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Abstract The increasing volume of time series data in Industry 4.0 ap-
plications creates substantial challenges for real-time data analysis. Such
analyses that are conducted in the research area of Temporal Case-Based
Reasoning (TCBR) face performance problems due to complex similar-
ity measures. One potential approach already proven in other domains
for addressing these problems is the usage of embedding techniques for
time series data, which map these data into a simplified vector represen-
tation. Therefore, this paper investigates the integration of time series
embedding techniques in the context of Case-Based Reasoning (CBR) to
improve retrieval efficiency. Therefore, requirements for the application of
embedding techniques in CBR are derived. A systematic literature study
identifies possible approaches that are analyzed based on the require-
ments, with the result that no approach is suitable for the application.
Therefore, a novel embedding architecture is proposed, using a Siamese
neural network approach that can be trained with similarity values. The
architecture is prototypically implemented in the ProCAKE framework
and evaluated in an Internet of Things use case from a smart factory. The
results demonstrate that the embedding-based retrieval achieves classifi-
cation performance comparable to traditional similarity measures while
significantly reducing retrieval time.

Keywords: Temporal Case-Based Reasoning · Time Series Data ·
Time Series Embedding · Time Series Similarity Measure · Siamese
Neural Networks

1 Introduction

Industry 4.0 (I4.0) [18] describes the technological change achieved by the inte-
gration of digital technologies into industrial processes. Within the framework
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of the Internet of Things (IoT) - a network of interconnected devices that col-
lect and exchange data -, numerous components in manufacturing environments
are equipped with sensors that continuously generate time series data, providing
real-time insights into operational conditions. The sensor data generated dur-
ing industrial manufacturing processes serves as a valuable resource for analysis
and control purposes [50]. Analyzing time series data enables the identification
of patterns and anomalies, which is crucial for understanding and optimizing
processes. The practical applications for this cover various use cases. For in-
stance, in the context of Event and Activity Detection (EaAD) [39, 54], sensor
data is leveraged to determine ongoing activities within production environ-
ments, providing insights into operational processes. Similarly, Data Quality Is-
sue (DQI) management [11,32] focuses on identifying inconsistencies in recorded
data to ensure reliable analyses and informed decision-making, minimizing the
risks caused by erroneous data. Moreover, analyzing time series data can fa-
cilitate the early detection of potential failures, as demonstrated in Predictive
Maintenance (PredM) [49, 72], enabling proactive interventions and minimizing
downtime. While Machine Learning (ML) methods are often used to analyze
such time series data [15, 17], approaches from the research field of Case-Based
Reasoning (CBR) [1, 9] also offer a feasible Artificial Intelligence (AI) method-
ology for these tasks [39,52]. This is being investigated in the sub-research area
of Temporal Case-Based Reasoning (TCBR) [29,38]. This approach has the ad-
vantages that the case returned as a solution provides an initial explanation for
the result [58] and that domain knowledge is easier to integrate [66].

The quality of the results of a CBR approach depends on the underlying sim-
ilarity of the retrieval. In TCBR, established measures are utilized to assess the
similarity between the time series of a query and that of a case [39,48], e.g., the
Smith-Waterman-Algorithm (SWA) [57] or Dynamic Time Warping (DTW) [47].
However, such traditional time series similarity measures often are affected by
quadratic computational complexity [48], which becomes particularly problem-
atic with long time series and large case bases. Especially when used in large
industrial facilities, where numerous sensors produce different time series, this
creates a computational burden which creates substantial barriers to real-time
data processing and analysis, especially in time-sensitive industrial applications
requiring rapid insights and near real-time results.

Various methods are already considered in CBR for reducing the complexity
of time series data by simplifying and shortening these, such as abstraction [56].
However, a drawback of such methods is that patterns or dependencies in the
data might get lost through the process. To mitigate this issue, alternative ap-
proaches are required. Such a solution is the application of embedding methods,
which leverage ML techniques to retain relevant structures while transforming
the data into a more compact representation. By mapping time series features
into a vector space, embeddings can substantially reduce dimensionality while
preserving critical structural information [6,25]. Specifically, embedding models
based on Neural Networks (NNs) offer the capability to recognize complex data
patterns and represent them efficiently. Therefore, this paper examines the use
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of embeddings in TCBR. To this end, a literature study of existing embedding
approaches is presented. The suitability of these approaches is to be examined
based on the requirements collected, whereupon an embedding-based similarity
calculation is designed for the retrieval step in CBR.

