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Abstract. We propose ClassroomKD, a novel multi-mentor knowledge
distillation framework inspired by classroom environments to enhance
knowledge transfer between the student and multiple mentors with dif-
ferent knowledge levels. Unlike traditional methods that rely on fixed
mentor-student relationships, our framework dynamically selects and
adapts the teaching strategies of diverse mentors based on their effective-
ness for each data sample. ClassroomKD comprises two main modules:
the Knowledge Filtering (KF) module and the Mentoring module.
The KF Module dynamically ranks mentors based on their performance
for each input, activating only high-quality mentors to minimize error ac-
cumulation and prevent information loss. The Mentoring Module adjusts
the distillation strategy by tuning each mentor’s influence according to the
dynamic performance gap between the student and mentors, effectively
modulating the learning pace. Extensive experiments on image classifica-
tion (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO
Keypoints and MPII Human Pose) demonstrate that ClassroomKD out-
performs existing knowledge distillation methods for different network
architectures. Our results highlight that a dynamic and adaptive approach
to mentor selection and guidance leads to more effective knowledge trans-
fer, paving the way for enhanced model performance through distillation.

Keywords: knowledge distillation, multi-mentors, lifelong learning, im-
age classification, pose estimation, classroom learning

1 Introduction

Knowledge distillation (KD) [1] is a widely adopted model compression technique
in deep learning, where a smaller, more efficient student model learns to replicate
the behavior of a larger, more complex teacher model. While traditional KD
methods [1][2][3] typically employ a single teacher, multi-teacher (or multi-mentor)
distillation has been proposed to further enhance performance by leveraging an
ensemble of teachers [4]. This setup is expected to provide richer and more diverse
⋆ Equal contribution.
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knowledge, improving the student’s generalization and robustness. We use the
term mentor to describe all networks involved in teaching the student, regardless
of their size or role.
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Fig. 1: (a) DML: Peer models learn from each other without a hierarchical teacher
structure. (b) TAKD: A sequential mentor-student hierarchy with large-to-small
knowledge transfer. (c) DGKD: Each mentor teaches all smaller models. (d)
ClassroomKD: Our proposed method dynamically selects mentors for each data
sample based on the current input and ranks them using the Knowledge Filter-
ing Module. (e) Adaptive Mentoring: The Mentoring Module adjusts teaching
strategies of each active mentor according to dynamic rankings, ensuring optimal
knowledge transfer.

Despite its potential benefits, multi-mentor distillation faces several significant
challenges:

Large Capacity Gap: Employing multiple large mentors can create a sub-
stantial capacity gap between the collective representation power of the mentors
and that of the student. This gap can hinder the student’s ability to effectively
mimic the combined knowledge of the mentors, leading to suboptimal learning
outcomes. To bridge this gap, some works [5,6] have introduced intermediate-sized
mentors alongside a large teacher. However, smaller mentors may be less effective,
potentially introducing additional errors into the student’s knowledge.

Error Accumulation: The lower performance of smaller mentors can con-
tribute to cumulative errors in the distillation process. This is particularly prob-
lematic in sequential distillation frameworks like TAKD (Figure 1(b)), where each
mentor teaches only the subsequent smaller model. Such setups can lead to an
"error avalanche," where inaccuracies from lower-performing mentors degrade the
student’s performance [6]. Although DGKD (Figure 1(c)) attempts to mitigate
this by allowing each mentor to teach all smaller models and randomly dropping
some mentors during training, these strategies can result in valuable information
loss and reduced learning efficiency.
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Lack of Dynamic Adaptation: The performance gap between the student
and its mentors is not static; it evolves throughout training (as visualized in
Appendix A.3 Figures 9-11). Current methods do not adequately address these
dynamic scenarios, limiting the effectiveness of multi-mentor distillation [7].
Without an adaptive strategy, the potential benefits of multi-mentor distillation
are not fully realized.

Observing that (1) a mentor’s performance varies across different data samples,
(2) each mentor possesses distinct teaching capabilities due to varying capacity
gaps, and (3) the performance gap evolves during training, we draw parallels
between knowledge distillation and Vygotsky’s Zone of Proximal Development
(ZPD) (1978). His theory emphasizes learning with a More Knowledgeable Other
(MKO) and the need for scaffolded support.

We propose ClassroomKD (Figure 1(d)), a novel multi-mentor distillation
framework inspired by classroom dynamics (see Appendix F). Our method
introduces two key modules (Figure 1(e)) designed to address the following
questions:

Q1: Which mentors are effective teachers for a given data sample?
We introduce the Knowledge Filtering Module to intelligently select

mentors(or the MKOs). This module dynamically ranks all mentors based
on their performance for each input, activating only those with sufficient
performance. A mentor is deemed effective and activated if its predictions
are accurate and more confident than the student’s. This minimizes error
accumulation and information loss.

Q2: How much information should the student learn from each active
mentor?

Our Mentoring Module addresses this by tuning the teaching strategy
based on the performance gap between the student and each active mentor.
Specifically, we adjust each mentor’s distillation temperature to control the
teaching pace(scaffolding), allowing the student to appropriately weigh infor-
mation received from each mentor before integrating it into its own knowledge.

By addressing these questions iteratively, ClassroomKD ensures a continuously
optimized learning process that adapts to the student’s evolving capabilities. Our
contributions are as follows:

1. ClassroomKD Framework: We introduce ClassroomKD, a novel multi-
mentor distillation framework to dynamically select effective mentors and
adapt teaching strategies.

2. Knowledge Filtering Module: We develop a Knowledge Filtering Module
to enhance distillation quality by selectively activating high-performance
mentors, thereby reducing error accumulation and preventing information
loss.

3. Mentoring Module: We create a Mentoring Module that dynamically
adjusts teaching strategies based on the performance gap between the student
and each active mentor, optimizing the knowledge transfer process.
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4. Empirical Validation: Through extensive experiments on image classifi-
cation (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO
Keypoints and MPII Human Pose), we demonstrate that ClassroomKD
significantly outperforms state-of-the-art KD methods.

2 Related Work

2.1 Knowledge Distillation Approaches

Knowledge distillation (KD) [1] is a widely adopted technique for compressing
deep neural networks, where a smaller student model learns from a larger teacher
model by minimizing the distance between their output probability distributions,
or soft labels. Traditional KD methods primarily focus on logit-based distilla-
tion, where the student learns directly from the teacher’s output logits. Notable
methods include PKT [8], which employs probabilistic knowledge transfer, FT [9],
which transfers factorized feature representations, and AB [10], which leverages
activation boundaries formed by hidden neurons.

Feature-based distillation methods transfer knowledge by aligning interme-
diate representations between the teacher and student. FitNets [3] introduced this
approach using intermediate feature maps for training. Later methods like AT [2],
VID [11], and CRD [12] enhance knowledge transfer by matching attention maps,
utilizing variational information distillation, and employing contrastive learning,
respectively.

