
Learning Fourier series with parametrized quantum circuits

Dirk Heimann∗ and Hans Hohenfeld†

Robotics Research Group, University of Bremen, 28359 Bremen, Germany

Gunnar Schönhoff‡ and Elie Mounzer§

German Research Center for Artificial Intelligence - Robotics Innovation Center (DFKI RIC), 28359 Bremen, Germany

Frank Kirchner¶

Robotics Research Group, University of Bremen, 28359 Bremen, Germany and
German Research Center for Artificial Intelligence - Robotics Innovation Center (DFKI RIC), 28359 Bremen, Germany

(Dated: May 21, 2025)

Variational quantum algorithms (VQAs) and their applications in the field of quantum machine
learning through parametrized quantum circuits (PQCs) are thought to be one major way of lever-
aging noisy intermediate-scale quantum computing devices. However, differences in the performance
of certain VQA architectures are often unclear since established best practices, as well as detailed
studies, are missing. In this paper, we build upon the work by Schuld et al. [Phys. Rev. A 103,
032430 (2021)] and Vidal et al. [Front. Phys. 8, 297 (2020)] by comparing how well popular ansätze
for PQCs learn different one-dimensional truncated Fourier series. We also examine dissipative
quantum neural networks (dQNN) as introduced by Beer et al. [Nat. Commun. 11, 808 (2020)] and
propose a data reupload structure for dQNNs to increase their capability for this regression task.
By comparing the results for different PQC architectures, we can provide guidelines for designing
efficient PQCs.

I. INTRODUCTION

Quantum machine learning (QML) is one of the ar-
eas of quantum computing that has attracted a lot of
attention in recent years [1–7], especially because QML
algorithms seem to be a promising candidate for mak-
ing use of noisy intermediate-scale quantum computing
(NISQ) [8, 9]. There are already a variety of prototypical
practical applications of QML, ranging from the classi-
fication of radiological [10] or car images [11] to other
industrial use cases [12], reinforcement learning environ-
ments [13] and robot pathfinding [14]. Among the meth-
ods investigated for QML are variational quantum algo-
rithms (VQAs) which make use of parametrized quantum
circuits (PQCs) in a hybrid quantum-classical optimiza-
tion loop [15]. The term quantum neural networks is
often used synonymously with this application of PQCs
for QML tasks [16, 17].

While improving the performance and scalability of
VQAs is an area of ongoing research (see, for example,
Refs. [18–20]), and the question of whether QML algo-
rithms can eventually outperform classical algorithms is
still open (see, for example, Refs. [15, 21, 22]), significant
steps have already been made [23–25]. For classification
tasks on classical data, Ref. [26] shows empirically that
evidence for hybrid QML algorithms outperforming clas-
sical neural networks is still missing. Different circuit ar-

∗ dirk.heimann@uni-bremen.de
† hans.hohenfeld@uni-bremen.de
‡ gunnar.schoenhoff@dfki.de
§ elie.mounzer@dfki.de
¶ frank.kirchner@dfki.de

chitectures or ansätze for PQCs have been proposed and
used, ranging from hardware-efficient circuits [27] and the
quantum alternating operator ansatz (QAOA) [28] to dis-
sipative quantum neural networks (dQNNs) [29], which
were successfully implemented on a six-qubit supercon-
ducting processor [30]. Additionally, data reupload has
been shown to improve VQA performance significantly
when encoding classical input data [31–33].

Steps to compare different PQCs were done by several
groups, for example in Ref. [33], where a methodology
based on Fourier series and coefficients was developed to
compare the expressiveness of PQCs; in Ref. [34], where
architectures with amplitude-encoding and varying cir-
cuit depths were compared on different benchmark classi-
fication tasks; in Refs. [35], [36], and [37], where selected
architectures were evaluated numerically regarding ex-
pressibility and entangling capability; in Ref. [38], where
the entanglement and the entangling speed of different
circuits were compared; in Ref. [39], where effective ca-
pacity and effective dimension were analyzed for differ-
ent types of PQCs, including dQNNs; and in Ref. [40],
where the work from Ref. [33] was investigated in more
detail for single-qubit circuits. Furthermore, the authors
of Ref. [21] investigate the performance of classical sur-
rogates for layered PQCs. While this fact indicates that
it may be difficult to find advantages of PQCs in com-
parison to classical machine learning on classical data,
this question is not settled and, for example, the authors
of Ref. [25] show that so-called flipped quantum mod-
els exist, which have a provable learning advantage over
fully classical learners despite having a classical surrogate
model. Also, as laid out in, for example, Refs. [41, 42],
mathematically rigorous bounds exist that link model
complexity of PQCs with their ability to generalize, pro-

mailto:dirk.heimann@uni-bremen.de
mailto:hans.hohenfeld@uni-bremen.de
mailto:gunnar.schoenhoff@dfki.de
mailto:elie.mounzer@dfki.de
mailto:frank.kirchner@dfki.de

2

viding a starting point for quantum learning theory.
Despite all this work, general established best practices

for the use of PQC architectures are still missing and the
construction of efficient, trainable PQCs is an ongoing
research topic (see, for example, Refs. [43, 44]). Existing
methods for performance evaluation of PQC ansätze are
not enough to fully describe the ansatz performance since
they do not take into account the combination of expres-
siveness and trainability that is needed in practical use
cases. Furthermore, as we show in Sec. IVA only eval-
uating the Fourier coefficients resulting from the inverse
Fourier transform of an ansatz evaluation with sampled
parameters also misses differences between certain PQC
architectures. In this paper, we tackle this problem by ex-
tending and using the numerical methodology presented
in Ref. [33] to lay out a framework to both more strictly
and practically compare the performance of small circuit
elements as well as complete PQC ansätze.

In particular, our contributions are the following:

• We extend the numerical results by Schuld et
al. [33], in particular by showing that PQCs with
the same sampled Fourier coefficients can have dif-
ferent training results.

• We propose the new measure of learning capability
to analyze PQC ansatz performance.

• We compare different types of ansätze regarding
this measure.

• We define and evaluate a data reupload structure
for dQNNs.

In addition to other challenges [45], barren plateaus
remain a major issue for the practical use of VQAs [46–
52]. For example, in Ref. [52], the authors show that
PQCs with full rank dynamical Lie algebras exhibit bar-
ren plateaus because, as the number of layers increases,
they become ϵ-approximate 2-designs. In this paper,
we compare architectures which all tend to exhibit bar-
ren plateaus for larger depth or global cost functions as
shown in Appendix A, especially Corollary. A.5. The
architectures utilize local cost functions and can exhibit
barren plateaus if the depth is of polynomial order in
the number of qubits [47]. Our analysis gives guidelines
to minimize layers, qubits, gates, and parameters which
can be used to reduce the depth. Thus, our work helps
to reduce the effect of barren plateaus.

These guidelines are drawn from numerically investi-
gating how well architectures can learn Fourier series,
which can, in principle, approximate arbitrary functions
up to a certain precision. Hence, we conclude that the
guidelines for PQCs obtained from these results can be
transferred to more general learning tasks. However, this
assumption may not hold universally.

The sections of this paper are organized as follows: In
Sec. II, we summarize some of the existing work on PQC
evaluation. In Sec. III, we present our approach for the

measure of learning capability and describe both the eval-
uated ansätze and the numerical setup. We then show
our main results in Sec. IV and discuss the implications
in Sec. V.

II. PRIOR WORK

Investigating the model complexity of PQCs is a topic
of active research. There are different angles and ap-
proaches one can take here. One important and active
research field links model complexity to the generaliza-
tion behavior [17, 18, 53–57], with only some works in-
volving data reupload to obtain generalization bounds
depending on the data reupload encoding scheme (see, for
example, Ref. [58]). Interestingly, Ref. [59] demonstrates
that, depending on the number of training samples, gen-
eralization is possible despite overfitting to training data.
Furthermore, Ref. [60] recently questioned the applicabil-
ity of uniform generalization bounds by constructing a
randomized supervised learning example, which reveals
the memorization capability of PQCs. More work ex-
ists which investigates a model’s complexity by assessing
its capacity to memorize random data. Reference [61]
compares the memorization capacity of quantum neu-
ral networks with classical neural networks based on the
information-theoretic ideas introduced in Ref. [62] for
classical perceptrons and generalized to neural networks
in Ref. [63]. This notion got extended to storing quantum
states in [64].

A. Expressiveness and entanglement

In the following subsection, we present works in more
detail, which investigate model complexity of PQCs in
terms of their expressiveness and use this to reason about
the performance of PQCs on QML tasks. An important
approach in this area is the sampling of different param-
eters for a PQC and the calculation of the Kullback-
Leibler divergence [65] of the estimated fidelity distri-
bution in comparison with the Haar-distributed ensem-
ble [35, 66]. This gives a description of the expressiveness
in the form that a small deviation from the Haar distri-
bution means that all of the corresponding Hilbert space
is equally reachable. However, this analysis does neither
take into account the effect that input encoding has on
the expressiveness of a circuit—it plays an essential role
when classifying classical data as was proven in [33]—nor
the trainability, which is crucial for practical use cases.
Other measures in this realm are the expressive power

and effective dimension. Reference [67] investigates the
expressive power of PQCs as generative models for proba-
bility distributions in terms of the entanglement entropy.
In Ref. [68], the authors look at the effect of repeat-
ing data-first encoding by introducing further qubits on
learning physical observables and analyzing the expres-
siveness of PQCs via the Hilbert space dimension the

3

quantum circuits act on. Reference [69] analyzes PQCs
based on the effective dimension, which depends on the
Fisher information matrix, and the parameter dimension,
which the authors numerically estimate by evaluating the
effective dimension for random initializations.

In addition to the expressiveness, entanglement capa-
bility is another measure that is used to describe the
performance of PQCs [35–37]. Results from Ref. [37]
indicate that entanglement and expressiveness are only
weakly correlated, and the authors of Ref. [48] have found
that entanglement can hinder trainability, e.g., by in-
ducing barren plateaus. While this could lead one to
the conclusion that a PQC should have only a limited
amount of entanglement, a certain amount is considered
as needed in order for quantum advantage to be possible.
The works that investigate PQC performance use a vari-
ety of ways to construct entangling layers, ranging from
linear and cyclic entangling with zero parameters [33],
one parameter [35], or three parameters [70] to the layer-
dependent strong entanglement described in Ref. [71].

B. Expressiveness regarding Fourier series

The current understanding of PQC evaluations repre-
senting Fourier series as described in Ref. [33] is laid out
in the following. The function f(x) is defined as the ex-
pectation value of the result of several PQC evaluations:

fΘ(x) = ⟨0|U†(x,Θ)MU(x,Θ) |0⟩ (1)

where Θ is a set of all trainable parameters, x is a clas-
sical data input, U is an arbitrary unitary, and M is a
measurement operator. For the usual layered ansatz, the
unitary U takes the form

U(x) =WLS(x)WL−1...W1S(x)W0 (2)

where the circuit is of depth L, S is the data-upload
unitary, and Wl := Wl(θl) are trainable unitaries with
θl ⊂ Θ (see Fig. 1). The result proven in Ref. [33] is
that this model can be described by a partial real-valued
Fourier series:

f(x) =
∑
ω∈Ω

cωe
iωx (3)

where the Fourier coefficients cω = c−ω are determined
by the trainable unitaries and the measurement operator
while the available frequency spectrum Ω is determined
by the data (re-)upload operators. The frequencies ω are
given by all possible sums of eigenvalues of the generating
HamiltonianH of the input encoding S(x) = e−ixH , such
that Ω = [−ω, ..., 0, ..., ω].
As an example, in the case of one layer and a uni-

tary U(x) = W1e
−i x2HW0, the resulting model is a sim-

ple sinusoidal function if a Pauli-matrix with eigenvalues
{λ0, λ1} = {+1,−1} is used as generator:

f(x) = c0 + 2|c1| cos(x− arg(c1)) (4)

repeat L times

n|0⟩ W Uin W ⟨z⟩

FIG. 1: General circuit layout for layered PQCs ansätze
with n qubits, L layers and one W in the zero layer [see

Eq. (2)]. The unitary gates W depend on trainable
parameters and Uin encodes the input x.

with c0 =
∑1
i,i′,j=0W 0jW ji′Mi′iWijWj0 and c1 =∑1

i,i′=0W 01W 1i′Mi′iWi0W00 where W ji denotes the
complex conjugate of Wji and the layer index of the uni-
taries W is omitted because it follows from the order.
Using the multi-index jl over n qubits for layer l, the

sum over eigenvalues Λjl =
∑n
q=1 λql, and the Einstein

sum convention for indices, one finds that for n qubits
and L layers the expectation value can be written as:

f(x) =ei
x
2 (Λk1+···+ΛkL

−Λj1−···−ΛjL
)

×M i′

iW
kL

i′ · · ·W 0

k1
W i

jL · · ·W j1
0

(5)

The detailed calculation is documented in Example 6
in Appendix K.
The observation that evaluations of PQCs yield Fourier

series can be used to describe the expressiveness of the
model via the available frequency range as well as the
values of Fourier coefficients that can be reached. The
latter one can be accessed via the inverse Fourier trans-
form. For repeated single-qubit data encoding, i.e., the
case where S(x) is not changed throughout the circuit—
as is often done in the literature for classical input en-
coding and also in this work—the size K of the available
independent nonzero frequencies is limited by

K = nL, (6)

where L is the number of layers in the PQC and n is the
number of qubits; this means that the frequency spec-
trum is limited by the total number of repetitions of the
data-encoding gate. Furthermore, 2K+1 real-valued pa-
rameters are necessary to express K nonzero complex co-
efficients and one real valued coefficient c0. Hence, one
needs at least 2K + 1 parameters in the gates that form
the trainable unitaries W of Eq. (2) to be able to have
nonzero coefficients for all accessible frequencies from 0
to ωK .
Several works take advantage of the fact that PQCs

represent Fourier series. For example, Ref. [72] proposes
an error mitigation technique based on Fourier coeffi-
cients and frequencies. Additionally, Ref. [73] shows that
cost functions of training a QML model can be efficiently
classically computed if the number of parameters scales
polynomial in circuit depth. Reference [74] uses the train-
ing of Fourier series to test different PQC architecture
adjustments and define PQCs which fit certain Fourier

4

series better more expressive. Reference [75] define resid-
ual connections in quantum neural networks and show
that these increase the number of generated frequencies
and the flexibility in adjusting the Fourier coefficients.
While most works focus on single-dimensional Fourier
series, Ref. [76] uses multidimensional truncated Fourier
series to analyze the input encoding scheme and deter-
mine which PQCs provide enough degrees of freedom for
fitting these functions.

In the following, we use the Fourier series character of
PQC evaluations to test which ansätze provide a richer
class of trainable functions. ´

III. METHODS AND SETUP

A. Learning capability

To improve the understanding of PQC performance,
we extend the methodology first described in Ref. [33] as
laid out in the following. The learned model function fΘ
that results from training a PQC model [see Eq. (1)] to
approximate a given Fourier function g is a measure of
both the trainability and the expressiveness of the cor-
responding circuit, given a choice of training procedure.
In our studies, we use the corresponding loss value given
by the mean-squared error (MSE)

εg =
1

|X|
∑
x∈X

[fΘ(x)− g(x)]
2

(7)

where |X| is the size of the test set. The mean squared
error is used here since it is a common metric in ma-
chine learning that is suitable to determine the difference
between the results of the PQC model and the Fourier
function.

We use a set of functions Gd which contains |Gd|
randomly sampled, normalized Fourier functions, i.e.,
trigonometric polynomials, of degree d and define learn-
ing capability as the average over the final individual val-
idation losses:

µd =
1

|Gd|
∑
g∈Gd

εg. (8)

This measure enables the practical analysis of the per-
formance of different PQC architectures that include
data encoding; this is done by using the insight that
these architectures can (only) learn Fourier functions to
investigate expressiveness and trainability. We take the
average over a set of Fourier functions Gd to address sta-
tistical variance in the training procedure. This way, an
ansatz with a lower numerical value for µd is on average
better suited to learn Fourier series with a determinable
confidence interval than an ansatz with a higher numer-
ical value µd.

The MSE in Eq. (7) is a common and natural choice as
a loss function for regression problems. It connects the
learning task considered in this work to the framework
of maximum likelihood estimation, providing an objec-
tive function proportional to the negative log-likelihood,
under the assumption of independent and normally dis-
tributed residuals [77–79]. In principle, εg could be re-
placed with a different loss, if a similar analysis would
be considered on a different problem class, e.g., classifi-
cation with generic data sets such as the ones suggested
in Ref. [26] and a cross-entropy loss.
The size of the set of random Fourier functions needs

to be large enough to sufficiently characterize the perfor-
mance of a given circuit architecture on the problem set.
We chose |Gd| = 100 as this produces reasonably tight
confidence intervals to assume an unbiased estimate and
allow for qualitative statements. Smaller sizes of Gd may
be possible, but were not considered here; for consider-
ably larger sizes, one would expect diminishing returns on
the quality of the estimate of µd. In Appendix. H we pro-
vide a numerical comparison of the mean and confidence
interval for different set sizes based on the first experi-
ments presented in our Results section. The numerical
comparison underlines that the choice of |Gd| = 100 leads
to a reasonably accurate estimate of the mean while still
being technically feasible.
An interesting question is if Gd can be limited to a

potentially small number of specific functions that are
a good representative of a real-world problem or class of
real-world problems. This question is not straightforward
to answer and relates to the field of neural architecture
search [80] in classical machine learning, an active area
of ongoing research. We discuss some aspects of this in
Sec. V.

