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Abstract. The application of federated learning (FL) in industrial set-
tings offers promising advancements in maintaining data privacy while
collaboratively training machine learning models. This study focuses on
the comparative analysis of federated image classification versus locally
trained models within a shared production environment. Specifically, we
explore the classification of windshields in truck cabins, which is a cru-
cial task for quality inspection in manufacturing of trucks. Our research
involves four clients, each producing different types of truck cabins and
research based on FL process between them. Various deep learning ar-
chitectures, including VGG19, ResNet50, InceptionNetv3, DenseNet-121,
and EfficientNetv2-s, were evaluated under a FL framework implemented
using the FLOWER framework. A custom plain averaging strategy was
used for weight aggregation. The global model’s performance was as-
sessed using a combined test set from all clients and compared against
models trained locally by individual clients. The results highlight the ef-
fectiveness of FL in enhancing model generalization and adaptability to
new product variations in industrial applications, promoting its adoption
for collaborative quality inspection tasks.
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1 Introduction

The quality of the dataset is pivotal in training machine learning models. High-
quality datasets lead to the development of robust models that perform effec-
tively across a range of applications [1]. Federated learning (FL), a distinct
paradigm of machine learning, facilitates the training of a cohesive model through



2 V. Hegiste et al.

the collaborative efforts of multiple clients. This approach involves the aggrega-
tion of model weights from each participant, ensuring that the training data
remains on the local servers, and enhancing the model’s ability to perform in
unfamiliar testing environments [2]. Recent years have witnessed a surge in FL
applications, driven by the growing demand for data privacy and the need for
collaborative solutions across industries [3], [4]. Despite its increasing popularity,
the application of FL in visual tasks within the manufacturing sector for cus-
tom datasets does not have much research compared to the FL algorithms and
architectures tested on IID (independent and identically distributed) datasets
such as CIFAR-10 and MNIST [4], [5]. Furthermore, there is a notable scarcity
of studies comparing models trained via FL with those trained using traditional,
local datasets. Such comparisons are crucial in the commercial sector, as they
highlight the differences in performance on test datasets between locally trained
models and those trained through a federated approach [6]. This contrast not
only showcases the effectiveness of FL in enhancing model generalization across
diverse datasets but also encourages more companies to engage in FL initiatives
[7].

This research focuses on the comparative analysis of federated image classifi-
cation within a shared production environment. Our study involves four clients,
each producing different types of truck cabins, with or without windshields. We
examine the efficacy of various deep learning architectures in a FL setting and
evaluate two distinct strategies for weight selection in federated models. This in-
vestigation aims to shed light on the optimal configurations and strategies that
enhance performance in FL applications, particularly in industrial settings.

2 Related Work

The adoption of FL in industrial applications, particularly for quality inspec-
tion and predictive maintenance, has garnered significant interest. This interest
is driven by FL’s ability to train models collaboratively without compromising
data privacy. [8] explored failure prediction using FL on production lines, illus-
trating the efficacy of FL in real-world scenarios. [5] furthered this research by
developing federated object detection algorithms for quality inspection tasks in
manufacturing environments.

Introduced by McMahan et al. [2], Federated Averaging (FedAvg) has become
a foundational algorithm in FL, enabling multiple devices to collaboratively train
a model while maintaining data localization and privacy. However, there has been
limited exploration into comparing different deep learning architectures within
FL frameworks like FedAvg to assess their impact on model performance [9],
[10]. Evaluating these architectures in an FL context is particularly important,
as highlighted by [11], given their widespread use in image classification and the
varying complexity they offer. Studies such as those by [10], [5], and [12] have
begun addressing this gap by analyzing the performance differences between fed-
erated and centralized models in industrial settings. Additionally, [13] explored
strategies for integrating new clients into FL networks, enhancing performance
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in dynamic environments. Further work by [14] demonstrated FL’s ensemble
capabilities, showing improved object detection in previously unseen scenarios,
further supporting the case for FL’s application in complex industrial contexts.

3 Implementation

This section outlines the FL architecture and framework utilized, the distribution
and characteristics of the dataset for experimentation, and the external test
dataset employed for evaluating the globally generated models against the locally
trained client models.

3.1 Federated Learning Framework

Several FL frameworks facilitate research by simplifying the integration and test-
ing processes. Notable frameworks include TensorFlow Federated [15], PySyft
[16], and FLOWER [17]. Among these, FLOWER is chosen for its ease of inte-
gration and effectiveness in research-oriented applications. FLOWER is a flexible
and user-friendly framework that supports various experimental setups.