Relation-based methods focus on preserving the structural relationships
within the teacher’s feature maps. RKD [13] maintains data point structures
through relational knowledge distillation, while SP [14] and SRRL [15] optimize
for similarity-preserving objectives. DIST [16] addresses large capacity gaps by
applying a correlation-based loss to maintain both inter-class and intra-class
relationships, enhancing distillation efficiency.

Recent approaches have explored more specialized distillation techniques.
WSLD [17] introduces weighted soft labels to balance bias-variance trade-offs,
while One-to-All Spatial Matching KD [18] focuses on spatial matching tech-
niques. OFA [7] optimizes feature-based KD by projecting features onto the logit
space, significantly improving performance for heterogeneous models. To enhance
distillation effectiveness, several methods have incorporated adaptive strategies.
CTKD [19] dynamically learns the temperature during training to gradually in-
crease learning difficulty, and DTKD [20] employs real-time temperature scaling
to improve knowledge transfer efficiency.

2.2 Multi-Teacher Knowledge Distillation

Multi-teacher distillation methods aim to further enhance student performance
by leveraging an ensemble of mentors [4].

Online knowledge distillation has been particularly successful in this
context. Deep Mutual Learning (DML) [21] introduces a framework where multiple
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peer models learn from each other simultaneously during training, fostering
collaborative learning among smaller networks and outperforming traditional one-
way (offline) distillation. Other online methods include ONE [22], OKDDip [23],
and FFM [24], which often outperform offline methods. Online distillation has
also been extended to pose estimation tasks [25]. SHAKE [26] proposed using
proxy teachers with shadow heads to use the benefits of online distillation in
offline settings.

To address the capacity gap in multi-teacher setups, Teacher-Assistant KD
(TAKD) [5] employs intermediate-sized teacher assistants (TAs) to bridge the
gap between the largest teacher and the student. However, sequential distillation
through TAs can result in an "error avalanche", where errors propagate at
each step, reducing final performance. Adaptive Ensemble Knowledge Distillation
(AEKD) [27] mitigates this issue by using an adaptive dynamic weighting strategy
to reduce error propagation in the gradient space. Densely Guided KD (DGKD) [6]
further improves upon these methods by guiding each TA with both larger TAs
and the main teacher, enabling a more gradual and effective transfer of knowledge.
Additionally, DGKD introduces a strategy of randomly dropping mentors during
training to expose the student to diverse learning sources, enhancing overall
learning robustness.

While existing multi-teacher methods offer various mechanisms for knowledge
distillation, they still grapple with challenges such as managing the capacity
gap, mitigating error accumulation, and adapting to dynamic mentor-student
relationships.

3 Methodology

ClassroomKD is a novel multi-mentor distillation framework inspired by real-world
classroom environments. It is designed to address the challenges of large capacity
gaps, error accumulation, and lack of dynamic adaptation. Our framework is
illustrated in Figure 2.

Classroom Definition. A classroom comprises (1) a high-capacity teacher
model, t, (2) a small student model, s, and (3) n peer models of intermediate
capacities, P = {pi}ni=1. We define M = {t} ∪ P as the set of pre-trained mentors
that remain frozen during the student’s training process. At each training step,
the student distills knowledge from a dynamically selected subset of mentors,
called the active mentors (M′ ⊆ M). The set of all classroom models is denoted
C = {s}∪M. We use the Knowledge Filtering (KF) Module for intelligent mentor
selection and the Mentoring Module to adjust the teaching pace based on the
capacity gap of each mentor-student pair.

3.1 Knowledge Filtering Module

The KF Module is designed to intelligently select which mentors should contribute
to the student’s learning process for each data sample. This selective approach
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Fig. 2: The ClassroomKD framework. comprises a Knowledge Filtering
(KF) Module and a Mentoring Module. The KF Module optimizes learning
by selectively incorporating feedback from higher-ranked mentors, reducing noise
transfer and preventing error accumulation. The Mentoring Module adjusts
mentor influence based on their performance relative to the student.

mitigates error accumulation and prevents the student from learning from less
effective mentors.

Let x = {xk}Nk=1 be a batch of training data with size N , and y = {yk}Nk=1 be
the ground-truth labels. The batch inputs x are forwarded through all classroom
models to obtain the predicted logits ŷm, which are then converted to probabilities
with a softmax operation. We isolate the probability assigned to the true class y
and compute a weighted average of the correct prediction probability across the
batch for each model. For all m ∈ C, this is defined as:

ŷm = m(x) (1)
pm = softmax(ŷm) (2)
pm

gt = pm[y] = 1/(exp(CELoss(ŷm, targets)) (3)

wm =
1

N

N∑
k=1

pm
gt(xk) (4)

The weights wm reflect the performance of model m on the current training
batch. We use the computed weights as a proxy for mentor suitability in the
distillation process and rank mentors based on their relative performance to all
classroom models:

rm = λ

(
wm∑

m∈C wm

)
(5)
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where rm is a normalized ranking score of model m, and λ is a scaling parameter
set to the number of mentors in the classroom. Active mentors M′ are defined as
those with higher ranks than the student:

M′ = {m | m ∈ M and rm > rs} (6)

This ensures the student learns from high-quality sources by selecting mentors
based on their performance ranks. This selective approach prevents error
accumulation as only mentors outperforming the student can teach it, avoiding
the propagation of errors from less effective mentors. Additionally, it avoids
information loss by consistently selecting the best-performing mentors, unlike
random mentor-dropping strategies [6].

3.2 Mentoring Module

The Mentoring Module dynamically adjusts the influence of each active mentor
based on the mentor-student performance gap. This adaptive teaching strategy
facilitates effective knowledge transfer tailored to the student’s evolving ability
to absorb information from each mentor.

The distillation loss minimizes KL divergence between the student and men-
tor’s output distributions:

Ldistill(P,Q; τ) = τ2 · KL (softmax (P/τ) ∥ softmax (Q/τ)) (7)

where P and Q represent the logits from the mentor and student networks,
respectively, and τ is a temperature hyperparameter that smooths the probability
distributions during the distillation process.

The temperature τ controls the sharpness of the probability distributions,
affecting the knowledge transfer from a mentor to the student. For each active
mentor m ∈ M′, we adjust the distillation temperature τm based on the per-
formance gap between the student and the mentor. The performance gap is
measured as the difference in their ranking scores:

∆rm = |rm − rs|/rm (8)
τm = 1 +∆rm · τ (9)

Here, τ is the base temperature, and τm increases with ∆rm, which represents
the mentor-student performance gap. A larger ∆rm results in a higher τm,
smoothing the mentor’s output distribution. This adjustment theoretically slows
down the distillation process by softening the mentor’s predictions, allowing the
student to assimilate knowledge more gradually when the performance gap is
large. Conversely, the student receives sharper, more direct guidance when the
gap is small.

