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Preface 

This volume of Lecture Notes in Mechanical Engineering is dedicated to the proceedings 
of the 2nd European Symposium on Artificial Intelligence in Manufacturing (ESAIM 
2024), which was held in Athens, Greece, on 16th of October 2024. The conference was 
organized by the Teaching Factory Competence Center (TF-CC) with the support of 
the Laboratory for Manufacturing Systems & Automation (LMS) of the University of 
Patras, Greece. 

Artificial intelligence (AI) has been recognized on a global scale as one of the corner-
stone technologies shaping the digital transformation of modern societies and industries. 
The ESAIM 2024 attempts to establish a continuum in the development of AI from deep 
learning models to generative AI ones, focusing on the field of manufacturing. However, 
due to the complexity of systems, equipment, and operations there are several challenges 
which have not yet been addressed. Concretely, these challenges include among others, 
data availability and processing, system interoperability, scalability, ethical and regu-
latory compliance, and high implementation and/or maintenance/update costs. These 
challenges call for more advanced methods for data standardization and curation, mod-
ular design of AI tools and algorithms for expandability and scalability in an afford-
able manner. Therefore, the scope of ESAIM 2024 spans a plethora of topics around 
AI development and implementation within modern Industry, which are summarized 
below:

• Process monitoring, optimization, and control.
• Condition monitoring, diagnosis, and predictive maintenance.
• Quality assessment and prediction.
• Production planning, scheduling, and control of manufacturing systems and value 

chains.
• Flexible and precise robotics, enhanced human-robot collaboration.
• Design of manufacturing systems, equipment, processes, and products.
• Digital platforms, data spaces, and information technologies for AI applications in 

manufacturing systems.
• Digital Twin to optimize process, equipment, and plant operations.
• Data augmentation and synthetic data for developing AI applications.
• Education and training for developing skills for AI in manufacturing.
• Ethical and legal aspects of AI in manufacturing. 

Considering the interdependence of Industry 4.0 and Industry 5.0 technologies and 
techniques, ESAIM 2024 actively supports research work on cross-cutting aspects 
such as information systems, regulation, education, systems engineering, and data 
augmentation. 

The current volume of ESAIM comprises 29 research works from organizations 
and researchers in Europe. The symposium has welcomed contributions focusing on 
theoretical, applied research, and industrial case studies. In comparison with the first 
volume of ESAIM 2023, an increase of approximately 52% of the final accepted papers
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has been achieved, indicating the developing dynamic of the symposium and of the AIM-
NET network. The organizing committee would like to thank all the authors for their 
valuable contributions. Furthermore, the organizers would like to thank the members 
of the Program Committee and invited external reviewers for their efforts and expertise 
in contributing to the paper review process, without which it would be impossible to 
maintain the high standards of peer-reviewed papers. 

The current volume of the book entitled “Advances in Artificial Intelligence in Man-
ufacturing II” consists of five sections. The first section “AI in Process Level” focuses 
on developments in AI applications for monitoring, optimization, and control of man-
ufacturing processes. Key topics include digital twins for process simulation and opti-
mization, as well as recurrent convolutional neural networks (RNNs) for defect detec-
tion, real-time process monitoring for zero-defect manufacturing, anomaly detection in 
additive manufacturing, development of active learning methods for defect detection, 
generation of synthetic data, and explainable AI approaches for surrogate modeling. 

In Section 2, “AI in Equipment Level”, innovative AI applications for improving 
manufacturing equipment performance and human-machine interaction are investigated. 
The main focus areas in this section include Generative AI (GenAI) for synthetic data 
composition in robotics application, development of AI-based assistants for improving 
manufacturing flexibility and human-machine interaction, federated learning for data 
curation, and advances in machine vision. 

In Section 3, “AI in Systems Level” AI-based optimization of manufacturing systems 
and value chains is investigated. Papers include AI-assisted scheduling in flexible job 
shop, agent-based communication for fault diagnosis in skill-based production, utilizing 
Industry 4.0 language and Asset Administration Shells (AAS), AI-based decision support 
systems as well as AI-based solutions for mass customization, enabling advanced strate-
gies for meeting diverse customer needs while maintaining efficiency and scalability 
across manufacturing systems. 

Section 4, “Generative AI and Large Language Models (LLM)” focuses on cutting-
edge AI technologies in manufacturing. Concretely, topics include integration of 
LLMs with augmented reality (AR) for industrial maintenance optimization, GenAI-
based design of robotic cells in combination with virtual reality (VR), vector-based 
anomaly detection, automated instruction generation using retrieval-augmented genera-
tion (RAG), natural language processing (NLP) for product lifecycle efficiency through 
materials insight and optimization. 

The volume concludes in Section 5, “Fundamental AI Topics”, in which the core 
principles and emerging trends for AI applications in manufacturing are covered. The 
main topics of this section include frugal AI for affordability and resource optimiza-
tion, explainable AI challenges identification, federated learning for the development 
of collaborative and decentralized AI models, and ethical considerations/data gover-
nance/privacy management for AI solutions in small and medium enterprises (SMEs), 
highlighting the importance of responsible and scalable AI integration. 

We would like to express our gratitude to EIT Manufacturing and EIT Manufacturing 
Region South East center for sponsoring the symposium.
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Finally, we appreciate the partnership with Springer, EasyChair, and the members 
of the Artificial Intelligence in Manufacturing Network (AIM-NET) for their essential 
support during the preparation of ESAIM 2024. 

