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Abstract. Robotic automation plays a crucial role in modern indus-
trial production, yet many assembly tasks still require manual interven-
tion. Unlike standard pick-and-place operations, which can be executed
with position-controlled manipulator arms, assembly tasks inherently in-
volve physical contact between components, requiring precise force and
torque management. Accurately assessing whether tightly fitting parts
are correctly aligned or whether flexible components (e.g., plastic covers,
cables) are properly assembled is challenging due to inevitable uncertain-
ties in material properties and positioning. Traditional solutions rely on
hand-crafted thresholds set by experts, which are costly and impractical
for frequently changing product variants. To address this challenge, we
present a machine learning approach based on Adaptive Resonance The-
ory (ART) for real-time, continuous learning and adaptation of contact
episodes using proprioceptive sensor data. Our method processes joint
torque and end-effector force-torque measurements, encoding these time-
series signals into a frequency domain representation using Short-Time
Fourier Transform (STFT). The ART-based module dynamically classi-
fies contact patterns, identifying the most suitable learned category while
detecting novel situations that deviate from prior experience, enabling
adaptive control strategies. The proposed approach provides a scalable
and cost-effective solution by reducing reliance on predefined heuristics
and enabling online adaptation to new product configurations. The sys-
tem is experimentally validated in two industrial assembly scenarios,
where it demonstrates robust classification accuracy, real-time respon-
siveness, and adaptability compared to static threshold-based methods.
Results highlight its potential for seamless integration into industrial con-
trol workflows, allowing robots to autonomously adjust assembly strate-
gies or escalate novel contact situations for further inspection.

Keywords: FuzzyART · contact classification · robotic assembly ·
match-based learning · flexible manufacturing.
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1 Introduction

The classification of contacts between robotic systems and their environment is
still an active field of research, as it is of great relevance for robotic manipulation
of objects and motion in the environment. The main topics can be roughly
divided into two classes, dealing with unintentional contacts and intentional
contacts. The former case often involves the detection of collisions in order to
avoid damage and injury. The focus of this paper, however, is about the second
case, which focuses on intentional contacts such as those that occur in industrial
assembly tasks.

In the recent years, some methods have been proposed to distinguish between
the two classes. For example, in [7] the rate of change in torque measurement is
used to distinguish collision from interaction. Methods working in the frequency
domain have advanced this concept such as in [10, 11] by analyzing the frequency
magnitudes of the signal instead. Considering assembly tasks, potentially more
than two states have to be distinguished. Regarding robotic assembly, in a recent
work [15] a method was proposed to improve an assembly task on the kinematic
level. It suggests improving the object localization accuracy by combining CAD
model of the part, tactile knowledge, and a particle simulation. On the other
hand, some works with a different focus than assembly show the great potential
of classification using joint torque measurements [9] or acoustic vibration sensing
[13]. However, these methods do not allow a continuous learning and adaption
from data during operation but rely on experts for setup, data acquisition, label-
ing, training with each modification of the task. The aim of this study is to make
robotic systems more autonomous and thus less reliant on costly adaptions by
experts. For this purpose it is necessary to reduce their dependence on models,
to deal with inaccuracies and to enable them to continuously learn and adapt
themselves. Therefore, the method presented in this work is based on Adaptive
Resonance Theory (ART). This theory originated in cognitive science and de-
scribes neural network dynamics that continuously learn without being affected
by catastrophic forgetting. In a preliminary study [4] with a focus on collisions
and novelty detection, a principle feasibility has already been investigated. This
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Fig. 1. (a),(b): Plastic parts being considered in one of the two industrial assembly
scenarios. (c): Drum part being grasped, belonging to the second industrial scenario of
automotive disc brake and drum brake assemblies
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work extends the approach in the context of industrial assembly, while being
part of a larger framework. The industrial assembly tasks being considered re-
late to two scenarios which still rely on manual work. One scenario deals with
the mounting of plastic shaver parts of different variants onto a fixture prior to
a lacquering process. The second scenario deals with the assembly of automo-
tive parts for a disc brake assembly and a drum brake assembly. The parts are
illustrated in Fig. 1.

The outline of the paper is as follows: Sec. 2 describes the methods, Sec. 3
presents experimental evaluation, and Sec. 4 discusses the results and concludes
the study.

2 Method Description

The method is a composition of two elements, an ART neural network and a
pre-processing step transforming the input data to frequency domain. These two
elements are explained in the following paragraphs.