The total loss L is computed by combining a task-specific loss Ltask with the
weighted distillation losses from all active mentors:

Lclassroom = αLtask(ŷ
s,y) + β

∑
m∈M′

γmLdistill(ŷ
m, ŷs; τm) (10)

L = δ(Ltask(ŷ
s,y) + Ldistill(ŷ

t, ŷs; τ t = 1)) + Lclassroom (11)
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Here, α = rs represents the student’s self-confidence, which scales the task-specific
loss. As the student’s rank rs improves, α increases, encouraging the student
to rely more on its own predictions. For each mentor m, γm = rm scales the
corresponding distillation loss, where rm is the mentor’s rank relative to the
student. β is a hyperparameter to control the influence of distillation loss relative
to the task loss. This weighing, along with the mentor-specific temperature τm,
ensures that higher-performing mentors have a greater influence on the student’s
learning, with each mentor distilling knowledge at an appropriate rate based on
the performance gap. We use Cross-Entropy Loss for classification and MSE Loss
for pose estimation tasks.

This promotes independent learning by increasing the student’s reliance on
its own task performance as its confidence grows. It also ensures that the student
benefits from guidance based on the relative performance of the active mentors,
effectively balancing task-specific training with distillation from the most suitable
mentors. This dynamic and adaptive approach ensures optimized knowledge
transfer, minimizes error accumulation, and enhances the overall performance
of the student model.

4 Experiments

This section presents our experiments to evaluate the effectiveness of Class-
roomKD using different datasets. We primarily use CIFAR-100 [28] classification
for detailed comparisons with state-of-the-art single and multiple-teacher distilla-
tion methods. This also includes online approaches using multiple mentors. In
addition, we also report results on ImageNet [29] classification and human pose
estimation using the COCO Keypoints [30] and MPII Human Pose [31] datasets.
Our results show that ClassroomKD outperforms existing methods under various
settings, highlighting the robustness and adaptability of our method.
Implementation Details. For CIFAR-100, we
train for 240 epochs with a batch size of 64, a
learning rate of 0.05 decayed by 10% every 30
epochs, and a 120-epoch warm-up phase. We use
SGD with 0.9 momentum and 5×10−4 weight de-
cay. The temperature τ is set to 12 via grid search
(Figure 3). For ImageNet, models are trained for
100 epochs with τ = 4. For pose datasets, models
are trained for 210 epochs with τ = 4. The scal-
ing factor λ is n+ 1 for all experiments, where
n is the number of peers. We used β = 1.0 for
classification and β = 2.5 for pose estimation.
Furthermore, we set δ = 0 for CIFAR100 dataset
and δ = 1 for the large-scale Imagenet dataset.

2 4 6 8 10 12
65.4
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65.8

66

Temperature

St
ud
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op
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Fig. 3: Temperature selec-
tion. Grid search using fixed-
temperature KD, with the
best student performance at
τ = 12, used as the base tem-
perature in Eq. 9.

We follow standard training protocols, with mentors pre-trained and kept
frozen.
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4.1 CIFAR-100 Classification

We begin by comparing ClassroomKD against single-teacher distillation methods
in Table 1. The table includes a variety of teacher–student pairs, covering both
homogeneous (e.g., ResNet 110 → ResNet 20) and heterogeneous (e.g., VGG 13
→ MobileNetV2) architectures.

Table 1: Comparison with single-teacher distillation methods on
CIFAR-100 classification. We report top-1 accuracy (%). KD methods are
grouped by feature, relation, and logit-based. Best values in logit-based methods
are bold, second-best underlined, and overall best blue
Method Homogeneous architectures Heterogeneous architectures

Teacher R110 R110 R56 VGG13 VGG13 R32×4 W-40x2 R50 Swin-T
Student R20 R32 R20 VGG8 MBV2 SN-V2 SN-V1 MBV2 R18

NOKD 69.06 71.14 69.06 70.68 64.60 71.82 70.50 64.60 74.01

FitNets [3] 68.99 71.06 69.21 73.54 64.14 73.54 73.73 63.16 78.87
AT [2] 70.22 72.31 70.55 73.62 59.40 72.73 73.32 - -
VID [11] 70.16 72.61 70.38 73.96 - 73.40 73.61 67.57 -
CRD [12] 71.46 73.48 71.16 73.94 69.73 75.65 76.05 69.11 77.63
SimKD [32] - - - 74.93 - 77.49 - - -
SMKD [18] 71.70 74.05 71.59 74.39 - - - - -

RKD [13] 69.25 71.82 69.61 73.72 64.52 73.21 72.21 64.43 74.11
SP [14] 70.04 72.69 69.67 73.44 66.30 74.56 74.52 - -
SRRL [15] 71.51 73.80 - 73.23 69.34 75.66 76.61 - -
DIST [16] - - 71.75 - - 77.35 - 68.66 77.75

KD [1] 70.67 73.08 70.66 72.98 67.37 74.45 74.83 67.35 78.74
PKT [8] 70.25 72.61 70.34 73.37 - 74.69 73.89 66.52 -
FT [9] 70.22 72.37 69.84 73.42 - 72.50 72.03 - -
AB [10] 69.53 70.98 69.47 74.27 - 74.31 73.34 - -
WSLD [17] 72.19 74.12 72.15 - - 75.93 76.21 - -
CTKD [19] 70.99 73.52 71.19 73.52 68.46 75.31 75.78 68.47 -
DTKD [20] - 74.07 72.05 74.12 69.01 76.19 76.29 69.10 -
OFA [7] - - - - - - - - 80.54

Ours 72.06 74.71 72.13 75.29 70.26 76.74 75.81 70.23 80.32

Overall Improvements. ClassroomKD consistently outperforms baseline logit-
based methods, as well as many feature-based and relation-based methods.
Notably, our method competes favorably with recent approaches that employ
adaptive temperature scaling, such as CTKD [19] and DTKD [20]. These gains
suggest that our combination of selective mentor activation and dynamically
adjusted temperatures more robustly handles the evolving capacity gap than
strategies that only tune temperature globally.

Capacity Gap Mitigation. In large-teacher/small-student pairings (e.g., ResNet-
110 → ResNet-20, VGG-13 → MobileNetV2), the capacity gap is significant.
ClassroomKD explicitly tackles this by filtering out under-performing mentors in
a data-dependent way, reducing “noisy guidance.” This proves especially helpful
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in preventing a performance plateau observed in many other KD methods when
the teacher is much larger.

4.2 CIFAR-100 Classification with Multiple Mentors

We next evaluate the multi-mentor scenario in Table [2a], where each classroom
includes a single large teacher and several intermediate-capacity peers (details
in Appendix D). We compare both online frameworks (e.g., DML [21] and
SHAKE [26] and offline ones (e.g., AEKD [27], DGKD [6]).

Defining a Simple Baseline. Following SOTA methods [26,33], we use AVER as
the simplest baseline in our multi-mentor comparisons. This is a direct counterpart
of KD in single-teacher experiments and is defined as:

LAVER = Ltask(ŷ
s,y) +

∑
m∈M

Ldistill(ŷ
m, ŷs; τ) (12)

Each teacher is weighted equally without any ranking or temperature adaption;
the student naively attempts to learn the aggregate of all teachers’ knowledge.

Table 2: Comparison with multi-teacher distillation methods.