December 2024 Kosmas Alexopoulos 
Sotiris Makris 

Panagiotis Stavropoulos
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Digital Twins of Manufacturing Processes Under 
Industry 5.0 

Alexios Papacharalampopoulos, Kyriakos Sabatakakis, Olga Maria Karagianni, 
and Panagiotis Stavropoulos(B) 

Laboratory for Manufacturing Systems and Automation (LMS), Mechanical Engineering and 
Aeronautics Department, University of Patras, 26504 Patras, Greece 

pstavr@lms.mech.upatras.gr 

Abstract. Digital Twins of manufacturing processes are expected to boost pro-
cesses’ performance and efficiency, since they are able to run optimization in 
real-time and provide feedback and/or control to them . At the same time, their 
adaptivity allows for uncertainty handling, through specific parameters estimation 
or addressing the processes in a robust way. However, it is still pending to inves-
tigate how the emerging Industry 5.0 and the relevant viewpoints of the involved 
technologies will affect the operation of the digital twins. To this end, herein, a 
multifold and systematic analysis is run to see how Industry 5.0 affects the digi-
tal twin concept, taking into account human centricity in terms of inclusion and 
empowerment. Next sustainability and resilience are also studied under the same 
context. To achieve this, a hypothetical case study of Additive Manufacturing opti-
mization is taken into consideration, as well as the link to other manufacturing 
functionalities (as jobs), for the sake of completeness. 

Keywords: Digital Twin · Industry 5.0 · Human Centricity · Sustainability · 
Resilience 

1 Introduction 

In recent years, manufacturing processes have become increasingly digital. With the 
help of Industry 4.0 (I4.0), digitalization leads to various modifications in all production 
processes, increasing ways of communication and collaboration, and adopting new types 
of technologies such as Digital Twins (DTs) [1]. It is a dynamic digital model, that 
reproduces the behavior, characteristics and interactions of the physical space in real or 
near real-time. DTs are created using data collected from sensors, the Internet of Things 
(IoT) and other sources embedded in the physical environment, leading to a vast amount 
of data that can be processed with advanced analytics and/or Artificial Intelligence (AI). 
The results of the analysis can then be used to improve the performance of the process in 
the physical space [2, 3]. In practical terms a DT can be realized from three perspectives, 
combining three concepts: multi-layer, multi-level, and multi-perspective First, it is a 
computer application deployable on various computing systems that interacts with other 
entities and applications. Second, it replicates the physical part of a Cyber-physical 
System (CPS). Third, it simulates a physical system using virtual replicas [4].

© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 3–11, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_1 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86489-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-86489-6\sb {1}
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The concept of DTs has gained popularity in various industries, including manu-
facturing, healthcare, automotive, aerospace and others [5] as they are enabling digital 
transformation, improving operational efficiency and driving innovation. They offer 
many benefits such as product development and testing, continuous improvement, opti-
mization and simulation, predictive maintenance, etc. With DTs, operators can remotely 
monitor and control processes, which are in extreme environments, or even dangerous, 
providing flexibility and accessibility. They also provide valuable information about 
being alert to an impending problem or potential failures. This is very useful for indus-
tries, that need to make quick data-driven decisions to prevent critical situations and 
help them continuously improve their operations and predict maintenance to minimize 
downtime (Fig. 1) [6]. 

Fig. 1. Digital twin framework based on the description in the ISO 23247 standard [4] (left) The  
interaction of DTs with the CPS (right) 

While automation and digital technologies have revolutionized many aspects of man-
ufacturing, there are several reasons why human involvement remains essential; Industry 
5.0 (I5.0) recognizes the importance of human activity in manufacturing. It represents 
integrating human intelligence with advanced technologies such as artificial intelligence, 
robotics, IoT and automation. In parallel to I4.0, I5.0 emphasizes collaboration between 
humans and machines. Machines handle repetitive tasks, data processing, and other rou-
tine activities, leaving humans to focus on tasks that require creativity, critical thinking, 
problem-solving, and emotional intelligence [7]. This collaboration enables more flexi-
ble and adaptable manufacturing processes, where humans and machines work together 
in symbiosis, enhancing productivity, efficiency, and innovation. 

The main challenge of I5.0 is to adopt three main pillars in the manufacturing indus-
try. These pillars are human-centricity, sustainability and resilience. Human centricity 
places basic human needs and interests at the center of the manufacturing process. By 
doing that, companies can promote an inclusive and fulfilling work environment. This is 
achieved by motivating employees to upgrade, better career opportunities, and boosting 
self-confidence and well-being. Providing opportunities for skill development, career 
development and boosting employee confidence not only benefits individual workers 
but also contributes to the overall success and innovation of the industry [8]. 

As a result, industry workers are no longer treated as a plain resource in the produc-
tion process but as an investment, as valuable assets in which money must be invested
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to increase their motivation and productivity. This shift in perspective encourages com-
panies to invest in their employees’ development and leads to increased job satisfaction 
and productivity [7]. Besides the change in the human approach, the environmental app-
roach of the industry should also change (Sustainability). I5.0 focuses on environmental 
protection as a priority, integrating sustainable practices into manufacturing, i.e. reduc-
ing waste and optimizing energy use. Also, nowadays people are more aware of the 
environment, and the sustainability of the planet in terms of increasing waste, exces-
sive use of natural resources, etc. By embracing sustainability, companies can enhance 
their reputation, attract environmentally conscious consumers and mitigate the risks 
associated with climate change and resource scarcity. Sustainable manufacturing prac-
tices not only benefit the environment but also contribute to long-term profitability and 
market competitiveness [6, 9, 10]. Resilience refers to the ability of a system to main-
tain or rapidly recover to a steady state, during and after a major disaster caused by 
(geo-) political changes, natural emergencies, supply chain issues, or economic down-
turns. I5.0 emphasizes the importance of creating resilient manufacturing processes that 
can withstand unexpected challenges and maintain operations with minimal disruption. 
This may include diversifying supply chains, implementing agile manufacturing sys-
tems and investing in technologies such as predictive maintenance and real-time data 
analytics [9]. By prioritizing resilience, companies can reduce vulnerability to external 
shocks, improve business continuity and ensure manufacturing stability even in the face 
of adversity. 

Herein, the focus is given to the integration of I5.0 aspects in DTs. The focus is 
on operations, rather than models, concepts and applications [11, 12]. Hence, with the 
paradigm of Additive Manufacturing (AM) in mind, the remainder of this paper is 
structured as follows: Sect. 2 presents a few facts about the main functions of DTs in the 
manufacturing process. In Sect. 3 the purposes of these are mentioned and are interlinked 
with I5.0 concepts and finally, in Sect. 4 the conclusions of this work are presented. 