The further structure of the paper is as follows: In Sect. 2, the theoretical
foundations and related work are presented. Based on the application of embed-
dings in CBR, requirements are derived in Sect. 3. Sect. 4 contains the method-
ology and the results of the literature review on available embedding methods
for time series, as well as their evaluation, based on the requirements. Building
upon the results, Sect. 5 presents the architecture for the time series embedding
approach and its integration into the CBR cycle. The evaluation of this ap-
proach using a prototype implementation is described in Sect. 6. Subsequently,
a conclusion is drawn in Sect. 7 and future work is proposed.

2 Foundations and Related Work

This section provides the necessary background for examining the use of embed-
dings in TCBR, as outlined in this paper. Therefore, the research field of TCBR
is introduced in Sect. 2.1. Sect. 2.2 presents embedding methods in the general
context of ML, while Sect. 2.3 reviews related work on embedding of time series
and similar structures in general, as well as in CBR.

2.1 Temporal Case-Based Reasoning

TCBR is a sub-area of CBR that deals with the processing and analysis of time
series [29, 38]. The focus is on the expression of temporal relationships in cases,
with the time series being the most common representation form [39]. A time
series depicts real measured values over a period of time, for example, IoT sensor
data from manufacturing processes [39, 52]. To assess similarity values between
such time series, various measures are developed [39]. Two important algorithms
are SWA [57] and DTW [47]. SWA enables the comparison of sequences of differ-
ent lengths by insertion and deletion operations, while DTW can also consider
expansions and compressions in the time series [48]. For the overall similarity
calculation, the local-global principle [9, pp. 106–107] is applied. First, local
similarities of individual time points are calculated and then aggregated on time
series level (global) using the mentioned measures. Afterward, these are again
combined on a higher global level, e.g., with similarity values of other time series
or global attributes regarding the entire process. The runtime of this similarity
calculation is significantly influenced by the similarity measures used for the
time series. This is because for each local similarity calculation between the
time series elements of the query, there are various options for mapping this to
a suitable equivalent of the case. Therefore, a search problem results in which
the alignment must be found that maximizes the similarity at the global time
series level. Due to this, e.g., SWA and DTW require a quadratic runtime [48],
leading to runtime problems, especially with long time series.
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2.2 Neural Networks and Embeddings

As a sub-field of AI, ML deals with the development of algorithms that can learn
from data and adapt to specific use cases [42]. This is achieved via models that are
taught and optimized using training data [4,12]. The prominent research field of
deep learning investigates NNs that serve as a powerful ML method. NNs consist
of several layers, with each layer containing multiple nodes (called neurons).
The fundamental structure comprises an input layer, any number of hidden
layers and an output layer. There are weighted connections between the neurons
of neighboring layers that enable signal transmission. The weighting of these
connections is adjusted during the training process to optimize the prediction
accuracy of the model. This training process can be carried out using, e.g.,
supervised learning [4]. There, the model is presented with the correct solution,
allowing the parameters to be adjusted accordingly.

Such NNs can be used to learn embeddings. This is a way of representing
complex data in low-dimensional vectors [14,25]. This is achieved by a mapping
function f : X → Rd that transforms objects into a d-dimensional vector space.
Embeddings are used in various ML areas, such as Large Language Models [70],
but can also be used on time series data. An NN is trained for transforming
data into embeddings, which learns the properties of the data to be reflected in
the vector representation. This transformation enables efficient similarity calcu-
lations, as these can be carried out at the vector level. Various measures such
as the Euclidean distance or a cosine similarity measure can be implemented to
calculate similarities and distances, respectively, between embeddings [35]. For
the application of these measures to the embedding NN, a Siamese architecture
is used [25, 71]. This is characterized by using two parallel NNs with identical
architecture and weights for embedding generation and calculating the similarity
value between these mappings. Based on this output, the weights in the NN can
be adjusted during training. The application of this embedding approach usually
enables both, the reduction of the dimensionality of complex data structures and
the preservation of their essential characteristics.

2.3 Related Work

The application of embedding methods in the context of CBR covers various
research areas, in particular the processing of time series, their temporal ab-
straction, and the embedding of related data structures.