(a) Results on CIFAR-100 classification. We
report top-1 accuracy (%). KD methods are grouped
by online and offline. ClassroomKD is offline. Best
and second-best values in offline methods are bold
and underlined, respectively, and overall best in blue.
Complete classroom configurations with details about
the peers are provided in the appendix.

Method Same Archs Mixed Archs

Teacher WR40x2 R110 R56 VGG13 VGG13 W-40x2
Student WR16x2 R20 R20 VGG8 MBV2 SN-V1

NOKD 73.64 69.06 69.06 70.68 64.60 70.50

DML 74.83 70.55 70.24 72.86 66.30 74.52
ONE 74.68 70.77 70.43 72.01 66.26 -
SHAKE 75.78 - 71.62 73.85 68.81 76.42

TAKD 75.04 - 70.77 73.67 - -
AEKD 75.68 71.36 71.25 74.75 68.39 76.34
EBKD 74.10 68.24 76.61
DGKD 76.24 - 71.92 74.40 - -
CA-MKD - - - 74.30 69.41 77.94

AVER 74.98 71.20 71.08 73.18 62.94 73.00
Ours 76.74 72.06 72.13 75.29 70.26 75.81

(b) Results on ImageNet.

T: R34, S: R18, 4 P

NOKD 69.75
DML 71.03
ONE 70.55
SHAKE 72.07
KD 70.66
CRD 71.17
AVER 70.63
Ours 71.49

(c) Pose Estimation Results
with 4 mentors. We report PCKh
for MPII and AP for COCO.

Dataset MPII COCO

Teacher HRNet-W32-D RTMP-L
Student LiteHRNet-18 RTMPose-t
Peers Same Mixed Same

NOKD 85.91 85.91 68.20
AVER 86.64 86.07 69.26
Ours 86.72 86.37 69.73

Directly aggregating multiple mentors (AVER) often yields modest improve-
ments. ClassroomKD takes this further by ranking and selectively activating
mentors, reducing the risk of error accumulation from weaker ones.
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Comparison with Specialized Methods. Techniques like TAKD [5] or DGKD [6]
were devised primarily to address large capacity gaps and error propagation,
yet ClassroomKD still shows consistently higher accuracy. This underscores the
advantage of our fine-grained, per-sample mentor filtering over either purely
sequential or random-drop strategies.

Fewer Mentors, Stronger Gains. Interestingly, we outperform approaches like
AEKD [27], which rely on more mentors than we do. This highlights that mentor
quality and selective usage are more crucial to final student performance than
simply increasing the number of possible teachers.

4.3 ImageNet Classification with Multiple Mentors

To assess scalability, we evaluate ClassroomKD on ImageNet in Table 2b. Class-
roomKD maintains its improvements even when dealing with large-scale data,
demonstrating the generality of the rank-based mentor selection. While online
SHAKE remains slightly higher, our method still surpasses classic offline KD
methods and the naive multi-mentor baseline (AVER).

Partial Online vs. Offline Gap. Our offline approach does not achieve the
same final result as online SHAKE, which benefits from constant inter-model
updating. Still, we remain close, suggesting that an adaptive offline framework
can approximate or rival online methods without overheads such as co-training
multiple large models simultaneously.

4.4 Pose Estimation with Multiple Mentors

Finally, we test ClassroomKD on 2D human pose estimation tasks—both on
COCO Keypoints and MPII Human Pose—presented in Table 2c. Each classroom
includes a large high-accuracy teacher (e.g., HRNet-W32-D) plus up to four
additional peers. Additional details on our adaptation for pose estimation (e.g.,
how we compute ranks for heatmap vs. SimCC heads) appear in Appendix B.

Performance Gains. Unlike classification, pose estimation requires learning struc-
tured output (e.g., heatmaps, SimCC x/y logits). Our experiments show that
the same rank-based selection and adaptive temperature scaling indeed trans-
fer effectively to these more complex output heads. ClassroomKD consistently
achieves better PCKh (MPII) and AP (COCO) than the simplest multi-mentor
baseline (AVER). This is mainly attributed to removing guidance from less
reliable peers—particularly at the early epochs when the capacity gap is large.

5 Ablation Studies

We conduct a series of ablation studies to understand the individual contributions
of different components of our ClassroomKD framework, providing insights into
our design choices.
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Table 3: Ablation study to assess the impact of ClassroomKD components.

(a) Role of Multiple Mentors. Single-
teacher distillation slightly improves student
performance compared to vanilla training.
Intermediate mentors (peers) and adaptive
distillation further enhances learning.

Student Teacher Peers Adaptive Top-1 Accuracy

✓ ✗ ✗ ✗ 63.31
✓ ✓ ✗ ✗ 63.35
✓ ✓ ✓ ✗ 65.96
✓ ✓ ✓ ✓ 68.52

(b) Adaptive Distillation in Class-
roomKD. We analyze the role of the
KF Module and Mentoring Module in our
adaptive method. Both components con-
tribute to overall performance.

KF Module Mentoring Module Top-1 Accuracy

✗ ✗ 65.96
✗ ✓ 67.25
✓ ✗ 68.49
✓ ✓ 68.52

Role of System Components. In Table 3a, we observe a significant im-
provement when moving from single-teacher distillation (row 2) to a multi-mentor
setup (row 3). The presence of multiple mentors, specifically the intermediate-
sized peers, bridges the capacity gap between the large teacher and the small
student. This gap is a well-known limitation in traditional KD, where the student
struggles to fully comprehend the knowledge transferred from a much larger
teacher. Introducing peers, which have capacities between the teacher and student,
effectively provides a smoother learning gradient for the student, facilitating a
more gradual and interpretable knowledge transfer.

The adaptive distillation strategy (row 4) boosts accuracy by 2.56%,
highlighting the limitations of static distillation methods. By adjusting distillation
based on the student’s progress and mentor outputs, ClassroomKD ensures
more efficient learning, especially during critical phases where mentor usefulness
varies. Table 3b shows that the KF Module improves accuracy from 65.96%
to 68.49% by filtering out irrelevant knowledge, while the Mentoring Module
dynamically adapts teaching strategies, raising performance to 67.25%. Together,
these modules achieve the highest accuracy of 68.52%, ensuring both quality and
adaptability in knowledge transfer.

We examine the classroom composition and further analyze our framework in
the following sections.

5.1 Classroom Size and Composition

This section examines the impact of both the number and diversity of mentors
on student performance within ClassroomKD. Our experiments investigate dif-
ferent mentor configurations, including varying mentor quantities and diverse
architectures and performance levels.

Impact of peer quantity. Figure 4a and 4b illustrates the effect of increasing
the number of peers in the classroom. Without any peers, the student achieves
63.35% top-1 accuracy. However, as peers are added, performance steadily im-
proves, reaching 67.53% with five peers. This improvement demonstrates that
incorporating intermediate mentors (peers) with varied capacities helps bridge
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but the marginal gain diminishes be-
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limit the size of our classrooms to six
mentors in all subsequent experiments.
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(b) Fixing mentor architecture and size by
using multiple instances of the same mentor
at different training checkpoints, we observe
that student accuracy still improves with the
number of mentors. This indicates that diver-
sity in mentor performance alone is enough to
enhance student learning.
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mentor distillation (AVER) highlights the ben-
efit of our adaptive distillation with dynamic
mentor selection as the classroom grows.