2.1 Adaptive Resonance Theory

ART’s operating principle has been inspired by the theories developed in cogni-
tive sciences. In contrast to error-based learning such as backpropagation, ART
describes a match-based learning method [3, p. 87]. For this purpose, the main
elements in an ART neural network are an input representation field, F1, a cat-
egory representation field, F2, the bottom–up weight vectors from F1 to F2, the
top–down weight vectors in opposite direction, and an orienting subsystem. With
these elements, the general operating principle starts with the input representa-
tion layer presenting the input to the category representation field. There, all of
its nodes that represent the actual categories (classes) begin to determine their
individual activation level for the provided bottom–up weights. A competition
is then started by the orienting subsystem. Beginning with the node having the
highest activation, the node is activated and presents its expectation through
the top–down weight vector to the input representation field. Here, the last step
of the cycle is conducted by the orienting subsystem: a vigilance test based on
the similarity. If that test is passed by the node, it can learn from the input by
adapting its weights. Otherwise, the node is inhibited and the node having the
next highest activation selected. If none of the existing nodes pass the test, the
neural network grows by adding a new (uncommitted) node and committing it
to store the new information.

Many variants of ART classification algorithms have been developed in the
last decades [12]. The various algorithmic implementations typically differ in
metrics used to measure similarity and the input encoding being applied. Fuzz-
yART ([5, 6]) gained some particular interest and many extensions have been
proposed. Since it uses fuzzy set operations for the similarity measure, the cat-
egory representation and learning dynamics have some outstanding properties.
Specifically, it starts with a real-valued input vector x ∈ Rn, 0 ≤ xi ≤ 1 ∀ i
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to be complement coded for numerical stability3, forming a new input vector
I = (x,1 − x)T . The encoded input vector I is then presented through the
F1 layer to the F2 layer, where the nodes compete for the highest activation
according to the activation function,

Tj =
‖I ∧wj‖ 1

α+ ‖wj‖ 1

, (1)

where ‖·‖ 1 refers to the L1 norm, wj are the weights of the category j template,
and α modifies the preference for uncommitted nodes. The weight vector serves
as memory and is composed of the stored weights wij , which in this ART vari-
ant are combined bottom–up and top–down weights. The operator ∧ is the fuzzy
set AND operator, i.e., an intersection, and is defined here as the element-wise
minimum, a∧ b ≡ (min(a0, b0), . . . ,min(ai, bi), . . .)

T . The winner of the compe-
tition is activated by the orienting subsystem and has to overcome the resonance
criterion, Mj ≥ ρ, in order to be successfully selected, where 0 ≤ ρ ≤ 1 is the vig-
ilance parameter controlling the granularity of the categories. The match value
Mj is computed by the match function,

Mj =
‖I ∧wj‖ 1

‖I‖ 1

. (2)

If the resonance criterion was not satisfied, the winning node is inhibited and the
category with the next highest activation is tested for resonance. If no resonance
occurred at all, a new category is created based on the data from the input
sample. In case of passing the resonance test, the category weights wold

j are
adapted using the input sample I according to

wnew
j = (1− β)wold

j + β (I ∧wold
j ), (3)

where 0 ≤ β ≤ 1 denotes the learning rate. In conjunction with the comple-
ment coding, the fuzzy set intersection operation (· ∧ ·) in the adaption results
in characteristic properties [2, 14]: The category representation region is of a
hyperrectangular shape. When adapting to new inputs outside its current repre-
sentation region, the size of the category hyperrectangle grows according to the
learning rate. Interestingly, a growth of the category hyperrectangle also results
in a shrinkage of the match region. Overall, this allows to adapt to variably
sized clusters with stabilizing learning dynamics. However, its hyperrectangu-
lar category shapes cannot adapt well to arbitrary cluster shapes. Therefore,
in this work, the recently proposed variant DistributedDualVigilanceFuzzyART
(DDVFA) [16, 17] has been implemented for the classification itself. It describes
a multi-layered ART neural network, which is able to learn category templates
represented by individual FuzzyART4 neural networks as global F2 nodes them-
selves. This enables the learning of groups of classes and thus arbitrary shapes
of patterns in the data can be represented.
3 To counter the problems termed weight erosion and category proliferation in the work

of Grossberg and Carpenter, arising from applying the fuzzy set AND-operator
4 Or GammaFuzzyART with an additional exponential decay factor
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Fig. 2. The laboratory setup composed of two manipulator arms KUKA iiwa R820,
Robotiq 2-finger grippers with custom fingers for the use case of consumer product
manufacturing, an OnRobot 3FG25 3-finger gripper for heavy cylindrical parts in an
automotive assembly use case, and end-effector force-torque sensors.