2 Background on DTs 

As aforementioned, in manufacturing, DTs are expected to be very useful tools. Some of 
the objectives of a DT in a manufacturing system are to assist decision-making processes, 
to enable automation of decisions by simulating certain elements and processes within 
the real system, to use real-time data to run simulation experiments, to consider the 
different states of the manufacturing system, etc. These goals could be achieved thanks 
to three main functions of DTs: prediction/diagnosis, monitoring and process control, 
which are all analyzed below. 

The terms prediction & diagnosis, indicate that the actions of the real system are stud-
ied before the actual runtime and allow engineers to make informed decisions, optimize 
operations by testing different parameters, and enhance the reliability and performance 
of their systems and processes. In more detail with the DTs, engineers can conduct what-
if analysis scenarios. They can simulate different operating conditions, environmental 
factors, or input parameters to predict how the real system will respond in different 
situations. By predicting how the real system will behave, they can identify potential 
bottlenecks, inefficiencies, or opportunities for improvement. This predictive insight
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enables problem identification, and proactive adjustments to optimize performance and 
improve productivity. It also leads to forecasting of maintenance of machinery, buildings, 
etc. as well as in choosing the appropriate type of maintenance depending on the situation 
they have to deal with (reactive, preventive, predictive, regulatory, etc.). Finally, the DT 
can use online measurements to estimate the fatigue damage to calculate the remaining 
useful life of the system and plan the corresponding actions accordingly [13–15]. 

DTs can also help predict and diagnose potential hazards, failures, or damage to 
products before they occur in the physical system. By analyzing historical data and 
running predictive algorithms, engineers can predict and prevent problems, thereby 
reducing downtime, wasting raw materials minimizing component rejection rate and 
minimizing costly outages. They can also help prevent damage to factory machinery 
and infrastructure, preventing potential workplace accidents [13, 16]. 

Monitoring is the collection of live position data from the system processing the 
simulation. Specifically, DTs continuously receive streams of data from sensors, IoT 
devices, and other sources connected to the physical system they represent. This real-time 
data integration enables monitoring of current system status and performance, enabling 
proactive decision-making, maintenance planning, optimization of operations, etc. DTs 
also provide a visual representation of the state of the physical system, often through 
table tools or graphical interfaces. This visualization allows operators and stakeholders 
to monitor key metrics, trends and anomalies in real-time and receive early intervention 
to address issues or prevent potential problems before they escalate [12, 16]. 

DTs allow remote monitoring of physical assets or processes from anywhere with an 
Internet connection. With friendly-to-use and understandable interfaces, engineers are 
more likely to remotely monitor systems, and can better use their time to improve syn-
ergies and collaborations that lead to greater productivity. This capability is especially 
valuable for distributed systems or assets located in remote or inaccessible locations 
[14, 17]. In addition, proactive data monitoring can identify trends and deviations from 
the normal behavior of a situation or process and study “why” it occurred or “how” to 
avoid it in the future. By monitoring the data in real-time and comparing it to historical 
data stored in the DTs, engineers can be guided to identify anomalies in processes and 
understand the root causes of performance fluctuations. The performance of assets or 
processes over time can also be monitored. By analyzing historical data and trends, they 
can evaluate performance metrics, identify areas for improvement, and optimize oper-
ations [13, 14]. Analyzing and understanding the unexpected failures or data obtained 
during monitoring after the actual system operation is called diagnosis. More specifically, 
when an anomaly or failure is detected, DTs facilitate root cause analysis by providing 
comprehensive data about system behavior prior to the event. Historical data stored in 
the DTs allows stakeholders to trace the sequence of events and identify underlying 
factors contributing to the issue. In this way, failures can be prevented when the factors 
driving them are observed before they are finalized. By observing data analytics from a 
process, the interested party can notice or identify potential equipment failures or degra-
dation before they occur. In this way, organizations can proactively schedule mainte-
nance activities, minimizing downtime and optimizing the life of production machinery. 
In addition, through data visualization, analysis, and simulation capabilities, DTs help
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operators and engineers make informed decisions for effective problem-solving, preven-
tive maintenance, and more as DTs, provide decision support tools to diagnose problems 
and recommend appropriate actions or interventions [10]. If failure is not detected early, 
by analyzing historical data and performance trends, engineers can iterate and improve 
the design, operation and maintenance of their systems over time. That is, diagnosis with 
DTs enables stakeholders to learn from past failures or issues and implement corrective 
actions to avoid recurrence in the future. Finally, another important factor that enhances 
the robustness of the production process is control. Using DTs for process control can 
greatly improve the ability to guarantee the desired performance, even in the presence 
of uncertainties and disturbances [18]. This leads to adaptivity to changes, and process 
dynamics by continuously learning and updating the DTs. This is crucial for maintain-
ing performance despite a variety of uncertainties/disturbances. This not only improves 
process reliability and efficiency, but also enhances the ability to anticipate and respond 
to potential issues proactively. 

Fig. 2. DT transformation through I5.0 pillars 

3 Implications of Industry 5.0 and Applications 

The three main functions of DTs play a critical role in I5.0 by enabling predictive 
capabilities, real-time monitoring, and process control (Table 1), as part of jobs, with AM 
case study in mind. They enhance and improve production with the capabilities they offer 
using the respective tools. They also empower the employees by offering immediately 
applicable knowledge that helps develop their skills and enhance their interest in their 
work. Thus, they serve as key enablers for the human-machine collaboration paradigm, 
assisting manufacturers to achieve greater efficiency, sustainability, and resilience. 

