixel space. The blue bar shows the exploit of the latent space
domain via autoencoders. The red bar shows the application of DMs in the
wavelet domain.

one can move the diffusion process into the latent space
of an autoencoder [105]. The first of this kind was the
latent score-based generative models (LSGMs) by Vah-
dat et al. [106]. It is a regular SGM that operates in the
latent space of a VAE and, by pretraining the VAE, achieves
even faster sampling speeds. It yields comparable and better
results than DMs operating in the pixel domain while being
faster. Building upon LSGMs, Rombach et al. [13] intro-
duced the latent diffusion model (LDM) [107], which also
performs diffusion in a low-dimensional latent space of an
autoencoder. In contrast to LSGM, LDM utilizes a DDPM
and an autoencoder that is pretrained, like the VQ-GAN [5],
and is not jointly trained with the denoising network. This
approach significantly lowers resource requirements without
compromising performance. Due to the decoupled training,
it requires very little regularization of the latent space and
allows the reuse of latent representations across multiple mod-
els. Improving upon LDMs is REFUSION (image REstoration
with difFUSION models) by Luo et al. [108], which differs
in two aspects. First, it uses a U-Net that contains skip
connections from the encoder to the decoder, which provides
the decoder with additional details. Moreover, it introduces
nonlinear activation-free blocks (NAFBlocks) [109], replacing
all nonlinear activations with an elementwise operation that
splits feature channels into two parts and multiplies them
to produce one output. Second, they train their U-Net with
a latent-replacing training strategy, which partially replaces
the latent representation with either the encoded LR or HR
image for reconstruction training. Similarly, Chen et al. [110]
improve the architectural aspects of LDMs and propose a
two-stage strategy called the hierarchical integration diffusion
model (HI-Diff). In the first stage, an encoder compresses the
ground-truth image to a highly compact latent space represen-
tation, which has a much higher compression ratio than LDM.
As a result, the computational burden of the DM, which refines
multiscale latent representations, is much more reduced. The
second stage is a vision transformer (ViT)-based autoencoder,
which incorporates the latent representations of the first stage
during the downsampling process via hierarchical integration
modules (HIMs), a cross-attention fusion module.

2) Frequency Space: Wavelets provide a novel outlook on
SR [16], [111]. The conversion from the spatial to the wavelet
domain is lossless and offers significant advantages as the
spatial size of an image can be downsized by a factor of
four, thereby allowing faster diffusion during the training

and inference stages. Moreover, the conversion segregates
high-frequency details into distinct channels, facilitating a
more concentrated and intentional focus on high-frequency
information, offering a higher degree of control [112]. Besides,
it can be conveniently incorporated into existing DMs as a
plug-in feature. The diffusion process can interact directly with
all wavelet bands as proposed in DiWa [113] or specifically
target certain bands while the remaining bands are predicted
via standard CNNs. For instance, WaveDM [114] modifies the
low-frequency band, whereas WSGM [115] or ResDiff [116]
conditions the high-frequency bands relative to the LR image.
Altogether, the wavelet domain presents a promising avenue
for future research. It provides the potential for significant
performance acceleration while maintaining, if not enhancing,
the quality of SR results.

3) Residual Space: SRDiff [79] was the first work that
advocated for shifting the generation process into the residual
space, i.e., the difference between the upsampled LR and the
HR image. This enables the DM to focus on residual details,
speeds up convergence, and stabilizes the training [16], [111].
Whang et al. [117] also employ residual predictions as a
fundamental component of their predict-and-refine approach
for image deblurring. However, unlike SRDiff, they provide an
SR prediction with a CNN instead of the bilinear upsampled
LR and predict the residuals between the SR prediction and
the HR ground truth with their DM. An improvement is
presented by ResDiff [116], which additionally incorporates
the SR prediction and its high-frequency information during
the backward diffusion for better guidance. In a different vein,
Yue et al. [118] present ResShift. This technique constructs a
Markov chain of transformations between HR and LR images
by manipulating the residual between them. Thus, instead of
just adding Gaussian noise with zero mean in the forward
process, the residual is also added as the mean of the noise
sampling during training. This novel approach substantially
enhances sampling efficiency, i.e., only 15 sampling steps.

D. Conditioning DMs

DMs depend on conditioning information to guide the
sampling process toward a reasonable HR prediction. One
common strategy is to use the LR image during the backward
diffusion. This section reviews various alternative methods for
integrating conditioning information into backward diffusion.

1) Low-Resolution Reference: High-quality SR predictions
can be achieved through a straightforward channel concatena-
tion [119]. The LR image is concatenated with the denoised
result from time step t−1 and serves as the conditioning input
for noise prediction at time step t . In contrast, iterative latent
variable refinement (ILVR) by Choi et al. [120] conditions
the generative process of an unconditional LDM [13]. This
approach offers the advantage of shorter training times, as it
leverages a pretrained DM. To integrate conditioning infor-
mation, the low-frequency components of the denoised output
are replaced with their corresponding counterparts from the
LR image. Thus, the latent variable is aligned with a provided
reference image at each generation process stage, ensuring
precise control and adaptation during generation.
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Fig. 5. Overview of DiffuseVAE. The two-stage approach employs a VAE
(first stage), which generates variational prediction as a condition for the DM
(second stage).