B. Evaluated architectures

We evaluate the learning capability of different PQC
ansätze and change circuit properties systematically to
reveal the effects of each part. More precisely, we analyze
different ways of how to construct the trainable W s in
Fig. 1 and Eq. (2).
In the literature, the most commonly used entangle-

ment gates without trainable parameters are CNOT (e.g.,
circuits 2, 11, and 15 in Ref. [35] as well as circuits in
Ref. [33]) and CZ (e.g., circuits 9, 10, and 12 in Ref. [35]
as well as circuits in Refs. [13, 14, 31, 46, 47, 50, 81]). In
addition, controlled-RX (CRX) (e.g., circuits 4, 6, 8, 14,
17, and 19 in Ref. [35] as well as circuits in Ref. [20]) or
RZ (e.g., circuits 3, 5, 7, 13, 16, and 18 in Ref. [35])
are often used as entanglement gates with one train-
able parameter. We also test the CAN gate [82] be-
cause it provides the interesting case of three trainable
parameters and bridges the gap to dQNN ansatz struc-
tures. This gate is composed of three two-qubit rotations,
CAN(θ) = RXX(θ0)RY Y (θ1)RZZ(θ2).
Besides the entangling gates, every unitaryW contains

5

el 1 el 2

U1 U1

U1 U1

U1 U1

U1 U1

el 1 el 2

U1 U1

U1 U1

U1 U1

U1 U1

FIG. 2: Simple (left) and strong (right) entanglement
structure for entanglement layer one and two depicted
for generic single-qubit unitaries U1 and CNOT as an

example for a two-qubit unitary.

single-qubit gates. Different options range from single
operations (e.g., RY in Ref. [47]) for more hardware-
efficient ansätze, to two operations (e.g., RYRZ in
Ref. [13]) and to general operations with three sin-
gle gates (e.g., RYRZRY in Ref. [33]). Thus, in this
work, we use these typical single-qubit unitaries U1 ∈
{RY , RYRZ , RYRZRY } together with two-qubit uni-
taries Uent ∈ {CZ,CNOT,CRX,CAN}.
In Ref. [71], strongly entangling circuits were intro-

duced to increase the entanglement in shallow circuits.
This technique includes splitting eachW in blocks, which
we refer to as entanglement layers, where rotation gates
are applied at the beginning of each block followed by
controlled two-qubit gates. In our analysis, we choose
the entanglement range for strong entanglement in each
block to be equal to the number of the current block, i.e.,
if we use three entanglement layers, the first block con-
tains ordinary controlled operations with control range 1,
then the second block with range 2 and the third block
with range 3. We contrast this ansatz of creating strong
entanglement with a simpler one, which has several en-
tanglement layers but keeps the control range of the en-
tanglement equal to 1 for each block. The difference is
depicted in Fig. 2.

Another property which is interesting to analyze is the
amount of entanglement gates per entanglement layer. If
this amount is equal to the number of qubits, then we
arrange the entanglement gates descending and connect
the last with the first qubit. This method is commonly
used (e.g., circuits 10, 13, 14, 18, and 19 in Ref. [35]
as well as circuits in Refs. [13, 33]). We refer to it as
cyclic. One can also use one entanglement gate less than
the number of qubits, neglecting the last entanglement
gate in the cyclic structure (e.g., circuits 2, 3, 4, 9, 16,
and 17 in Ref. [35] as well as circuits in Refs. [46, 50]).
We call this setup linear because it does not connect the
last qubit with the first one in an entanglement structure
with a range equal to one. This case is shown in Fig. 3.

As an example, if one chooses a simple, cyclic entan-
glement with one entanglement layer, CZ gates, and two
rotation gates as a single-qubit unitary, then one arrives
at the circuit ansatz chosen in Ref. [13]. Furthermore, we
consider circuits that are similar to the alternating layer
ansatz [47, 66] and the hardware-efficient ansatz [27, 66]
by using the entanglement gates to first connect qubits

FIG. 3: Linear (left) and cyclic (right) entanglement
style, with the CNOT as an example of a two-qubit

unitary acting on the first and the last wire it overlaps
with.

i

h1

|0⟩ Uin U1

U2

|0⟩ U1

U2

|0⟩ U1 ⟨z⟩

(a) dQNN circuit ansatz [i, h1, 1] for complex-valued data as
described by Beer et. al. [29, 70] with i input qubits, one

hidden layer with h1 qubits, and one output qubit.

i

h1

|0⟩ Uin U1

U2

|0⟩ Uin U1

U2

|0⟩ U1 ⟨z⟩

(b) dQNN circuit ansatz with included data reupload
structure.

i

h1

|0⟩ U1 Uin U1

U2

|0⟩ U1 Uin U1

U2

|0⟩ U1 U1 ⟨z⟩

(c) dQNN ansatz with data reupload and U1UinU
1 structure

in each hidden layer.

|i0⟩

U2
|i1⟩

|o0⟩

|o1⟩

=

|i0⟩

CAN CAN

|i1⟩

CAN CAN

|o0⟩

|o1⟩

(d) For the dQNN ansätze, the unitary gate U2 is composed
of CAN gates.

FIG. 4: Circuit representation and our modification of
dQNN ansätze by Beer et. al. [29, 70].

with even and then qubits with uneven index within an
entanglement layer.

In addition to the layered architectures, we include the
proposed circuit structure for dQNNs in Refs. [29, 70] as
an ansatz type. The original circuit of Ref. [70] is de-
picted in Fig. 4a. This architecture uses qubits as neu-
rons in analogy to classical neural networks. Quantum
perceptrons U lj propagate the information through a uni-

tary U2 consisting of two-qubit CAN gates which connect

6

each qubit of the previous layer l−1 with the jth neuron
of layer l [see Fig. 4d]. In addition, parametrized single-
qubit gates U1 are applied to each qubit. Once the infor-
mation is propagated, qubits of input and hidden layers
are discarded, i.e., their values are not measured. The
notation

[i, h1, · · · , hH , out] (9)

represents the number of input qubits i, the number of
qubits of each hidden layer hj for all H hidden layers,
and the number of output qubits out which is equal to
one in this work.

We consider classical data {x, g(x)}x∈X which is en-
coded via Uin(x) creating the input state ρ

in =
∣∣ϕinx 〉 〈ϕinx ∣∣

with
∣∣ϕinx 〉 = (Uin(x) |0⟩)⊗i. The, possibly mixed, net-

work’s final output state can be expressed by

ρoutx,Θ = trin, hid
(
Uρin′U†) (10)

= trin, hid(U
out
mout

. . . U1
1

× ρin ⊗ |0 . . . 0⟩hid, out ⟨0 . . . 0|

× U1†
1 . . . Uout†

mout
),

where each quantum perceptron U lj = U lj(θ
l
j) depends on

a set of trainable parameters θlj . In Fig. 10, this setup is
called dQNN without zero layer (w/o zl).

Inspired by the layered structure of PQCs explained
above, we propose and compare enhancements to the
dQNN ansatz structure. First, we introduce a data reu-
pload scheme by allowing data encoding on every qubit
but the output one. The network’s final output state is

obtained as in Eq. (10) by using
∣∣ϕinx 〉 = |0⟩⊗i and the

modified quantum perceptron Ũ lj(x,θ
l
j) which includes

parametrized single-qubit operation U1 applied after in-
put encoding unitary Uin(x) on each qubit of the previ-
ous layer l− 1. This ansatz is depicted in Fig. 4b and re-
ferred to as dQNN reuploading without a zero layer (reup
w/o zl). Second, to provide more degrees of freedom, we
introduce single-qubit gates before each encoding gate

which changes
∣∣ϕinx 〉 to

∣∣ϕin〉 = |0⟩⊗i and the quantum

perceptron to Ũ lj(x,θ
l
j) consisting of CAN gates linking

all qubits of layer l − 1 to the jth qubit of layer l and
U1(θl−1

j,1)Uin(x)U
1(θl−1

j,0) applied on all qubits except the
output qubit. This setup is referred to as dQNN reu-
ploading with zero layer (reup w zl). This way, the ar-
chitecture gets closer to the layered ansatz type. The full
modification is depicted in Fig. 4c. If input unitaries are
not repeated in between those parametrized single-qubit
gates and the only input encoding is on the input layer∣∣ϕin〉 = u(θ0

i,1)Uin(x)u(θ
0
i,0) |0⟩

⊗i
, then the setup is called

dQNN with a zero layer (w zl) and the network’s output
state is obtained by Eq. (10) with quantum perceptrons

Ũ lj(θ
l
j).

The final output of our circuits, Eq. (1), is given by the
expectation value of an observable fΘ(x) = ⟨M⟩ψ(x,Θ) =
⟨ψ(x,Θ)|M |ψ(x,Θ)⟩. In density matrix representation

for possibly mixed states ρoutx,Θ as in Eq. (10) that equation

becomes fΘ(x) = ⟨M⟩ρoutx,Θ
= tr

(
ρoutx,ΘM

)
which allows to

rewrite the cost function in Eq. (7) as

ϵg =
1

|X|
Σx∈X

∣∣∣⟨M⟩ρoutx,Θ
− g(x)

∣∣∣2. (11)

We outline that we do not use the parameter matrix
multiplication update rule defined by Ref. [29] in our
work to train the dQNN ansätze but rather stick to the
gradient method which we use for layered ansätze and is
explained in more detail in the next subsection. In the
follow-up work [70], the authors use a gradient descent
method with a first-order approximation of the training
cost’s gradient. This way, they are able to approximate
the gradient by evaluating the circuit on real quantum
devices for slightly shifted parameters (p− ϵ) and (p+ ϵ).
Since the authors of Ref. [21] suggest that a possible

quantum advantage for machine learning tasks can only
lie in the training on real quantum hardware, the search
for optimal update rules is a major task ahead and left
for further studies.

C. Numerical setup

As is standard for the application of VQAs, we use a
hybrid quantum-classical optimization scheme [15]. Nu-
merical results in this work were obtained using Tensor-
Flow Quantum [83], which utilizes the quantum circuit
simulator qsim [84], and Cirq [85]. Gradients are calcu-
lated with the Adjoint method [86, 87], which is suited
for analytic simulations and the standard differentiator
in TensorFlow Quantum. All results shown in the main
text of this paper are calculated using analytic expecta-
tion values; for a comparison to shot-based values, see
Appendix B. Moreover, we use a simulated noise model
based on calibration data of the IBM Quantum Falcon
r5.11H Processsor to demonstrate that the learning capa-
bility can be determined in a noisy setup and that general
trends and observations can survive, see Appendix C.
For our trainings, we use the Adam optimizer [88] with

a maximum of 360 epochs. The learning rate is decreased
from 0.5 for the first 120 epochs to 0.1 for the second 120
epochs and 0.05 for the last 120 epochs. In Appendix D
we compare the results for different hyperparameter con-
figurations to justify this choice. The train and valida-
tion data sets contain 50, respectively, 100, data points
for functions of degree less than 10, respectively, greater
or equal 10. The x-values of the test data are calculated
by including the endpoint of the interval [0, 2π], whereas
the endpoint is excluded in the validation data [0, 2π) to
ensure different sets. During the training, the train data
is split into batch sizes of 25, resp. 50, and validated
after each epoch using the validation data.
As a cutoff, we choose a loss value of 5 × 10−5 where

the training terminates. We consider fits reaching this
value as quasiperfect because they correspond to an av-
erage absolute error of 0.7% for each data point. While

7

this cutoff corresponds to overfitting, it reveals ansätze
that are well suited to learn arbitrary partial Fourier se-
ries of a given degree. As the exact ground truth of the
learning task for the learning capability is known, and
we are interested in the model’s ability to fit the Fourier
functions exactly, such small absolute errors are sensi-
ble compared to a concrete real-world learning problem,
where the generalization over potentially incomplete, cor-
rupted, or noisy data has to be balanced and traded off
with model accuracy on training data.

We test on 100 randomly chosen normalized Fourier
functions. This gives stable results for mean values and
standard deviations of the loss values, which are inde-
pendent of the random initial parameters and the set
of Fourier functions for each training. In Appendix E we
provide details on the generation of the Fourier functions,
their correlation, and the dependence of the learning ca-
pability on the set of Fourier functions.

We provide a marker for an average loss value of
6.25 × 10−4 depicted as a gray line in the plots for the
learning capability because this level corresponds to an
absolute average error for each function fit of less than
5% of the maximum Fourier function value. Below that
value, we regard average loss values as not statistically
significant and view the corresponding architectures as
equal regarding their learning capability since there is no
clear way to distinguish between different loss values in
this regime, and no practical reason to do so.

Regarding the architectures, we always useRX gates to
encode the real-valued input data and a σz-measurement
on the last qubit for layered PQCs as well as for dQNNs.

IV. RESULTS

To get an intuition on how the learning capability of
a PQC relates to the Fourier coefficient calculation and
numerical methods introduced by Schuld et al. [33], we
advise the reader to look into Appendix F where intro-
ductory results for simple circuits for Fourier degree 2
are presented that motivate our method. Furthermore,
we look into the minimal number of qubits and layers
required to learn a specific Fourier function in that Ap-
pendix.

In the following subsections, we demonstrate an exam-
ple where two PQC architectures have the same sampled
Fourier coefficients but differ in their ability to fit differ-
ent Fourier functions, i.e., they show differences in their
learning capability in Sec. IVA and analyze various ele-
ments of PQC architectures in detail for layered ansätze
in Sec. IVB and for different dQNN circuits in Sec. IVC.

A. Comparison to sampling Fourier coefficients

We extend the numerical results by Schuld et al. [33],
and show that the learning capability provides insights

that cannot be gained, for example, by sampling param-
eters of PQCs and calculating Fourier coefficients.
As an example, we consider Fourier series of degree 6

and ansätze with three qubits, two layers, single-qubit
operation RY , and a simple, linear entanglement struc-
ture with one entanglement layer. The complexity of
the circuits makes analytic calculations already unfeasi-
ble and, hence, motivates the introduction of learning
capability. The first row of Fig. 5 corresponds to re-
sults for such an ansatz with CZ gates as entanglement
gates, the second row uses CNOT gates, the third uses
CRX, and the fourth uses CRX gates but two entangle-
ment layers instead of one. All circuits are fully depicted
in Figs. 33, 34, 35, and 36 in Appendix L. Because the
learning capability is an average value, we select and plot
in the first column of Fig. 5 the learned model that has
a loss value closest to the average. The details of the
distribution of the errors are depicted in Fig. 20 in Ap-
pendix G. For the first two ansätze, determining the
learning capability is not strictly necessary; however, it
incorporates the fact that not all Fourier coefficients can
be represented because the loss values for both ansätze
are relatively high. The last two rows of Fig. 5 show a
case in which analyzing Fourier coefficients alone is not
enough to describe how well circuits can represent Fourier
functions since both ansätze give access to all possible co-
efficients. However, determining the learning capability
reveals that the last ansatz, with two entanglement lay-
ers, fits Fourier functions of degree 6 on average much
better than the other ansätze.
How well an ansatz can fit Fourier functions depends

on the ansatz, as well as the hyperparameters used for
the training. However, we consider ansätze well suited
in a practical sense, if they are robust to hyperparam-
eter changes or if it is easier to find hyperparameters
that lead to successful trainings. We provide a grid com-
parison of different hyperparameters for the third ansatz
(three qubits, two layers, single-qubit operation RY , a
simple, linear entanglement structure, one entanglement
layer and CRX entanglement gates) in Appendix D. None
of the 21 different hyperparameters lead to a different
learning capability. Hence, none of these parameter sets
improves the learning capability of this ansatz. This fact
strongly indicates that ansätze which enable the same
Fourier coefficients but have different learning capabili-
ties have some profound differences.

