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Abstract—Human Activity Recognition using time-series data
from wearable sensors poses unique challenges due to complex
temporal dependencies, sensor noise, placement variability, and
diverse human behaviors. These factors, combined with the
nontransparent nature of black-box Machine Learning models
impede interpretability and hinder human comprehension of
model behavior. This paper addresses these challenges by ex-
ploring strategies to enhance interpretability through white-box
approaches, which provide actionable insights into latent space
dynamics and model behavior during training. By leveraging
human intuition and expertise, the proposed framework improves
explainability, fosters trust, and promotes transparent Human
Activity Recognition systems. A key contribution is the proposal
of a Human-in-the-Loop framework that enables dynamic user
interaction with models, facilitating iterative refinements to en-
hance performance and efficiency. Additionally, we investigate the
usefulness of Large Language Model as an assistance to provide
users with guidance for interpreting visualizations, diagnosing
issues, and optimizing workflows. Together, these contributions
present a scalable and efficient framework for developing inter-
pretable and accessible Human Activity Recognition systems.

Index Terms—White-Box, Explainability, Efficency, HAR

I. INTRODUCTION

Human Activity Recognition (HAR) focuses on identifying
and classifying human behaviors based on sensor-generated
time-series data [1]. This field holds significant promise for ap-
plications such as healthcare monitoring, personalized fitness
tracking, and smart environments [2]. Especially for wearable
sensor inputs, for instance, Inertial Measurement Units [3],
Impedance [4] or Capacitance [5], the complexities inherent
in those time-series data pose substantial challenges. Temporal
dependencies, overlapping activity patterns, and variability
in sensor quality and placement contribute to difficulties in
model training and evaluation. These factors often result in
suboptimal and inefficient performance, with traditional black-
box Machine Learning (ML) models failing to provide the
necessary transparency for diagnosing and addressing these
issues [6].

The lack of interpretability in black-box models hinders not
only the understanding of their decision-making processes but
also their usability in critical applications [7]. For instance,
when models misclassify activities due to overlapping features
or noisy inputs, practitioners often cannot pinpoint the root
cause [8]. This opacity complicates optimization efforts, lead-

ing to inefficiencies in training and unnecessary consumption
of computational resources for investigation and resolving [9].
Furthermore, this creates a gap in trust, particularly in domains
where understanding model behavior is crucial [10].

To address these limitations, our work presents a framework
that transitions from black-box to white-box training for HAR
models. The cornerstone of this approach is the utilization of
visualization metrics to reveal latent space dynamics during
black-box-based model training. These visual representations
provide insights into how the model processes and learns from
time-series data, enabling practitioners to identify issues such
as poor feature separability or learning inconsistencies. By
making the training process more transparent, we empower
users to actively contribute to optimizing the model and shrink
its required resources.

Building on this, we propose a Human-in-the-Loop (HITL)
approach that allows for real-time user interaction with the
training process. By integrating human intuition into the work-
flow, the HITL framework facilitates targeted interventions,
improving both the model’s performance and the efficiency of
the training process. Additionally, we envision the support of
Large Language Models (LLMs) as smart assistance to support
users in interpreting the visualizations, diagnosing potential
issues, and suggesting corrective measures. This synergistic
combination of human intuition, visual insights, and LLM
guidance aims to bridge the gap between complex model
behavior and user understanding.

II. RELATED WORK

Interactive visualizations and explainability techniques have
become essential tools in the development of interpretable ML
models. These approaches aim to improve model transparency,
enhance user trust, and aid in the refinement of ML systems
through human interaction and insight.

A. Interactive Machine Learning Visualizations

Interactive visualizations are powerful tools that can unveil
the internal workings of ML models, helping users understand
and improve their behavior through dynamic and engaging
interfaces. By enabling users to interrogate, explain, and
validate the decision-making process, these tools help open
up the black-box nature of ML models [11] Various tools are
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available, essentially aiming to enhance trust in ML models
through increasing human perception of the model’s internals
[12]. TensorFlow Graph Visualizer for instance helps users
understand complex ML architectures by visualizing their
underlying dataflow graphs, making it easier to debug and im-
prove model structures [13]. However, it is still a challenge to
select the right visualization, especially when lossy dimension
reduction strategies are applied and thus information content
is missing [14].