TABLE I
RESULTS FOR 4× SR OF GENERAL IMAGES ON DIV2K VAL. NOTE THAT

EDSR, FXSR-PD, CAR, AND RRDB ARE THE REGRESSION-BASED
METHODS THAT GENERALLY PRODUCE BETTER PSNR AND SSIM

SCORES THAN GENERATIVE APPROACHES [15]

TABLE II
PSNR AND SSIM COMPARISON ON CELEBA-HQ FACE SR 16×16→ 128×

128. CONSISTENCY MEASURES MSE (×10−5) BETWEEN LR INPUTS
AND THE DOWNSAMPLED SR OUTPUTS

2) Super-Resolved Reference: An alternative to condition-
ing the denoising on the LR image involves learned priors from
pretrained SR models to predict a reference image. For exam-
ple, CDPMSR [121] conditions the denoising process with
a predicted SR reference image obtained using existing and
standard SR models. ResDiff [116], on the other hand, lever-
ages a pretrained CNN to predict a low-frequency, content-rich
image that includes partial high-frequency components. This
image guides the noise toward the residual space, offering an
alternative means of conditioning the generative process.

Pandey et al. [127] introduced an exciting idea of varying
predicted conditions with DiffuseVAE as illustrated in Fig. 5.
This approach integrates the stochastic predictions generated
by a VAE as conditioning information for the DM, capital-
izing on the advantages offered by both models. They use
a two-stage approach called the generator-refiner framework.
In the first stage, a VAE is trained on the training data. In the

subsequent stage, the DM is conditioned using varying, often
blurred, reconstructions generated by the VAE. The essential
advantage of this method lies in the diversity in the gener-
ated samples, which is defined within the lower dimensional
latent space of the VAE. This characteristic creates a more
favorable balance between sampling speed and sample quality.
It is advantageous in scenarios where multiple predictions are
required, similar to the use cases for NFs.

3) Feature Reference: Another avenue for conditioning
involves relevant features extracted from pretrained networks.
SRDiff [79] leverages a pretrained encoder to encode LR
image features at each step of the backward diffusion. These
features serve as guidance, aiding in the generation of higher-
resolution outputs. Implicit DMs (IDMs) [100] take a different
approach by conditioning their denoising network with a neu-
ral representation, which enables the learning of a continuous
representation at various scales. They encode the image as a
function within continuous space and seamlessly integrate it
into the DM. These extracted features are adapted to multiple
scales and are used across multiple layers within the DMs.
To comprehensively understand the performance differences
between these approaches, comparisons can be found in
Tables I and II. Recently, DeeDSR was introduced [128],
which incorporates degradation-aware features extracted from
the LR image to guide the diffusion process of an LDM [107].

4) T2I Information: By incorporating conditioning informa-
tion that goes beyond the LR image (e.g., its SR prediction,
direct concatenation of the LR image, or its feature represen-
tation), one can add T2I information. The incorporation of T2I
information proves advantageous as it allows the usage of pre-
trained T2I models. These models can be fine-tuned by adding
specific layers or encoders tailored to the SR task, facilitating
the integration of textual descriptions into the image generation
process. This approach enables a richer source of guidance,
potentially improving image synthesis and interpretation in SR
tasks. Wang et al. [107] have put this concept into practice
with StableSR. Central to StableSR is a time-aware encoder
trained in tandem with a frozen stable DM, essentially an
LDM. This setup seamlessly integrates trainable spatial feature
transform layers, enabling conditioning based on the input
image. To further augment the flexibility of StableSR and
achieve a delicate balance between realism and fidelity, they
introduce an optional controllable feature wrapping module.
This module accommodates user preferences, allowing for
fine-tuned adjustments based on individual requirements. The
inspiration for this feature comes from the methodology intro-
duced in CodeFormer [129], which enhances the versatility of
StableSR in catering to diverse user needs and preferences.
Likewise, Yang et al. [130] introduce a method known as
pixel-aware stable diffusion (PASD). PASD takes conditioning
a step further by incorporating text embeddings of the LR
input using a CLIP text encoder [59] and its feature represen-
tation. This approach augments the model’s ability to generate
images by incorporating textual information, thus allowing for
more precise and context-aware image synthesis. Comparisons
between PASD and other approaches can be found in Table III,
demonstrating the impact of this text-based conditioning on
image SR results. A similar concurrent work can be found
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TABLE III
RESULTS FOR 4× SR OF GENERAL IMAGES ON RESIZED DIV2K VAL

(128× 128→ 512× 512)

Fig. 6. Comparison of the standard corruption space and I2SB. Instead of
injecting noise to the clean image (initial state z0), the final state zT is the
degraded image.

with SeeSR [131]. XPSR [132] extends this idea by fusing
different levels of semantic text encodings (high-level: the
content of the image; and low-level: the perception of overall
quality, sharpness, noise level, and other distortions about the
LR image).