B. Layered ansätze

Because we know that nL = d is necessary to enable
d + 1 Fourier coefficients (including c0), we start with
analyzing the impact of different combinations of qubits
and layers. For degree 12 functions, for example, we can
use the following ansätze: (12 qubits, 1 layer), (6, 2),
(4, 3), (3, 4), (2, 6), and (1, 12). If we choose layered archi-
tectures with simple, linear entanglement structure and
parametrized single-qubit gates RYRZ , then we can vary

8

1 CZ
1.35E-01

avg. fit c0 c1 c2 c3 c4 c5 c6 c7

1 CNOT
1.01E-01

1 CRX
2.54E-02

2 CRX
7.73E-05

FIG. 5: Left column: Validation results closest to the average loss value for four different layered ansätze with
n = 3, L = 2, and RY as the single-qubit rotation gate; the number of entanglement layers, the entanglement gate,
and the average loss value are listed next to each graph. The results of the quantum circuits are shown as a green
line and the Fourier functions as black circles. The x axis in this column is from 0 to 2π, the y axis from −1 to 1.
Right columns: Fourier coefficients c0 to c7 resulting from the inverse Fourier transform of the results of evaluating

the four ansätze with sampled parameters Θ. The ticks on the x and y axes are always at −0.01, 0, and 0.01,
showing how the Fourier coefficients become smaller with increasing degree due to the function values being limited
to the range [−1, 1]. The x axis shows the real part of the coefficient, while the y axis shows the imaginary part.
Rows: first: ansatz with CZ as the entangling gate and one entanglement layer; second: ansatz with CNOT as the
entangling gate and one entanglement layer; third: ansatz with CRX as the entangling gate and one entanglement

layer; fourth: ansatz with CRX as the entangling gate and two entanglement layers per W .

the amount of entanglement layers as well as the entan-
glement gates. A summary of this comparison is depicted
in Fig. 6. The learning capability is plotted with the 95%
confidence interval for each architecture and the 5% ab-
solute error baseline is drawn in gray. First, we see that
ansätze with L ≲ n have the best learning capability µ12,
while ansätze with L = d or n = d show a poor learning
capability µ12 with values of 0.1 ≥ µ12 ≥ 0.01.

In principle, barren plateaus could result in worse
learning capabilities for ansätze with large n because,
as can be seen in Fig. 3 in Ref. [46], varying the num-
ber of qubits between 1 and 12 reduces the variance of
the gradients from 10−1 to 10−4, indicating a relatively
strong decline. However, as can be seen in Fig. 4 in
Ref. [46], the variance of the gradients declines much less
when varying the layers, especially for a small number of
qubits (roughly n < 10). From that figure, we would not
expect to have vanishing gradients in our cases (1, 12)
and (2, 6). Hence, barren plateaus fail to explain the fact
that ansätze with four qubits perform consistently better
than ansätze with fewer qubits. Numerical simulations
which are explained in more detail in Appendix I confirm
the conclusion that we draw from the figures in Ref. [46]

regarding the barren plateaus for the PQCs that we con-
sider.

Second, we find that CAN gates with two entangle-
ment layers perform slightly better than CRX with three
entanglement layers and CNOT gates are not able to
achieve reasonable results with two entanglement layers.
However, due to the structure of the CAN gates, the
corresponding architectures need more two-qubit gates
despite having less entanglement layers (see Tab. IV in
Appendix J).

The confidence interval for the configuration with three
qubits, four layer and CAN gates with two entangle-
ment layers and four qubits, three layer and CRX gates
with three entanglement layers are visually large. In Ap-
pendix G, especially Figs. 22 and 23, we plot the error
distribution in comparison to results of different configu-
rations. For those two examples, it becomes evident that
the logarithmically scaled y-axis and cutting the plot’s
y-axis at 10−5 are the major reasons for the seemingly
skewed and large confidence intervals.

A more detailed comparison is given in Fig. 28 in Ap-
pendix J, which includes all results for linear and cyclic
entanglement structure and two and three entanglement

9

q1-l12 q2-l6 q3-l4 q4-l3 q6-l2 q12-l1

10−1

10−2

10−3

10−4

10−5

µ12

CNOT, 3 CRX, 3 CAN, 2

FIG. 6: Learning capability µ12 for layered ansätze with
single-qubits gates RYRZ and simple, linear

entanglement structure but different entanglement gates
and layers. The different entanglement gates are

{CNOT,CRX,CAN} with the number of entanglement
layers {3, 3, 2}. The x axis shows the architectures in
terms of number of qubits and number of layers. An
extended version of this figure is shown in Fig. 28 in

Appendix J.

layers. These results show that the cyclic entanglement
structure does not lead to a significant improvement in
learning capability. This might be due to the fact that
the amount of qubits is quite small but is nevertheless
remarkable because it shows that for ansätze represent-
ing degrees ≤ 12, cyclic entanglement structure is mostly
not needed and thus, the gate count can be reduced.

Next, we systematically analyze the impact of single-
qubit unitaries and methods to construct the trainable
W s. We choose degree 6 Fourier functions because they
are complex enough to reveal meaningful results about
parameterized single-qubit operations and complement
the previous results. We outline the results of three qubit,
two layer ansätze in Fig. 7 as this combination follows
the rule of L ≲ n. Within each plot, all ansätze uti-
lize a simple, linear entanglement structure. By varying
U1 ∈ {RY , RYRZ , RYRZRY }, we find that using RYRZ
yields a satisfying learning capability in most cases, sim-
ilar to RYRZRY and, in most cases, strictly better than
using a single RY . Thus, the use of arbitrary rotations
with three parameters is, in many cases, not needed, but
using only one RY is not enough to obtain good learn-
ing capabilities for layered ansätze. By varying the en-
tanglement gates {CZ,CNOT,CRX} we show that, with
our setup, CZ gates perform either as good as or worse
than CNOT gates. Thus, we find that using CNOT
gates as entanglement gates with no trainable parameter
is preferable over CZ gates in a setup with RX encod-
ing and σz-measurement on the last qubit. When vary-
ing the entanglement layer {1, 2} it turns out that, for
degree 6 functions, using two entanglement layers is al-

RY
CZ

RY
CNOT

RY
CRX

RY
RZ

CZ

RY
RZ

CNOT

RY
RZ

CRX

RY
RZ

RY
CZ

RY
RZ

RY
CNOT

RY
RZ

RY
CRX

10−1

10−2

10−3

10−4

10−5

µ6

ent layer = 1 ent layer = 2

FIG. 7: Comparison of µ6 for different layered ansätze
with three qubits and two layers and simple, linear

entanglement structure. The different
U1 ∈ {RY , RYRZ , RYRZRY } and entanglement gates
{CZ,CNOT,CRX} are split for different entanglement

layers {1, 2}. An extended version of this figure is
shown in Fig. 29 in Appendix J.

ready enough for all considered entanglement gates. Re-
markably, the ansatz with two linear entanglement layers,
CRX, and RY has a high learning capability. However,
this configuration had worse results for the learning capa-
bility on degree 12 functions, showing that this configu-
ration does not perform as well on higher order problems.
CZ gates represent the only cases where a cyclic entan-
glement structure performs clearly better than a linear
structure. However, even in these cases, the values for
the learning capability only catch up to the values of
the corresponding ansatz with CNOT gates (see Fig. 29
in Appendix J). A comparison of the results from three
qubits, twolayers with six qubits, one layer is also given
in Fig. 29. It clearly indicates that three qubits, two lay-
ers performs much better than the other combination,
similar to what we have seen for d = 12.

Since entanglement can play a larger role for larger
qubit numbers, we increase the Fourier degree to 12
and test ansätze with four qubits and three layers.
We choose ansätze with U1 = RYRZ and entangle-
ment gate CRX because they performed stable in pre-
vious experiments. We vary the entanglement struc-
ture {simple, strong, strongc14}, which denotes the styles
shown in Fig. 2 and the style used in circuit 14 from
Ref. [35]. The first three entries in Fig. 8 show that these
ansätze with two entanglement layers do not achieve a
reasonable learning capability, no matter which struc-
ture we use. Instead, with three entanglement layers, all
ansätze achieve an optimal learning capability indepen-

10

2 sim
ple

2 str
on

g

2 str
on

gc1
4

3 sim
ple

3 str
on

g

3 str
on

gc1
4

4 sim
ple

4 str
on

g

4 str
on

gc1
4

10−1

10−2

10−3

10−4

10−5

µ12

SW linear
SW cyclic

WSW linear
WSW cyclic

FIG. 8: Learning capability µ12 for layered ansätze with
four qubits and three layers, U1 = RYRZ and

entanglement gate CRX, either with zero layer (WSW)
or without zero layer (SW) and linear or cyclic

entanglement. The y axis shows average loss values,
while the x axis shows the architectures with different
entanglement layer numbers {2, 3, 4} and entanglement

structures {simple, strong, strongc14}. The latter
corresponds to the entangling structure of circuit 14 in

Ref. [35].

dent of their entanglement structure and style. Further-
more, as the examples in Appendix F 1 suggest—even be-
yond the case of one qubit and one layer—having a zero
layer can enhance the learning capability drastically. All
presented results demonstrate that increasing the num-
ber of entangling layers can change the learning capabil-
ity quite drastically while not changing the Fourier coef-
ficient picture. The results also indicate that the amount
of entanglement layers is much more important than the
structure that is implemented within each entanglement
layer.

Using only half of the controlled operations in each
entanglement layer, as done in the hardware-efficient or
alternating layer ansatz reduces the learning capability;
similar learning capabilities with these ansätze can be
achieved by doubling the number of entanglement layers.
This can be seen in Fig. 9 where entanglement layers and
gates vary as well as single-qubit operations. Further-
more, these results reveal the following three aspects of
a circuit’s depth: (1) architectures with four alternating
entanglement layers with CRX and RY or RYRZ have a
very low learning capability value, indicating that if one is
interested in highly expressible PQCs the RY has lower
depth compared to RYRZ ; (2) increasing the depth to
six alternating entanglement layers does not improve the
learning capability value, indicating that, in this setup,

2 CZ

2 CNOT
2 CRX

4 CZ

4 CNOT
4 CRX

6 CZ

6 CNOT
6 CRX

10−1

10−2

10−3

10−4

10−5

µ6

q6-l1 RY

q6-l1 RY RZ

q3-l2 RY

q3-l2 RY RZ

FIG. 9: Learning capability µ6 of different
alternating-layer (alt) ansätze with six qubits, one layer
and three qubits, two layers. The x-axis shows different
entanglement layer numbers and entanglement gates per

W .

four alternating entanglement layers could be used for
an architecture with lower depth; and (3) if the circuit
must be short, i.e., contain two alternating entanglement
layers, then utilizing the CRX gate would lead to PQCs
with a lower learning capability value than CZ or CNOT.

The larger confidence interval for the configuration
with CZ gates and two entanglement layers is partially
due to the logarithmic scaling, but the confidence interval
is indeed larger than, for example, the configuration with
CRX gate and one entanglement layer because the result
contains one outlier. The error distribution is plotted
and compared to other results in Fig. 21 in Appendix G.

To summarize our results for layered ansätze, we
state that the best learning capabilities can already
be achieved by using only a CNOT gate or the one-
parameter CRX gate. The three-parameter CAN gate
has a slightly better learning capability but also more pa-
rameters even though only two entanglement layers are
necessary when using this gate for d = 12 (see Figs. 6
and 28). The entanglement style (linear or cyclic) as well
as the entanglement structure (simple or strong) has al-
most no impact on µd for d ≤ 12 (see Fig. 8). This
shows that some necessary amount of entanglement has
to be created by the ansatz. We establish that, for degree
6, two entanglement layers are enough for most architec-
tures to gain sufficient learning capability (see Fig. 5) and
three entanglement layers are enough for degree 12 func-
tions (see Figs. 28 and 8). Increasing the entanglement
layer count further does not improve the learning capabil-
ity and, thus, can be considered inefficient for functions
with equal or less degrees (see Fig. 8).

11

641 61 331 2221 12121
1111111

10−1

10−2

10−3

10−4

10−5

µ6

dQNN w/o zl
dQNN w zl

dQNN reup w/o zl
dQNN reup w zl

FIG. 10: Comparison of learning capability µ6 of dQNN
ansätze with U1 = RYRZ and without [see Fig. 4b] or
with [see Fig. 4c] zero layer (zl). The x axis shows the
configuration of the dQNN ansätze, where the first digit
is the number of qubits in the input layer, the last digit
is the number of qubits in the output layer, and the
digits in between describe the number of qubits in the
hidden layers. The first two architectures have no data

reupload on their hidden qubits.

C. dQNN ansätze

The dQNN ansatz type is shown in Fig. 4 for the orig-
inal circuit architecture from Refs. [29, 70] and our en-
hancements, including the data reupload structure. Sim-
ilar to the layered ansätze, one can see from Fig. 19 in
Appendix F 2 that a certain number of hidden qubits and
layers is needed to achieve meaningful learning capabil-
ity for a certain Fourier degree when using the dQNN
ansatz type. In the case of d = 6, a structure of at least
[2, 2, 2, 1] was needed where the notation is according to
Eq. (9). This ansatz has two hidden layers and a maxi-
mum of four neighboring qubits, meaning qubits that are
directly connected to each other.

Evaluating µ6 for the dQNN ansatz type with U1 =
RYRZ , we find as a first result that the learning capa-
bility is close to µ6 ≈ 0.1, and we are, thus, not able to
learn Fourier series when we encode classical data only
on the input qubits as depicted in Fig. 4a. This is shown
in Fig. 10 where the first two ansätze [6, 1] and [6, 4, 1]
have enough qubits but not the right structure to achieve
a meaningful learning capability. Note that the ansatz
[6, 4, 1] has a hidden layer of four qubits without data re-
upload. Defining a data reupload strategy for the hidden
qubits increases the learning capability drastically. This
is shown in Fig. 10 for both reupload ansätze from Fig. 4b
and Fig. 4c. Furthermore, we find that a medium-sized
amount of neighboring qubits (three or four in the case
of a degree six function) is preferable over having many

641 61 331 2221 12121
1111111

10−1

10−2

10−3

10−4

10−5

µ6

RY RY RZ RY RZRY

FIG. 11: Comparison of learning capability of dQNN
ansätze with zero layers according to Fig. 4c with

different single-qubit unitary gates. The y axis shows
the learning capability as measured via the average

mean squared error. The x axis shows the configuration
of the dQNN ansätze, where the first digit is the

number of qubits in the input layer, the last digit is the
number of qubits in the output layer, and the digits in
between describe the number of qubits in the hidden

layers. Ansätze with different single-qubit unitaries are
represented in different colors.

neighboring qubits (seven in the case of degree six) or
only a few (two for degree six). If the number of neigh-
boring qubits is higher (four or six instead of three for
µ6), then the learning capability is better when more hid-
den than input qubits are used [see Fig. 10].

Next, we investigate the effect of different single-
qubit gates on the learning capability of dQNN ansätze.
First, we look at the effect of introducing a zero layer
of parametrized rotations on each qubit, i.e., changing
the architecture from the one in Fig. 4b to the one
in 4c. Starting with single-qubit parameterized rota-
tions in a U1UinU

1 structure instead of starting with
the data-encoding in a UinU

1 structure and including the
parametrized rotations on each hidden qubit as well in-
creases the learning capability consistently (see Fig. 10).
However, compared to the layered ansätze, the effect of
this change is not as significant, and basic learning capa-
bility can already be achieved without a zero layer.

As a second step, we compare the learning capabilities
for dQNN ansätze with different types of parametrized
rotations in Fig. 11. We find that using single-qubit gates
RYRZ yields a satisfying learning capability, which is
similar to an ansatz using RYRZRY . However, a single
RY gate already yields satisfying results in many cases.
Thus, the use of rotations with three or even two param-
eters is not needed in our test cases for dQNN ansätze,
which could be due to the rich entanglement structure of
the dQNN ansätze resulting from the CAN gates.

12

V. DISCUSSION AND OUTLOOK

In this paper, we have defined the new measure of
learning capability, which quantifies how well a PQC
ansatz is able to learn Fourier functions of a specific de-
gree on average. This quantity turns out to be necessary
since existing measures for PQC performance, like the ex-
pressiveness in terms of the Haar measure [35], in terms
of Fourier series coefficients [33], or in terms of dynamical
Lie algebras (see Appendix. A), miss differences between
certain ansatz types or lack a quantification of the train-
ability. The learning capability experiments reveal that
PQCs exist, which provide all Fourier coefficients for the
respective degree, but differ in their ability to fit differ-
ent Fourier functions, i.e., they show differences in their
learning capability.

The results in Sec. IVA show that even though the
inverse Fourier transform of a circuit sampling provides
all the Fourier coefficients for the respective degree, the
learning capability may still be small, which extends
the numerical results provided in Ref. [33]. One reason
for different learning capabilities in these cases could be
due to interdependencies between different Fourier coef-
ficients that hinder access to arbitrary Fourier functions.

We have used the learning capability of PQCs to com-
pare several layered and dQNN type ansätze. Thereby,
we hope to build a bridge between theoretical analysis
and concrete machine learning tasks that takes into ac-
count the input encoding, expressiveness, entanglement,
and trainability. This is especially important considering
the gate count reduction that is needed in the NISQ era
and the different native gate sets that are available on
different quantum computing hardware. When propos-
ing new PQC architectures, the learning capability can
be used to determine their performance compared to ex-
isting architectures.