Fig. 4: Effect of Classroom Size and Composition. We investigate the effect
of mentor count, their architectures, and performance differences on learning.

the gap between the large teacher and small student, making knowledge transfer
more effective. However, the performance improvement plateaus beyond five peers.
This suggests that while adding mentors benefits learning, the gain diminishes
beyond a certain point due to redundancy in the knowledge being transferred.
Therefore, we limit our classrooms to six mentors in all subsequent experiments
to balance efficiency and performance.

Architectural Diversity (Table 4a): We observe that using mentors with di-
verse architectures (e.g., VGG, ResNet, and ShuffleNet) yields better performance
(68.52%) compared to using multiple instances of the same architecture (67.53%).
Interestingly, this improvement occurs despite the fact that the total parameter
count of the diverse mentors (12.3M) is significantly lower than that of the
homogeneous set (24.8M). This indicates that architectural diversity introduces
richer and more varied learning signals, which are more effective for knowledge
distillation.

Performance Diversity (Table 4b): We also evaluate the effect of mentor
performance diversity by creating classrooms composed of mentors from different
performance brackets. When mentors are homogeneous in terms of performance
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Table 4: Effect of Mentor Diversity. We investigate the role of mentor
diversity in terms of architecture and performance levels.

(a) Diversity in mentor archi-
tectures. Diverse mentor architec-
tures improve distillation perfor-
mance compared to a homogeneous
setup, even when the parameter
count of the diverse mentors is lower.
This indicates that architectural di-
versity provides valuable learning
signals.

Classroom Mentors Params Top-1

Same EN-B0 x6 24.8M 67.53
Diverse VGG13, R8,

R14, R20,
SV1, SV2

12.3M 68.52

(b) Diversity in mentor performance.
Classrooms with low-performing mentors, av-
erage mentors (a mix of medium and high per-
formers), and diverse mentors (a combination
of low, medium, and high performers) are com-
pared. The diverse group, with a balanced mix
of performance levels, yields the best student
accuracy, highlighting the benefit of including
mentors with varied accuracy for effective dis-
tillation.

Mentors 20-50% 50-65% 65-73% Top-1

Low ✓✓✓ ✓✓ - 67.77
Average - ✓✓✓ ✓✓ 67.53
Diverse ✓ ✓✓ ✓✓ 68.29

(either all low- or all high-performing), student performance remains lower.
However, a diverse set of mentors, comprising both low- and high-performing
peers, leads to the highest student accuracy (68.29%). This suggests that having
varied knowledge sources across performance levels provides complementary
learning experiences for the student, facilitating more robust distillation.

5.2 Temperature in Mentoring Module

We explore the role of adaptive temperature ( τ) in the Mentoring Module and its
impact on bridging the capacity gap between classroom networks. Our approach
adjusts the temperature dynamically based on the student’s learning progress,
with higher τ values at the start to accommodate the larger capacity gap, which
gradually decreases as the student’s understanding improves (see fig.5). This
adaptive strategy allows mentors to effectively “slow down” the teaching process
during early stages and accelerate it later, ensuring effective knowledge transfer.

In our experiments, using an adaptive τ strategy yields a significant im-
provement in student performance. The adaptive method, which adjusts τ based
on the student’s progress, achieves a top-1 accuracy of 69.78%, compared to a
static τ setup where performance remains lower (65.43% to 65.87% for fixed
values). This demonstrates that adapting the teaching pace based on the student’s
understanding leads to better learning outcomes.

Comparison with DTKD. We compared our approach with DTKD’s
dynamic temperature strategy by adding their method to our mentoring module.
While DTKD works well with a single teacher (row 1), it is not as effective
when used with multiple mentors of different capabilities. This is because DTKD
assumes that all mentors predict the correct label and does not fully address
the dynamic capacity gap between the teacher and student during the training
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Fig. 5: Effect of temperature adap-
tion. Our adaptive approach indepen-
dently adjusts the temperature for each
mentor (teacher and peers) over time, al-
lowing them to optimize their teaching
strategies dynamically across epochs.

Table 5: Temperature adaption
strategy. We compare our tempera-
ture adaptation method to DTKD [20]
by replacing our mentoring module
with their dynamic temperature compu-
tation. Our mentoring module outper-
forms DTKD’s temperature adaption
strategy with τ = 12 (our default) and
τ = 4 (tuned for DTKD).

Method Adaption τ MBV2 R20

DTKD DTKD 4 69.10 72.05
Ours DTKD 4 64.36 71.18
Ours DTKD 12 68.03 70.02
Ours Ours 12 70.23 72.13

process. In contrast, our method masks mentor logits with ground-truth labels,
and adapts more effectively to evolving capacity gaps, achieving consistently
better results across different network architectures.

5.3 Ranking Strategies in KF Module

We study the effect of our ranking strategy in the KF Module, which dynamically
activates the teacher and peers to guide the student. In Figure 6, we observe
the evolution of ranks over time, where the teacher (red) consistently holds a
higher rank than all other mentors because of its superior performance. Peer ranks
(green) fluctuate, and ineffective peers are deactivated as their ranks fall below the
student’s rank (blue) during training. This dynamic mentor activation prevents
error accumulation from underperforming mentors and allows the student to
progressively improve.

In Table 6, we explore an alternative ranking strategy (Method B) by
replacing Eq. 5 with:

j = argsort(wm | m ∈ C) for m ∈ C (13)

rm = λ · j−1(m) (14)

where rm is a ranking score, λ is a scaling parameter set to 0.1, and j−1(m)
gives the index of model m in a sorted list of weights. This results in uniformly
distributed ranks (0.1, 0.2, 0.3, ...) instead of the weighted rank distribution in
our original formulation. The results show that the proposed ranking method
works better. However, we note that even this alternative ranking computation
performs better than baseline methods for multiple networks. This improvement
stems from the rank-based weighting mechanism, which focuses the student’s
learning on more challenging and discriminative classes, reducing sensitivity to
noise and enhancing overall learning efficiency.
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Fig. 6: Rank-based mentor activa-
tion. Ranks evolve during training, re-
flecting the dynamic nature of capacity
gaps. ClassroomKD uses high-quality
mentors (red and green), deactivating
ineffective mentors (black) who rank
below the student (blue).

Table 6: Choice of Ranking Strategy.
We compare two ranking methods. Here,
we employ different networks for peers.
(A) we employ class ranks as α, β (B)
We use discretised probabilities λ. We
observe that using ranks as loss weights
improves student network performance
compared to probabilities.