In our FL setup, all clients shared the same deep learning architecture and
hyperparameters to ensure consistency across the federated learning process. The
architectures varied, but the hyperparameters were kept constant: batch size=16,
optimizer=SGD with momentum=0.8, learning rate=0.001, loss function=cross-
entropy, and image size=300. Deep learning architectures—EfficientNetv2 (small)
[18], VGG19 [19], ResNet50 [20], DenseNet-121 [21], and InceptionNetv3 [22]
were selected for their proven performance in image classification tasks and their
varying complexities in terms of trainable parameters. This selection allows for
a comprehensive analysis of how different architectures impact the effectiveness
of federated learning in handling diverse and complex data scenarios, particu-
larly in an industrial setting. The FL strategy employed was plain averaging of
model weights for the global federated model, customized within the FLOWER
framework for each architecture as mentioned in Table 1.

3.2 Dataset

The primary scenario for this research involves detecting the presence of a wind-
shield in truck cabins as a quality inspection application. The dataset com-
prises four clients, each identified by the color of their cabins: Blue, Green, Or-
ange, and Red. Each client’s dataset includes two labels: ‘No_windshield’ and
‘With_windshield’, as illustrated in Figure 1. The total data distribution can be
referred to in Figure 2. An external test dataset was also developed to challenge
the robustness of local models under FL paradigms. This dataset includes cab-
ins of different colors (gray and purple) and features a novel type of windshield,
depicted on the right side of Figure 1.
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Fig. 1. Local Client dataset for each client in FL (left) and external test dataset with
2 Colored Cabins along with a novel Cabin type which none of the clients have ever
seen before (right)

Fig. 2. Distribution across clients and global/external testsets. ’No_windshield’ is rep-
resented as 0 and ’With_windshield’ is represented as 1. The Global dataset is a com-
bination of the test set of all 4 clients.
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3.3 Experimental Procedure

We began with an FL architecture where all clients shared the same deep learn-
ing architecture and hyperparameters. The architectures were varied, but the hy-
perparameters were kept constant: batch size=16, optimizer=SGD with momen-
tum=0.8, learning rate=0.001, loss function=cross-entropy, and image size=300,
using the final weights from each local epoch. The FL strategy employed was cus-
tom plain averaging of model weights for the global federated model, customized
within the FLOWER framework for different deep learning architectures as men-
tioned in Table 1. To expedite the testing process, a global test set was created
by amalgamating the test sets of all clients. The global model was evaluated
against this global test set following each communication round to achieve the
best combination of global weights and hyperparameters.

4 Results and Discussion

After extensive experimentation with different communication rounds (CRs) and
epochs, the optimal global federated model was achieved using 5 local epochs and
15 CRs. This section presents the performance metrics of various deep learning
architectures, comparing both individual client models and the federated global
model on the global test dataset. Table 1 outlines the Accuracy, Precision, Recall,

Table 1. Performance Metrics for Various Architectures on Global Test Dataset

Architecture Metric Client1 Client2 Client3 Client4 Global Model

DenseNet-121

Accuracy 0.7438 0.8287 0.7818 0.6823 0.9971
Precision 0.8207 0.8495 0.8210 0.6837 0.9971
Recall 0.7438 0.8287 0.7818 0.6823 0.9971

F1 score 0.7278 0.8262 0.7752 0.6818 0.9971

EfficientNetv2

Accuracy 0.6633 0.7277 0.6281 0.6310 0.9898
Precision 0.7694 0.7695 0.7580 0.6320 0.9899
Recall 0.6633 0.7277 0.6281 0.6310 0.9898

F1 score 0.6272 0.7170 0.5756 0.6302 0.9898

VGG19

Accuracy 0.8594 0.8389 0.8873 0.6428 0.9912
Precision 0.8827 0.8399 0.8923 0.7920 0.9913
Recall 0.8594 0.8389 0.8873 0.6428 0.9913

F1 score 0.8574 0.8389 0.8869 0.5913 0.9912

ResNet50

Accuracy 0.5754 0.7130 0.5007 0.5666 0.9941
Precision 0.7709 0.8148 0.7507 0.7401 0.9942
Recall 0.5754 0.7130 0.5007 0.5666 0.9942