DTs provide a powerful framework for two-way information flow between the digi-
tal model and the human interacting with it (Fig. 2). This interaction is key to improving 
decision-making, optimizing operations, and improving overall system performance. 
User insights ensure that the DT remains relevant and accurately reflects the physical
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Table 1. Parameters of DTs according to the pillars of I5.0 

Monitoring Prediction/Diagnosis Control 

Human Centricity Monitoring of system 
status, enabling proactive 
decision-making, 
(empowerment) 

Simulate what-if 
scenarios & human 
chooses the best 
(inclusion) [19], Early 
intervention to address 
issues or prevent 
potential problems 
(inclusion & 
empowerment), Trace 
event sequences & 
identify underlying 
factors that contribute to 
each event: people can 
prevent failures or 
problems 
(empowerment) 

Decision making 
(empowerment), Trace 
the sequence of events & 
identify underlying 
factors that contribute to 
each event so that people 
can prevent them. 
(empowerment), Handle 
uncertainty 
(empowerment) 

Sustainability Real-time simulation of 
energy sensor outcomes 
(“soft sensors” [20]), 
Aggregate energy 
measurements from 
different manufacturing 
levels (process, machine, 
production) [21] 

Simulate different 
environmental factors & 
select the optimal, Find 
the optimal 
manufacturing process 
to reduce downtime 
Reducing raw materials’ 
waste by finding the 
optimal product 
geometry & minimizing 
component rejection, 
Minimizing costly 
outages 

Carry out environmental 
impact assessments by 
comparing historical & 
current data, Resource 
efficiency can be 
diagnosed 

Resilience Remote monitoring of 
processes in 
hard-to-reach areas in 
real-time, Anomaly 
detection in procedures & 
their immediate 
resolution [22], 
Understand the root 
causes of performance 
fluctuations by 
comparing historical with 
present data, Identify 
areas for improvement & 
optimize operations 

Finding the optimal 
manufacturing process 
to improve productivity, 
Proactive settings for 
optimizing performance 
& choosing the 
appropriate type of 
maintenance, Early 
assessment of fatigue 
damage, Remaining 
useful life calculation 
and forecasting its 
replacement of systems 

By comparing historical 
data and current data, 
damage to products, 
machinery, etc. can be 
diagnosed 
(Human-in-the-Loop), 
Support decision-making 
in case of people 
changing positions
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entity’s unique circumstances and requirements depending on the scenario or require-
ments. By facilitating a dynamic exchange of information along with human assistance, 
DTs bridge the gap between the physical and digital worlds.

I5.0 is understood as an evolution and logical continuation of the existing I4.0 
paradigm. Thus, the impact of this “transition” on AI is the adoption of existing methods 
such as Active & Transfer Learning to implement Human-in-loop Machine Learning 
(ML) and methods such as Explainable & Frugal AI. These aim to integrate human 
intelligence to reduce development costs and boost the performance of AI, enhance the 
trust of stakeholders, and reduce the ever-increasing energy demand of the entire AI 
development and maintenance value chain. 

4 Conclusions and Future Outlook 

With the adoption of I5.0, the interaction between DTs and human actors is expected to 
be immense and provide high potential for productivity and sustainability. However, it 
seems that the strategies imposed by the I5.0 pillars are descriptive and may be lacking 
methodologies that will facilitate their integration. Then, it will be easier to prove the 
superiority of such approaches through manufacturing and monetary KPIs, especially 
in the case of AM where there is room for further digitalization and job transition. 

Future research should develop standardized methodologies for DT integration 
within I5.0, identify and validate KPIs for quantifying benefits, and explore advanced 
AI and ML for predictive maintenance and process optimization. Interdisciplinary 
approaches combining data science, human factors, and environmental science should 
be considered. Research should also investigate the scalability and flexibility of DT solu-
tions for various manufacturing environments, including SMEs, and examine the ethical 
and social implications of increased automation and human-machine collaboration to 
ensure responsible, sustainable advancements. 
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(101069651). 
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Abstract. Detecting defects predictively during the welding process, such as 
porosity, is of vital importance as it allows for the avoidance of degradation in 
the quality, durability, and productivity of the weld. Research into predictively 
identifying these types of defects in Submerged Arc Welding (SAW) is quite 
limited due to the difficulty of gathering data along the process. This remains a 
challenge to drive the optimization of the manufacturing of pieces that include 
such welds as the case of large components like pipes in the oil and gas industry. 
Therefore, this work addresses this challenge and proposes a methodology based 
on a deep hybrid neural network called recurrent convolutional neural network 
(RCNN). This deep learning model is capable of detecting and predicting surface 
porosity defects in real-time using the continuous voltage electrical signal from 
the SAW process. The training of the RCNN model involved using various weld 
beads, some with surface porosity and others without. On the one hand, defects 
were labeled based on the location of the pores along the weld, while on the other 
hand, the voltage electrical signals were processed and organized. The proposed 
framework based on RCNN was tested in other weld beads, where the results 
were satisfactory with the model achieving a high accuracy rate of around 80% 
in predictive pore detection. Moreover, the model’s processing time was <10 ms, 
meeting the requirements for real-time applications. 

Keywords: Submerged arc welding · Porosity · Weld quality · Predictive 
detection · Deep learning 

1 Introduction 

Submerged Arc Welding (SAW) is a fusion welding process widely utilized across 
various sectors, such as oil and gas and shipbuilding. Due to its important applica-
tions, quality standards for components manufactured via this process are becoming 
increasingly stringent. Nonetheless, the emergence of defects, notably porosity, poses 
a significant challenge in SAW. Such defects result in substantial strength deterioration 
and alterations in the mechanical properties of the weld, consequently diminishing the 
durability and productivity of manufactured parts [1]. While ultrasonic inspection and
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radiographic inspection have traditionally served as nondestructive testing methods for 
defect detection, their utility is constrained by limitations in real-time detection, high 
costs, and applicability in large-scale production lines [2]. 