E. Corruption Space

Karras et al. [77] identified three pillars of DMs: the noise
schedule, the network parameterization, and the sampling
algorithm. Recently, many authors argued to consider also
different types of corruption instead of pure Gaussian noise
used during forward diffusion like soft score matching [135],
i.e., the starting point for backward diffusion or the target
for the forward diffusion zT . Soft score matching directly
incorporates the filtering process within the SGM, training the
model to predict a clean image. Upon corruption, this predicted
image aligns with the diffused observation. Note that zT may
be represented differently due to alternative state domains
(e.g., latent, frequency, or residual). Cold Diffusion [136]
presents another ingenious way of modifying the corruption
space for DDPMs. It shows that the generative capability is
not strongly dependent on the choice of image degradation.
It reveals that new experimental types of diffusion besides
Gaussian noise can be effectively used, like animorphosis (i.e.,
human faces iteratively degrading to animal faces). The image-
to-image Schrödinger bridge (I2SB) goes in a similar direction
but does not impose any assumptions on the underlying prior
distributions [137]. In its diffusion process, the clean image
represents the initial state, while the degraded image is the
final state in both forward and backward diffusion processes.
This is notable for its ability to provide a transparent and

Fig. 7. Example of color shifting produced by vanilla SR3 in a
64 × 64 → 256 × 256 setting when trained with a reduced batch size (8
instead of 256).

traceable path from a degraded image to its clean version,
as illustrated in Fig. 6. Consequently, it provides enhanced
interpretability since the process between degraded and clean
images is directly addressed, which is not commonly present
in many DMs. Another benefit is its higher efficiency in
backward diffusion since it requires fewer steps (often between
2 and 10) to achieve comparable performance. Its condi-
tionality, however, limits its use specifically to paired data
during training, which is unsuitable for unsupervised SR.
While Cold Diffusion and I2SB show promising results for
image restoration, an extensive and more detailed quantitative
analysis of different corruption types for image SR remains
an exciting and open research avenue. Another avenue for
alternative corruption space is presented by inversion by
direct iteration (InDI) [138]. InDI delineates a direct mapping
strategy, efficiently bridging the gap between the two quality
spaces without the iterative refinement typically required by
conventional diffusion processes. The intrinsic flexibility and
the direct mapping capability of InDI propose intriguing
possibilities for enhancing image quality, suggesting a potent
avenue for research exploration. The potential integration of
InDI’s principles with those of conditional DMs could offer
substantial advancements in the field of image SR. A detailed
examination and discussion of InDI within the broader scope
of diffusion-based image enhancement could yield valuable
insights and contribute significantly to the ongoing develop-
ment of generative models in image processing.

F. Color Shifting

As a result of high computational costs, DMs can occa-
sionally suffer from color shifting when limited hardware
necessitates smaller batch sizes or shorter learning peri-
ods [139]. An example with SR3 is shown in Fig. 7.
As presented by StableSR, a straightforward modification
can address this issue by performing color normalization by
adjusting the mean and variance with those of the LR image
on the generated image [107]. Mathematically, it gives the
following equation:

ẑ0 =
zc

0 − µc
z0

σ c
z0

· σ c
x + µc

x (34)

where c ∈ {r, g, b} denotes the color channel, and µc
z0

and
σ c

z0
(or µc

x and σ c
x ) are the mean and standard variance from

the cth channel of the predicted image z0 (or the input image
x), respectively. You only diffuse areas (YODA) [140], which
targets diffusion on important image areas more frequently
through time-dependent masks generated with DINO [141],
also mitigates the color shift effect for image SR. This suggests
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that properly defined architecture and diffusion design are
crucial to omit this effect. Further analysis of why this effect
emerges must be obtained in future work.

G. Architecture Designs for Denoising

The design of the denoising model in DMs offers a range
of options. The majority of DMs adopt the use of U-Net,
as noted in most literature [102]. SR3 [15], for instance,
employs residual blocks from BigGAN [102] and rescales
skip connections by a factor of (1/(2)1/2). SRDiff takes a
similar approach [79] although it opts for vanilla residual
blocks without the rescaling of skip connections and uses an
LR encoder to incorporate the information of the LR image
during the backward diffusion. Whang et al. [117] exploit
an initial predictor to combine the strengths of deterministic
image SR models and DMs. It has the advantage that the DM
only needs to learn the residuals that the deterministic image
SR model (initial predictor) fails to predict, thus simplifying
the learning target. Additionally, the removal of self-attention,
positional encodings, and group normalization from the SR3
U-Net enables their model to support arbitrary resolutions.
An initial predictor is also employed in the wavelet-based
approach DiWa [113]. Moreover, wavelet SR models, such
as DWSR [112]—a simple sequence of convolution layers of
depth 10—are utilized for denoising prediction in the wavelet
domain. In WaveDM [114], a deterministic U-Net predictor is
used for the high-frequency band, while diffusion is applied
in the low-frequency band.