Malburg et al. [39] identify four major use cases of CBR for time series
data, including prediction, classification, error detection, and application in the
medical field. For each of these areas, there is plenty of research outside CBR
that deals with time series embeddings to solve the specific use cases mentioned.
Lim and Zhoren [37] provide an overview of time series forecasting methods
and identify weaknesses of those using embeddings, such as limited adaptability
to different time intervals and high data complexity. The applications range
from financial to energy markets, where complex influences such as weather
or seasonal patterns can be integrated [46, 55]. Time series embeddings also



Integration of Time Series Embedding for Efficient Retrieval in CBR 5

enable efficient classifications by projecting them into a uniform vector space [23].
Smaller distances between vectors correlate with a higher similarity of the time
series. Embeddings also facilitate error detection by making long-term patterns
and subtle deviations visible [30,36].

Temporal abstraction is an alternative approach in which time series are
transformed by semantic or symbolic simplification. This includes methods such
as temporal abstraction according to Shahar [56] and Allen intervals [2], which
define basic relationships between time intervals. Höppner [27] presents further
abstraction methods, including time series classification using segmentation and
deductive segmentation. These approaches can have the disadvantage that infor-
mation about patterns or dependencies is lost because, in contrast to embedding,
the data representation is not learned but transferred, e.g., on a rule base, into
the abstract form.

In the context of related data structures, sequence and graph embeddings
are particularly relevant [48]. Sequence embeddings are widely used in language
processing and bioinformatics [61], for example in the analysis of protein struc-
tures [7]. In the area of graph embeddings, Hoffmann et al. [25] present an in-
novative approach using graph NNs in a Siamese architecture, which transforms
the graph structure into embeddings and calculates similarity values between
those. Other application areas include knowledge graphs and recommendation
systems [63], where graph embeddings are used for complexity reduction and
efficient operationalization. Klein et al. [34] demonstrate the application of em-
beddings for workflow optimization in CBR using knowledge graph embeddings.

3 Requirements for Using Time Series Embedding in
Case-Based Reasoning

To select suitable embedding methods for time series, requirements for these
methods are needed. Some come from the general application scenario in CBR,
others result from the application of ML models. The following four requirements
are identified.

Req. 1 Applicability to Time Series: The embedding method must either
be directly applicable to time series or embed sequences or graphs, since time
series can be represented as these [48]. The requirement for graph or sequence
embedders is that they take the temporal component of the data into account.
The embedding method must use (encoded) time series (or sequences or graphs)
with variable time components as input. The specification is therefore ideally a
direct time series embedding.
Req. 2 Data Types: The embedding procedure must be applicable to time
series with different data types used for the entries, i.e., the timestamp itself as
well as the measured data value. The requirement stems from the CBR use case,
as complex data objects are contained in the time series. For example, it must
be possible to embed time series with numerical data or with entire objects. The
process should be able to automatically recognize and process the data types.
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Req. 3 Trainability Based on Similarity Values: It must be possible to
train the embedding process using similarity values as input parameters. The
similarity values are provided as input so that the method can train an ML
model using these values. This is necessary to automatically create mapping
functions for suitable embeddings. By using the similarity values, this can be
done independently of the underlying similarity measures so that the embedding
approach can be used for different domains and use cases. This is a form of
supervised learning (see Sect. 2.2), as the model is trained as closely as possible
to the given similarity values.
Req. 4 Embedding Dimension: The embedding procedure should have a
manually adjustable embedding dimension or automatically determine the opti-
mum dimension. This ensures that an optimal embedding of the time series is
generated and the quality of the embeddings is improved.

4 Literature Analysis on Time Series Embedding

To identify the current state of the research in the field of embedding meth-
ods for time series, a systematic literature review [45] was carried out1 on the
platforms Google Scholar2, Semantic Scholar3, Scopus4 and IEEE Xplore5. The
sources found were further analyzed using forward and backward snowballing.
The review was not only conducted for time series embedding methods, but also
for sequence and graph embedding methods, as time series can be represented
as sequences or graphs (see Req. 1).