Different research studies have addressed this issue by developing online monitoring 
systems that utilize information from the welding process, including voltage, current, 
temperature, acoustic signals, images, etc.; information closely linked to weld quality 
[3, 4]. However, in the case of SAW, the use of process parameters for developing online 
monitoring and defect detection algorithms has been limited, primarily due to challenges 
related to data collection and handling, as well as the complexity of the process. Rele-
vant developments have been observed only in [5, 6]. In these studies, learning models 
were implemented using images to detect online defects and monitor bead geometry, 
respectively. However, utilizing images requires special sensors to capture them due to 
the obscured view of the weld pool and the presence of flux. Other sensors, such as 
those for capturing electrical signals, offer greater advantages. These devices simplify 
real-time signal acquisition and are less susceptible to interference from the complex 
welding environment, providing greater stability. Specifically, the voltage signal has 
shown a strong correlation with the physics of the welding process [7]. Consequently, 
many studies in other processes such as GMAW or TIG have utilized this signal for 
online defect detection [8–10]. 

Deep learning (DL) techniques are currently a field of exponential evolution under 
scientific research and industry. Researchers have deployed DL techniques in online 
quality inspection to detect potential defects in various welding processes [11]. Con-
volutional neural networks (CNNs) are among the most representative deep learning 
algorithms and are widely used in both image-based [5, 12, 13] and sequential signal-
based defect classification [14]. However, the CNN model does not consider the tem-
poral connection of the collected signals. Long short-term memory (LSTM), a subset 
of recurrent neural networks (RNN), is recognized for its prowess in time series anal-
ysis and intricate temporal pattern extraction [15]. The LSTM model is characterized 
by its adaptability and ability to address sequential data, making it particularly suitable 
for the analysis of electrical measurements of welding processes. The hybrid recurrent 
convolutional neural network (RCNN) model combines the strengths of both CNN and 
LSTM, where 1D-CNN extracts relevant special features from the input data and the 
LSTM layers capture temporal dependencies. RCNN has been successfully applied in 
various domains such as manufacturing related to welding defects automatic detection 
[16]. 

In this context, this work proposes a methodology for the real-time detection of 
porosity-related defects in SAW process. This methodology utilizes voltage signals in 
conjunction with the implementation of the deep hybrid neural network RCNN. The 
RCNN model offers several advantages, including automatic capturing of spatial and 
temporal features of the data, as well as high potential for applicability and performance. 
Consequently, the proposed methodology is capable of predicting porosity occurrences 
based on the real-time progress of the weld. This serves as the foundation for the develop-
ment of an adaptive control strategy, ultimately leading to the advancement of intelligent 
welding techniques.
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2 Experimental System 

The schematic diagram representing the SAW experiment system is depicted in Fig. 1. 
This diagram comprises the welding machine (Miller Summit Arc 1250), the control 
module, and the measurement sensors. The sensors utilized in this study, as shown in 
the diagram, are electrical sensors consisting of differential voltage and current probes. 
Specifically, the differential probes were installed between the welding machine and the 
welding plate. Synchronized voltage and current signals are recorded using an oscil-
loscope (PicoScope 2000) at a sampling rate of 2500 samples per second. The data 
is swiftly transferred to a computer for analysis and/or application development via a 
high-speed USB connection. 

Fig. 1. Schematic diagram of SAW experimental system. 

Several experiments were conducted on steel plates of various lengths, using the filler 
material 3.2 mm OE-SD3 and OP121TT flux. Additionally, different welding parameter 
settings were employed, as summarized in Table 1. 

Table 1. Normal welding settings parameters of SAW 

Voltage Current Wire Feed Speed Travel Speed 

27–30 V 450–675 A 1.6–2.7 m/min 48–80 cm/min 

To induce pore occurrence artificially, welding was performed in some experiments 
with plates and flux under humid conditions. Authorized personnel visually inspected 
the surface beads for defects along their entire length and recorded pores of various 
sizes, ranging from 1 to 2.4 mm in diameter, that had formed along each bead. Similarly, 
experiments were conducted under ideal conditions where no defects occurred. This was 
done to evaluate the RCNN model’s capability to detect pores in beads with and without 
porosity.
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3 RCNN-Based Porosity Detection 

3.1 Model Overview 

The hybrid deep learning RCNN model, composed of the CNN and LSTM models, 
can establish a relationship between voltage measurements of the SAW process and 
the porosity state. In this way, when the model is applied in real time during the weld-
ing process, there will be predictive information on the presence or absence of pores, 
which represents the basis for implementing control actions. Figure 2 shows the overall 
framework of the RCNN model. 

Fig. 2. Overall framework of RCNN model. 

As shown in Fig. 2, voltage measurements obtained during the welding process are 
organized into sequential data and input into the RCNN model. The 1D-CNN layer is 
responsible for detecting local features and capturing short-term relationships from the 
electrical signal, such as trends or fluctuations that may not be seen at a glance. This 
enables the LSTM layer to be more efficient in capturing long-term temporal depen-
dencies throughout the electrical signal sequence, thereby strengthening the anomaly 
detection capacity. This means CNN and LSTM complement each other in applications 
like this work, which focuses on porosity detection. Then, the fully connected layers 
establish relationships among the captured features, and the classifier provides the final 
determination, indicating the presence or absence of porosity defects. 

3.2 RCNN Training 

The input data for training the RCNN model consists of voltage measurements obtained 
from various weld beads and corresponding porosity state labels. Voltage measurements 
undergo a process known as window sliding, wherein the data is partitioned into time 
series with a specified window length (measured in millimeters of welding). Conversely, 
porosity state labeling is conducted based on the visual inspection record of the weld 
beads. 

Figure 3(a) displays the voltage signal obtained during a welding bead with various 
pores. Figure 3(b) represents the porosity state labeling of this bead for each weld
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millimeter, where ‘0’ indicates the pores’ absence and ‘1’ indicates the pores’ presence. 
Finally, Fig. 3(c) illustrates the RCNN input data, comprising a voltage time series of 
a 4 mm length (depicted by the green shadow), along with the corresponding porosity 
labeling in the subsequent millimeter (depicted by the orange shadow). Consequently, 
each time series is trained to predict the porosity state in the following weld millimeter. 

Fig. 3. Input data for RCNN training. (a) Voltage measurement; (b) Porosity state labeling; (c) 
window sliding into voltage time series along with porosity labels. 

