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ABSTRACT

Satellite imagery is a cornerstone for numerous Re-
mote Sensing (RS) applications; however, limited spa-
tial resolution frequently hinders the precision of such
systems, especially in multi-label scene classification
tasks as it requires a higher level of detail and feature
differentiation. In this study, we explore the efficacy
of image Super-Resolution (SR) as a pre-processing
step to enhance the quality of satellite images and thus
improve downstream classification performance. We
investigate four SR models - SRResNet, HAT, SeeSR,
and RealESRGAN - and evaluate their impact on multi-
label scene classification across various CNN architec-
tures, including ResNet-50, ResNet-101, ResNet-152,
and Inception-v4. Our results show that applying SR
significantly improves downstream classification perfor-
mance across various metrics, demonstrating its ability
to preserve spatial details critical for multi-label tasks.
Overall, this work offers valuable insights into the se-
lection of SR techniques for multi-label prediction in
remote sensing and presents an easy-to-integrate frame-
work to improve existing RS systems.

Index Terms— Multi-Label Scene Classification,
Remote Sensing, Image Super-Resolution

1. INTRODUCTION

Remote Sensing (RS) is vital for monitoring and an-
alyzing the Earth’s surface [1]. However, despite the
increasing demand for High-Resolution (HR) imagery
in this domain, limited sensor capabilities often con-
strain fine-grained classification, detection, or mapping
tasks [2, 3]. To alleviate these constraints - without
relying solely on costly HR sensors or upgrades - image
Super-Resolution (SR) offers a cost-efficient alternative
by generating HR images from Lower-Resolution (LR)
inputs [4]. While SR has been explored for various
classification tasks [5, 6, 7], its influence on multi-label
scene prediction in RS remains underexplored.

In RS, multi-label scene classification typically in-
volves detecting multiple land cover types, urban struc-
tures, vegetation, or water bodies within a single satel-
lite image, necessitating the capture of fine spatial de-
tails across diverse scales [8, 9]. Yet, with LR images,
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Fig. 1: Illustration of our proposed pipeline that uses im-
age super-resolution as a pre-processing step for multi-
label scene classification for improved label prediction.

classical approaches often fail to capture subtle bound-
aries or small objects, ultimately leading to diminished
precision [3]. By applying SR as pre-processing step,
shown in Figure 1, models can leverage these finer fea-
tures, leading to improved multi-label recognition [5].

This paper investigates the potential of SR to en-
hance multi-label scene classification in RS. We se-
lected a range of pre-trained SR techniques - including
diffusion-based, GAN-based, and CNN approaches -
and compare their performance on SR-enhanced and
original LR images [10, 11, 12, 13]. Our findings high-
light that using image SR excels at reconstructing spa-
tial details critical for classification. As a result, the
added details lead to improved identification of multi-
ple labels within a single image. In summary, we shed
light on the benefits and limitations of SR in improving
downstream prediction accuracy.

2. RELATED WORK

2.1. Remote Sensing

Singh et al. [14] explore the application of satel-
lite imagery for monitoring environmental changes.
The authors leverage various machine learning and
deep learning models such as ResNet[15], VGG[16],
Inception[17], and so on to classify satellite images
based on atmospheric conditions and land use. By em-
ploying multi-label classification, the authors captured
the intricate relationships between different environ-
mental factors.

Similar in spirit, Liu et al. [18] presents a simplified
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residual network model for multi-label classification of
RS images. The model leverages transfer learning with
ResNet-50, incorporating some techniques like batch
normalization, image augmentation and self-defined
loss evaluation index to enhance training efficiency and
accuracy. The proposed approach effectively addresses
challenges related to power consumption and perfor-
mance, achieving over 90% precision and recall

Similarly, Gardner et al. [19] explored multi-label
classification by applying CNN-based architectures like
VGG-16, Inception-v3, and ResNet-50 to classify Ama-
zon rainforest features and illegal mining activities. Al-
though a baseline model captured common categories,
it struggled with rare classes crucial for detecting illicit
operations. Notably, ResNet-50 outperformed other ar-
chitectures, demonstrating the value of deeper networks
for multi-label remote sensing tasks.