LDMs proposed by Rombach et al. [13] use a VQ-GAN [5]
autoencoder in the latent space. For DiffIR [142], multi-
ple variations of state-of-the-art ViTs are employed [50],
[143], [144]. Another common practice is pretraining deter-
ministic components, as seen in models like SRDiff [79]
or DiffIR [142]. Overall, the potential ways to design a
denoising network are infinite, generally drawing inspiration
from advancements made in general computer vision. The
optimal denoising networks will vary based on the task, and
the development of new models is anticipated.

VI. DIFFUSION-BASED ZERO-SHOT SR

Zero-shot image SR aims to develop methods that do not
depend on prior image examples or training [16], [150]. Typi-
cally, these methods harness the inherent redundancy within a
single image for improvement. They often leverage pretrained
DMs for generation, incorporating LR images as conditions
during the sampling process, in contrast to other conditioning
methods discussed earlier [151]. Additionally, they differ from
guidance-based methods, where conditioning information is
used to weight the training of a DM from scratch. A recent
study by Li et al. [17] categorizes diffusion-based methods
into projection-based, decomposition-based, and posterior esti-
mation, which are introduced in this section. The discussed
methods are compared in Table IV.

A. Projection-Based

Projection-based methods aim to extract inherent structures
or textures from LR images to complement the generated

images at each step and to ensure data consistency. An illus-
trative example of a projection-based method in the realm of
inpainting tasks is RePaint [152]. In RePaint, the diffusion
process is selectively applied to the specific area requiring
inpainting, leaving the remaining image portions unaltered.
Taking inspiration from this concept, YODA [140] applies
a similar technique, but for image SR. YODA incorporates
importance masks derived from DINO [141] to define the areas
for diffusion during each time step, but it is not a zero-shot
approach.

One zero-shot method is ILVR [120], which projects
the low-frequency information from the LR image to the
HR image, ensuring data consistency and establishing an
improved DM condition. A more sophisticated method is
come-closer-diffuse-faster (CCDF) [153], which modifies the
unified projection method to SR as follows:

ẑt−1 = f (zt , t)+ g(zt , t) · εt (35)

zt−1 = (I− P) · ẑt−1 + x̂, x̂ ∼ q(zt |z0 = x) (36)

where f and g depend on the type of DMs, P is the
degradation process of the LR image, and x̂ is the LR image
with the added and time-dependent noise.

B. Decomposition-Based

Decomposition-based methods view image SR tasks as a
linear reverse problem similar to (1)

x = Ay+ b (37)

where A is the degradation operator and b is the contaminat-
ing noise. Among the earliest decomposition-based methods,
we find SNIPS [145] and its subsequent work DDRM [146].
These methods employ diffusion in the spectral domain,
enhancing SR outcomes. To achieve this, they apply singular
value decomposition to the degradation operator A, thereby
facilitating a spectral-domain transformation that contributes
to their improved SR results.

The denoising diffusion null-space model (DDNM) repre-
sents another decomposition-based zero-shot approach appli-
cable to a broad range of linear IR problems [148] beyond
image SR to tasks such as colorization, inpainting, and deblur-
ring [148]. It leverages the range–null space decomposition
methodology [154], [155] to tackle diverse IR challenges
effectively. DDNM approaches the problem by reconfigur-
ing (1) as a linear reverse problem although it is essential
to note that this approach differs from SNIPS and DDRM in
that it operates in a noiseless context

x = Ay (38)

with y ∈ RD×1 as the linearized HR image and x ∈ Rd×1 as
the linearized degraded image. Furthermore, it has to conform
to the following two constraints:

Consistency : Aŷ ≡ x, Realness : ŷ ∼ p(y) (39)

with p(y) as the distribution of ground-truth images and ŷ
as the predicted image. The range–null space decomposition
allows constructing a general solution for ŷ in the form of

ŷ = A†x+
(
I− A†A

)
ȳ (40)
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TABLE IV
COMPARISON OF ZERO-SHOT METHODS. DATA IN BOLD REPRESENT THE BEST PERFORMANCE. SECOND-BEST IS UNDERLINED. VALUES DERIVED

FROM LI ET AL. [17]

with A†
∈ RD×d the pseudo-inverse that satisfies AA†A ≡ A.

Our goal is to find a proper ȳ that generates the null-space
(I − A†A)ȳ and agrees with the range-space A†x that also
fulfills realness in (39).