Further, the interactivity of visualizations can elevate the
insights and feed the user’s input back into the model for
adaptation [15]. Works like [16] have proven the advantages
of Human-centered and HITL systems to enhance ML devel-
opment through human knowledge integration and feedback.
Similar to the idea of this work, [17] proposes a human-in-the-
loop approach to enhance deep neural network classification
accuracy by leveraging human knowledge. By projecting high-
dimensional latent spaces onto a two-dimensional workspace,
users can interactively modify coordinates, which are then fed
back to fine-tune the network, improving prediction perfor-
mance.

B. Explainability and Interpretability for Deep Learning La-
tent Representations

Explainability and interpretability are essential for under-
standing model behavior, fostering trust, and improving perfor-
mance. In the context of deep learning, disentangled and inter-
pretable representations have been a central focus. Generative
Adversarial Networks (GANs) have been effectively applied
to achieve disentanglement learning by maximizing mutual
information, enabling tasks such as attribute manipulation and
image editing [18], [19]. Additionally, Beta-variational autoen-
coders (β-VAEs) promote sparse latent representations that
encourage disentanglement, improving model interpretability
[20]. Latent quantization has also emerged as a method to
further disentangle the representations, improving the inter-
pretability of deep learning models by quantizing latent space
and achieving better feature separation [21].

High-dimensional data poses challenges for interpretabil-
ity, often requiring dimensionality reduction while retaining
human interpretability. Frameworks leveraging semantically
meaningful latent representations and adapting the Shapley
paradigm offer efficient, model-agnostic explanations [22].
Similarly, invertible interpretation networks provide a trans-
parent view of hidden representations without retraining, fa-
cilitating a better understanding of complex latent variables
[23].

A significant challenge in model interpretability lies in
prototype-based learning, where decisions are based on simi-
larities to learned latent prototypes. The semantic gap between
latent space similarity and input space similarity can lead
to issues in interpretability, often confusing decision-making.
Addressing this gap is crucial for ensuring that prototype-
based models remain transparent [24].

Several comprehensive surveys have also been published,
providing overviews of interpretability methods in deep learn-

Fig. 1: The transformation from Black-Box to White-Box
Training by introducing explainability, transparency, interac-
tion, and trust in the development process.

ing. These surveys clarify the definitions of interpretabil-
ity, propose taxonomies, and evaluate various techniques for
model explainability. They stress the importance of inter-
pretability for ethical considerations and the development of
trustworthy AI systems [25]–[27].

III. WHITE-BOX CHALLENGES

Deep neural networks (DNN) are widely used in HAR and
other AI fields due to their ability to capture intricate patterns
in time-series data. These models can effectively handle the
temporal dependencies in HAR data, like transitions between
activities, which may span several time steps. However, while
they can achieve high predictive accuracy, black-box models
come with significant drawbacks. One major issue is the
inability to understand or explain why the model makes a
certain prediction. In HAR, where activities like walking or
sitting can overlap or be influenced by sensor noise, the lack of
transparency means that practitioners cannot easily diagnose
or correct errors in predictions. This leads to inefficiencies,
as model performance cannot be fine-tuned based on an
understanding of its internal workings.

With black-box models, understanding the model’s internal
decision-making process is nearly impossible. When an activ-
ity is misclassified, it is difficult to determine why the model
made that mistake, especially when time series input data can
not be interpreted intuitively. This limits the ability to improve
the model, especially when dealing with noisy, imprecise,
or incomplete sensor data. Additionally, sensor artifacts or
misplacements can heavily impact the model’s performance.
Black-box models often mask these errors, leaving users with
little insight into what went wrong. If the model’s internal
layers or neuron weights could be inspected, it might be
possible to pinpoint how the model is misinterpreting noisy
or poorly calibrated sensor data. However, the opacity of
these models makes this type of detailed inspection virtually
impossible. The lack of transparency in black-box models
further leads to reduced trust in their predictions. In sensitive
applications like healthcare, where understanding how a model
derives its conclusions is crucial, the inability to explain
or validate predictions can hinder adoption and acceptance.
Finally, without insight into what the model has learned,



improving the model could end in a hit-or-miss process.
Resources may be wasted on adjustments to the architecture,
such as increasing the complexity of the model to properly
handle the misclassified sections, when the issue may lie
elsewhere—perhaps in the data quality, feature engineering,
or simply the weight initialization.