Teacher R110 R110 R56 VGG13
Student R20 R32 R20 VGG8

Method B 71.94 74.28 72.56 73.58
Ours(A) 72.06 74.71 72.13 75.29

Teacher VGG13 R32×4 R32×4 R50
Student MBV2 SN-V2 SN-V1 MBV2

Method B 68.52 75.71 75.08 69.78
Ours(A) 70.26 76.74 75.81 70.23

6 Conclusion

We presented ClassroomKD, a novel knowledge distillation framework that mim-
ics a classroom environment, where a student learns from a diverse set of mentors.
By selectively integrating feedback through the Knowledge Filtering (KF) Mod-
ule and dynamically adjusting teaching strategies with the Mentoring Module,
ClassroomKD ensures effective knowledge transfer and mitigates the issues of
error accumulation and capacity gap. Our approach significantly improves the
student’s performance in classification and pose estimation tasks, consistently
outperforming traditional distillation methods.

In large-scale or real-time settings—e.g., mobile deployment for pose estima-
tion—ClassroomKD provides a straightforward mechanism to harness existing
high-capacity mentors alongside intermediate peers. As we see in the classification
tasks, purely aggregating mentor logits (AVER) or using random dropping is
suboptimal. Instead, by dynamically ranking mentors and adjusting teaching
temperature per sample and per epoch, we reduce wasted capacity and error
buildup.

The main takeaway is that how knowledge is delivered—who is allowed
to teach and how swiftly that teaching is introduced—can be just as crucial as
which networks are present in the classroom.

Impact. By fostering more efficient and adaptive students, ClassroomKD paves
the way for greener AI solutions with reduced computational costs and energy
consumption. Beyond practical applications, this work encourages further research
at the intersection of cognitive science and AI, enabling the exploration of more
social and educational learning strategies in machine learning. For a discussion
of future directions—including applying ClassroomKD to dataset distillation to
further reduce memory footprint—please see Appendix E.
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Limitations. While we demonstrated the efficacy of ClassroomKD on image
classification and human pose estimation, its application to other domains and
more complex tasks, such as object detection and segmentation, presents a
promising avenue for future work. Despite the improvements, the framework
introduces complexity, especially with respect to the mentor ranking and teaching
adjustments, which can require careful tuning. Future work will explore further
optimizations and expand the framework’s utility to broader tasks.
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A Analysis and Additional Results

A.1 Per-Class Performance Improvement

We further analyze ClassroomKD’s effectiveness by examining the per-class
performance improvements of the distilled student model compared to the baseline
model (without knowledge distillation). To this end, we compare the class-
level accuracy differences between ClassroomKD and a standard multi-teacher
knowledge distillation (AVER) approach, both using the distilled CIFAR-100
dataset.

In Figure 7, we illustrate the performance differences between the Class-
roomKD student and the baseline model on the left. ClassroomKD improves
performance in 86 out of 100 classes while minimizing performance degradation
in the remaining classes. In contrast, AVER (right) has a significantly smaller
improvement, and the absolute performance degradation is more severe than
with ClassroomKD. This demonstrates the benefit of our mentor ranking strat-
egy, which dynamically selects mentors based on their relative performance and
reduces the likelihood of detrimental knowledge transfer or error accumulation
from multiple mentors.
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Fig. 7: Comparison of per-class performance gain over the NOKD
baseline. With ClassroomKD (left), the distilled model improves performance
on 86 classes. With multi-teacher KD without mentor ranking (right), much fewer
classes improve, the absolute improvement is smaller, and the remaining classes
experience larger performance degradation (red bars). This highlights the impact
of our dynamic strategies in improving performance across different classes.

A.2 Intuition Behind Proposed Ranking Method

Classroom Dynamics. For a given sample xk, we can visualize the output
probability distribution of a model m by plotting the softmax probability Pm

zi of
its logit zi against the class labels i, for all i ∈ C. The models in a classroom can
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have logit distributions that fall into one of the three cases: (1) Weak classifiers
predict the true label yk with low confidence. (2) Strong classifiers predict the
true class with high confidence, giving it a "sharper" peak. (3) Wrong classifiers
have a peak at the wrong class. This is illustrated in Fig. 8. Using Pm

zi based
ranks will help the student learn to filter out wrong classifiers.

student strong

weak (> stu)

321

class labels

so
ftm

ax

weak (< stu) correct label
incorrect label

Fig. 8: Illustration of the classroom models’ probabilistic distributions
The student encounters three types of mentors while learning: 1. weak classifiers
predict with low confidence. 2. strong classifiers are highly confident in their
prediction. 3. Wrong classifiers predict incorrect labels.

A.3 Dynamic Capacity Gap Visualization

To better understand probabilistic distributions (Fig. 8) of our classroom, we
plot the softmax of the logits produced by the student model and mentors at
various training steps.

Epoch 1

Fig. 9: Probability Distributions at Epoch 1. Right subplot is zoomed in at the
true class (97).
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Epoch 121

Fig. 10: Probability Distributions at Epoch 121. Right subplot is zoomed in at
the true class (4)

Epoch 228

Fig. 11: Probability Distributions at Epoch 228. Right subplot is zoomed in at
the true class (40)

We observe a gradual decrease in the gap between the student and teacher’s
probabilities at the true label from epochs 1 through 228.(Fig. 9, 10 and 11)
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B ClassroomKD for 2D Human Pose Estimation

The proposed methodology can be applied to distill knowledge to smaller models
in 2D HPE with a few modifications.

B.1 Top-down SimCC-Based Methods

RTMPose architecture, which we use for our experiments on the COCO Kepoints
dataset, contains a SimCC [34] head that outputs separate logits of the shape
(N, K, D) each in the x and y directions, where N is the batch size, K is the
number of joints, and D is the coordinate dimensions. For our purposes, only K
is relevant. This output can be seen as two predictions for each of the K joints.
Hence, we apply the following three modifications to adapt our approach:

1. The sharpness of model m, Pm, is calculated using the PCK accuracy metric.
These values are further normalized in the classroom to obtain their respective
ranks.

2. Once the active mentors are chosen, the Ldistill is processed as the combined
distillation loss between the student and mentor along x and y directions.

3. The logits’ shapes are converted to (N*K,-1) before applying the KL-divergence.
The sum of distillation losses along the x and y directions is finally divided
by the number of joints.

Lsimcc(ŷ
m, ŷs; τm) =

1

K
(Ldistill(ŷ

m
x , ŷs

x; τ
m) + Ldistill(ŷ

m
y , ŷs

y; τ
m)) (15)

B.2 Top-down Heatmap-Based Methods

The LiteHRNet model, which we use for our experiments on the MPII Human
Pose dataset, outputs 2D heatmaps of size (N, K, H, W). This is equivalent to
the two separate 1D heatmaps in SimCC heads. To apply ClassroomKD in this
case, we make the below changes:

1. Similar to the SimCC head, the sharpness of model m, Pm, is calculated
using the PCK metric for the ranking.

2. The KL-divergence between the student and active mentors is calculated
between the heatmaps and is then divided by the number of joints.
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C ClassroomKD Algorithm

Algorithm 1 ClassroomKD
Require: Input batch x
Require: Ground truth labels y
Require: Student s
Require: Mentors M← {t} ∪ {pi}ni=1