DDNM derives clean intermediate states, denoted as z0|t ,
for the range–null space decomposition from z0 at time step
t . This is achieved through the equation

z0|t =
1√
ᾱt

(
zt − ϵθ (zt , t)

√
1− ᾱt

)
(41)

with ϵt = ϵθ (zt , t). To produce a z0 that fulfills the equation
Az0 ≡ x, the model leaves the null-space unaltered while
setting the range-space as A†y. This generates a rectified
estimation, ẑ0|t , defined by

ẑ0|t = A†x+
(
I− A†A

)
z0|t . (42)

Finally, zt−1 is derived by sampling from p(zt−1|zt , ẑ0|t )

zt−1

=

√
ᾱt−1βt

1− ᾱt
ẑ0|t +

√
αt
(
1− ᾱt−1

)
1− ᾱt

zt + σtϵ, ϵ ∼ N (0, I)

(43)

with αt = 1− βt and ᾱt =
∏t

i=0 αi , illustrated in Fig. 8.
The term zt−1 represents a noised version of ẑ0|t . This noise

effectively mitigates the dissonance between the range-space
contents, represented by A†x, and the null-space contents,
denoted by (I − A†A)z0|t . The authors of DDNM show
additionally that ẑ0|t conforms to consistency.

The last step involves defining A and A†, the construction
of which is contingent on the restoration task at hand. For
instance, in SR tasks involving scaling by a factor of n, A can
be defined as a 1 × n2 matrix, representative of an average-
pooling operator. The average-pooling operator, denoted as[
(1/n2) . . . (1/n2)

]
, functions to average each patch into a

singular value. Similarly, we can construct its pseudo-inverse
as A†

∈ Rn2
×1
=
[
1 . . . 1

]⊤. The original work provides
further examples of tasks (such as colorization, inpainting,
and restoration), illustrating how these methods are applied.
In addition, it describes how compound operations consisting
of numerous suboperations function in these contexts. In their
research, the authors also introduced DDNM+ to support
the restoration of noisy images. They utilized a technique
analogous to the “back and forward” strategy implemented
in RePaint [152]. This approach was leveraged to enhance the
quality further.

Fig. 8. Overview of DDNM [148]. It utilizes the range–null space decom-
position to construct a general solution for multiple tasks, such as image SR,
colorization, inpainting, and deblurring.

Given this approach’s novelty, only a handful of subse-
quent studies extend and build upon it, such as the work
presented in CDPMSR [121]. This research direction promises
exciting possibilities although it calls for further investigation.
For example, it should be noted that the DDNM approach
introduces additional computational expenses compared to the
task-specific training carried out using DDPMs. Moreover,
the degradation operator A is set manually, which can be
challenging for certain tasks. Another potential drawback is the
assumption that A functions as a linear degradation operator,
which may not always hold true and thus could limit the
model’s effectiveness in certain scenarios.

C. Posterior Estimation

Most projection-based methods typically address the noise-
less inverse problem. However, this assumption can weaken
data consistency because the projection process can deviate
the sample path from the data manifold [17]. To address this
and enhance data consistency, some recent works [147], [156],
[157] take a different approach by aiming to estimate the
posterior distribution using the Bayes theorem

p(zt | x) =
p(x | zt ) · p(zt )

p(x)
. (44)

This Bayesian approach provides a more robust and prob-
abilistic framework for solving inverse problems, ultimately
improving results in various image processing tasks. It results
in the corresponding score function

∇zt log pt (zt | x) = ∇zt log pt (x | zt )+ sθ (x, t) (45)

where sθ (x, t) is extracted from a pretrained model while
pt (x|zt ) is intractable. Thus, the goal is precisely estimating
pt (x|zt ). MCG [156] and DPS [147] approximate the posterior
pt (x|zt ) with pt (x|ẑ0(zt )), where ẑ0(zt ) is the expectation
given zt as ẑ0(zt ) = E[z0|zt ] according to Tweedie’s for-
mula [147]. While MCG also relies on projection, which can
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be harmful to data consistency, DPS discards the projection
step and estimates the posterior as

∇zt log pt (x | zt ) ≈ ∇zt log p
(
x | ẑ0(zt )

)
≈ −

1
σ 2∇zt∥x− H

(
ẑ0(zt )

)
∥

2
2 (46)

where H is a forward measurement operator. A further
expansion of this formula to the unified form for the linear,
nonlinear, differentiable inverse problem with Moore–Penrose
pseudoinverse can be found in IIGDM [157].

A different approach to estimate pt (x|zt ) is demonstrated
by GDP [149]. The authors noted that a higher conditional
probability of pt (x|zt ) correlates with a smaller distance
between the application of the degradation model D(zt ) and
x. Thus, they propose a heuristic approximation

pt (x|zt ) ≈
1
Z

exp(−[sL(D(zt ), x)])+ λQ(zt ) (47)

where L and Q denote a distance and quality metric, respec-
tively. The term Z is for normalization, and s is a scaling factor
controlling the guidance weight. However, due to varying
noise levels between zt and x, precisely defining the distance
metric L can be challenging. To overcome this challenge, GDP
substitutes zt with its clean estimation ẑ0 in the distance calcu-
lation, providing a pragmatic solution to the noise discrepancy
issue.