To address the challenges associated with black-box models,
the shift to white-box training offers a pathway toward improv-
ing interpretability and fostering a deeper understanding of the
model’s behavior as shown in Figure 1. White-box models
allow for greater transparency, enabling users to trace and
understand the transformations that the data undergoes at each
layer of the model. For HAR, this transparency is crucial, as
it can reveal how sensor data is being processed, how the
model’s weights evolve during training, and how the final
prediction is formed. Oppose to designing more transparent
model architectures, research must focus on extending existing
state-of-the-art architectures towards their explainability in
order to maintain the required prediction performance.

IV. FRAMEWORK

We envision a framework in the form of an ML Endoscope
to enable a deep dive into the intrinsic model behavior from
the data-level perspective. This framework not only facilitates
the understanding of how data flows through the network
but also supports users in detecting errors, improving model
performance, and enhancing training efficiency. By providing
clear and actionable insights into the model’s behavior, this
framework aims to transform how ML developers interact
with ML systems, particularly in the context of HAR, where
data quality and sensor noise play significant roles in overall
performance. We target to visualize the latent spaces of the
model layer outputs to get insights into the data distribution
within the model. We argue that well-structured latent spaces
from intermediate model layers support the overall model
performance. The overall concept can be found on Figure 2
and will be presented in detail in the following sections.

A. Strategies

Transitioning from black-box to white-box ML models
involves adopting several strategies to enhance interpretability
without sacrificing performance. Various visualization tech-
niques as shown in Figure 3, offer unique perspectives into the
latent space dynamics. Scatter plots, as shown in Figure 3a,
are commonly used to project latent features into two or
three dimensions, highlighting clusters that represent distinct
activities or behaviors. These plots allow users to observe
whether the latent space has achieved meaningful separability
between classes or whether overlaps exist that could lead
to misclassifications. Additionally, scatter plots can illustrate
outliers that deviate significantly from expected clusters, guid-
ing further investigation into potential anomalies or noisy
data points. Nevertheless, the necessary dimension reduction
requires advanced algorithms such as PCA [28], TSNE [29]
or UMAP [30], which generate a loss of information due to

Fig. 2: The ML endoscope concept of adding transparency into
the traditional Machine Learning training to enhance energy
efficiency from a data-driven perspective.

the reduction of high-dimensional data to human-perceptible
2D or 3D representation.

Oppose to that, parallel coordinate plots are particularly ef-
fective for visualizing high-dimensional latent features across
different classes. Each axis in a parallel coordinates plot corre-
sponds to a specific dimension of the latent space, with lines
connecting the values for individual data points. This tech-
nique enables users to observe relationships and trends across
multiple dimensions simultaneously. For instance, overlapping
lines between classes may indicate features that the model
has not effectively differentiated, whereas well-separated lines
suggest successful feature extraction. With that, the relevance
of dimensions can be ranked and improved based on the data
distribution.

Similarly, Radar plots provide a compact visualization of
multidimensional data by mapping latent features onto a
circular grid. Each axis in the plot represents a latent feature,
and the data forms a polygon whose shape varies based on the
feature values. Radar plots are useful for identifying dominant
features in the latent space or for comparing how different
activities are represented in terms of their feature profiles. As
shown in Figure 3c, data points from different classes can be
overlayed and compared.

Temporal dependencies in HAR time-series data can also
be explored through dynamic latent space visualizations. An-
imations or continuous tracking of training progressions can



illustrate how latent representations evolve, offering a visual
narrative of how the model transitions between activities
or handles overlapping sequences. This temporal perspective
helps in identifying transitions or states that the model strug-
gles to distinguish, enabling targeted refinements.

Choosing the right visualization depends on the specific
challenges of the dataset and the interpretability needs of
the user. While scatter plots provide an intuitive overview
of separability, parallel coordinates excel at capturing high-
dimensional relationships, and radar plots highlight feature-
level insights. Combining these methods offers a comprehen-
sive understanding of the latent space, revealing where the
model excels and where adjustments are needed.