RCNN training involves establishing its architecture along with selecting hyper-
parameters that minimize the disparity between the model predictions and the true 
classification states. The established architecture of the RCNN is depicted in Fig. 4. 

The convolutional layer includes specifications such as the number and size of con-
volutional kernels, while the LSTM layer comprises the number of memory units. Addi-
tionally, the classifier is composed of fully connected layers and corresponding activation 
functions, which determine the class with the highest probability. 

Fig. 4. Representation of the RCNN architecture for porosity state classification. 

It is worth mentioning that the loss function used is Weighted Cross-Entropy (WCE) 
[17]. This function has the advantage of addressing the class imbalance present in this 
classification task, where the minority class—porosity presence—is of greater interest. 
By incorporating a weight factor α, WCE allows for establishing a balance between the 
two classes. Finally, in addition to the training model, an early stopping criterion was 
employed to avoid overfitting. This criterion involved monitoring the loss of the model 
on the test data. If the loss did not improve over 10 consecutive epochs, the training 
process was stopped. The model weights were then restored to the epoch where the best 
metric was achieved until the end of the training.
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4 Results and Discussions 

The RCNN deep learning model was developed in Python version 3.10.12 using Ten-
sorFlow 2.15.0 on a computer with an Intel Core i7-13800H @ 2.5 GHz processor and 
32 GB of RAM. The training process was accelerated by utilizing a GPU machine, which 
allowed for linear scaling of the mini-batch size and faster computations. 

The training was performed using data from 6 surface beads with porosity along their 
length. The six beads, ranging in length from 300 to 500 mm, make up a total length of 
2050 mm. The time series window length was adjusted based on two premises: a) the 
model achieves great performance in the classification task, and b) the time required by 
the model to predict the porosity state is as short as possible, allowing sufficient time 
to implement some control action. In this context, RCNN training was performed with 
different window sizes of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm. The final window size 
will be the one that best meets the two mentioned premises. 

Additionally, the database needed to undergo a normalization process due to the 
different voltage ranges handled in the welding beads. This process was carried out using 
the z-score algorithm [18]. Once the database was prepared in terms of its partitioning, 
window size, and normalization, RCNN training was conducted using the architecture 
mentioned in Sect. 3.2. The classification performance on the test dataset, as well as the 
RCNN execution time, is summarized in Table 2. 

Table 2. RCNN performance and time execution results (test data) 

Window size Precision Recall Time execution 

1 mm 66,7% 71,6% 6,2 ms 

2 mm 69,3% 76,4% 6,7 ms 

3 mm 71,2% 76,6% 10,8 ms 

4 mm 71,5% 78,3% 10,9 ms 

5 mm 78,8% 80,9% 14,2 ms 

From Table 2, the ability of RCNN to detect pores improves as the input window 
size increases. The best performance is achieved with an input window of 5 mm, where 
precision and recall are around 80%. However, as the input window increases, the time 
required by RCNN to detect the porosity state (PS) also increases. Given the real-time 
application requirements of this development, the PS detection time must be very fast 
(before porosity develops). Considering the fastest welding speed of Table 1 (80 cm/min), 
the time required to weld 1 mm is 75 ms, which implies that the detection time for PS 
should be less than 7.5 ms (10% of the time to weld 1 mm) to meet real-time application 
requirements. From Table 2, it is observed that with a window size of 2 mm, the PS 
detection time is 6.7 ms, meeting the real-time application requirements, however, the 
model’s performance is reduced to around 70% with this window size. 

Given that in a real scenario, pores along the weld are the minority meaning that 
when one occurs, the RCNN model must be able to identify it, this work prioritizes the
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recall metric since it reflects the model’s ability to identify minority instances (pores). 
Therefore, with a window size of 2 mm, where the PS detection time is only 6.7 ms, 
although the precision declines, the recall remains at a competitive value of 76.4%. Thus, 
this window size is selected for real-time applications. 

In this case, the database size is 2420, which was generated based on a window size 
of 2 mm, a window slide of 1 mm, a sampling frequency of 2500 Hz, and a welding 
travel speed in the range of 48 to 80 cm/min. The data were partitioned into training 
(80%) and testing (20%), with the test data corresponding to different chunks of weld 
beads. Figure 5 shows the confusion matrix of the model on the test data, and Fig. 6 
exhibits the model’s behavior on a chunk of weld, where a binary indicator represents 
the detection. 

Fig. 5. Confusion matrix results on the 
test data. 

Fig. 6. Porosity detection of RCNN model on a test 
weld chunk. 

The confusion matrix in Fig. 5 shows the model’s classification results on the test 
data. As can be seen, the model performs adequately in porosity detection, with a low 
presence of false positives (incorrect detection of porosity where it is not present) and 
false negatives (incorrect detection of porosity where it is present). Although these values 
are low, they could be improved. For example, increasing the database, especially with 
more instances containing pores, could provide a better balance between the classes, 
reduce the number of false positives and false negatives, and thus improve RCNN’s 
performance. 

The welding chunk shown in Fig. 6 has two pores in its final part, each with a 
diameter of 2 mm, which have been highlighted in red. Although a greater number of 
pores appear to be present throughout the welding, these are actually surface-coating 
oxidations that do not form cavities or holes like pores do. As shown in Fig. 6 through the 
binary indicator, the existing pores are detected, with only one false positive in this weld 
small chunk. Therefore, effective detection of pores, even of different sizes, is achieved 
through the application of the RCNN model, demonstrating its potential to meet real-
time predictive requirements. Improving the classification results of the RCNN could 
also be achieved by adding another input variable to the model that is related to the defect 
under study. For example, the variable related to welding plate temperature would be a 
suitable candidate, as it reflects the plate’s heating state and the possibility of trapped 
gases, which can lead to the generation of porosity.
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5 Conclusions and Future Implications 

This work proposed online porosity defect detection in the SAW process. The feasibility 
of this approach was assessed based on the real-time classification performance of the 
hybrid RCNN model. The results showed the model’s significant ability to detect pores 
throughout the welding execution, with a recall score of 76.4% and an inference time 
<7.5 ms per millimeter of welding, i.e., less than 10% of the time required to weld 1 mm. 