In general, we find that both layered and dQNN
ansätze have a similar performance for a similar parame-
ter or gate count (see Table V). For layered ansätze, the
results suggest that an efficient architecture with high
learning capability µd for Fourier functions with degree
d ∈ {6, 12} can be obtained by using a similar number
of qubits and layers or slightly more qubits than layers
which can be stated by n ≳

√
d and L ≲

√
d. Further-

more, two rotation gates RYRZ and the CNOT or CRX
gate with a simple, linear entangling structure yield good
learning capability. Within this setup, using more entan-
glement layers within one trainable unitary W increases
the learning capability until a saturation limit is reached
which depends on the degree that is possible due to the
data reupload structure. Our results show that two (re-
spectively, three) entanglement layers in each W yield
good learning capabilities for degree six (respectively, 12)
functions.

For dQNN ansätze, a data reupload technique, inspired
by the reupload technique for layered PQCs, turned out
to be necessary. While these ansätze allow for many dif-
ferent amounts of input and hidden qubits, it becomes ap-

parent that having more hidden than input qubits leads
to better learning capabilities µ6 and that the hidden
qubits should be structured in several hidden layers. In
contrast to layered ansätze, the use of RY as a single-
qubit gate is sufficient to achieve good learning capability
µ6 for dQNN ansätze.

Overall, the learning capability of a chosen circuit
ansatz is inherently limited by the structure and gate us-
age of the ansatz. Thus, a careful selection of the ansatz
type and the number of qubits and layers is needed to
build efficient circuits. When designing circuits for prac-
tical use cases, those numbers determine the maximum
Fourier degree that can be learned and one should select
the PQC structure and gates such that the learning ca-
pability is suitable. For example, the learning capability
can be used to compare different ansätze with a simi-
lar value and identify the architectures that need fewer
single-qubit operations, fewer entanglement layers, or a
different qubit-to-layer ratio. This way, the depth can be
reduced, leading to reduced barren plateau effects with-
out lowering the capability to learn Fourier series.

Because discrete Fourier series can approximate arbi-
trary functions up to a certain precision, we conclude that
the performance of PQCs in learning Fourier functions
can give some guidelines on the performance in general
learning tasks. For example, we expect the architectures
that learn Fourier series with low degrees inaccurately,
i.e., with high learning capability values, to be unsuited
for supervised learning tasks with a complex dependency
between input and output data. We also expect architec-
tures that learn a variety of Fourier series with a given
degree accurately to be more likely to capture complex
dependencies between input and output data. However,
we emphasize that this assumption about the correlation
between performance on Fourier series and general QML
tasks, of course, may not hold universally.

Under this assumption, our results can be used as
guidance regarding this selection, meaning that a well-
informed initial guess for the architecture of a PQC can
be chosen by involving the learning capability. We con-
cretize this by considering two different problems.

First, we assume that very little is known about the
solution of a supervised learning problem. Similar to
the arguments presented in Ref. [63], we advise start-
ing the training of a QML model with an ansatz with a
good learning capability, i.e., choosing layered PQCs with
L ≲ n, RYRZ , and CRX gates, and to seek for minimiz-
ing the training error. By choosing the number of qubits
and layers at the beginning of the procedure, the number
of input gates is determined and hence, the maximal pos-
sible Fourier degree is known. The entanglement layers
can be selected accordingly in the sense that two (re-
spectively, three) are sufficient for six (respectively, 12)
input encoding gates. More entanglement layers should
be considered if more Fourier degrees are targeted. The
number of qubits and layers (and entanglement layers)
can successively be increased if the ansatz is not able to
achieve low errors on the training data. Once an architec-

13

ture has a low error on the training data, the evaluation
on the test data determines if the architecture is suit-
able for the given task. In case of a large error on the
test data, overfitting might be occurring and standard
machine learning techniques like regularization could be
applied as well as choosing PQC ansätze that reduce the
depth, i.e., contain fewer entanglement layers, or those
that reduce the gate complexity for compiling them on
quantum hardware, i.e., use CNOT gates instead of CRX,
to reduce the overfitting. More practically speaking, find-
ing a model that is suited for the training and test data is
done simultaneously and by (automatized) hyperparam-
eter search. Hyperparameter search grows exponentially
in the number of considered parameters. Therefore, be-
ing able to reduce these parameters—e.g., by excluding
the parametrized single-qubit operation by restricting it
to RYRZ and reducing the considered combination of n
and L by excluding the extreme cases—provides benefits
to hyperparameter search.

Second, we present nonlearning problems in quantum
computational fluid dynamics (qCFD); a growing field of
interest (see, e.g., Refs. [89, 90]) that investigates the sim-
ulation of nonlinear classical systems on quantum com-
puters. In CFD, Fourier series are known to describe ini-
tial conditions that need to be accurately represented by
quantum states or circuits. Moreover, spectral methods
in fluid dynamics allow to express flow solutions as coeffi-
cients for ansatz functions such as Fourier series [91]. Our
analysis and the learning capability provide concrete re-
sults on the question which architectures are more likely
to learn Fourier series accurately. Hence, studying PQCs
for state preparation of CFD-relevant initial states is a
possible area of application. In addition, in Ref. [92],
the authors propose a method that includes quantum
variational computing to solve nonlinear problems. The
authors propose matrix product states to represent en-
ergy potentials in quantum circuits and use them for the
case where the energy potential is described by a Fourier
series. Therefore, investigating PQCs for representing
these energy potentials is a similar possible area of appli-
cation where our work provides guidelines on the choice
of architecture.

In this work, we do not change the input encoding gate
and use RX for one-dimensional classical data in all ex-
periments. However, evaluating the learning capability
of PQC ansätze on multi-variate functions is an impor-
tant next step to move towards common machine learning
use cases. This especially means designing and analyz-
ing those PQCs which provide enough degrees of freedom
required for fitting multi-variate Fourier series [76]. An-
alyzing the effect of different input encodings per layer
could be interesting for further studies. Additionally, one
could also perform an in-depth investigation of the simi-
larities between layered and dQNN ansätze.

The analysis of different gradient methods, like the
quantum natural gradient [93] and the behavior of both
training and evaluation on real quantum hardware are
important topics that need further research. Finally,

the learning capability could be used to analyze tech-
niques like entanglement dropout [94] and determine cir-
cuit ansätze which are suited to reduce overfitting on real-
world, noisy input data. For finding a possible quantum
advantage in learning [21] or generalization [18], both re-
search directions could be helpful.

VI. CODE

Code accompanying this paper is given in Ref. [95]. In
this resource, we provide code to define an ansatz and
determine its learning capability. The code can be used
to perform the calculations presented in this paper and
reproduce each reported value individually. We also pro-
vide code to create new sets of Fourier series and calculate
their cross-correlations.

VII. ACKNOWLEDGMENTS

The authors thank Lukas Groß, Felix Wiebe, and
Patrick Draheim for helpful discussions and the anony-
mous reviewers for their constructive remarks and rec-
ommendations to improve this manuscript.
We acknowledge support from the Bundesministerium

für Bildung und Forschung (BMBF) through the project
Q3-UP! under grant numbers 40 301 121 and 13 N
15 779 administered by the VDI/VDE Innovation +
Technik GmbH (VDI) and by the Bundesministerium
für Wirtschaft und Klimaschutz (BMWK) through the
project QuDA-KI under the grant numbers 50RA2206A
and 50RA2206B administered by the Deutsches Zentrum
für Luft- und Raumfahrt e.V (DLR). We acknowledge the
use of publicly available IBM Quantum services for this
work. The views expressed are those of the authors.

14

Appendix A: Dynamical Lie Algebras of PQCs

In what follows, we will show that the parameterized quantum circuits used in our study have isomorphic dynamical
Lie algebras (DLA). We will focus on parameterized quantum circuits with data reupload. A single data reupload layer,
denoted by Ul(θl,xl), is then composed of an encoding layer, denoted by Uel (xl) for some input xl, a parameterized
layer, denoted Upl (θl) for some parameters θl, and an entangling layer, denoted Uentl . In this case, we have

Ul(θl,xl) = U ent
l Upl (θl)U

e
l (xl) (A1)

Uel (xl) =

K∏
k=1

eiH
e
kxlk (A2)

Upl (θl) =

M∏
m=1

eiH
p
mθlm (A3)

Uentl =

R∏
r=1

eiH
ent
r (A4)

U(θ,x) =

L∏
l=1

Ul(θl,xl)U
ent
0 Up0 (θ0) (A5)

where U(θ,x) represents the unitary matrix of the whole circuit, and L is the total number of layers.
Now that we have our notation set for the circuit itself, we will remind you of the necessary definitions for computing

the dynamical Lie algebra.

Definition A.1. Given a parameterized quantum circuit U(θ,x), let Ge = {He
k}Kk=1 be the set of generators of an

encoding layer, Gp = {Hp
m}Mm=1 be the set of generators of a parameterized layer, and Gent = {Hent

n }Rr=1 be the set
of generators for an entangling layer. Then, we define G = Gl = Ge

⋃
Gp
⋃

Gent to be the set of traceless Hermitian
matrices that generate the unitaries of a single layer.

Definition A.2. Given the set of generators G of some parameterized quantum circuit, the dynamical Lie algebra g
is the Lie algebra spanned by the repeated nested commutators of the elements in G:

g = span⟨iH0, ...iHt⟩Lie (A6)

Lemma A.1. Let Gp = {Oi}ni=1, Ge = {Pi}ni=1, where n is the number of qubits, Pi ̸= Oi ∈ {Xi, Yi, Zi} for all
i ∈ {1, 2, ..., n}, and {Xi, Yi, Zi} are the Pauli matrices on qubit i. The Lie algebra generated by the Gp

⋃
Ge is

g′ = su(2)⊕ su(2)⊕ ...⊕ su(2)︸ ︷︷ ︸
n times

. (A7)

Proof. The proof follows immediately from the defining relations of su(2) and the definition of a dynamical Lie
algebra.

In the case of a linear entangling layer, the generators of the entangling gates take the following form:

Gent = {Ui+1 − ZiUi+1}n−1
i=1 (A8)

This follows from the fact that we can write any controlled gate CU as

CU = ei(I−Z1)U2 , (A9)

for some Hermitian matrix U2.

Lemma A.2. Let Gp, Ge be as in the previous Lemma A.1, and let Gent = {Ui+1 −ZiUi+1}n−1
i=1 , then the Lie algebra

generated by Gp
⋃
Ge
⋃
Gent contains all nearest neighbor two-body interactions.

Proof. From the previous Lemma A.1, we know that we have all single-qubit Pauli matrices. Then, we can generate
all two-body interactions by computing [Ui+1 − ZiUi+1, Xi], followed by all possible commutators of the result with
all single-qubit Pauli matrices.

15

10−1

10−2

10−3

10−4

10−5

µ6
q3-l2

analytic 20k 2k

RY
CZ

RY
CNOT

RY
CRX

RY
RZ

CZ

RY
RZ

CNOT

RY
RZ

CRX

RY
RZ

RY
CZ

RY
RZ

RY
CNOT

RY
RZ

RY
CRX

10−1

10−2

10−3

10−4

10−5

µ6
q6-l1

FIG. 12: Comparison of µ6 for different layered ansätze with two simple, linear entanglement layers. The top plot
shows results for three qubits and two layers, while the bottom plot shows results for 6 qubits and one layer. The
green data points show analytic simulation results as in Fig. 29. The blue data points depict results of shot-based
expectation values using 20000 shots and the parameter shift rule, while the orange data points show this for 2000

shots.

Lemma A.3. The following holds:

[MiNi+1, Oi+1Pi+2] = αMiQi+1Pi+2 (A10)

[[MiNi+1, Oi+1Pi+2] , Qi+1Ri+2] = βMiSi+2 (A11)

for all M,N,O, P,Q,R, S ∈ {X,Y, Z}, α, β ∈ C, and N ̸= O.

Proof. The first equality follows immediately from the defining relations of su(2). The second equality follows from
the first equality as well the defining relations of su(2).

Proposition A.4. Let Gp, Ge be as in the previous Lemma A.1, and let Gent = {Ui+1 − ZiUi+1}n−1
i=1 , then the Lie

algebra generated by Gp
⋃
Ge
⋃
Gent contains all possible Pauli strings of length at most equal to the number of qubits

n and the dynamical Lie algebra is su(2n).

Proof. From the previous Lemmas, we can see that by repeating this argument for next-to-nearest neighbor interactions
then next-to-next-to nearest neighbor interactions until we have all 2-body interactions as well as nearest neighbor
3-body interactions. Clearly, a similar argument can be made to generate all 3-body interactions and then n-body
interactions.

Corollary A.5. The dynamical Lie algebra of any circuit presented in this paper is always given by su(2n), where n
is the number of qubits.

Proof. The proof follows by applying Proposition A.4 to any circuit.

Corollary A.5 shows that all our considered circuits tend to exhibit barren plateaus for a large number of layers.

16

FIG. 13: Topology of the simulated device. The qubits with index 0 . . . 6 are based on the actual qubits of the
ibmq perth system, whereas the added qubits with index 7 . . . 11 and their couplings are copies to increase the

system size.

Appendix B: Comparison with shot-based expectation values

We consider the case of shot-based determination of expectation values and the parameter shift value to determine
gradients. The analytic expectation values are computed using the noiseless backend of TensorFlow Quantum with
no repetitions, while the shot-based expectation values are computed with a given number of samplings from the
state. Having the training and execution shot-based brings our setup closer to real world execution while remaining
hardware independent.

Figure 12 shows, for three qubits and two layers, that the analytic values can be reached with 20000 shots per
expectation value. If we decrease the number of shots to a value lower than 20000 = 1

5·10−5 , then the maximum
reachable precision is lower then the one chosen for our analytic experiments. This is evident in the results for 2000
shots where we get very similar results for architectures with high loss values, but are limited to a lower bound for
the precision at ∼ 6.25× 10−4 (see values around the gray line in the upper row of Fig. 12). Comparing to possible
experiments, we see that the shot-based expectation value converges to the analytical one, and that using a small
number of shots would limit the maximum precision and would make circuit architectures with near-optimal learning
capabilities indistinguishable. For six qubits and one layer, Fig. 12 shows that the values are very similar which is
possible because the analytic values lay above the precision bound for 2000 shots ∼ 6.25× 10−4.

Appendix C: Evaluation under noise

To explore the usefulness of the proposed learning capability metric in an actual NISQ setting, we conduct ex-
ploratory experiments under simulated noise conditions that approximate the behavior of a current superconducting
quantum processor. We opted for simulated noise over training on actual quantum hardware for two reasons. First,
access to quantum hardware is limited and since the training and evaluation steps outlined below require millions of
circuit evaluations, such a setting would be impractical as well as time and cost prohibitive. Second, execution on
quantum hardware would necessitate transpilation to the native gate set of the chosen quantum processor. Depending
how well certain gates can be expressed in that native gate set, results may be biased by an arbitrary choice of a
quantum processor. Using a simulated device enables us to evaluate the exact same circuits and gates as in the
noise-free setting.

1. Noise model implementation

We implemented a noise model in Cirq [85] based on a calibration data snapshot of the ibmq perth system, which is
one of the IBM Quantum Falcon r5.11H Processors. This system has seven qubits, of which we copied five to extend
the simulated device to 12 qubits. Figure 13 shows the topology of the simulated device. The qubits with indices
0 . . . 6 correspond to the original hardware, whereas qubits 7 . . . 11 are mirrored from the five rightmost qubits of
the original device, including their coupling properties.The relevant calibration metrics obtained from the quantum
processor, that we use in our noise model, are summarized in Table I.

To simulate the quantum device noise, we assume decoherence is local and Markovian, which we model by thermal
relaxation and depolarizing error channels [96] applied after each gate of the circuit. We compose the thermal
relaxation noise ETR from an amplitude damping EAD and a phase damping channel EPD [97, 98], such that for a
quantum state ρ:

ETR(ρ) := EPD(EAD(ρ)). (C1)

17

For simplicity and due to technical limitations of the software stack used for training the quantum models [83], we
omit the small contribution of the excited state population [99] to the thermal relaxation error and assume a qubit
temperature of Θ = 0K. Hence, the amplitude damping channel is given by [98]:

EAD(ρ) := K0ρK
†
0 +K1ρK

†
1 , (C2)

K0 :=

[
1 0
0

√
1− γAD

]
, (C3)

K1 :=

[
0

√
γAD

0 0

]
, (C4)

with γAD = 1− e−
t

T1 . The phase damping channel is defined accordingly as [98]:

EPD(ρ) := K0ρK
†
0 +K1ρK

†
1 , (C5)

K0 :=

[
1 0
0

√
1− γPD

]
, (C6)

K1 :=

[
0 0
0

√
γPD

]
, (C7)

with γPD = e−
t

T1 − e−
2t
T2 . Here t is the gate time, and T1 and T2 the traverse and longitudinal relaxation times.