A total of ten methods for embedding time series data were identified, which
are illustrated in Tab. 1. An evaluation based on the requirements derived is also
included there. Furthermore, the maturity of the approaches was also considered
by checking whether an open-source implementation is available. A result of the
requirements analysis shows that Req. 3 is not fulfilled by any of the embedding
methods. This is because the methods already use built-in similarity measures
and cannot be trained using similarity values. The disadvantage is that the
methods are adapted to a specific similarity measure, usually DTW, and are
therefore not generically applicable without adaptation. Methods that can be
used with similarity values as input parameters, such as Multidimensional Scal-
ing according to Torgerson [60], do not include a ML model and therefore do
not provide a training (see Req. 3). Irrespective of Req. 3, only TS2Vec [62] as
a pure time series embedding fulfills the other requirements at all. The methods
for sequences and graphs show similar restrictions. Therefore, the requirements’
analysis comes to the conclusion that none of the existing methods is suitable
for the application of time series embedding in CBR.

1 The literature review was carried out in May 2024.
2 https://scholar.google.de/
3 https://www.semanticscholar.org/
4 https://www.scopus.com/
5 https://ieeexplore.ieee.org/

https://scholar.google.de/
https://www.semanticscholar.org/
https://www.scopus.com/
https://ieeexplore.ieee.org/
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Table 1. Comparison of the Requirements of the Ten Identified Embedding Ap-
proaches. (✓ = Suitable, ✗ = Unsuitable, (✓) = Partially Suitable.)

Embedding Approach Req. 1 Req. 2 Req. 3 Req. 4 Implementation
Available?

Boosted Embedding [31] ✓ ✗ ✗ ✗ ✗

Embed-RUL [21] ✓ ✗ ✗ ✗ ✗

Embedding in Pseudo-Euclidean
Space by Graepel et al. [20]

✓ ✓ ✗ ✓ ✗

Laplacian Eigenmap by Belkin and
Niyogi [5]

✓ ✓ ✗ ✓ ✗

LSTM Embedding by Uribarri and
Mindlin [62]

✓ ✓ ✗ ✓ ✗

Multidimensional Scaling by
Torgerson [60]

✓ ✓ ✗ ✓ (✓)6

Random Warping Series [68] ✓ ✗ ✗ ✓ ✓7

Signal2vec [43] ✓ ✗ ✗ ✗ ✓8

Time2Vec [41] ✓ ✗ ✗ ✓ ✓9

TS2Vec [62] ✓ ✓ ✗ ✓ ✓10

In addition to the investigated embedding methods for time series data, fur-
ther problems could be recognized in the identified methods for sequences and
graphs. Overviews of sequence embedding methods are presented for applica-
tion areas as, e.g., biological sequence embeddings by Tran et al. [61] or Ibtehaz
and Kihara [28], as well as for word embeddings by Wang et al. [65]. Sequence
embeddings generally do not support consideration of the time point, but only
of the sequentially recorded value. This means that information would be lost
during embedding if the measured values are not collected at homogeneous time
intervals. The loss of this relevant information, which is considered in traditional
similarity calculations, contradicts Req. 2. Despite this exclusion argument, sev-
eral methods were investigated, e.g., Autoencoder & seq2seq by Guo et al. [22],
and seq2vec [33]. This analysis is available in an additional document11. In
supplement to the problem already described with Req. 2, e.g., the sequence
embeddings considered also do not fulfill Req. 3, as they are often not based on
similarities, and also have other difficulties such as the time series embeddings.
Further, graph embeddings were also considered, for which various overviews are
available, too, such as Cai et al. [13], Goyal and Ferrara [19], Xu [69], Wang et
6 Partially available: https://github.com/drewwilimitis/Manifold-Learning
7 https://github.com/IBM/RandomWarpingSeries
8 https://github.com/ChristoferNal/multi-nilm
9 https://github.com/ojus1/Time2Vec-PyTorch
10https://github.com/zhihanyue/ts2vec
11Complete requirements’ analysis available at: https://gitlab.rlp.net/

procake-embedding/procake-embedding-time-series-evaluation/-/blob/main/
Requirements-Analysis.pdf