VII. DOMAIN-SPECIFIC APPLICATIONS

SR3 [15] produces photo-realistic and perceptually state-
of-the-art images on faces and natural images but may not be
suitable for other tasks like remote sensing. Some models are
more suited to certain tasks as they tackle issues specific to
the domain [158]. This section highlights the applications of
DMs to domain-specific SR tasks: medical imaging, special
cases of face SR (BFR and ATs), and remote sensing.

A. Medical Imaging

Magnetic resonance imaging (MRI) scans are widely used
to aid patient diagnosis but can often be of low quality and
corrupted with noise. Chung et al. [159] propose a combined
denoising and SR network referred to as regularized reverse
diffusion denoiser + SR (R2D2+). They perform denoising of
the MRI scans, followed by an SR module. Inspired by CCDF
(i.e., a zero-shot method) from Chung et al. [153], they start
their backward diffusion from an initial noisy image instead of
pure Gaussian noise. The reverse SDE is solved using a non-
parametric, eigenvalue-based method. In addition, they restrict
the stochasticity of the DMs through low-frequency regular-
ization. Particularly, they maintain low-frequency information
while correcting the high-frequency ones to produce sharp
and super-resolved MRI scans. Mao et al. [160] address the
lack of diffusion-based multicontrast MRI SR methods. They
propose a disentangled conditional diffusion model (DisC-
Diff) to leverage a multiconditional fusion strategy based
on representation disentanglement, enabling high-quality HR
image sampling. Specifically, they employ a disentangled
U-Net with multiple encoders to extract latent representa-
tions and use a novel joint disentanglement and Charbonnier

loss function to learn representations across MRI contrasts.
They also implement curriculum learning and improve their
MRI model for varying anatomical complexity by gradually
increasing the difficulty of training images. An improvement
of DisC-Diff by combining the DM with a transformer was
introduced by Li et al. [161] with DiffMSR.

B. Blind Face Restoration

Most previously discussed SR methods are founded on
a fixed degradation process during training, such as bicu-
bic downsampling. However, when applied practically, these
assumptions frequently diverge from the actual degradation
process and yield subpar results. Additionally, datasets with
pairs of clean and real-world distorted images are usually
unavailable. This issue is particularly researched in face SR,
termed BFR, where datasets typically contain supervised sam-
ples (x, y) with unknown degradation.

A solution to BFR was proposed by Yue and Loy [162] with
DifFace that leverages the rich generative priors of pretrained
DMs with parameters θ , which were trained to approximate
pθ (zt |zt−1). In contrast to existing methods that learn direct
mappings from x to y under several constraints [163], [164],
DifFace circumvents this by generating a diffused version zN

of the desired HR image y with N < T . They predict the
starting point, the posterior q(zN |x) via a transition distribution
p(zN |x). The transition distribution is formulated like the
regular diffusion process, a Gaussian distribution, but uses an
initial predictor ϕ(x) to generate the mean, named diffused
estimator. As their model borrows the reverse Markov chain
from a pretrained DM, DifFace requires no full retraining for
new and unknown degradations, unlike SR3.

A concurrent and better performing approach is Diff-
BFR [165] that adopts a two-step approach to BFR: an identity
restoration module (IRM), which employs two conditional
DDPMs, and a texture enhancement module (TEM), which
employs an unconditional DDPM. In the first step within the
IRM, a conditional DDPM enriches facial details at an LR
space same as x. The downsampled version of y gives the
target objective. Next, it resizes the output to the desired
spatial size of y and applies another conditional DDPM to
approximate the HR image y. To ensure minimal deviation
from the actual image, DiffBFR employs a novel truncated
sampling method, which begins denoising at intermediate
steps. The TEM further enhances realism through image
texture and sharpened facial details. It imposes a diffuse-base
facial prior with an unconditional DM trained on HR images
and a backward diffusion starting from pure noise. However,
it has more parameters than SR3 and requires optimization to
accelerate sampling.

Another method is DR2E [166], which employs two stages:
degradation removal and enhancement modules. For degrada-
tion removal, they use a pretrained face SR DDPM to remove
degradations from an LR image with severe and unknown
degradations. In particular, they diffuse the degraded image x
in T time steps to obtain xT = zT . Then, they use xt to guide
the backward diffusion such that the low-frequency part of zt is
replaced with that of xt , which is close in distribution. Theoret-
ically, it produces visually clean intermediate results that are
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degradation-invariant. In the second stage, the enhancement
module pθ (y | z0), an arbitrary backbone CNN trained to
map LR images to HR using a simple L2 loss, predicts the
final output. DR2E can be slower than existing diffusion-based
SR models for images with slight degradations and can even
remove details from the input.