For the resulting error channel ETR, we compute the average fidelity [98, 100, 101]

F̄(ETR) =
∫

⟨ψ| ETR(|ψ⟩ ⟨ψ|) |ψ⟩ dψ =
1

2
+

1

6
e−

t
T1 +

1

3
e−

t
T2 . (C8)

If the infidelity 1−F̂(ETR) is smaller than the total gate error reported in the calibration data, we model the remaining
infidelity with an additional depolarizing channel EDP [98]

EDP (ρ) := (1− pDP)ρ+
pPD
3

∑
σ̂∈{X̂,Ŷ ,Ẑ}

σ̂ρσ̂. (C9)

The depolarization probability pDP is derived from the gate error such that the average fidelity of the entire error
channel E is

F̄(E) = F̄(EDP · ETR)
= (1− pDP)F̄(ETR) + pDP F̄(ED),

(C10)

where ED = Î
2n is the completely depolarizing channel [98]. Since TensorFlow Quantum [83], the quantum machine

learning toolkit used in this work, does not simulate measurements on the circuit but determines expectation values

TABLE I: Relevant metrics from the calibration snapshot of the imbq perth system for our noise model. The table
shows traverse (T1) and longitudinal (T2) relaxation times as well as singe-qubit gate times (t), single-qubit gate
errors and read-out assignment errors for individual qubits of the system as well as two-qubit gate times and errors

for each coupling. Calibration data was obtained on June 1st, 2023.

Couplings

Qubit T1 (µs) T2 (µs) t (ns) Gate Err. RO Err. Cp. t (ns) Gate Err.

0 9.6 16.47 35.56 0.0007 0.0220 0→1: 391.11 0.0129
1 150.65 55.92 35.56 0.0003 0.0232 1→0: 426.67 0.0129

1→2: 355.56 0.0052
1→3: 405.33 0.0145

2 120.61 103.28 35.56 0.0002 0.0205 2→1: 320.00 0.0052
3 169.23 151.85 35.56 0.0003 0.0176 3→1: 369.78 0.0145

3→5: 284.44 0.0086
4 159.29 117.10 35.56 0.0005 0.0178 4→5: 590.22 0.0103
5 187.23 140.95 35.56 0.0003 0.0240 5→3: 320.00 0.0086

5→4: 625.78 0.0103
5→6: 640.00 0.0102

6 163.37 180.04 35.56 0.0002 0.0060 6→5: 604.44 0.0102

18

q1
-l6

q2
-l3

q3
-l2

q6
-l1

10−1

10−2

10−3

10−4

10−5

RY RZ

analytic 2k shots noise

q1
-l6

q2
-l3

q3
-l2

q6
-l1

RY RZRY

FIG. 14: Comparison of µ6 for different layered ansätze with two simple, linear CNOT entanglement layers. The left
plot shows results for RYRZ , while the right plot shows results for RYRZRY single-qubit operations. The green
data points show analytic simulation results as in Fig. 29. The blue data points depict results of shot-based

expectation values using 2000 shots and the parameter shift rule. The orange data points are based on shot-based
expectation values for 2000 shots and the noise model discussed in the previous Appendix C 1.

for an observable directly from the computed quantum state, we approximate the readout error of the simulated
device by appending a bit-flip channel EBF [98] to the end of the circuit. The channel is defined by

EBF (ρ) := (1− pBF)ρ+ pBF X̂ρX̂. (C11)

The probability for the bit-flip pBF is set to the readout assignment error probability from the calibration data for
each qubit.

2. Evaluation and results

We provide an outline on how to use the learning capability in the presence of noise. Although a more detailed
investigation is out of scope of this manuscript, this section shows that the learning capability can, in principle, be
evaluated with a quantum circuit simulator that incorporates noise as described in the previous Appendix C 1. At
first, normalizing the Fourier function values to values less than one allows the PQCs to compensate for the noise
effects. We do so by dividing each function value by 3

4 . Furthermore, to reduce the computational effort, we restrict
the set of Fourier series to 10 functions and select them by choosing the ones that are included in the function pairs
with the lowest cross-correlation values as calculated in Appendix E.

We test the experiments for degree 6 functions and ansätze with two simple, linear CNOT entanglement layers. Fig-
ure 14 shows the results for these experiments for analytical simulation, shot-based, and noisy shot-based expectation
values with 2000 shots. We select qubit {0} for 1 qubit, {0, 1} for 2 qubits, {0, 1, 2} for 3 qubits and {0, 1, 2, 7, 9, 10}
for 6 qubits from the approximated processor in Fig. 13.

The analytical case shows that the changes to reduce the computational effort still enable the reproduction of the
characteristic curve except for the one qubit, six layers case with RYRZ single-qubit gates which performs better than
expected. The shot-based experiments without noise, however, follow the exact characteristic curve with a higher
minimal loss for all runs as expected from Appendix B. That is, the two and three qubits architectures perform the
best and the one and six qubits architectures lead to worse results. Including noise weakens the learning capability
further. However, the characteristic curve still remains and shows differences in the choice of qubits and layers. Again,
the one qubit case performs slightly better than expected which could be due to statistical variances or because of the
absence of two-qubit errors. Further noise experiments would be necessary to investigate this finding in more detail.

Appendix D: Hyperparameters

Our definition of learning capability depends on hyperparameters of supervised learning, namely the optimizer, the
initialization, epochs, and learning rates. On the one hand, this results from the fact that we provide a measure close

19

0 1a 1b 1c 2a 2b 2c

10−1

10−2

10−3

10−4

10−5

µ6

dQNN

3 · 60 epochs 3 · 120 epochs 3 · 180 epochs

0 1a 1b 1c 2a 2b 2c

WSW

FIG. 15: Overview of values for µ6 for different hyperparameter sets. The results are depicted for a layered ansatz
with q = 3, l = 2, el = 1, U1 = Ry and CRX and a dQNN ansatz with [61] and U1 = RYRZRY . The values on the x
axis are explained in Table II. The legend shows the different epoch sizes per learning rate. For example, the blue
marker for setting 2a corresponds to learning 120 epochs with learning rate 0.1, 120 epochs with learning rate 0.05,

and finally 120 epochs with learning rate 0.01.

to practical work. On the other hand, this could lead to different results depending on the hyperparameters and not
solely on the chosen ansatz. Therefore, we provide a comparison of results obtained by different hyperparameters in
Fig. 15. The data in the figure shows the following:

1. Losses are very stable in the range of the tested hyperparameters for the tested ansätze.

2. The gap between one and two entanglement layers in Fig. 5 is not resolved by any of these hyperparameter sets.

3. The gap between dQNNs with and without reupload on hidden neurons in Fig. 10 cannot be resolved.

This grid test of hyperparameters gives strong evidence that differences in learning capabilities can be explained
by differences in the architecture. However, since our grid test could still miss an important hyperparameter set,
we conclude that these sets would be hard to find and thus the ansatz were more impractical then others, because
extensive hyperparameter optimization would be needed to obtain similar results.

Appendix E: Details on the sets of Fourier functions

To generate truncated random Fourier series of degree d, we sample for each frequency ω a complex-valued coefficient
cω = aω + ibω as two random numbers between −0.5 and 0.5 using a uniform distribution. Due to the constraints

TABLE II: Learning rates for results in Fig. 15.

Learning rates

Set l0 l1 l2

0 0.3 0.3 0.3

1a 0.5 0.1 0.05

1b 0.5 0.1 0.1

1c 0.5 0.5 0.1

2a 0.1 0.05 0.01

2b 0.1 0.05 0.05

2c 0.1 0.1 0.05

20

0 3 6
x

−1

0

1
org

0 3 6
x

−1

0

1
shifted

(a) Best cross-correlation function pairs.

0 3 6
x

−1

0

1
org

0 3 6
x

−1

0

1
shifted

(b) Worst cross-correlation function pairs.

FIG. 16: Cross-correlation for the original dataset of degree 12 functions. The function pair with the lowest and the
highest correlation is depicted in blue and red. Because we consider shifted curves to determine the maximal

cross-correlation value for a function pair, the original curve is depicted in yellow.

of PQCs, the coefficients corresponding to −ω are given by the complex conjugate c−ω = cω. Subsequently, all
coefficients are normalized such that the highest absolute value of the truncated Fourier series is equal to 1. The code
to generate the set of random truncated Fourier series is given in Notebook.

As it was explained in Sec. IIIA, the mean error µd is given by

µd =
1

|Gd|
∑
g∈Gd

ϵg, (E1)

where ϵg is the final validation loss for the Fourier series g. Each parameterized quantum circuit ansatz is reinitialized
and trained on a sample for several truncated Fourier series which form the set Gd. For very similar functions in the
set one might get the illusion that a model performed well on n Fourier series, when in fact several of them are the
same. Therefore, a key point is to ensure that the sampled Fourier series are different to guarantee that we minimize
the effect of the sample on the results. This is done by computing the cross-correlation matrix of all the Fourier series
in the set Gd.
The cross-correlation is a similarity measure between two series which can be used to objectively quantify how

similar two (or more) series are. For two continuous periodic functions f and g with period T , the cross correlation is

(f ∗ g)(τ) =
∫ t0+T

t0

f(t)g(t+ τ)dt (E2)

where f(t) is the complex conjugate of f(t) and τ is the lag. For the τ values, we divide the interval [0, 2π] into 100
equal parts. We calculate the cross-correlation for τ = 2π·k

100 with k ∈ {0, . . . , 99}. Clearly, for each value of the lag we
get a value of the cross-correlation of f and g.
In our case, we are interested in the largest value this cross-correlation could take between the two Fourier series,

meaning the lag for which the two Fourier series are most similar. This way, we know that the two Fourier series are
not the same up to a shift in the x axis.

The analysis of the cross correlation of our Fourier series data set of degree 12 is given in Table III. For two data
sets, G12 and G′

12, the absolute values of the upper triangle matrix without diagonal elements are listed by counting
the number values lying in the specified interval. The values in the table show that the Fourier functions are in
general uncorrelated. The function pairs with the lowest and highest cross-correlation are depicted in Fig. 16 which
also visualizes the differences between the original and shifted functions.

TABLE III: Upper triangle of the cross-correlation matrix.

[0.0, [0.1, [0.2, [0.3, [0.4, [0.5, [0.6, [0.7, [0.8, [0.9,

set 0.1) 0.2) 0.3) 0.4) 0.5) 0.6) 0.7) 0.8) 0.9) 1.0]

G12 0 0 0 254 2350 1925 383 38 0 0

G′
12 0 0 0 268 2404 1823 412 43 0 0

https://github.com/dfki-ric-quantum/learning_capability/blob/master/create_rnd_functions.ipynb

21

10−1

10−2

10−3

10−4

10−5

µ12
el 2

CNOT
G12 G′

12

CRX CAN

q1-l12
q2-l6q3-l4q4-l3q6-l2

q12-l1

10−1

10−2

10−3

10−4

10−5

µ12
el 3

q1-l12
q2-l6q3-l4q4-l3q6-l2

q12-l1
q1-l12

q2-l6q3-l4q4-l3q6-l2
q12-l1

FIG. 17: Comparison of learning capabilities for two different sets of randomly sampled truncated Fourier series.
Orange data points show results for the original data as in Fig. 28. Green data points show the result of running the
experiments on a different set of truncated Fourier series. The learning capability µ12 is for different WSW ansätze
with RYRZ single-qubit gates, simple linear entangling structure and {CNOT,CRX,CAN} entangling gates. The

top row shows results for two entanglement layers, while the bottom row shows results for three entanglement layers.

To test the impact of different sets G12, G
′
12 We compare the results for the learning capability for two different

sets of randomly sampled truncated Fourier series of degree 12 in Fig. 17. This shows that there is a difference in the
results for the two sets, but that this difference is rather marginal and not statistically significant.

Appendix F: Preliminaries

We present introductory results for simple circuits which underline that data reupload can in principle provide
a frequency spectrum of size K = nL but that the structure of the trainable unitaries W determines whether all
Fourier coefficients can indeed be represented. The circuits for this section are shown in Appendix L. This Appendix
reproduces the results from Ref. [33] for simple examples and demonstrates that the learning capability naturally
captures the numerical results.

1. One qubit and one layer

Some frequently used circuits start with the input encoding directly on the input qubits without an initial block
of parametrised unitary gates (see for example Refs. [10, 12, 102]). For a systematic comparison we refer to this
idea as SW instead of WSW . If we consider the elementary case of one qubit and one layer, then a calculation
shows that SW has not enough expressiveness to fit all Fourier functions with degree 1 because the coefficient c0
of Eq. (4) is always 0. The calculation is given in Example 2 in Appendix K. It uses a σz measurement but is
independent of the exact implementation of the unitary U1. This fact can be reproduced numerically in two different
ways by choosing three different ansätze: The first ansatz is based on a SW structure with U1 = RYRZRY , i.e.
USW,3(x,Θ) = RY (θ13)RZ(θ12)RY (θ11)RX(x); the second one has a zero layer but only one gate as the single-qubit
operation: UWSW,1(x,Θ) = RY (θ11)RX(x)RY (θ01); and the third ansatz consists of a zero layer and two gates per
single-qubit operation: UWSW,2(x,Θ) = RZ(θ12)RY (θ11)RX(x)RZ(θ02)RY (θ01). Each ansatz corresponds to a row in
Fig. 18 and the circuits are depicted in Appendix L.

Two tools, introduced in Ref. [33], can be used to analyze the expressive power numerically: The first tool is to

22

SW
RY RZRY

c0 = 0 c0 = 0.4 c0 c1 c2

WSW
RY

WSW
RY RZ

FIG. 18: Left columns: Validation results (green lines) of two different trained functions (black circles) with
different c0 ∈ {0, 0.4}. The x axis is from 0 to 2π, the y axis from −1 to 1. Right columns: Fourier coefficients c0

to c2 resulting from the inverse Fourier transform of the results of evaluating the three ansätze with sampled
parameters Θ. The x axis shows the real part of the coefficient, while the y axis shows the imaginary part. Both

axis are from −1 to 1.
First row: For circuits with depth one - one qubit and only one building block SW -, the Fourier coefficient c0 is
always zero and corresponding functions cannot be fully approximated (see also the calculation in Example 2).
Second row: A WSW structure with depth one and one qubit with RY as the rotation gate leads to real Fourier

coefficients (see also Example 3).
Third row: Once we use a WSW structure with depth one on one qubit and RYRZ rotation gates, c0 ̸= 0 is

reachable and |Im{c1}| > 0, so that corresponding Fourier functions can be fitted.

train the ansätze to minimize the loss for a chosen Fourier functions of degree 1. In Fig. 18 the results are depicted
in the first two columns for two different functions. The first function is determined by c0 = 0 and c1 = 0.2 + i0.2
while the second function is given by c0 = 0.4 and c1 = 0.2 + i0.2. This way, both functions are normalized such
that no post-processing is necessary. These numerical experiments confirm the calculation because the first row shows
that USW,3(x, θ) does only provide c0 = 0. The ansatz UWSW,1(x,θ) (second row) is not able to exactly fit the
function while the ansatz UWSW,2(x,θ) (last row) results in perfect fits. The second tool to analyze the expressive
power involves randomly initializing the circuits multiple times; by performing an inverse Fourier transformation, the
imaginary and real values for each Fourier coefficient can be obtained. Each initialization is represented by an orange
circle in the three last columns of Fig. 18 where the third last column shows c0, the second last c1, and the last column
c2. Imaginary values are plotted on the y axis, whereas real values are plotted on the x axis. Note that c0 can only be
real because of Eq. (1). Again, USW,3(x,θ) misses c0 ̸= 0, UWSW,1(x,θ) only provides real values for both reachable
Fourier coefficients, and UWSW,2(x,θ) enables both coefficients.

2. Minimum number of qubits and layers

According to the results in Ref. [33], we are also able to capture the fact that every ansatz needs a certain number
of layers L and qubits n to be able to, in principle, reach a sufficient learning capability for a certain Fourier degree
dmax, with dmax = Ln. The corresponding numerical results are shown in Fig. 19, where we fit 100 random normalized
Fourier functions of degree 6 with different ansätze to determine µ6 for each ansatz. The left side of Fig. 19 shows two
layered ansätze: Both utilize U1 = RYRZ and a simple, linear entanglement structure with two entanglement layers
but different entanglement gates {CNOT,CRX}. The number of qubits in these architectures is increased from 1 to 4

23

q1-l1 q2-l1 q2-l2 q3-l2 q3-l3 q4-l3

10−1

10−2

10−3

10−4

10−5

µ6

CNOT CRX

11 21 221 2221
1212121

2222221

10−1

10−2

10−3

10−4

10−5

µ6

RY RY RZ

FIG. 19: Comparison of µ6 for layered (left) and dQNN (right) architectures of different layer and qubit numbers.
Left: results for layered ansätze with RYRZ single-qubit gates and {CNOT,CRX} entangling gates for qubit

numbers 1 to 4, layer numbers 1 to 3, and two entanglement layers per W ; Right: results for dQNN ansätze with
RY and RYRZ single-qubit gates and different numbers of qubits in (hidden) layers on the x axis.