Furthermore, the classification results demonstrated that the variable related to volt-
age has a close relationship with pore-related defects. As future research to improve the 
RCNN classification results, the addition of other variables that may relate to the defect 
under study will be proposed. For example, the welding plate temperature could be a 
variable that enhances pore detection, given that it reflects the plate’s heating state and the 
possibility of gases being trapped during pore generation. Additionally, another strategy 
to improve RCNN performance is to use a greater number of welded beads with porosity 
along their length. This would allow the model to learn from a wider variety of instances 
with pores, improving its balance between classes and generalization against previously 
unseen pores. This can be attributed to various tests aimed at expanding the database with 
instances of porosity, coupled with an increasingly robust model architecture, resulting 
in an upward trend in performance metrics. 
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Abstract. In recent years, the integration of new Artificial Intelligence (AI) tech-
niques and capabilities has emerged as one of most promising research fields to 
aid the industrial development of smart and zero-defect manufacturing solutions. 
This study explores the potential of generative AI in this field and reviews novel 
opportunities enabled by generative AI methods, and Generative Adversarial Net-
works (GANs) in particular, to aid the generation of augmented datasets including 
realistic representations of anomalous process patterns. The result is an effective 
AI framework to learn specific defect features from real data, and reproduce them 
in an extended way, leading to synthetic but realistic image data that could be used 
to enhance defect detection and classification performances. The paper reviews 
the benefits and open challenges associated with the implementation of these 
techniques, including state-of-the-art examples and real case studies in Additive 
Manufacturing. 

Keywords: generative networks · artificial intelligence · generative adversarial 
networks · additive manufacturing · image data 

1 Introduction 

According to Scopus, slightly less than 30k scientific papers devoted to machine learning 
and artificial intelligence (AI) applications in manufacturing have been published so far, 
with a rate of more than 1000 per year since 2019. The wide interest for these methods 
primarily lays in their capacity to solve complex data-driven problems in applications 
where other statistical techniques exhibit major limitations or can be hardly applicable. 
The AI market volume in the manufacturing sector is expected to grow from 890 M$ in 
2018 to 21.3 B$ in 2028 [1]. However, the intrinsic limitations of AI methods, e.g., their 
black box nature, the need for massive training data and computational resources, still 
represent a barrier for a widespread industrial adoption in manufacturing applications. 

Novel opportunities have been recently triggered by a novel family of techniques 
known as generative AI, which may unlock the potential to tackle and solve a broad 
range of new problems as well as to revolutionize the way in which traditional problems 
are addressed [2]. Generative AI consists of a class of machine learning algorithms
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specifically designed to model the underlying distribution of a dataset aiming to generate 
new, synthetic instances that resemble the input [2, 3]. This class of methods can capture 
the statistical properties of the input data in a variety of formats, e.g., text, signals and 
images, and replicate them. 

In the field of smart and zero-defect manufacturing generative models can be adopted 
to solve different problems, from the generative design of new product concepts to qual-
ity assurance and process optimization. This study specifically focuses on synthetic data 
generation to aid and augment process monitoring and classification performances. The 
underlying motivation is the following. Real manufacturing data are commonly highly 
unbalanced, i.e., data collected under normal, stable, and defect-free conditions are com-
monly more widely available than data gathered in the presence of any actual departure 
from this state. This represents a limitation for automated anomaly detection and classifi-
cation, especially when supervised methods are used. To some extents, it also represents 
a limitation in the field of statistical process monitoring and “one-class-classification” 
methods [4]: although they rely only on data samples representative of non-defective 
(in-control) conditions, defective (out-of-control) items and samples are needed to test, 
validate, and possibly tune their anomaly detection performances. A quite common prac-
tice in the literature consists of simulating process data in different out-of-control classes 
and at different anomaly severity levels. Simulation studies are typically carried out by 
drawing random samples from pre-defined probability distributions and testing proposed 
methods in the presence of representative shifts applied to the parameters of the original 
distribution. However, the higher the complexity of data patterns and formats (e.g., 1D 
profile data, 2D surfaces, 3D point clouds, images, videos, etc.), the more difficult is to 
generate realistic simulated data by means of parametric methods. 

In this framework, generative AI methods opens a completely new range of possi-
bilities, as they can augment the capacity to replicate and generate data patterns that 
resemble real ones regardless of their complexity. 

This study reviews generative AI architectures for synthetic data generation and their 
current state of the art in manufacturing applications. Special attention is devoted to a 
sub-class of methods known as generative adversarial networks (GANs), because of 
their flexibility in dealing with a variety of industrially relevant problems. We review 
and critically discuss the various open issues and limitations that deserved additional 
research and industrial developments. 

2 Generative AI Architectures and Methods 

Generative AI methods for synthetic data generation include different architectures and 
training paradigms, namely: variational autoencoders (VAEs), normalizing flows, dif-
fusion models, autoregressive models and GANs. In terms of data format, the range of 
applications and methods is broad, ranging from high-dimensional multivariate data to 
time series [5, 6], from image data to videos [7]. All of them are relevant for manufactur-
ing applications, as in-line signals acquired during the process can be in various formats. 
In this study we focus mainly on image data, as the number of industrial applications 
involving machine vision techniques have increased substantially in the recent years in 
high precision manufacturing and additive manufacturing [8, 9].
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VAEs use an encoder-decoder architecture to learn the latent representations of input 
data [10]. The encoder maps the input data to a latent space, while the decoder generates 
new data samples by drawing from the probability distribution learned in the latent space 
and back-transforming to the original data domain. This approach is suitable to generate 
synthetic data (e.g., images) whose latent structure is difficult to model. VAEs can draw 
new samples from an image dataset, but users have limited control on the specific features 
they can reproduce in synthetic data, e.g., anomalous patterns of interest. Normalizing 
flows consist of series of simple and invertible functions that are sequentially applied to 
the input data to transform a complex image pattern into a simple probability distribution 
[11]. Random samples are then drawn from the simple distribution to obtain new images 
via backward application of serial functions. They suffer from similar limitations of 
VAEs in terms of flexibility. Diffusion models rely on a different way to implement 
forward and backward transformations [12]. The forward (diffusion) process gradually 
adds Gaussian noise to input images, whereas the reverse (generative) process starts from 
pure noise to generate new image samples. This approach has recently gained popularity 
due to their combination with large language models (LLMs) to generate images based 
on text prompts. Autoregressive models can treat images as sequences of pixels and 
predict pixel intensities across the vertical and horizontal axes [13]. This is achieved 
by modelling the conditional probability distribution of pixel intensities based on the 
occurrence of previous ones. They have the potential to reproduce specific patterns and 
transfer image features from real sample to synthetic ones, but the way to enhance the 
output quality is still an area of research. 