C. AT in Face SR

AT results from atmospheric conditions fluctuations, leading
to images’ perceptual degradation through geometric dis-
tortions, spatially variant blur, and noise. These alterations
negatively impact downstream vision tasks, such as track-
ing or detection. Wang et al. [167] introduced a variational
inference framework known as AT-VarDiff, which aims to
correct AT in generic scenes. The distinctive feature of this
approach is its reliance on a conditioning signal derived from
latent task-specific prior information extracted from the input
image to guide the DM. Nair et al. [168] put forth another
technique to restore facial images impaired by AT using SR.
The method transfers class prior information from an SR
model trained on clean facial data to a model designed to
counteract turbulence degradation via knowledge distillation.
The final model operates within the realistic faces manifold,
which allows it to generate realistic face outputs even under
substantial distortions. During inference, the process begins
with noise- and turbulence-degraded images to ensure that the
restored images closely resemble the distorted ones.

D. Remote Sensing

Remote sensing super-resolution (RSSR) addresses the
HR reconstruction from one or more LR images to aid
object detection and semantic segmentation tasks for satellite
imagery. RSSR is limited by the absence of small targets
with complex granularity in the HR images [169]. To produce
finer details and texture, Liu et al. [170] present DMs with
a detail complement (DMDC) mechanism. They train their
model similar to SR3 [15] and perform a detailed supplement
task. To generate high-frequency information, they randomly
mask several parts of the images to mimic dense objects.
The SR images recover the occluded patches as the model
learns small-grained information. Additionally, they introduce
a novel pixel constraint loss to limit the diversity of DMDC
and improve overall accuracy. Ali et al. [171] design a new
architecture for RS images that integrates ViTs with DMs as
a two-stage approach for enhancement and super-resolution
(TESR). In the first stage (SR stage), the SwinIR [50] model is
used for RSSR. In the second stage (enhancement stage), the
noisy images are enhanced by employing DMs to reconstruct
the finer details. Xu et al. [172] propose a blind SR framework
based on dual conditioning DDPMs for SR (DDSR). A kernel
predictor conditioned on LR image encodings estimates the
degradation kernel in the first stage. This is followed by an
SR module consisting of a conditional DDPM in a U-Net
with the predicted kernel and the LR encodings as guidance.
An RRDB encoder extracts the encodings from LR images.
Recently, Khanna et al. [173] introduced DiffusionSat, which
uses an LDM for RSSR and incorporates additional remote

sensing conditioning information (e.g., longitude, latitude,
cloud cover, etc.).

VIII. DISCUSSION AND FUTURE WORK

Though relatively new, DMs are quickly becoming a
promising research area, especially in image SR. There are
several avenues of ongoing research in this field, aiming to
enhance the efficiency of DMs, accelerate computation speeds,
and minimize memory footprint, all while generating high-
quality, high-fidelity images. This section introduces common
problems of DMs for image SR and examines noteworthy
research avenues for DMs specific to image SR.

A. Color Shifting

Often, the most practical advancements come from a solid
theoretical understanding. As discussed in Section V-F, due
to the substantial computational demands, DMs may occa-
sionally exhibit color shifts when constrained by hardware
limitations that demand smaller batch sizes or shorter training
periods [139]. While well-defined diffusion methods [140]
or color normalization [107] might mitigate this problem,
a theoretical understanding of why it is emerging is necessary.

B. Computational Costs

In a study conducted by Ganguli et al. [174], it was
observed that the computing power needed for large-scale
AI experiments has surged by over 300 000 times in the
last decade. Regrettably, this increase in resource intensity
has been accompanied by a sharp decline in the share of
these results originating from academic circles. DMs are not
immune to this issue; their computational demands add to
the expanding gap between industry and academia. Therefore,
there is a pressing need to reduce computational costs and
memory footprints for practical applicability and research. One
strategy to alleviate computational demands is to examine
smaller spatial-sized domains, as discussed in Section V-C.
Examples of such approaches include LDMs [5], [13] and
wavelet-based models [113], [115]. However, the capability
of LDMs to reconstruct data with high precision and fine-
grained accuracy, as required in image SR, remains to be
questioned. Therefore, further advancements in these methods
are critically needed. On the other hand, wavelet-based models
do not present a bottleneck regarding information preservation.
This advantage suggests that they should be the subject of
more intensive exploration.