Require: β: weight of distillation loss
Require: δ: weight of standard KD loss with the teacher
1: weights← {} // Initialize empty dictionary for mentor weights
2: ranks← {} // Initialize empty dictionary for mentor ranks
3: L ← 0 // Initialize total loss
4: C← {s} ∪M
5: for m ∈ C do
6: ŷm ← m(x) // Get predictions from model m
7: pm

gt ← 1/(exp(CELoss(ŷm, targets)) // Isolate probabilities assigned to ground
truth

8: wm ← average(pm
gt,dim-1) // Average correct class probability for model m

9: weights[m]← wm // Store weight for model m
10: end for
11: weights← dict(sorted(weights.items(), key=lambda item: item[1])) // Sort
12: total_weight←

∑
(weights.values()) // Calculate sum of all mentor weights

13: ranks← {m : (|M| · w)/total_weight for m,w ∈ weights.items()} // Assign ranks
14: for m ∈ M do
15: if ranks[m] > ranks[s] then
16: τm ← ranks[m]−ranks[s]

ranks[m]

17: Ldistill ← KL(ŷm, ŷs, τm)
18: Ldistill ← ranks[m] · Ldistill

19: else
20: Ldistill ← 0
21: end if
22: L ← L+ Ldistill // Add distillation loss to total loss
23: end for
24: Ltask ← CELoss(ŷs, targets) // Compute task loss (e.g., cross-entropy)
25: Lclassroom ← ranks[s] · Ltask + β · L // Weight task loss by student’s rank
26: Lt

KD ← Ltask +KL(ŷt, ŷs, τ t = 1) // Compute standard student-teacher KD loss
27: L ← δLt

KD + β · Lclassroom // Combine KD loss and classroom distillation
28: return L // Return the total loss

D Training Protocols

Mentor Configuration. We use a predefined order for the mentor set in all
experiments for consistency. Any deviations from this are clearly stated.
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Table 7: Mentor configurations used in all our experiments, along with their
respective top-1 accuracies and ensemble performance. The size of the mentors,
should all the peers be replaced by the teacher ((n+ 1)t), the size of the current
mentors (1tnp), and the student size are also included.

Mentors Params (M)

s t p1 p2 p3 p4 p5 (n + 1)t 1tnp s

CIFAR-100 Classification

R20 R110 R8 R14 SN-V2 MBV2 SN-V1
(69.06) (74.31) (60.22) (67.28) (72.60) (63.51) (71.29) 10.42 5.12 0.27

R32 R110 R8 R14 SN-V2 MBV2 SN-V1
(71.14) (74.31) (60.22) (67.28) (72.60) (63.51) (71.29) 10.42 5.12 0.47

R20 R56 R8 R14 SN-V2 MBV2 SN-V1
(69.06) (72.41) (60.22) (67.28) (72.60) (63.51) (71.29) 5.17 4.24 0.27

VGG8 VGG13 R20 MBV2 SN-V2 R56 R110
(70.36) (74.64) (69.06) (63.51) (72.60) (72.41) (74.31) 56.77 14.50 3.96

MBV2 VGG13 R8 R14 R20 SN-V1 SN-V2
(63.51) (74.64) (60.22) (67.28) (69.06) (71.29) (72.60) 56.77 12.31 0.81

SN-V2 R32x4 R8 R14 R20 MBV2 SN-V1
(72.60) (79.42) (60.22) (67.28) (69.06) (63.51) (71.29) 44.62 9.739 1.35

SN-V1 W-40-2 R20 MBV2 SN-V2 R56 VGG13
(71.29) (75.61) (69.06) (63.51) (72.60) (72.41) (74.64) 13.53 15.00 0.95

MBV2 R50 R8 R14 R20 SN-V1 SN-V2
(63.51) (79.34) (60.22) (67.28) (69.06) (71.29) (72.60) 142.23 26.55 0.81

SN-V1 R32x4 R8 R14 R20 MBV2 SN-V2
(71.29) (79.42) (60.22) (67.28) (69.06) (63.51) (72.60) 44.62 10.14 0.95

W-16-2 W-40-2 R20 MBV2 SN-V2 R56 VGG13
(73.64) (75.61) (69.06) (63.51) (72.60) (72.41) (74.64) 13.53 14.98 0.70

MBV2 ENB0 ENB0 ENB0 ENB0 ENB0 ENB0
(63.51) (73.21) (60.23) (61.03) (63.60) (66.87) (72.70) 24.81 24.81 0.81

R18 Swin-T(224) SN-V2 W-40-2 VGG13 R32x4 -
(74.01) (88.78) (72.60) (75.61) (74.64) (79.42) - 137.98 48.10 11.22

ImageNet Classification

R18 R34 MBV3-s GN MBV2 RG-x400mf -
(69.75) (73.31) (67.66) (69.79) (71.88) (72.83) - 109.00 39.90 11.70

COCO Keypoints Estimation

RP-t RP-l* RP-s RP-m RP-l - -
(68.2) (76.5) (71.6) (74.6) (75.8) - - - - -

MPII Human Pose Estimation

LHR-18 HR-W32D LHR-30 HR-W32 HR-W48 - -
(85.91) (90.4) (86.9) (90.0) (90.1) - - - - -

LHR-18 HR-W32D SN-V2 MBV2 R50 - -
(85.91) (90.4) (82.8) (85.4) (88.2) - - - - -
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Model abbreviations: MB: MobileNet, SN: ShuffleNet, R: ResNet, W:
WRN, EN: EfficientNet, GN: GoogleNet, RP: RTMPose, HR: HRNet, LHR:
LiteHRNet, RG: RegNet

Hardware and Software Configuration. We trained most of our CIFAR-
100 experiments on a single V100-16GB GPU. The time required for an experiment
ranged between 4 and 4.5 hours on average. We build our code on top of Image
Classification SOTA repository3 and MMPose, and use pretrained models from
these libraries as our mentors.

E Future Direction: ClassroomKD and Dataset
Distillation

ClassroomKD shows strong potential in knowledge distillation, and one promising
extension is its application in dataset distillation, which can further broaden its
impact across various tasks.

Dataset distillation aims to create small, synthetic datasets that enable neural
networks to achieve comparable performance to those trained on the original,
much larger datasets. This approach reduces computational costs and storage
requirements while maintaining model generalization. By optimizing a small set
of representative training samples, a distilled dataset S is generated such that a
model trained on S performs well on the original dataset T . In our experiments,
we use FRePo [35] to create a distilled CIFAR-100 dataset, reducing each class
to only 10 samples (Figure 12). Of these, 7 images per class are used for training,
while the remaining 3 are used for testing.

Fig. 12: Sample from the distilled CIFAR-100 dataset created using
FRePo. The dataset is reduced to 10 representative images per class, where
each image encapsulates key characteristics of the class. This distilled dataset
significantly reduces storage and computational requirements while maintaining
essential features for effective training.