The plots show that for these combinations of single-and two-qubit gates, which are known to perform well from the
results shown in the main text, the optimal learning capability is reached once the number of qubits and layers

matches the degree. Note that the results for µ6 for the first three layer and qubit combinations on the left and right
are nearly indistinguishable on the logarithmic scale.

and the number of layers from 1 to 3. The learning capability together with its 95% confidence interval is plotted in
each figure as circles with error bars. Once nL = d = 6, the learning capability is enhanced by more than two orders
of magnitude. However, it is not improved significantly for ansätze with larger L or n.

The same holds for modified dQNN ansätze as depicted in Fig. 19 on the right side where both ansätze use circuits
of the form in Fig. 4c but vary in the single-qubit operation {RY , RYRZ}. The architectures increase the number
of input qubits from one to two and the hidden qubits from 0 to 10 (which are split in different layers for some
architectures). For example, the notation 221 represents two input and one output qubit, with a hidden layer with
two qubits in between.

Appendix G: Analysis of error distribution

We calculate the mean µ and its confidence interval [µ − I, µ + I] with I = c · σ̂N by assuming a student’s t
distribution with N = 100 samples, c = 1.98 and use the standard error of the mean (SEM) σ̂N given by σ̂N = σN√

N

where σN =

√∑N
i=1(Xi−µ)2
N−1 is the corrected standard deviation of the sample with µ being the sample’s mean over all

final MSEs {Xi}Ni=0 obtained for each function in the set.

To further motivate the mean in Eq. (8) from an empirical perspective, we analyze the errors of the runs depicted
in Fig. 5 of the result Sec. IVA. Figure 20 shows the error distribution together with its mean and 95% confidence
interval.

In Fig. 9, the configuration RYRZ 2 CZ seems to lead to a large confidence interval compared to the other
configurations. For this configuration, the mean is 6.8 × 10−4 and the SEM is 6.4 × 10−4, which is larger than
that for RYRZ 1 CRX (1.5 × 10−4) because an outlier result at > 6.1 × 10−2 increases the variance. The error
distribution is depicted in Fig. 21. Furthermore, the logarithmic scale in the result plots and cutting the plots at 10−5

lead to seemingly skewed confidence intervals. In contrast, for example, the RY 1 CRX configuration has a higher
SEM with 1.2× 10−3.

We provide two more comparisons of seemingly large confidence intervals from Fig. 6 for degree 12 Fourier functions.
In Fig. 22, respectively, Fig. 23, the results for configurations containing three qubits and four layers, respectively,
four qubits and three layers are depicted. In both cases, the configurations with errors in lower baskets have lower
means and smaller confidence intervals because of less outlier which underlines that logarithmic scaling is one major
reason for the seemingly large confidence intervals for those cases.

24

0.065 0.159 0.244
0

2

4

6

8

10
1 CZ

0.046 0.113 0.173
0

2

4

6

8

10

1 CNOT

0.002 0.043 0.08
0
2
4
6
8

10
12
14

1 CRX

0.0 0.0005 0.0009
0

10
20
30
40
50
60
70
80

2 CRX

FIG. 20: Detailed error distribution of validation error results in Fig. 5. For each ansatz, the range of all 100 final
validation errors is divided into 20 equal baskets. The basket is determined by the minimum and maximum error for
each configuration individually resulting in different x axis. The y axis counts the number of errors included in each

basket. The mean with its 95% confidence interval is depicted as a red vertical line.

0.0 0.016 0.032 0.049 0.062
0

10
20
30
40
50
60
70
80
90

100
Ry 1 CRX

0.0 0.016 0.032 0.048 0.061
0

10
20
30
40
50
60
70
80
90

100
RyRz 1 CRX

0.0 0.016 0.032 0.048 0.061
0

10
20
30
40
50
60
70
80
90

100
RyRz 2 CZ

FIG. 21: Detailed error distribution of validation MSE results in Fig. 9 for selected configurations. For each ansatz,
the range of all 100 final validation errors is divided into 20 equal baskets. The baskets are the same for all three
configurations and are determined by their total minimum and maximal error. The y axis counts the number of
errors included in each basket. The mean with its 95% confidence interval is depicted as an orange vertical line.

Appendix H: Analysis of the size of the underlying set of Fourier functions

We investigate the impact of the data set’s size on the mean and confidence interval of our result plots. For the same
configuration examples as in the previous Appendix, we create subsets by uniformly randomly removing five elements
from the results to obtain subsets of sizes from 5 to 100 in steps of five. Calculating the mean and confidence interval
for each subset enables us to analyze the dependence of the number of functions in Gd on the learning capability
value.

The data leading to the results of Fig. 5 is analyzed in Fig 24 showing a smooth convergence towards the reported
mean for set sizes ≳ 25. In addition, the data for three qubits and four layers configurations, respectively, four qubits
and three qubits, of Fig. 6 are analyzed in Fig. 25, respectively, Fig. 26. The convergence for the CRX gate with
three entanglement layers is less smooth than for the others which suggests that the size of |Gd| = 100 should not be
decreased. The other plots show a smooth convergence to the mean.

25

0.0 0.009 0.018 0.027 0.034
0

10
20
30
40
50
60
70
80
90

100
3 CNOT

0.0 0.009 0.018 0.027 0.034
0

10
20
30
40
50
60
70
80
90

100
3 CRX

0.0 0.009 0.018 0.027 0.034
0

10
20
30
40
50
60
70
80
90

100
2 CAN

FIG. 22: Detailed error distribution of validation MSE results in Fig. 6 for three qubits and four layers
configurations. For each ansatz, the range of all 100 final validation errors is divided into 20 equal baskets. The
baskets are the same for all three configurations and are determined by their total minimum and maximal error.
The y axis counts the number of errors included in each basket. The mean with its 95% confidence interval is

depicted as an orange vertical line.

0.0 0.007 0.014 0.021 0.026
0

10
20
30
40
50
60
70
80
90

100
3 CNOT

0.0 0.007 0.014 0.021 0.026
0

10
20
30
40
50
60
70
80
90

100
3 CRX

0.0 0.007 0.014 0.021 0.026
0

10
20
30
40
50
60
70
80
90

100
2 CAN

FIG. 23: Detailed error distribution of validation MSE results in Fig. 6 for four qubits and three layers
configurations. For each ansatz, the range of all 100 final validation errors is divided into 20 equal baskets. The
baskets are the same for all three configurations and are determined by their total minimum and maximal error.
The y axis counts the number of errors included in each basket. The mean with its 95% confidence interval is

depicted as an orange vertical line.

Appendix I: Barren plateaus

We numerically check if barren plateaus can explain the results of the layered PQCs depicted as blue points in
Fig. 6 and the blue points for dQNNs in Fig. 10 (or Fig. 11). The layered WSW ansätze with n ·L = 12 vary in their
number of qubits n and layers L but all consist of single-qubit rotations RYRZ and 3 entanglement layers in a simple,
linear structure utilizing CRX entanglement gates. The dQNNs ansätze enabling degree 6 are the following (in the
notation of Eq. (9)):

• [6, 1] (max. 7 neighboring qubits),

• [3, 3, 1] (max. 6 neighboring qubits),

• [2, 2, 2, 1] (max. 4 neighboring qubits),

• [1, 2, 1, 2, 1] (max. 3 neighboring qubits),

• [1, 1, 1, 1, 1, 1, 1] (max. 2 neighboring qubits).

26

9580655035205
|Gd|

0.0

0.5

1.0

1.5

M
SE

×10−1 1 CZ

9580655035205
|Gd|

0.0

0.5

1.0

1.5

×10−1 1 CNOT

9580655035205
|Gd|

0

2

4

6

×10−2 1 CRX

9580655035205
|Gd|

0

1

2

3

×10−4 2 CRX

FIG. 24: Mean and confidence interval of validation MSE results for successive smaller set sizes |Gd| for three qubits
and four layers configurations of Fig. 5. The plot shows a smooth convergence of the mean for all four configurations

for set sizes ≳ 25.

9585756555453525155
|Gd|

0.00

0.25

0.50

0.75

1.00

M
SE

×10−2 3 CNOT

9585756555453525155
|Gd|

0

1

2

3

×10−3 3 CRX

9585756555453525155
|Gd|

0.0

0.5

1.0

×10−2 2 CAN

FIG. 25: Mean and confidence interval of validation MSE results for successive smaller set sizes |Gd| for three qubits
and four layers configurations of Fig. 6. The plot shows a smooth convergence for 2CAN. For both other cases the

convergence of the mean is less smooth which suggests that the size |Gd| = 100 should not be decreased.

All dQNNs utilize single-qubit operations RYRZ and a data reupload scheme with a zero layer on each qubit.

Following the approach of Ref. [46], we initialize every trainable gate randomly in the interval [0, 2π) except for the
first gate acting on the first qubit. We calculate the gradient based on the mean squared error loss of the complete
training data set of 50, respectively, 100, data points for degree 6, respectively, degree 12, Fourier series and determine
the variance of these gradients by averaging over the 100 Fourier functions used to calculate the learning capability.

In the left plot of Fig. 27, the results for dQNNs are depicted. No tendency for different choices of hidden qubits
is observable indicating that barren plateaus cannot explain the drastically different performances represent by the
blue points in Fig. 10 (or Fig. 11).

In the right plot of Fig. 27, the results for layered ansätze are depicted. A clear tendency, in agreement with the
literature, can be found showing an exponential decay of the variance of the gradient when increasing the number of
qubits (and decreasing the number of layers). However, this does not adequately explain the blue curve in Fig. 6,
because the architecture with four qubits (three layers) performs slightly better than the one with three qubits (four
layers); the ansatz with six qubits (two layers) performs slightly better than the one with two qubits (six layers); and
the ansatz with 12 qubits (one layer) performs slightly better than the one with one qubit (12 layers).

This numerical analysis further supports our claim that the effect of barren plateaus is not sufficient to explain
different learning capabilities of different ansätze for dQNNs and layered PQCs.

27

9585756555453525155
|Gd|

0

1

2

M
SE

×10−2 3 CNOT

9585756555453525155
|Gd|

0

1

2

×10−3 3 CRX

9585756555453525155
|Gd|

0

2

4

×10−5 2 CAN

FIG. 26: Mean and confidence interval of validation MSE results for successive smaller set sizes |Gd| for four qubits
and three layers configurations of Fig. 6. The plot shows a smooth convergence for all three configurations.

However, the shape of the curve for 3CRX suggests that the size |Gd| = 100 should not be decreased.

76432
neighbouring qubits

10−4

10−3

10−2

10−1

∂
θ 1

va
ria

nc
e

dQNNs for d = 6

1 2 3 4 6 12
total qubits

10−4

10−3

10−2

10−1

∂
θ 1

va
ria

nc
e

layered WSWs for d = 12

FIG. 27: Investigation of possible barren plateaus via the variance of parameters’ gradients [46]. Except for the first
gate acting on the first qubit, all gates of the circuit are initialized randomly. The gradient is calculated based on
the mean squared error loss of the complete training data set. Left: Results for dQNN ansätze enabling degree 6
Fourier series corresponding to the ansätze resulting in the blue curve in Fig. 10 and Fig. 11. Right: Results for

layered ansätze for degree 12 Fourier series corresponding to the blue curve in Fig. 6.

Appendix J: Additional figures and tables

In this appendix, we provide two more figures and tables. The figures show detailed comparisons of layered ansätze
with different entanglement layers and styles for degree 12 in Fig. 28 and for degree 6 in Fig. 29.

Table IV and Table V list the number of single-qubit gates, two-qubit gates, and trainable parameters for the
ansätze in Fig. 6 and Fig. 19, respectively.

28

10−1

10−2

10−3

10−4

10−5

µ12
linear

CNOT

ent layer = 2 ent layer = 3

CRX CAN

q1-l12 q2-l6 q3-l4 q4-l3 q6-l2 q12-l1

10−1

10−2

10−3

10−4

10−5

µ12
cyclic

q1-l12 q2-l6 q3-l4 q4-l3 q6-l2 q12-l1q1-l12 q2-l6 q3-l4 q4-l3 q6-l2 q12-l1

FIG. 28: Results for the learning capability µ12 for different WSW ansätze with RYRZ single-qubit gates, simple
entangling structure and {CNOT,CRX,CAN} entangling gates. The top row shows results for linear entanglement
style, while the bottom row shows results for cyclic entanglement (see Fig. 3 for an explanation of the entanglement

styles).

d = 12 3 CNOT 3 CRX 2 CAN

n L s t p s t p s t p

1 12 90 0 78 90 0 78 64 0 52

2 6 96 21 84 96 21 105 68 70 126

3 4 102 30 90 102 30 120 72 80 140

4 3 108 36 96 108 36 132 76 88 152

6 2 120 45 108 120 45 153 84 102 174

12 1 156 66 144 156 66 210 108 140 236

TABLE IV: Comparison of number of single-qubit gates s, number of two-qubit gates t, and trainable parameter
count p for the different ansätze in Fig. 6. We count one CAN gate as three two-qubit gates. The number of

single-qubit gates includes the nonparameterized data-encoding gates.

29

10−1

10−2

10−3

10−4

10−5

µ6
q3-l2

linear

ent layer = 1 ent layer = 2

cyclic

RY
CZ

RY
CNOT

RY
CRX

RY
RZ

CZ

RY
RZ

CNOT

RY
RZ

CRX

RY
RZ

RY
CZ

RY
RZ

RY
CNOT

RY
RZ

RY
CRX

10−1

10−2

10−3

10−4

10−5

µ6
q6-l1

RY
CZ

RY
CNOT

RY
CRX

RY
RZ

CZ

RY
RZ

CNOT

RY
RZ

CRX

RY
RZ

RY
CZ

RY
RZ

RY
CNOT

RY
RZ

RY
CRX

FIG. 29: Comparison of µ6 for different layered ansätze with simple and linear (left) or cyclic (right) entanglement
structure. The top rows shows results for three qubits and two layers, while the bottom row shows results for six

qubits and one layer. The number of entanglement layers {1, 2} is defined as shown in Fig. 2.

layered dQNN

CNOT CRX RY RY RZ

n× L s t p s t p s t p s t p

1 9 0 8 9 0 8 4 3 6 9 3 11

2 18 4 16 18 4 20 7 6 12 14 6 18

4 28 6 24 28 6 30 13 18 27 24 18 38

6 42 12 36 42 12 48 19 30 43 34 30 58

9 57 16 48 57 16 64 28 36 55 49 36 76

12 76 24 64 76 24 88 37 66 91 64 66 118

TABLE V: Comparison of number of single-qubit gates s, number of two-qubit gates t, and trainable parameter
count p for the different ansätze in Fig. 19. We count one CAN gate in the dQNN ansätze as three two-qubit gates.

The number of single-qubit gates includes the non-parameterized data-encoding gates.

30

Appendix K: Calculations

1. Calculations for circuits representing degree one

Assume S(x) = RX(x) = He−i
x
2DxH† where Dx = diag(+1,−1) is the diagonalized form of σX diagonalized

by the Hadamard matrix H† = H = 1√
2
(−1)i·j |i⟩ ⟨j|. We also assume that measurement is taken in the z basis:

M = σZ = (−1)i·jδij |i⟩ ⟨j| = (−1)i·i |i⟩ ⟨i| and that W =

(
W 0

0 W 0
1

W 1
0 W 1

1

)
with W † =

(
W

0

0 W
0

1

W
1

0 W
1

1

)
is unitary.

Example 1. The ansatz type W (θ)S(x) on 1 qubit and depth 1 does not learn all Fourier functions of degree 1 since
the Fourier coefficient c0 is equal to zero for all parameters θ.

WS |0⟩ = 1

2
(−1)0·j(−1)j·le−i

x
2 λjW q

i |i⟩

⟨0|S†W †MWS |0⟩ = 1

4
(−1)0·k(−1)k·l

′
(−1)0·j(−1)j·lei

x
2 (λk−λj)W

l′

i′ W
i
lM

i′

i

=
1

4
(−1)i·i(−1)k·l

′
(−1)j·lei

x
2 (λk−λj)W

l′

i W
i
l

c0 : k = j ⇒ c0 =
1

4
(−1)i·i(−1)j·l

′
(−1)j·lW

l′

i W
i
l

=
1

4
(−1)j·l

′
(−1)j·l(−1)i·iW

l′

i W
i
l

=
1

4
(1 + (−1)1·l

′
(−1)1·l)(−1)i·iW

l′

i W
i
l

=

{
0, if l′ ̸= l
1
2 (−1)i·iW

l

i W
i
l, if l = l

=
1

2
(W

l

0W
0
l −W

l

1W
1
l)

=
1

2
(W

0

0 W
0
0 +W

1

0 W
0
1 − (W

0

1 W
1
0 +W

1

1 W
1
1))

= 0

Example 2. The ansatz S(x)W (θ) does not learn all Fourier functions of degree one since the Fourier coefficient c0
is equal to zero for all parameters θ.