F1 score 0.4834 0.6883 0.3374 0.4727 0.9941

InceptionNetv3

Accuracy 0.4978 0.4890 0.4890 0.4978 0.5212
Precision 0.2478 0.4569 0.4704 0.2478 0.6231
Recall 0.4978 0.4890 0.4890 0.4978 0.5212

F1 score 0.3309 0.3636 0.3829 0.3309 0.3998
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and F1 scores for each model. The federated global model consistently outper-
formed individual client models across all architectures. For instance, DenseNet-
121 achieved a global model F1 score of 0.9971, significantly higher than the
individual client F1 scores, which ranged from 0.6818 to 0.8262. Similar trends
were observed with other architectures, where the federated model demonstrated
superior performance, underlining the effectiveness of federated learning (FL) in
improving model generalization.

Table 2. F1 Scores on Global Test Dataset (Merging all Client’s Testset) for Central-
ized vs. Global FL Model

Training Type DenseNet EfficientNet VGG ResNet InceptionNet
Centralized 0.8097 0.6145 0.8528 0.7296 0.4286
Federated 0.9971 0.9898 0.9912 0.9941 0.3998

Table 3. F1 Scores on External Test Dataset (Gray and Purple Cabins) for Centralized
vs. Global FL Model

Training Type DenseNet EfficientNet VGG ResNet InceptionNet
Centralized 0.8569 0.6102 0.9100 0.7654 0.4467
Federated 0.9821 0.9876 0.9586 0.9917 0.4394

To further evaluate the robustness of these models, we tested both centralized
and federated models on an external test dataset consisting of gray and purple
cabins with an unseen windshield type. This scenario simulates a real-world use
case where a company integrates a new windshield type into its manufactur-
ing process, and the goal is to assess how well pretrained models can handle
such unseen data. Table 3 presents the F1 scores for both centralized and fed-
erated models on this external test dataset. The results indicate that federated
models generally outperform their centralized counterparts, particularly with
DenseNet, EfficientNet, VGG, and ResNet architectures, achieving F1 scores of
0.9821, 0.9876, 0.9586, and 0.9917, respectively. This demonstrates the superior
robustness and generalization capability of federated models when exposed to
unseen data, highlighting their potential for real-world industrial applications
where new components or product variations are frequently introduced.

In summary, the results highlight that federated learning not only enhances
model performance on combined datasets but also significantly improves the
model’s ability to generalize to new, unseen scenarios. The VGG19 model has
approximately 143.67 million parameters, ResNet50 has around 25.56 million pa-
rameters, DenseNet-121 has about 7.98 million parameters, EfficientNetv2 has
approximately 21.55 million parameters, and InceptionNetv3 has about 23.85
million parameters. Despite having a relatively lower number of trainable pa-
rameters, DenseNet’s federated global model achieved near-perfect performance
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metrics, demonstrating its efficiency and suitability for resource-constrained en-
vironments. These findings emphasize the efficacy of federated learning in indus-
trial settings, where data privacy and the ability to adapt to new conditions are
paramount.

5 Conclusion and Outlook

This study explored the application of Federated Learning (FL) for image clas-
sification within a shared production environment, focusing on classifying wind-
shields in truck cabins. We evaluated the performance of several deep learn-
ing architectures, comparing models trained locally by individual clients with a
global model obtained through FL using a custom plain averaging strategy. The
experimental results indicate that FL significantly enhances model performance
across all tested architectures, consistently achieving higher accuracy, precision,
recall, and F1 scores compared to individual client models. This portrays FL’s
potential to create robust and generalized models by aggregating knowledge from
multiple sources while preserving data privacy. Furthermore, testing on an ex-
ternal dataset with unseen windshield types demonstrated the adaptability and
robustness of federated models in handling unforeseen data. Considering both
performance metrics and the total number of trainable parameters, DenseNet-
121 emerged as the most suitable architecture, offering near-perfect performance
with fewer trainable parameters, making it both efficient and resource-friendly.
In contrast, InceptionNetv3 consistently underperformed, indicating its unsuit-
ability for this task.

The results also highlight the limitations of local models trained on isolated
datasets, which perform poorly in comparison. FL addresses this by enabling
a superior global model without data sharing, critical in industrial applications
where data privacy is paramount. Future work will extend this approach to other
quality inspection tasks and explore advanced FL strategies, such as differential
privacy and secure multi-party computation, to enhance data security. Addition-
ally, integrating FL with real-time industrial systems for continuous learning and
adaptation to new production scenarios will be investigated.
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