While deeper CNN architectures have yielded
promising results, the question of how SR might further
boost downstream classification performance in RS
remains underexplored. The present work addresses
this gap by systematically investigating the impact of
SR-driven enhancements.

2.2. Image Super-Resolution

A trained SR model Mθ : RH×W×C → Rs·H×s·W×C

should inverse the degradation relationship between
a LR image x ∈ RH×W×C and the HR image y ∈
Rs·H×s·W×C, where s denotes the scaling. The optimiza-
tion of θ is based on a dataset DSR = {(xi,yi)}Ni=1 of
N LR-HR pairs with the goal

θ∗ = argmin
θ

E(xi,yi)∈DSR
∥Mθ(xi)− yi∥2. (1)

Using SR have found use across diverse domains,
ranging from medical imaging, where sharper images
can critically affect patient outcomes, to satellite im-
agery, enabling more precise geographic analysis of the
Earth’s surface [20, 21, 1]. This work investigates the
influence of using existing and pre-trained SR methods
as a pre-processing stage to RS downstream tasks.

3. METHODOLOGY

Our goal is to apply SR models of the form Mθ :
RH×W×C → Rs·H×s·W×C prior to training a multi-label
classifier to improve the precision of RS downstream
tasks. Since the amount and quality of generally avail-
able images outnumber high-quality satellite images,
we refer to pre-trained SR models with fixed parameters
θ rather than training a new model Mθ from scratch.

3.1. SR Models

For SR methods, two primary factors drive performance:
the model architecture Mθ and the training objectives
to optimize θ [22]. For the latter, SR models can be
categorized into two groups: regression-based models,

which typically employ a regression loss, and generative
SR models (GANs and diffusion models) [23].

Consequently, we analyze representatives of each
category. For regression-based models, we employ the
ResNet-based model SRResNet [10, 24] and the vision
transformer HAT [25, 11]. For generative SR, we an-
alyze SeeSR [12] as a diffusion-based representative
and RealESRGAN [13] as a representative for GANs.
As image SR models are usually trained for 2×, 3×,
or 4×, we will use 4× pre-trained models to allow for
maximum flexibility for the multi-label scene classifier.

3.2. Multi-Label Classifier

We adopt four commonly used models for multi-label
scene classification, namely ResNet-50, ResNet-101,
ResNet-152, and Inception-v4. We train each model
under two configurations:

• Baseline (No SR): The network is trained di-
rectly on the original LR images (120× 120).

• With SR Pre-processing (SR): The network is
trained on images super-resolved by one of the
four SR models described in the previous Section
(i.e., SRResNet, HAT, SeeSR, or RealESRGAN).
We first apply the respective SR model (4× i.e.
480×480 resolution) and then feed the enhanced
images to the multi-label classifier.

3.3. Impact Assessment

To evaluate the impact of image SR models on the clas-
sifier under different aspects, we employ the following
evaluation metrics:

• Sample Accuracy (ACC): Measures the propor-
tion of correctly predicted labels among all labels.
Giving equal importance to each sample of the
test set.

• Hamming Loss (HL): Quantifies the fraction
of misclassified labels, capturing the multi-label
misalignment [26]. Lower HL indicates fewer
label-wise errors.

• One-Error (OE): Checks whether the top pre-
diction (the label with the highest probability)
is present in the true label set. A lower OE im-
plies the model’s highest-confidence prediction
is more likely correct.

• Precision (P), Recall (R), and F1-Score: Stan-
dard measures assessing the balance between cor-
rectly predicted labels (Precision) and the cov-
erage of positive instances (Recall). F1 is their
harmonic mean. All metrics are calculated based
on the sample (test) data.

• Macro F2 Score: An extension of F1 that places
additional emphasis on Recall. Useful when miss-
ing labels is costlier than having false positives.



Table 1: Accuracy (ACC), Hamming Loss (HL), One-Error (OE), Precision (P), Recall (R), and F1 Score
Comparison Across Models and Configurations. Best (classifier-wise) results are marked in bold.