SW |0⟩ = 1

2
(−1)l·j(−1)j·qe−i

x
2 λjW q

0 |q⟩

⟨0|W †S†MSW |0⟩ = 1

4
(−1)i

′·k(−1)k·l
′
(−1)i·j(−1)j·lei

x
2 (λk−λj)W

0

l′ W
l
0M

i′ i

=
1

4
(−1)i·i(−1)i·k(−1)k·l

′
(−1)i·j(−1)j·lei

x
2 (λk−λj)W

0

l′ W
l
0

c0 : k = j ⇒ c0 =
1

4
(−1)i·i(−1)i·j(−1)j·l

′
(−1)i·j(−1)j·lW

0

l′ W
l
0

=
1

4
(−1)i·i(−1)j·l

′
(−1)j·lW

0

l′ W
l
0

=
1

4
(1− 1)(−1)j·l

′
(−1)j·lW

0

l′ W
l
0

= 0

Example 3. The ansatz U = W (θ)S(x)W (θ) = RY (θ)S(x)RY (θ) does not learn all Fourier functions of degree 1
since the coefficients c0 and c1 are real for all parameters θ.

WSW |0⟩ = 1

2
(−1)l1·j(−1)j·l0e−i

x
2 λjW q

l1
W l0

0 |q⟩

⟨0|W †S†W †MWSW |0⟩ = 1

4
(−1)i·i(−1)l

′
1·j(−1)j·l

′
0(−1)l1·j(−1)j·l0e−i

x
2 λjW

0

l′0
W

l′1
i W i

l1W
l0
0

31

If we choose W = RY =

(
cos
(
Θ
2

)
− sin

(
Θ
2

)
sin
(
Θ
2

)
cos
(
Θ
2

)), then all entries Wij are real and, hence, the coefficients c0 and c1 in

the expectation value above are real. Further calculations show that c0 = 0 and |c1| = 0.5 for W = RX and W = RZ .

2. Calculations for circuits representing higher degrees

Example 4 (one qubit, L layers). We consider the one qubit, L layer case with
S(x) = e−i

x
2 σx = He−i

x
2 λi |i⟩ ⟨i|H†

and W (θ) =W l
k |l⟩ ⟨k|

U(x) |0⟩ =WL(θ)S(x) · · ·W 1(θ)S(x)W 0(θ) |0⟩
= e−i

x
2 (λj1+···+λjL

)W q
jL

· · ·W j2
j1
W j1

0 |q⟩

= e−i
x
2ΛjW q

jL
· · ·W j1

0 |q⟩

⇒ ⟨0|U†(x)MU(x) |0⟩ = e−i
x
2 (Λj−Λk)M i′

iW
0

k1 · · ·W
kl
i′ W

i
jL · · ·W j1

0

such that Ω = { 1
2 (Λk − Λj)} = [−L,−(L− 1), · · · ,−1, 0, 1, · · · , L− 1, L].

Example 5 (n qubits, one layer). We consider the n qubit, one layer case with
S(x) = e−i

x
2 σx⊗n = H⊗ne−i

x
2Dx ⊗ . . .⊗ e−i

x
2DxH†⊗n = H⊗ne−i

x
2 (λj1

+···+λjn) |j1 · · · jn⟩ ⟨j1 · · · jn|H†⊗n

and W (θ) =W l1···ln
m1···mn

|l1 · · · ln⟩ ⟨m1 · · ·mn|

U(x) |0 · · · 0⟩ =W 1(θ)S(x)W 0(θ) |0 · · · 0⟩
= e−i

x
2 (λj1

+···+λjn)

W q1···qn
j1···jnW

j1···jn
0···0 |q1 · · · qn⟩

= e−i
x
2ΛjW q

jW
j
0 |q⟩

⇒ ⟨0|U†(x)MU(x) |0⟩ = e−i
x
2 (Λj−Λk)M i′

iW
0

k W
k

i′ W
i
jW

j
0

such that Ω = { 1
2 (Λk − Λj)} = [−n,−(n− 1), · · · ,−1, 0, 1, · · · , n− 1, n].

Example 6 (n qubits, L layer). We consider the n qubit, L layer case with
S(x) = e−i

x
2 σx⊗n = H⊗ne−i

x
2Dx ⊗ . . .⊗ e−i

x
2DxH†⊗n = H⊗ne−i

x
2 (λj1+···+λjn) |j1 · · · jn⟩ ⟨j1 · · · jn|H†⊗n

and W (θ) =W l1···ln
m1···mn

|l1 · · · ln⟩ ⟨m1 · · ·mn|

U(x) |0 · · · 0⟩ =WL(θ)S(x) · · ·W 1(θ)S(x)W 0(θ) |0 · · · 0⟩
=WL(θ)S(x) · · ·W 2(θ)S(x)e−i

x
2 (λj11+···+λj1n)W q1···qn

j11···j1nW
j11···j1n
0···0 |q1 · · · qn⟩

= e−i
x
2 (λj11+···+λj1n+···+λjL1

+···+λjLn
)W q1···qn

jL1···jLn
· · ·W j21···j2n

j11···j1nW
j11···j1n
0···0 |qL1 · · · qLn⟩

= e−i
x
2 (Λj1+···+ΛjL

)W q
jL

· · ·W j1
0 |q⟩

⇒ ⟨0|U†(x)MU(x) |0⟩ = e−i
x
2 (Λj1+···+ΛjL

−Λk1−···−ΛkL
)M i′

iW
kL

i′ · · ·W 0

k1
W i

jL · · ·W j1
0

such that Ω = { 1
2 (Λk1 + · · ·+ ΛkL − Λj1 + · · ·+ ΛjL)} = [−nL,−(nL− 1), · · · ,−1, 0, 1, · · · , nL− 1, nL].

Appendix L: Presenting selected circuits

In the following we present the circuits analyzed in Fig. 18 of the preliminary results in Appendix F and in Fig 5
in first part of the results Sec. IVA. The three circuits that lead to the results of Fig. 18 are given in Fig. 30, Fig. 31,
and Fig. 32. The three circuits that lead to the results of Fig. 5 are given in Fig. 33, Fig. 34, Fig. 35 and Fig. 36.

32

|0⟩ RX(x) RY (θ1) RZ(θ2) RY (θ3)

FIG. 30: SW circuit that yields the results in the first row of Fig. 18.

|0⟩ RY (θ1) RX(x) RY (θ2)

FIG. 31: WSW circuit that yields the results in the second row of Fig. 18.

|0⟩ RY (θ1) RZ(θ2) RX(x) RY (θ3) RZ(θ4)

FIG. 32: WSW circuit that yields the results in the third row of Fig. 18.

|0⟩ RY (θ1) RX(x) RY (θ4) RX(x) RY (θ7)

|0⟩ RY (θ2) RX(x) RY (θ5) RX(x) RY (θ8)

|0⟩ RY (θ3) RX(x) RY (θ6) RX(x) RY (θ9

FIG. 33: Circuit that yields the results in the first row of Fig. 5.

|0⟩ RY (θ1) RX(x) RY (θ4) RX(x) RY (θ7)

|0⟩ RY (θ2) RX(x) RY (θ5) RX(x) RY (θ8)

|0⟩ RY (θ3) RX(x) RY (θ6) RX(x) RY (θ9)

FIG. 34: Circuit that yields the results in the second row of Fig. 5.

33

|0
⟩

R
Y
(θ

1
)

R
X
(x
)

R
Y
(θ

6
)

R
X
(x
)

R
Y
(θ

1
1
)

|0
⟩

R
Y
(θ

2
)

R
X
(θ

4
)

R
X
(x
)

R
Y
(θ

7
)

R
X
(θ

9
)

R
X
(x
)

R
Y
(θ

1
2
)

R
X
(θ

1
4
)

|0
⟩

R
Y
(θ

3
)

R
X
(θ

5
)

R
X
(x
)

R
Y
(θ

8
)

R
X
(θ

1
0
)

R
X
(x
)

R
Y
(θ

1
3
)

R
X
(θ

1
5
)

F
IG

.
3
5
:
C
ir
cu
it
th
a
t
y
ie
ld
s
th
e
re
su
lt
s
in

th
e
th
ir
d
ro
w

o
f
F
ig
.
5
.

|0
⟩

R
Y
(θ

1
)

R
Y
(θ

6
)

R
X
(x
)

R
Y
(θ

1
1
)

R
Y
(θ

1
6
)

R
X
(x
)

R
Y
(θ

2
1
)

R
Y
(θ

2
6
)

|0
⟩

R
Y
(θ

2
)

R
X
(θ

4
)

R
Y
(θ

7
)

R
X
(θ

9
)

R
X
(x
)

R
Y
(θ

1
2
)

R
X
(θ

1
4
)

R
Y
(θ

1
7
)

R
X
(θ

1
9
)

R
X
(x
)

R
Y
(θ

2
2
)

R
X
(θ

2
4
)

R
Y
(θ

2
7
)

R
X
(θ

2
9
)

|0
⟩

R
Y
(θ

3
)

R
X
(θ

5
)

R
Y
(θ

8
)

R
X
(θ

1
0
)

R
X
(x
)

R
Y
(θ

1
3
)

R
X
(θ

1
5
)

R
Y
(θ

1
8
)

R
X
(θ

2
0
)

R
X
(x
)

R
Y
(θ

2
3
)

R
X
(θ

2
5
)

R
Y
(θ

2
8
)

R
X
(θ

3
0
)

F
IG

.
3
6
:
C
ir
cu
it
th
a
t
y
ie
ld
s
th
e
re
su
lt
s
in

th
e
fo
u
rt
h
ro
w

o
f
F
ig
.
5
.

34

[1] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, Quantum machine learning,
Nature 549, 195 (2017).

[2] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii,
Quantum circuit learning, Phys. Rev. A 98, 032309
(2018).

[3] M. Schuld and N. Killoran, Quantum machine learning
in feature hilbert spaces, Phys. Rev. Lett. 122, 040504
(2019).

[4] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Super-
vised learning with quantum-enhanced feature spaces,
Nature 567, 209 (2019).

[5] V. Dunjko and P. Wittek, A non-review of Quantum
Machine Learning: trends and explorations, Quantum
Views 4, 32 (2020).

[6] M. Schuld and F. Petruccione, Machine Learning with
Quantum Computers (Springer, 2021).

[7] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and
P. J. Coles, Challenges and opportunities in quantum
machine learning, Nat. Comput. Sci. 2, 567 (2022).

[8] J. Preskill, Quantum Computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[9] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug,
S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen,
J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-
C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-
scale quantum algorithms, Rev. Mod. Phys. 94, 015004
(2022).

[10] A. Matic, M. Monnet, J. Lorenz, B. Schachtner, and
T. Messerer, Quantum-classical convolutional neural
networks in radiological image classification, in 2022
IEEE International Conference on Quantum Comput-
ing and Engineering (QCE) (IEEE Computer Society,
Los Alamitos, CA, USA, 2022) pp. 56–66.

[11] A. Sagingalieva, M. Kordzanganeh, A. Kurkin, A. Mel-
nikov, D. Kuhmistrov, M. Perelshtein, A. Melnikov,
A. Skolik, and D. V. Dollen, Hybrid quantum resnet for
car classification and its hyperparameter optimization,
Quantum Machine Intelligence 5, 38 (2023).

[12] S. Mangini, A. Marruzzo, M. Piantanida, D. Gerace,
D. Bajoni, and C. Macchiavello, Quantum neural net-
work autoencoder and classifier applied to an industrial
case study, Quantum Machine Intelligence 4, 13 (2022).

[13] A. Skolik, S. Jerbi, and V. Dunjko, Quantum agents
in the Gym: a variational quantum algorithm for deep
Q-learning, Quantum 6, 720 (2022).

[14] H. Hohenfeld, D. Heimann, F. Wiebe, and F. Kirchner,
Quantum deep reinforcement learning for robot naviga-
tion tasks, IEEE Access 12, 87217 (2024).

[15] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, and P. J. Coles, Variational quantum algo-
rithms, Nat. Rev. Phys. 6, 625 (2021).

[16] M. Schuld, I. Sinayskiy, and F. Petruccione, The quest
for a quantum neural network, Quantum Inf. Process.
13, 2567 (2014).

[17] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli,
and S. Woerner, The power of quantum neural networks,
Nat. Comput. Sci. 1, 403 (2021).

[18] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma,
A. Sornborger, L. Cincio, and P. J. Coles, Generalization
in quantum machine learning from few training data,
Nat. Commun. 13, 4910 (2022).

[19] M. Larocca, F. Sauvage, F. M. Sbahi, G. Verdon, P. J.
Coles, and M. Cerezo, Group-invariant quantum ma-
chine learning, PRX Quantum 3, 030341 (2022).

[20] J. J. Meyer, M. Mularski, E. Gil-Fuster, A. A. Mele,
F. Arzani, A. Wilms, and J. Eisert, Exploiting sym-
metry in variational quantum machine learning, PRX
Quantum 4, 010328 (2023).

[21] F. J. Schreiber, J. Eisert, and J. J. Meyer, Classical sur-
rogates for quantum learning models, Phys. Rev. Lett.
131, 100803 (2023).

[22] Y. Gujju, A. Matsuo, and R. Raymond, Quantum ma-
chine learning on near-term quantum devices: Current
state of supervised and unsupervised techniques for real-
world applications, Phys. Rev. Appl. 21, 067001 (2024).

[23] Y. Liu, S. Arunachalam, and K. Temme, A rigorous
and robust quantum speed-up in supervised machine
learning, Nat. Phys. 17, 1013 (2021).

[24] J. Jäger and R. V. Krems, Universal expressiveness of
variational quantum classifiers and quantum kernels for
support vector machines, Nat. Commun. 14, 576 (2023).

[25] S. Jerbi, C. Gyurik, S. C. Marshall, R. Molteni, and
V. Dunjko, Shadows of quantum machine learning, Nat.
Commun. 15, 5676 (2024).

[26] J. Bowles, S. Ahmed, and M. Schuld, Better than clas-
sical? the subtle art of benchmarking quantum machine
learning models, arXiv:2403.07059 (2024).

[27] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-
efficient variational quantum eigensolver for small
molecules and quantum magnets, Nature 549, 242
(2017).

[28] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel,
D. Venturelli, and R. Biswas, From the quantum ap-
proximate optimization algorithm to a quantum alter-
nating operator ansatz, Algorithms 12, 34 (2019).

[29] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne,
R. Salzmann, D. Scheiermann, and R. Wolf, Training
deep quantum neural networks, Nat. Commun. 11, 808
(2020).

[30] X. Pan, Z. Lu, W. Wang, Z. Hua, Y. Xu, W. Li, W. Cai,
X. Li, H. Wang, Y.-P. Song, et al., Deep quantum neu-
ral networks on a superconducting processor, Nat. Com-
mun. 14, 4006 (2023).

[31] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and
J. I. Latorre, Data re-uploading for a universal quantum
classifier, Quantum 4, 226 (2020).

[32] F. J. Gil Vidal and D. O. Theis, Input redundancy for
parameterized quantum circuits, Frontiers in Physics 8,
297 (2020).

[33] M. Schuld, R. Sweke, and J. J. Meyer, Effect of data en-
coding on the expressive power of variational quantum-
machine-learning models, Phys. Rev. A 103, 032430
(2021).

[34] W. Li, Z. Lu, and D.-L. Deng, Quantum Neural Network
Classifiers: A Tutorial, SciPost Phys. Lect. Notes , 61
(2022).

https://doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/10.1007/978-3-030-83098-4
https://doi.org/10.1007/978-3-030-83098-4
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1109/QCE53715.2022.00024
https://doi.org/10.1109/QCE53715.2022.00024
https://doi.org/10.1109/QCE53715.2022.00024
https://doi.org/10.1007/s42484-023-00123-2
https://doi.org/10.1007/s42484-022-00070-4
https://doi.org/10.22331/q-2022-05-24-720
https://doi.org/10.1109/ACCESS.2024.3417808
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s41467-022-32550-3
https://doi.org/10.1103/PRXQuantum.3.030341
https://doi.org/10.1103/PRXQuantum.4.010328
https://doi.org/10.1103/PRXQuantum.4.010328
https://doi.org/10.1103/PhysRevLett.131.100803
https://doi.org/10.1103/PhysRevLett.131.100803
https://doi.org/10.1103/PhysRevApplied.21.067001
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41467-023-36144-5
https://doi.org/10.1038/s41467-024-49877-8
https://doi.org/10.1038/s41467-024-49877-8
https://arxiv.org/abs/2403.07059
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.3390/a12020034
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41467-023-39785-8
https://doi.org/10.1038/s41467-023-39785-8
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.21468/SciPostPhysLectNotes.61
https://doi.org/10.21468/SciPostPhysLectNotes.61

35

[35] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Express-
ibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms,
Adv. Quantum Technol. 2, 1900070 (2019).