https://github.com/drewwilimitis/Manifold-Learning
https://github.com/IBM/RandomWarpingSeries
https://github.com/ChristoferNal/multi-nilm
https://github.com/ojus1/Time2Vec-PyTorch
https://github.com/zhihanyue/ts2vec
https://gitlab.rlp.net/procake-embedding/procake-embedding-time-series-evaluation/-/blob/main/Requirements-Analysis.pdf
https://gitlab.rlp.net/procake-embedding/procake-embedding-time-series-evaluation/-/blob/main/Requirements-Analysis.pdf
https://gitlab.rlp.net/procake-embedding/procake-embedding-time-series-evaluation/-/blob/main/Requirements-Analysis.pdf
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al. [64], and Barros et al. [3]. When transforming time series data into graphs,
the problem arises that there is too much irrelevant information in the more
extensive graph structure. For example, the information of the time points with
associated values would be available as nodes, whereas the edges have no se-
mantic meaning. As a result, a lot of irrelevant information is considered during
embedding, which leads to an unnecessary increase in complexity and there-
fore runtime. Various methods, e.g., graph2Vec [44], and, StarSpace [67], were
considered in the evaluation and the same difficulties arose as with the other
embedding methods. For example, no method was found that fulfilled Req. 3.
Due to the expected difficulties caused by the conversion to graph format and
the resulting irrelevant information, no further analysis of the graph methods
was carried out on this basis. The analysis of the considered embedding methods
for graphs is also included in the additional document11.

5 Application of Time Series Embedding in
Similarity-Based Retrieval

As explained in Sect. 3, none of the existing embedding approaches fulfill the
requirements for being used in CBR. Therefore, a generic embedding approach
for time series that meets the requirements is designed in Sect. 5.1. Its integration
into the CBR cycle is presented in Sect. 5.2.

5.1 Architecture of the Time Series Embedding Approach

The developed architecture for a time series embedding applicable in CBR is
visualized in Fig. 1. It is built on a layer-based approach that uses established
methods for NN procedures in IoT environments. The system processes two time
series and calculates their similarity using three specialized layers:

(1) Preprocessing Layer: This layer is responsible for processing the time
series data, which includes encoding and normalization. First, the process-
ing of different data types is enabled by transforming these into numerical
representations (see Req. 2). This encoding approach can be adapted from
Hoffmann et al. [25], who develop encodings for different data types in CBR,
originally, for graph embeddings. Their method first encodes atomic elements
with type-specific methods, then builds a tree-encoding in a bottom-up fash-
ion to preserve the hierarchical structure for NN processing. Therefore, the
encoding step provides a foundation for generic encoding while maintaining
compatibility with case representations used in a CBR application. Second,
the encoded time series are normalized by conversion into vector sequences,
which are necessary for Long Short-Term Memory (LSTM) processing. It
extracts and concatenates vector information from tree nodes, enriching it
with implicit structural data. During training, sequences are normalized to
match the longest sequence in the training dataset through padding.
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Fig. 1. The Architecture of the Time Series Embedding Approach.

(2) Embedding Layer: In this layer, the normalized vector sequences are pro-
cessed by multiple LSTM layers of a Siamese network with an adjustable
embedding dimension (see Req. 3). The first LSTM layer outputs a com-
plete sequence, while the second LSTM layer produces a condensed state
vector, followed by two multi layer perceptrons with Rectified Linear Unit
(ReLU) activation. This architecture enables the network to learn complex
dependencies and generate embeddings for both input time series.
If an embedding has already been calculated for a time series, for example
for a query in a retrieval, the embedding is cached, and these two layers
(preprocessing, and embedding) are skipped.

(3) Aggregation Layer: Finally, this layer combines the generated embeddings
and calculates their similarity using a single-neuron dense layer with sigmoid
activation. This layer directly outputs similarity values in the interval [0, 1],
eliminating the need for additional normalization steps. The design choice of
computing similarity rather than returning embeddings optimizes for CBR
system requirements while maintaining model simplicity.

The architecture also enables the processing of variable time series lengths
through appropriate normalization and masking during training.

5.2 Integration in the Case-Based Reasoning Cycle

The developed architecture is integrated into a CBR system by adding the em-
bedding approach presented in Sect. 5.1 to the knowledge container of the simi-
larity measures. The underlying NN is trained once based on the case base and
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similarity values calculated between the cases with a traditional measure, e.g.,
SWA or DTW. The call of the embedding system is made when a similarity
calculation is pending for a time series, which can be nested in a higher-level
object (cf. local-global principle, Sect. 2.1). The time series contained in query
and case are encoded and normalized, followed by embedding and the similar-
ity calculation (corresponding to the layers in Sect. 5.1). Already determined
embeddings can be stored in the case base to increase efficiency. The computed
similarity value as output of the NN is transmitted back to the CBR application
for further processing in the retrieval step.