ResNet-50 ResNet-101 ResNet-152 Inception-v4
ACC HL OE P R F1 ACC HL OE P R F1 ACC HL OE P R F1 ACC HL OE P R F1

No SR 0.411 0.138 0.323 0.556 0.564 0.526 0.413 0.144 0.345 0.534 0.570 0.525 0.402 0.137 0.371 0.533 0.546 0.512 0.278 0.153 0.498 0.458 0.327 0.360
SRResNet 0.474 0.138 0.231 0.647 0.586 0.583 0.462 0.126 0.272 0.609 0.592 0.571 0.419 0.144 0.295 0.550 0.587 0.535 0.333 0.136 0.330 0.547 0.381 0.422
HAT 0.448 0.125 0.265 0.617 0.570 0.559 0.457 0.119 0.278 0.619 0.569 0.564 0.464 0.115 0.241 0.648 0.560 0.570 0.421 0.159 0.338 0.530 0.585 0.531
SeeSR 0.445 0.122 0.290 0.606 0.561 0.552 0.446 0.122 0.291 0.613 0.555 0.572 0.452 0.122 0.295 0.595 0.587 0.562 0.233 0.171 0.540 0.361 0.295 0.306
RealESRGAN 0.439 0.124 0.277 0.622 0.555 0.550 0.440 0.122 0.284 0.598 0.566 0.550 0.455 0.120 0.265 0.626 0.561 0.560 0.325 0.142 0.437 0.487 0.412 0.419

Table 2: Macro F2 Score for 19 classes, evaluated on
ResNet-152 model. Best (label-wise) is marked in bold.

Class No SR SRResNet HAT SeeSR RealESRGAN

Urban fabric 0.519 0.534 0.428 0.506 0.452
Industrial or commercial units 0.249 0.235 0.256 0.179 0.258
Arable land 0.701 0.732 0.765 0.756 0.730
Permanent crops 0.356 0.374 0.341 0.408 0.257
Pastures 0.374 0.389 0.365 0.448 0.416
Complex cultivation patterns 0.633 0.512 0.556 0.628 0.488
Land principally occupied by agriculture 0.556 0.537 0.383 0.446 0.168
Agro-forestry areas 0.588 0.637 0.716 0.668 0.643
Broad-leaved forest 0.555 0.535 0.460 0.554 0.577
Coniferous forest 0.653 0.618 0.725 0.720 0.742
Mixed forest 0.754 0.552 0.568 0.719 0.729
Natural grassland & sparsely vegetated areas 0.013 0.037 0.013 0.0004 0.102
Moors, heathland & sclerophyllous vegetation 0.178 0.285 0.168 0.044 0.084
Transitional woodland, shrub 0.520 0.599 0.521 0.478 0.487
Beaches, dunes, sands 0.274 0.276 0.449 0.366 0.324
Inland wetlands 0.244 0.176 0.157 0.221 0.261
Coastal wetlands 0.082 0.111 0.226 0.045 0.089
Inland waters 0.575 0.662 0.678 0.683 0.642
Marine waters 0.089 0.602 0.597 0.430 0.535

Average Macro F2 score 0.417 0.443 0.440 0.437 0.420

4. EXPERIMENTS

We utilized a standard dataset for multi-label predic-
tion in remote sensing for our experiments: BigEarth-
Net [27, 28], containing 519,284 non-overlapping im-
age patches, where CORINE Land Cover (CLC)[29]
database provides one or more land cover class labels
(multi-labels) for each image[30]. Each patch is a seg-
ment of 120 × 120 pixels for bands of 10m. These 10m
band patches stacked to make RGB images(LR images).

4.1. Quantitative Results

Table 1 shows the quantitative results. In short, training
on SR-enhanced images outperforms the baseline across
all classifier backbones, confirming the value of SR in
recovering details beneficial for multi-label prediction.
Notably, SRResNet achieves the highest accuracy on
ResNet-50 and ResNet-101, demonstrating its strong
performance in moderately deep networks. Meanwhile,
HAT attains the best Hamming Loss on ResNet-101
and ResNet-152, indicating more precise label-wise
predictions when paired with deeper architectures.