B. Human-In-The-Loop Training

As an extension of the plain visualization techniques, the
proposed ML Endoscope from Figure 2 offers an interactive
way to incorporate human expertise into the model devel-
opment process. Human-in-the-loop (HITL) allows users to
directly interact with the training process by observing and
manipulating the model’s internal state, enabling real-time
adjustments based on insights from visualizations.

As users interact with the model’s visualizations, they can
manually adjust the latent space projections or tweak model
parameters when they observe misclassifications or issues
with feature separability. This immediate feedback loop helps
correct errors as they arise, allowing for more effective and
efficient model refinement.

Further, HITL also promotes iterative improvements. The
interactive nature of the framework means that adjustments
can be made in real time, and users can immediately assess
the impact of their changes on model performance. This
contrasts with traditional training workflows, where changes
often require lengthy retraining processes and a waste of
resources. The iterative nature of HITL reduces the time spent
on trial-and-error adjustments and accelerates the convergence
of the model.

Lastly, HITL enhances model interpretability and trust. By
providing insights into how the model makes decisions and
allowing users to trace those decisions, HITL fosters a deeper
understanding of the model’s behavior. In critical applications
such as healthcare, where understanding the reasoning behind
predictions is crucial, HITL ensures that the model’s decisions
are not only accurate but also transparent.

C. LLM Agent Support

LLMs are capable of directly processing and understanding
high-dimensional data, making them particularly suited for in-
terpreting latent space representations that may be challenging
for users to analyze on their own. Integrating LLMs into the
ML Endoscope may enhance user support by offering real-
time, context-aware assistance in interpreting complex visual-
izations and high-dimensional data. Through natural language
explanations, the LLM can translate complex patterns and
clusters into actionable insights, helping users understand the

(a) Scatter plot to rejoin outliers with their desired clusters (black
arrow) or increase the distance between whole clusters (red arrow).

(b) Parallel coordinates plot to investigate the relevance of each
dimension.

(c) Radar plot to identify dominant features in the latent space.

Fig. 3: Latent space visualization strategies to emphasize
model and data characteristics.

significance of specific areas in the latent space, such as poorly
separated classes or anomalies.

Additionally, LLMs can assist users by analyzing visual-
izations as presented in Figure 3 with the desired metric
calculations and observations. By combining their language
generation capabilities with vision models, such as CLIP
[31], LLMs can provide interpretations of plots by explaining



what each visualization reveals about the model’s behavior.
For instance, the LLM can highlight overlapping clusters in
scatter plots, suggesting that the model may struggle with
distinguishing certain classes, or it can point out the key
features that drive separability in parallel coordinate plots. This
combination of LLM and vision model capabilities ensures
that users, regardless of their expertise level, receive meaning-
ful, tailored feedback that enhances their understanding of the
model and accelerates the optimization process.

However, the efficiency gains in training need to be sig-
nificant enough to justify the computational costs of frequent
LLM interactions, making it essential to balance interpretabil-
ity benefits with resource usage. For environments where
efficiency is targetted or even limited, strategies such as
periodic LLM queries or hybrid approaches that combine LLM
insights with simpler, more computationally efficient models
could mitigate these resource constraints.

V. EVALUATION

The evaluation of the proposed framework is designed to
comprehensively assess its effectiveness in improving HAR
through the introduced white-box and HITL approaches. The
evaluation combines quantitative metrics for model perfor-
mance and efficiency, and latent space quality with qualitative
insights from domain experts to provide a holistic understand-
ing of the framework’s impact. Considering the approaches
presented in Section II, the evaluation can be extended with
relevant state-of-the-art approaches.

The first aspect of the evaluation focuses on quantifying
model performance. Using established HAR datasets such as
the popular PAMAP2 [32] dataset, which provides diverse
activity data and sensor modalities, the model’s classification
accuracy and robustness are analyzed under real-world con-
ditions. Metrics such as accuracy, precision, recall, and F1-
score can be calculated for each activity class to evaluate
consistent performance across categories. The proposed white-
box approach is compared to traditional black-box models
to determine the impact of latent space visualizations and
HITL feedback. For that, we keep the black-box model ar-
chitecture while extracting the latent information from the
model during the training and feeding potential adjustments
back into the layer. Particular attention is given to how these
techniques reduce misclassifications in challenging cases, such
as overlapping activities or ambiguous data patterns. Further,
the efficiency enhancement can be correlated with the reduced
training duration of white-box training due to faster conver-
gence.