C. Efficient Sampling

A benefit of DMs is the possibility of decoupling training
and inference schedules [175]. This allows for substantial
enhancements in curtailing the time required for inference in
practical applications, providing a significant efficiency edge in
real-world scenarios. While reducing the number of steps taken
during inference is relatively simple, a systematic method for
determining inference schedules has yet to be developed [176].
As outlined in Section IV-A, this research direction represents
a promising avenue. We explored training-based sampling
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methods for SR with AddSR [88] and YONOS-SR [89]
but also introduced efficient DMs that need fewer sampling
steps, like ResShift [118] and DiffIR [142]. An alternative is
given by methods that use different corruption spaces, as dis-
cussed in Section V-E. Unlike sampling from pure Gaussian
noise, notable works such as Luo et al. [108], I2SB [137],
CCDF [153], or Cold Diffusion [136] define a process from
the LR to the HR image directly. Additional techniques for
decreasing computation time, such as knowledge distillation,
alternative noise schedulers, or truncated diffusion, demand
further investigation concerning image SR [84], [85], [87],
[177].

D. Corruption Spaces

New approaches for corruption spaces allow a more direct
approach for upsampling images from LR to HR. The sig-
nificance of exploring different corruption spaces lies in
addressing the inherent limitations and assumptions embedded
within current DM frameworks, e.g., diversity and blurriness
added during the forward diffusion process. The adaptability
and efficiency demonstrated by novel approaches like InDI or
I2SB, especially in handling diverse and complex corruption
patterns spotlight the urgent need for future research.

E. Comparability

Comparing DMs in SR is complex because of the varied
datasets used in different studies. They vary in resolution, con-
tent diversity, color distribution, and noise levels, all of which
significantly influence model performance. A model may
perform well with one dataset but poorly with another, compli-
cating the assessment of its overall effectiveness. Establishing
a standard benchmark with diverse, representative datasets and
uniform evaluation metrics is essential for comparability. This
approach would help identify models that consistently perform
well across different conditions and tasks, thereby promoting
faster progress in the field. Furthermore, evaluating the quality
of SR images from generative models is still problematic.
Although DMs often produce more photorealistic images, they
typically score lower on standard metrics like PSNR and
SSIM [16]. However, these models tend to receive more favor-
able assessments from human evaluators [15]. LPIPS [178]
performs better reflecting this perception, but the domain of
image SR has to adapt to more diverse metrics, such as
predictors that reflect human ratings directly [179], [180]. For
instance, datasets with subjective ratings, like TID2013 [61],
and neural networks, such as DeepQA [62] or NIMA [63],
can be employed to predict human-like scoring of images and
should be further explored.

F. Image Manipulation

Image manipulation can be particularly useful in
multi-image SR for generating HR images that blend
characteristics from multiple sources, potentially improving
the quality and diversity of the output (e.g., satellite imagery
for SR predictions with flexible daylights). SRDiff [79]
proposed two potential extensions: content fusion and latent

space interpolation. Content fusion involves the combination
of content from two source images. For instance, they replace
the eyes in one source image with the face from another
image before conducting diffusion in the image space like
CutMix [181]. The backward diffusion successfully creates a
smooth transition between both images. In the latent space
interpolation model, the latent space of two SR predictions
is linearly interpolated to generate a new image. While these
extensions have yielded remarkable results, unlike other
generative models such as VAEs or GANs, DMs have been
found to offer less proficient latent representations [182].
Therefore, recent and ongoing research into the manipulation
of latent representations in DMs is both in its early stages
and greatly needed [183], [184], [185].

G. Cascaded Image Generation

Saharia et al. [15] presented cascaded image SR, in which
multiple DDPMs are chained across different scales. This
strategy was applied to unconditional and class-conditional
generation, cascading a model synthesizing 64 × 64 images
with SR3 models generating 1024× 1024 unconditional faces
and 256×256 class-conditional natural images. The cascading
approach allows several simpler models to be trained simul-
taneously, improving computational efficiency due to faster
training times and reduced parameter counts. Furthermore,
they implemented cascading for inference, using more refine-
ment steps at lower and fewer steps at higher resolutions.
They found this more efficient than generating SR images
directly. Even though their approach underperforms compared
to BigGAN [102] concerning cascaded generation, it still
represents an exciting research opportunity.

IX. CONCLUSION

DMs revolutionized image SR by enhancing both techni-
cal image quality and human perceptual preferences. While
traditional SR often focuses solely on pixel-level accuracy,
DMs can generate HR images that are esthetically pleasing and
realistic. Unlike previous generative models, they do not suffer
typical convergence issues. This article explored the progress
and diverse methods that have propelled DMs to the forefront
of SR. Potential use cases, as discussed in our applications
section, extend far beyond what was previously imagined.
We introduced their foundational principles and compared
them to other generative models. We explored conditioning
strategies, from LR image guidance to text embeddings. Zero-
shot SR, a particularly intriguing paradigm, was also a subject,
as well as corruption spaces and image SR-specific topics
like color shifting and architectural designs. In conclusion,
this article provides a comprehensive guide to the current
landscape and valuable insights into trends, challenges, and
future directions. As we continue to explore and refine these
models, the future of image SR looks more promising than
ever.
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