Regarding One-Error, SRResNet provides the
largest reduction on ResNet-50 (0.231 vs. 0.323 base-
line). However, with deeper models such as ResNet-
152, HAT outperforms SRResNet (0.241 vs. 0.295).
This finding suggests that while SRResNet excels in
shallower configurations, HAT’s attention mechanisms
align better with higher-capacity networks. Similarly,
SRResNet consistently yields high F1 scores on ResNet-
50, partly due to a robust balance of Precision and Re-
call. In contrast, HAT demonstrates stronger Precision
and F1 in deeper setups (ResNet-152, Inception-v4).

Overall, these three perspectives (ACC/HL, OE, and
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Fig. 2: SR Comparison of HAT and RealESRGAN.
While HAT provides relatively balanced enhancements,
RealESRGAN tends to hallucinate details (e.g., overem-
phasizing streets and introducing artificial patterns in
forest regions), illustrating the pitfalls of generative SR
methods in certain remote sensing scenes.

P/R/F1) show consistent performance trends yet empha-
size different quality aspects. Despite their comple-
mentary perspectives, they collectively indicate that
attention-based SR (i.e., HAT) delivers the strongest
gains when paired with deeper networks. In contrast,
SRResNet provides the best quality for smaller archi-
tectures. While all tested SR methods generally en-
hance multi-label prediction, generative approaches
(i.e., SeeSR and RealESRGAN) hallucinate details,
which explains their reduced positive impact, as ex-
emplified in Figure 2.

By examining the class-level results via Macro F2
(see Table 2), we observe that SR notably boosts perfor-
mance for certain land-cover types, particularly those
defined by clear boundaries and texture (e.g., Marine
and Inland Waters). Yet, while a SR method improves
certain classes, it does not consistently improve predic-
tions across all labels. These variations suggest that
SR’s effectiveness can be class-specific and should be
factored into pre-processing decisions for multi-label
RS tasks.
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Fig. 3: Comparison of Grad-CAM visualizations in ResNet models between the baseline (No SR) and various SR
methods. SRResNet (for shallow classifier) and HAT (for deeper classifier) lead to more activation coverage across
the whole satellite image.

4.2. Qualitative Results

To gain deeper insight into how SR pre-processing influ-
ences network behavior, we employ Grad-CAM [31] to
visualize class activation maps in the final convolutional
layer of ResNet architectures. The results are shown in
Figure 3. Overall, SR-enhanced images exhibit more
pronounced and varied activations (highlighted by dark
red or blue regions), indicating that the classifier focuses
more strongly on distinct features. Interestingly, the
strongest performance gains often coincide with broadly
distributed positive CAM responses: for ResNet-50,
SRResNet yields widespread high-intensity activations,
whereas for ResNet-152, HAT demonstrates similarly
extensive coverage. These observations align with the
quantitative results, suggesting that spatially richer acti-
vations under SR pre-processing directly contribute to
improved multi-label classification.

One plausible explanation for the observed perfor-
mance gains and heightened activation variance is that
higher resolution inputs better align with the receptive
field that increases with deeper networks, allowing the
classifier to extract richer, more discriminative features
at each convolutional layer. Consequently, the classifier
can more effectively utilize these cues when predicting
multiple labels, leading to a broader and more varied
activation map in the Grad-CAM visualizations and ul-
timately improving overall classification performance.

5. CONCLUSION & FUTURE WORK

In this study, we have investigated the potential of im-
age SR as a pre-processing step for improving multi-
label scene classification in RS. Our findings reveal that
across diverse SR architectures (e.g., SRResNet, HAT,
SeeSR, RealESRGAN) and classification backbones
(ResNet-50, ResNet-101, ResNet-152, Inception-v4),
SR-based enhancements can yield notable gains in mul-
tiple evaluation metrics, including accuracy, Hamming
Loss, One-Error, F1-Score, and Macro F2 Score. No-
tably, SRResNet consistently boosted performance in
shallower models (ResNet-50, ResNet-101), whereas
the attention-based HAT approach aligned more effec-
tively with deeper architectures (ResNet-152, Inception-
v4). In conclusion, this study bridges the gap between
SR and multi-label classification in satellite imagery, of-
fering a robust framework for improving remote sensing
applications.

Future work should also analyze the effect of using
SR models trained on satellite images for multi-label
scene classification.
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