The quality of latent space representations, a foundational
element of the framework, is assessed using a range of metrics.
The well-established silhouette score can be used to quantify
the degree of separation between clusters in the latent space,
with higher scores indicating well-defined activity classes.
Complementary metrics such as the Davies-Bouldin Index
and the Calinski-Harabasz Score are employed to measure
cluster compactness and separation. Temporal dynamics of the
latent space are also analyzed, visualizing how feature clusters

evolve and stabilize over training epochs. These quantitative
measures are supported by qualitative insights derived from
the previously introduced visualizations. Together, these eval-
uations provide a comprehensive view of the latent space’s
quality and its role in improving model interpretability and
decision boundaries.

The human-centric aspect of the evaluation involves qual-
itative feedback from domain experts who interact with the
HITL framework and white-box visualizations. Experts assess
the usability and informativeness of latent space visualizations,
focusing on how effectively they reveal insights into model
behavior and support interventions to correct misclassifications
or refine data quality. The iterative refinement process enabled
by HITL is evaluated for its ability to accelerate model conver-
gence and enhance overall quality. Additionally, the integration
of LLMs is assessed based on user satisfaction and the
perceived value of their explanations and recommendations.
Experts provide feedback on whether LLM-guided insights
and recommendations simplify the interpretation of complex
visualizations and optimize workflows, thereby enhancing the
overall utility of the framework. Nonetheless, the effectiveness
of LLM support needs to be weighed up with the efficiency
considerations, since training efficiency enhancements may
become irrelevant due to the excessive use of the LLM.

Finally, a comprehensive evaluation synthesizes the results
from numerical performance metrics, energy efficiency pro-
files, latent space quality assessments, and expert feedback.
This holistic analysis highlights the framework’s strengths in
improving interpretability, efficiency, and classification accu-
racy while identifying areas for further refinement. By address-
ing both technical and human-centric aspects, the evaluation
ensures the framework is well-suited to the challenges of
real-world HAR applications, laying the foundation for future
advancements in explainable and efficient ML.

VI. FUTURE WORK

Future work will focus on conducting in-depth evaluations
of the proposed user interaction and feedback mechanisms,
moving beyond conceptual proposals and discussion to prac-
tical implementation and validation. This includes system-
atically testing the Human-in-the-Loop (HITL) workflows
with diverse user groups to assess their usability, impact,
and efficiency. Adaptive interfaces will be developed and
evaluated to ensure they provide real-time, actionable insights
that cater to varying expertise levels, from domain experts
to non-technical users. The goal is to validate whether these
interfaces effectively enable users to manipulate latent space
visualizations to enhance model performance.

A critical aspect will involve designing and performing
user studies to quantify the effectiveness of the interaction
processes. These studies will measure how user feedback
improves model interpretability, convergence time, and clas-
sification accuracy. Metrics such as user task completion
time, perceived ease of use, and trust in the system will be
collected to evaluate the practical usability of the framework.



Additionally, iterative refinements based on real-world feed-
back will ensure that the proposed tools address user needs
comprehensively. Additionally, the integration of LLMs into
the framework will also be evaluated with a strong focus
on how LLM-generated guidance influences user decisions,
improves visualization interpretability, and streamlines model
optimization.

By focusing on a thorough evaluation of HAR scenarios
from popular datasets, we hope to establish the proposed
framework as a user-centric solution for explainable AI.

VII. CONCLUSION

In this work, we highlighted the challenges of black-box
models in HAR, particularly their lack of interpretability and
transparency, associated with sensor noise, placement, and
inefficiencies in addressing misclassifications. We emphasized
the need for strategies like visualizing latent spaces and
incorporating relevant metrics and human knowledge through
HITL approaches. By integrating interpretability and user-
driven adjustments into the model development process, this
approach offers a pathway yet to be explored towards effective,
trustworthy, and transparent HAR solutions.
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