2.2 Input Data Encoding

As input data to the ART neural network, either joint torque measurements or
end-effector force-torque measurements are used. However, to encode this stream
of time series data samples into a suitable form for classification, the stream of
raw data samples are continuously transformed into frequency domain using
the method Short Time Fourier Series (STFT) [1, 8]. For this purpose, the time
domain samples are gathered into a window on which a Blackman filter is applied
in this implementation. The filtered window is then transformed into frequency
domain by calculating the Discrete Fourier Transform (DFT). This results in
a significant compression of the data in comparison to the original signal. By
choosing the window size and overlap, the amount of signal history is implicitly
encoded for the classification. Optionally, the discrete difference of the signal can
be used for classification to enhance the higher frequency spectrum. The ART
neural network then learns category templates which allow to distinguish the
different episodes represented by the frequency domain data that result from
the manipulator arm performing its commanded task. For an investigation of
the effects of the individual choices of vigilance parameters for the global and
local ART layers, sample window size and overlap, as well as frequency range
we refer to the preliminary study [4]. The method has been implemented as a
software node in the ROS2 framework, that outputs the assigned class as well as
a possible mismatch on new input to the control layer. This node is integrated
with a Learning-from-Demonstration approach, which allows users to teach new
assembly motions to the system, as well as an adaptive model predictive control
approach that takes into account the changes in category assignment.

3 Experimental Evaluation

3.1 Experimental Setup

The laboratory setup consists of a workbench with two manipulator arms shown
in Fig. 2. In addition to the end-effector force-torque measurement, the manipu-
lator arms also provide link-side torque measurements. The system is controlled
using the ROS2 framework.
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3.2 Experimental Results

Due to the limited space available, only one isolated sub-task will be presented
here to serve as an example. In particular, the drum of the brake shown in
Fig. 1c is repeatedly lifted and lowered down on wheel hub and brake shoe
assembly by the manipulator arm. During this process, there are only small
tolerances and the brake shoes may grind on the inside of the drum. The aim
is to distinguish this normal operation from the situation in which the parts
become jammed, thus avoiding excessive forces by starting a new trial. Such a
case has been introduced at time 204 s in the data shown in Fig. 3, resulting in
a higher change of the force signal than in the previous and following motions.
Specifically, the forces at the end-effector have been measured and the L2 norm of
the force vector has been computed and differentiated. This time domain signal
and its resulting frequency domain counterpart obtained from the windowed
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Fig. 3. Experimental results showing from top to bottom the time series signal, the
windowed frequency domain representation of the signal, the category template as-
signed to the frequency vectors, and an indication of new category creation (data did
not match previously learnt category template). The data correspond to about ten
repeated lifting/lowering movements of the drum onto the brake hub. In one trial at
time 204 s the parts do not align and begin to get stuck, which is detected by the ART
neural network because of the dissimilarity of the data to the categories learnt so far.
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Fourier transformation is shown in the first and second plots of Fig. 3. The third
plot then shows the assigned category, resembling the episodic pattern in the
frequency spectrum, while the lines in the bottom plot indicate commitment of a
new node when no existing category template matches the input. The parameters
have been determined through a prior grid search.

4 Discussion and Conclusion

A combination of a continuous machine learning method and frequency domain
pre-processing of proprioceptive sensory data of a robotic manipulator arm has
been proposed for finding episodes in industrial assembly scenarios. The em-
ployed ART neural network allows to incrementally learn new data and adapt
existing category templates in a two-staged mode of competition and match-
ing expectation against inputs. In contrast to threshold-based methods, the use
of a vigilance parameter allows to control the level of similarity in the learnt
classes. The experimental results indicate its capability to learn and classify
force measurements, as well as its ability to capture rare events. Though in the
case presented the larger spike in the signal is directly visible, the method has
also shown its potential in cases where that is less clear. A successful transfer
to a commercial manipulator arm considering actual industrial use cases has
been shown. If precise joint torque measurements are available, they can equally
be used for classification. Since many industrial systems do not provide such
measurements the method has been validated to work with force-torque sensors.
However, there is a limitation in that only short episodes (and no sequences) can
be registered through the implicit coding of time series data to the frequency
domain.

As the ART-based neural network inherently allows online learning, new
data can be integrated in real-time and thus does not need prior data collection
for an offline training. Therefore, it is a promising candidate to allow robotic
applications to become more aware and adaptive to changes in tasks on their
own, reducing the need for re-programming or training by experts.

An ongoing work focuses on integration of the method with an adaptive
model predictive control approach for contact-rich assembly tasks. Here, the
ART-based classification provides and additional measure of uncertainty which
is used to modify the control behavior.
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