6 Experimental Evaluation

To evaluate the embedding approach, it is compared with the traditional DTW
method. This takes place for the EaAD use case, for which Malburg et al. [39]
already present a successful case-based approach using DTW. There, CBR is
used to classify which event or activity is being executed for the time series data
contained in the query. In the context of this comparison, the following hypothe-
ses are investigated:

Hypothesis 1 (H1). The usage of embedding-based similarity measures accel-
erates retrieval compared to the usage of DTW.

Hypothesis 2 (H2). The embedding-based CBR approaches delivers results
comparable in quality to the DTW-based approach.

H2a. The embedding-based CBR approach delivers retrieval results which
ranking order is correct and complete compared to the DTW-based.
H2b. The embedding-based CBR approach achieves classification performance
comparable to the DTW-based.

Before the examination of these hypotheses, the implementation of the approach
as well as the setup of the evaluation is described in Sect. 6.1. Then, the com-
parison results are presented in Sect. 6.2 and the answers to the hypotheses are
discussed.

6.1 Implementation and Experimental Setup

The presented embedding approach is implemented in the open-source CBR
framework ProCAKE12 [8,10], which is written in Java [53]. The EaAD use case
is already available there, for which implementation details are presented by
Malburg et al. [39]. The encoding layer is also integrated in ProCAKE and sends
its output via an interface to the other layers, which are realized in Python using
the TensorFlow libraries [59]. This implementation is encapsulated in a Docker

12Implementation available at: https://gitlab.rlp.net/procake-embedding/
procake-embedding-core/

https://gitlab.rlp.net/procake-embedding/procake-embedding-core/
https://gitlab.rlp.net/procake-embedding/procake-embedding-core/
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image and returns the resulting similarity value to the ProCAKE framework. To
increase efficiency, the similarity calculation in the NN is carried out in batches.

For the evaluation13, we use data from a Fischertechnik Smart Factory lo-
cated in the IoT Lab Trier14 [40] that was evaluated for EaAD before [39]. A
case base of 1,100 cases is used here, containing unprocessed time series data.
Of these cases, the time series from 1,000 cases were used for training. For this
purpose, similarity values were calculated between all these time series using
DTW (a case contains ten different time series in this domain) and the em-
bedding system was trained based on these values. The training took place on a
Tesla V100-SXM2-32GB graphics card with Intel(R) Xeon(R) Gold 6138 CPU
@ 2.00GHz processor. Each epoch required approximately 50 hours and 30 min-
utes, resulting in a total training time of 101 hours for two epochs with a batch
size of 128, excluding data import. In total, 106,565 parameters were initialized,
of which 35,521 are trainable and 71,044 are optimizer parameters. The model
expects input vectors of arbitrary length and a dimensionality of 19, based on
the encoding scheme proposed by Hoffmann et al. [25]. During inference, each
input is transformed into an embedding of length 16, which is then compared
to a reference embedding in the aggregation layer to compute a similarity value.
Using this embedding approach as time series similarity measure, a retrieval was
performed with the remaining 100 cases not given to the training as queries. For
comparison, a baseline retrieval was also performed using the traditional DTW
approach.

6.2 Experimental Results and Discussion

The evaluation has been carried out on a server with 34 processors, a clock fre-
quency of 2,850 MHz, and 400 gigabytes of RAM. The embedding-based and the
DTW-based CBR approach were executed on this setup for the EaAD use case.
To answer H1, the times required for the retrieval execution are compared. In
both cases, this did not run in parallel, but on one thread. For the embedding-
based CBR approach, the retrieval required a runtime of 8 minutes and 43 sec-
onds. This includes 1 minute and 46 seconds spent on encoding and embedding
the case base, which could also be omitted by permanent storage. In contrast,
the DTW-based approach required a runtime of 3 hours and 47 minutes. These
results indicate that a runtime acceleration is achieved by using the embedding
methods, so that H1 can be confirmed.