[36] S. E. Rasmussen, N. J. S. Loft, T. Baekkegaard,
M. Kues, and N. T. Zinner, Reducing the amount of
single-qubit rotations in vqe and related algorithms,
Adv. Quantum Technol. 3, 2000063 (2020).

[37] T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Ber-
tels, Evaluation of parameterized quantum circuits: on
the relation between classification accuracy, expressibil-
ity, and entangling capability, Quantum Machine Intel-
ligence 3, 9 (2021).

[38] M. Ballarin, S. Mangini, S. Montangero, C. Macchi-
avello, and R. Mengoni, Entanglement entropy produc-
tion in Quantum Neural Networks, Quantum 7, 1023
(2023).

[39] S. A. Wilkinson and M. J. Hartmann, Evaluating the
performance of sigmoid quantum perceptrons in quan-
tum neural networks, arXiv:2208.06198 (2022).

[40] Z. Yu, H. Yao, M. Li, and X. Wang, Power and limi-
tations of single-qubit native quantum neural networks,
in Advances in Neural Information Processing Systems,
Vol. 35 (Curran Associates, Inc., New Orleans, LA,
USA, 2022) pp. 27810–27823.

[41] S. Arunachalam and R. de Wolf, Guest column: A sur-
vey of quantum learning theory, ACM Sigact News 48,
41 (2017).

[42] M. C. Caro, Quantum learning theory, https://

mediatum.ub.tum.de/node?id=1634443 (2022).
[43] L. Funcke, T. Hartung, K. Jansen, S. Kühn, and P. Stor-

nati, Dimensional Expressivity Analysis of Parametric
Quantum Circuits, Quantum 5, 422 (2021).

[44] A. Katabarwa, S. Sim, D. E. Koh, and P.-L. Dallaire-
Demers, Connecting geometry and performance of two-
qubit parameterized quantum circuits, Quantum 6, 782
(2022).

[45] E. R. Anschuetz and B. T. Kiani, Quantum variational
algorithms are swamped with traps, Nat. Commun. 13,
7760 (2022).

[46] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Bab-
bush, and H. Neven, Barren plateaus in quantum neu-
ral network training landscapes, Nat. Commun. 9, 4812
(2018).

[47] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J.
Coles, Cost function dependent barren plateaus in shal-
low parametrized quantum circuits, Nat. Commun. 12,
1 (2021).

[48] C. Ortiz Marrero, M. Kieferová, and N. Wiebe,
Entanglement-induced barren plateaus, PRX Quantum
2, 040316 (2021).

[49] Z. Holmes, A. Arrasmith, B. Yan, P. J. Coles, A. Al-
brecht, and A. T. Sornborger, Barren plateaus pre-
clude learning scramblers, Phys. Rev. Lett. 126, 190501
(2021).

[50] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Con-
necting ansatz expressibility to gradient magnitudes and
barren plateaus, PRX Quantum 3, 010313 (2022).

[51] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles, Train-
ability of dissipative perceptron-based quantum neural
networks, Phys. Rev. Lett. 128, 180505 (2022).

[52] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan,
P. J. Coles, and M. Cerezo, Diagnosing barren plateaus
with tools from quantum optimal control, Quantum 6,

824 (2022).
[53] C.-C. Chen, M. Watabe, K. Shiba, M. Sogabe,

K. Sakamoto, and T. Sogabe, On the expressibility and
overfitting of quantum circuit learning, ACM Transac-
tions on Quantum Computing 2, 1 (2021).

[54] Y. Du, Z. Tu, X. Yuan, and D. Tao, Efficient measure
for the expressivity of variational quantum algorithms,
Physical Review Letters 128, 080506 (2022).

[55] K. Bu, D. E. Koh, L. Li, Q. Luo, and Y. Zhang, Statis-
tical complexity of quantum circuits, Physical Review
A 105, 062431 (2022).

[56] M. C. Caro, H.-Y. Huang, N. Ezzell, J. Gibbs, A. T.
Sornborger, L. Cincio, P. J. Coles, and Z. Holmes, Out-
of-distribution generalization for learning quantum dy-
namics, Nat. Commun. 14, 3751 (2023).

[57] T. Haug and M. S. Kim, Generalization of quantum ma-
chine learning models using quantum fisher information
metric, Physical Review Letters 133, 050603 (2024).

[58] M. C. Caro, E. Gil-Fuster, J. J. Meyer, J. Eisert, and
R. Sweke, Encoding-dependent generalization bounds
for parametrized quantum circuits, Quantum 5, 582
(2021).

[59] E. Peters and M. Schuld, Generalization despite overfit-
ting in quantum machine learning models, Quantum 7,
1210 (2023).

[60] E. Gil-Fuster, J. Eisert, and C. Bravo-Prieto, Under-
standing quantum machine learning also requires re-
thinking generalization, Nat. Commun. 15, 2277 (2024).

[61] L. G. Wright and P. L. McMahon, The capacity of quan-
tum neural networks, in CLEO: Science and Innova-
tions (Optica Publishing Group, 2020) pp. JM4G–5.

[62] D. J. C. MacKay, Information theory, inference and
learning algorithms (Cambridge university press, 2003).

[63] G. Friedland, A. Metere, and M. Krell, A practical
approach to sizing neural networks, arXiv:1810.02328
(2018).

[64] M. Lewenstein, A. Gratsea, A. Riera-Campeny, A. Aloy,
V. Kasper, and A. Sanpera, Storage capacity and learn-
ing capability of quantum neural networks, Quantum
Science and Technology 6, 045002 (2021).

[65] S. Kullback and R. A. Leibler, On Information and Suf-
ficiency, The Annals of Mathematical Statistics 22, 79
(1951).

[66] K. Nakaji and N. Yamamoto, Expressibility of the alter-
nating layered ansatz for quantum computation, Quan-
tum 5, 434 (2021).

[67] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, Expressive
power of parametrized quantum circuits, Phys. Rev.
Res. 2, 033125 (2020).

[68] Y. Wu, J. Yao, P. Zhang, and H. Zhai, Expressivity of
quantum neural networks, Phys. Rev. Res. 3, L032049
(2021).

[69] T. Haug, K. Bharti, and M. S. Kim, Capacity and quan-
tum geometry of parametrized quantum circuits, PRX
Quantum 2, 040309 (2021).

[70] K. Beer, D. List, G. Mueller, T. J. Osborne, and
C. Struckmann, Training quantum neural networks on
nisq devices, arXiv:2104.06081 (2021).

[71] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe,
Circuit-centric quantum classifiers, Phys. Rev. A 101,
032308 (2020).

[72] E. Fontana, I. Rungger, R. Duncan, and C. Ĉırstoiu,
Spectral analysis for noise diagnostics and filter-based
digital error mitigation, arXiv:2206.08811 (2022).

https://doi.org/10.1002/qute.201900070
https://doi.org/10.1002/qute.202000063
https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.22331/q-2023-05-31-1023
https://doi.org/10.22331/q-2023-05-31-1023
https://arxiv.org/abs/2208.06198
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b250de41980b58d34d6aadc3f4aedd4c-Abstract-Conference.html
https://doi.org/10.1145/3106700.3106710
https://doi.org/10.1145/3106700.3106710
https://mediatum.ub.tum.de/node?id=1634443
https://mediatum.ub.tum.de/node?id=1634443
https://doi.org/10.22331/q-2021-03-29-422
https://doi.org/10.22331/q-2022-08-23-782
https://doi.org/10.22331/q-2022-08-23-782
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PhysRevLett.126.190501
https://doi.org/10.1103/PhysRevLett.126.190501
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.22331/q-2022-09-29-824
https://doi.org/10.22331/q-2022-09-29-824
https://doi.org/10.1145/3466797
https://doi.org/10.1145/3466797
https://doi.org/10.1103/PhysRevLett.128.080506
https://doi.org/10.1103/PhysRevA.105.062431
https://doi.org/10.1103/PhysRevA.105.062431
https://doi.org/10.1038/s41467-023-39381-w
https://doi.org/10.1103/physrevlett.133.050603
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.22331/q-2023-12-20-1210
https://doi.org/10.22331/q-2023-12-20-1210
https://doi.org/10.1038/s41467-024-45882-z
https://doi.org/10.1364/CLEO_AT.2020.JM4G.5
https://doi.org/10.1364/CLEO_AT.2020.JM4G.5
https://dl.acm.org/doi/10.5555/971143
https://dl.acm.org/doi/10.5555/971143
https://arxiv.org/abs/1810.02328
https://doi.org/10.1088/2058-9565/ac070f
https://doi.org/10.1088/2058-9565/ac070f
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.22331/q-2021-04-19-434
https://doi.org/10.22331/q-2021-04-19-434
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1103/PhysRevResearch.3.L032049
https://doi.org/10.1103/PhysRevResearch.3.L032049
https://doi.org/10.1103/PRXQuantum.2.040309
https://doi.org/10.1103/PRXQuantum.2.040309
https://arxiv.org/abs/2104.06081
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1103/PhysRevA.101.032308
https://arxiv.org/abs/2206.08811

36

[73] E. Fontana, I. Rungger, R. Duncan, and C. Ĉırstoiu,
Efficient recovery of variational quantum algo-
rithms landscapes using classical signal processing,
arXiv:2208.05958 (2022).

[74] Y. Liao and J. Zhan, Expressibility-enhancing strategies
for quantum neural networks, arXiv:2211.12670 (2022).

[75] J. Wen, Z. Huang, D. Cai, and L. Qian, Enhancing the
expressivity of quantum neural networks with residual
connections, Communications Physics 7, 220 (2024).

[76] B. Casas and A. Cervera-Lierta, Multidimensional
fourier series with quantum circuits, Phys. Rev. A 107,
062612 (2023).

[77] K. P. Murphy, Machine Learning: A Probabilistic Per-
spective, Adaptive Computation and Machine Learning
Series (MIT Press, 2012).

[78] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing (MIT Press, 2016).

[79] C. M. Bishop, Pattern Recognition and Machine Learn-
ing , Information Science and Statistics (MTM, 2023).

[80] T. Elsken, J. H. Metzen, and F. Hutter, Neural archi-
tecture search: A survey, Journal of Machine Learning
Research 20, 1 (2019).

[81] S. Jerbi, C. Gyurik, S. Marshall, H. Briegel, and V. Dun-
jko, Parametrized quantum policies for reinforcement
learning, in Advances in Neural Information Processing
Systems, Vol. 34 (Curran Associates, Inc., Online, 2021)
pp. 28362–28375.

[82] G. E. Crooks, Gradients of parameterized quantum
gates using the parameter-shift rule and gate decom-
position, arXiv:1905.13311 (2019).

[83] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez,
J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati, M. Y.
Niu, A. Zlokapa, E. Peters, O. Lockwood, A. Skolik,
S. Jerbi, V. Dunjko, M. Leib, M. Streif, D. Von Dollen,
H. Chen, S. Cao, R. Wiersema, H.-Y. Huang, J. R.
McClean, R. Babbush, S. Boixo, D. Bacon, A. K.
Ho, H. Neven, and M. Mohseni, Tensorflow quantum:
A software framework for quantum machine learning,
arXiv:2003.02989 (2020).

[84] Quantum AI team and collaborators, Qsim,
10.5281/zenodo.4023103 (2020), zenodo.

[85] CirqDevelopers, Cirq, 10.5281/zenodo.6599601 (2022),
zenodo.

[86] R.-E. Plessix, A review of the adjoint-state method for
computing the gradient of a functional with geophysi-
cal applications, Geophysical Journal International 167,
495 (2006).

[87] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, Yao.jl:
Extensible, efficient framework for quantum algorithm
design, Quantum 4, 341 (2020).

[88] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980 (2014).

[89] F. Gaitan, Finding flows of a navier–stokes fluid through
quantum computing, npj Quantum Information 6, 61
(2020).

[90] M. Kiffner and D. Jaksch, Tensor network reduced or-
der models for wall-bounded flows, Phys. Rev. Fluids 8,
124101 (2023).

[91] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A.
Zang, Spectral methods: evolution to complex geometries
and applications to fluid dynamics (Springer Science &
Business Media, 2007).

[92] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and
D. Jaksch, Variational quantum algorithms for nonlin-
ear problems, Phys. Rev. A 101, 010301(R) (2020).

[93] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quantum
Natural Gradient, Quantum 4, 269 (2020).

[94] M. Kobayashi, K. Nakaji, and N. Yamamoto, Over-
fitting in quantum machine learning and entangling
dropout, Quantum Machine Intelligence 4, 1 (2022).

[95] D. Heimann, Code for reproducing the results (2023),
https://github.com/dfki-ric-quantum/learning_

capability.
[96] C. J. Wood, Special session: Noise characterization and

error mitigation in near-term quantum computers, in
2020 IEEE 38th International Conference on Computer
Design (ICCD) (IEEE, Hartford, CT, USA, 2020) pp.
13–16.

[97] K. Georgopoulos, C. Emary, and P. Zuliani, Modeling
and simulating the noisy behavior of near-term quantum
computers, Phys. Rev. A 104, 062432 (2021).

[98] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, 2010).

[99] X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen,
D. Hover, J. Miloshi, R. Slattery, F. Yan, J. Yoder,
T. P. Orlando, S. Gustavsson, and W. D. Oliver, Ther-
mal and residual excited-state population in a 3d trans-
mon qubit, Phys. Rev. Lett. 114, 240501 (2015).

[100] M. A. Nielsen, A simple formula for the average gate
fidelity of a quantum dynamical operation, Physics Let-
ters A 303, 249 (2002).

[101] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Dis-
tance measures to compare real and ideal quantum pro-
cesses, Phys. Rev. A 71, 062310 (2005).

[102] C. Moussa, J. N. van Rijn, T. Bäck, and V. Dunjko, Hy-
perparameter importance of quantum neural networks
across small datasets, in Discovery Science: 25th In-
ternational Conference, DS 2022, Montpellier, France,
October 10–12, 2022, Proceedings (Springer, 2022) pp.
32–46.

https://arxiv.org/abs/2208.05958
https://arxiv.org/abs/2211.12670
https://doi.org/10.1038/s42005-024-01719-1
https://doi.org/10.1103/PhysRevA.107.062612
https://doi.org/10.1103/PhysRevA.107.062612
https://probml.github.io/pml-book/book0.html
https://probml.github.io/pml-book/book0.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://link.springer.com/book/9780387310732
https://link.springer.com/book/9780387310732
https://www.jmlr.org/papers/volume20/18-598/18-598.pdf
https://www.jmlr.org/papers/volume20/18-598/18-598.pdf
https://proceedings.neurips.cc/paper/2021/hash/eec96a7f788e88184c0e713456026f3f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/eec96a7f788e88184c0e713456026f3f-Abstract.html
https://arxiv.org/abs/1905.13311
https://arxiv.org/abs/2003.02989
https://doi.org/10.5281/zenodo.4023103
https://doi.org/10.5281/zenodo.6599601
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.22331/q-2020-10-11-341
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1103/PhysRevFluids.8.124101
https://doi.org/10.1103/PhysRevFluids.8.124101
https://doi.org/10.1007/978-3-642-84108-8
https://doi.org/10.1007/978-3-642-84108-8
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.1007/s42484-022-00087-9
https://github.com/dfki-ric-quantum/learning_capability
https://github.com/dfki-ric-quantum/learning_capability
https://doi.org/10.1109/ICCD50377.2020.00016
https://doi.org/10.1109/ICCD50377.2020.00016
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevLett.114.240501
https://doi.org/https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1007/978-3-031-18840-4_3
https://doi.org/10.1007/978-3-031-18840-4_3
https://doi.org/10.1007/978-3-031-18840-4_3

	Learning Fourier series with parametrized quantum circuits
	Abstract
	Introduction
	Prior work
	Expressiveness and entanglement
	Expressiveness regarding Fourier series

	Methods and setup
	Learning capability
	Evaluated architectures
	Numerical setup

	Results
	Comparison to sampling Fourier coefficients
	Layered ansätze
	dQNN ansätze

	Discussion and Outlook
	Code
	Acknowledgments
	Dynamical Lie Algebras of PQCs
	Comparison with shot-based expectation values
	Evaluation under noise
	Noise model implementation
	Evaluation and results

	Hyperparameters
	Details on the sets of Fourier functions
	Preliminaries
	One qubit and one layer
	Minimum number of qubits and layers

	Analysis of error distribution
	Analysis of the size of the underlying set of Fourier functions
	Barren plateaus
	Additional figures and tables
	Calculations
	Calculations for circuits representing degree one
	Calculations for circuits representing higher degrees

	Presenting selected circuits
	References