3 https://github.com/hunto/image_classification_sota/

https://github.com/hunto/image_classification_sota/
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As shown in Table 8, we conducted experiments on this distilled CIFAR-100
dataset and evaluated validation performance on the full CIFAR-100 dataset
using the MobileNetV2 and ResNet-20 architectures. Notably, the standalone
MobileNetV2 student achieves 31.00 on the distilled dataset, with 3.75% top-1
accuracy on the full validation set. However, applying ClassroomKD with 1
teacher and 5 peers significantly improves performance, reaching 44.34 on the
distilled data and 6.30% top-1 accuracy on the full CIFAR-100 validation set.
This is in stark contrast to the AVER approach, which results in only 2.33 on
the distilled data and 1.51% top-1 accuracy on the full validation set using the
same number of mentors. Similarly, ClassroomKD achieves superior results with
ResNet-20, showing a notable 9.66 percentage point improvement on the distilled
data compared to NOKD and a 1.85 percentage point gain on the full CIFAR-100
validation set.

Table 8: Performance comparison on the distilled CIFAR-100 dataset
and validation metrics on the full CIFAR-100 dataset. Results show top-1
accuracy on both the distilled dataset (7 images per class for training) and the
full CIFAR-100 validation set. ClassroomKD (1 teacher, 5 peers) outperforms
both the standalone student and AVER, demonstrating its efficacy in low-data
regimes.

Student MobileNetV2 ResNet-20

Method Distilled Top-1 Top-1 Distilled Top-1 Top-1 Top-5

NOKD 31.00 3.75 50.00 3.08 12.50
AVER 2.33 1.51 32.00 3.55 15.24
ClassroomKD 44.34 6.30 59.66 4.93 17.81

These results suggest that ClassroomKD has strong potential to enhance
performance on compact datasets, even where traditional methods fall short. By
selectively leveraging the most effective mentors, ClassroomKD enables optimal
knowledge transfer, making it a promising approach for dataset distillation.
Additionally, combining ClassroomKD with dataset distillation can be extended
to continual learning, where models from previous tasks act as mentors for new
tasks. This approach could improve efficiency and performance in larger-scale
tasks and real-world scenarios.
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F Classroom Learning Styles Survey

We conducted an online survey about learning styles and academic success in
the classroom environment, in which forty (40) respondents participated. Most
respondents (92.5%) were 18-45 years old, with 32.5% self-identifying as students,
22.5% as teachers or mentors, and 37.5% identifying as both. This survey aimed
to gather insights into the various methods and strategies students and teachers
employ to excel in their academic goals. In this appendix, we provide some
statistics from the responses we received. These inspired the ClassroomKD
approach introduced in the paper. Participation in the survey was voluntary, and
participants could withdraw at any time without penalty.

Consent form for the survey

F.1 Role of a Competitive Classroom Environment

In the first series of questions, we try to find out if students feel like they learn
better in collaborative environments, which provide opportunities for healthy
competition. The results showed positive response to collaboration among peers
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along with the teacher. However, competition was mostly detrimental to learning
towards the end of the training period (after the completion of coursework and
during their exams).

How does competition among peers affect your learning abilities?

The survey further explored specific scenarios where competition was beneficial
or detrimental

Competition among peers helps me when:

Competition was found to be helpful during the learning phase (lecture period)
of a semester. This competition can take the form of in-class discussions, group
projects, or other collaborative activities. It encouraged active participation and
knowledge sharing among students, fostering a collaborative learning atmosphere.

Competition among peers is distracting when:
On the other hand, competition was often seen as distracting during critical

phases like final exams or major project submissions. In these scenarios, the pres-
sure to outperform peers led to decreased focus and increased anxiety, negatively
impacting overall performance.

The insights from these responses were instrumental in designing the Class-
roomKD framework. Recognizing the dual nature of competition, we incorporated
mechanisms to balance collaborative learning with individual performance en-
hancement:
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– Collaborative Learning Environment: By integrating multiple peers in
the knowledge distillation process, ClassroomKD emulates a collaborative
classroom where the student model benefits from diverse feedback. This
mirrors the beneficial aspects of peer competition, fostering a supportive
learning environment.

– Performance-Based Filtering: To mitigate the negative effects of com-
petition, the Knowledge Filtering Module ensures that the student model
learns from higher-ranked mentors only. This selective approach reduces the
pressure from underperforming models and prevents the error propagation
that could arise from unhealthy competition.

F.2 Seeking Guidance

The second set of questions focused on understanding how students seek guidance
when faced with challenges and the effectiveness of the feedback received. In these
questions, we attempt to understand what prompts students to seek guidance
from their mentors and how they handle it. The goal was to understand the
correlation between when or whom students are asking for help and their success
in achieving their objectives.

When your confidence drops, whom do you usually ask your doubts?

The responses indicated a preference for different sources based on the per-
ceived expertise and approachability. Most respondents consulted their peers or
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older siblings or tried to figure things out themselves. Peers were considered more
approachable and could provide relatable explanations.

When you asked your questions to your teacher, what was their
response?

When asked about the nature of the teacher’s response, many participants
noted that teachers often provided detailed explanations and additional resources.
This thorough approach helped clarify doubts and improve understanding.

Did the teacher’s strategy help you gain confidence?
Many respondents confirmed that their confidence increased after receiving

teacher feedback. This highlights the importance of effective mentoring in the
learning process.

These insights were crucial in shaping the Mentoring Module of ClassroomKD:

– Adaptive Mentoring: Inspired by the positive impact of teacher feedback,
the Mentoring Module dynamically adjusts the teaching strategies based on
the student’s current performance level. This ensures that the student model
receives guidance tailored to its needs, similar to how a teacher would adjust
their approach based on a student’s understanding.

– Selective Feedback: To emulate the preference for high-performing peers,
the Knowledge Filtering Module ensures that the student model seeks feedback
from higher-ranked peers and teachers. This selective process enhances the
quality of knowledge transfer and boosts the student model’s confidence over
time.
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F.3 Self-Assessment and Feedback

The final set of questions aimed to understand how students assess their own
performance and the role of feedback in enhancing their learning experience.

How do you assess your performance on a test?

Most of the responses suggest that students assess their performance based
on peer comparison.

My confidence increases when I am appreciated:

Respondents indicated that appreciation from others significantly boosted
their confidence. Positive reinforcement motivated them to continue their efforts
and strive for better results.

The responses highlighted the importance of self-assessment and constructive
feedback, which influenced the design of ClassroomKD:

– Progressive Confidence Boosting: Reflecting the impact of appreciation
on confidence, ClassroomKD incorporates a Progressive Confidence Boosting
strategy. As the student model’s performance improves, its self-confidence
(represented by the weighting parameter α) increases. This dynamic adjust-
ment ensures that the model’s learning is reinforced by its achievements,
similar to how students gain confidence from positive feedback.

– Continuous Improvement: By integrating detailed feedback mechanisms
through the Mentoring Module, ClassroomKD ensures that the student
model continuously learns from its mistakes. The adaptive teaching strategies
help the student model bridge the performance gap with mentors over time,
fostering a continuous improvement cycle.
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The survey responses provided valuable insights into effective learning strate-
gies in a classroom environment. These insights were directly translated into
the design and implementation of the ClassroomKD framework, ensuring that
our knowledge distillation approach mirrors successful educational practices and
optimizes student model performance.
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