To answer H2, the ten most similar cases returned from the retrieval are
considered. For the investigation of H2a, correctness and completeness are used
as ranking measures for the lists of retrieval results [26]. Correctness provides
information about the same order of the results, whereas completeness indicates
whether both lists contain the same elements. The average correctness is 0.055
and the median 0.0, which is in the middle of the value range [1.0, −1.0]. These

13Runnable evaluation available at: https://gitlab.rlp.net/procake-embedding/
procake-embedding-time-series-evaluation

14https://iot.uni-trier.de/

https://gitlab.rlp.net/procake-embedding/procake-embedding-time-series-evaluation
https://gitlab.rlp.net/procake-embedding/procake-embedding-time-series-evaluation
https://iot.uni-trier.de/
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values indicate that the correctness is unfavorable, as this value implies an almost
random distribution of the ranked cases. The completeness is 0.094 on average
and 0.0 in the median, with the latter representing the minimum value. This
suggests that H2a can be rejected for the use case of EaAD.

Table 2. Performance Measures Calculated Based on the Classifications of the
Embedding-Based and DTW-Based CBR Approaches.

Accuracy Precision Recall F1-Score Specificity False
Positive

Rate

False
Negative

Rate
DTW-based

Approach
0.92 0.8 0.8 0.8 0.95 0.05 0.2

Embedding-based
Approach

0.848 0.62 0.62 0.62 0.905 0.095 0.38

∆ between
Approaches

0.072 0.18 0.18 0.18 0.045 0.045 0.18

To consider H2b, the queries are classified in the adaptation step. This is
again based on the ten most similar cases returned from the retrieval phase
and carried out using majority voting. For the DTW-based CBR approach, 80
of the 100 queries are classified correctly and 20 incorrectly, whereby for the
embedding-based approach, 62 queries correctly and 20 incorrectly. Therefore,
18 classifications differ between the approaches. The performance measures for
the methods are calculated based on a confusion matrix, which is illustrated in
Tab. 2. Precision, recall, the F1 score and the false negative rate are relatively
far apart with a ∆ = 0.18, whereas the accuracy, specificity and false negative
rate are close to each other. H2b can therefore also tend to be rejected, whereby
the entire hypothesis H2 must be rejected.

The results presented for H2 indicate that the embedding-based approach
performs qualitatively worse than the DTW-based. However, H1 implies that
the embedding approach is significantly faster, so that a trade-off between these
two parameters can be assumed. The measures of completeness and correctness
considered in H2a provide only limited information about quality in this context.
As a reason for this, it was found in a detailed inspection that for some queries
there are several cases whose similarity values are very close to each other (in
some cases the most similar cases differ by ∆ < 0.01). This means that when
only the ten most similar cases are considered, these small differences have a
large impact on these metrics, resulting in poor values for correctness and com-
pleteness. The analysis of H2b shows that the difference in performance is not
that much substantial, but still considerable.

7 Conclusion and Future Work

This paper investigates the integration of time series embeddings as a similarity
measure in CBR. After a systematic literature analysis of existing embedding
methods, requirements for the use of such methods in CBR are identified. This
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analysis indicates that none of the existing approaches meets the defined re-
quirements. A new embedding method for time series is then designed consid-
ering the requirements. For the evaluation, this approach is implemented as a
proof-of-concept in the CBR framework ProCAKE. The evaluation shows that
the runtime of the retrieval using embedding could be significantly reduced, but
partly at the expense of the quality of results.

Based on the results of this work, a further optimization of the embedding
approach can be investigated, e.g., by research on hyperparameter optimiza-
tion [24]. Furthermore, for the EaAD use case, it can be examined whether
better performance can be achieved by autoencoders, which learn independently
of DTW and possibly outperform it as the previously established CBR approach.
Semantic knowledge can also be incorporated into similarity calculations to en-
sure that the analysis goes beyond mere syntactic information. In addition to
this investigated use case, embeddings can also be used for other computationally
intensive domains in CBR such as DQIs or PredM. In the DQI context, it can
also be investigated how embeddings learn a similarity assignment model from
manually defined similarities, or how the use of autoencoders can be further re-
searched. Also, the use of NN reduces the understandability of the similarity cal-
culation. In future research, approaches to explain the similarity calculation can
be investigated, as already exists for other data structures (e.g., [51]). In addi-
tion, embedding in CBR can also be investigated for MAC/FAC approaches [16]
as a pre-filtering method in the MAC phase.
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