GANs represent another different category of generative AI models, which has 
attracted increasing interest in industrial applications [14]. They consist of two neu-
ral networks known as the “generator” and the “discriminator”, respectively, which are 
trained simultaneously in a competitive process (Fig. 1). 

Fig. 1. General scheme of a GAN architecture [14] 

The generator creates synthetic images starting from random noise generating pat-
terns that the discriminator fails in distinguishing from real data, thus maximizing the 
discriminator error rate. The discriminator receives as inputs both synthetic and real data 
aiming to minimize its classification error. They are trained together in a minimax game. 
A single loss function, e.g., the Jensen-Shannon divergence [14], is used to optimize 
both.
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Basic GANs, as well as other generative methods, do not provide any direct control 
on the ability of the network to capture salient defect features. Some GAN architectures 
have been proposed to specifically enhance the control on the type of generated images, 
opening a range of new possible uses of these methods. Three examples are:

• Conditional GANs (cGANs): they condition the generation process on additional 
information, e.g., class labels which aid the generation of synthetic data in separate 
classes, preserving the between class dissimilarities.

• Style transfer GANs (styleGANs): they perform image-to-image translation, i.e., they 
transfer patterns learned in one type of image, e.g., the one including defects, to the 
other type, e.g., the defect-free image.

• Cycle consistency GANs (cycleGANs): they perform a similar pattern transfer, but 
using a loss function that preserves key characteristics of the original image in the 
translated one. 

The benefits of generative AI methods, and GANs in particular, with respect to non-
generative AI approaches for synthetic data generation have been discussed by various 
authors [15]. As an example, [16, 17] developed a GAN-based approach to generate syn-
thetic microstructure data, showing that compared to the commonly used microstructure 
generation algorithms, the GAN results are structurally and electrochemically more real-
istic. Similar conclusions were drawn in other applications, e.g., in generating melt pool 
and weld pool images under unexplored experimental conditions [18]. 

Generally speaking, data simulation has been widely used in the literature to train 
and/or test machine learning methods. However, in manufacturing applications, simulat-
ing realistic data patterns (e.g., product defects and process anomalies) in the presence of 
highly complex process dynamics represents a challenging task. Simulated patterns are 
commonly hardly representative of the complex spatial and/or temporal features of real 
phenomena. As a result, only macroscopic and simplified anomalies can be simulated 
in most cases. Synthetic data generation via GANs and other generative AI methods has 
the potential to actually tackle this limitation, opening to a new field of opportunities to 
support the development of new smart manufacturing capacities. 

The use of GANs in manufacturing applications to this aim is reviewed in Sect. 3. 

3 GANs for Synthetic Data Generation in Manufacturing 

The research on GANs in industry and manufacturing applications comprises a variety 
of seminal studies. Various authors used GANs to generate synthetic microstructure 
data [16, 17]. Microstructure data are time-consuming and expensive to collect, which 
results in limited and unbalanced datasets. This represents a limitation to properly train 
machine learning classifiers. Simulation software tools have been developed to cope with 
this issue, but some authors showed that microstructure images generated via GANs are 
more “structural and electrochemically realistic” than competitor methods [17]. 

A fully convolutional GAN was proposed in [16] where they used two input parame-
ters, namely a seed to add stochastic variations and morphological parameter that controls 
the morphological characteristics of the images (grain size, orientation, etc.). Thanks to 
these parameters they could achieve an accurate control in the generation of desired 
patterns (Fig. 2).
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Fig. 2. Example of real (ground truth) and synthetic microstructure images from [16] 

Another industrial application regards the generation of synthetic defect images. 
Singh et al. [19] compared styleGANs and cycleGANs to this aim in a semiconductor 
manufacturing application. The major difference between them is that styleGANs are 
constrained to transfer patterns among paired images, while cycleGANs do not have this 
limitation. Since images of defects are commonly more scarcely available than images 
in normal conditions, cycleGANs are much more flexible for industrial adoption. Singh 
et al. [19] also showed that cycleGANs outperformed styleGANs in terms of synthetic 
image quality. 

Zhang et al. [20] developed a variant of cGANs for paired images to generate defects 
on a clean, defect-free fabric image (Fig. 3). A pre-process steps was included to select the 
defective region, and a second stage was added to fine-tune the fabric defect image. The 
authors trained different object detection algorithms using as input both real and synthetic 
data. They showed that augmenting the training with synthetic images improved the final 
object detection performances. Similar results were confirmed by other authors [21–25]. 

Fig. 3. Example of synthetic defect images after the first (a) and second (b) GAN stage in [13] 

Being able to control defect location and size or severity is a key aspect to generate 
valuate synthetic defect data. A method aimed to enhance this capability have been 
proposed so far. Niu et al. [26], where synthetic defect locations were controlled by 
using defect masks as inputs to the GAN. However, the flexibility in replicating defects 
with desired properties still represents an open issue, as also shown in other variants of 
GAN architectures applied to machine vision inspection applications [27, 28].
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Fig. 4. cGAN approach for synthetic generation of melt pool images [18] 

In some cases, authors leveraged on the synthetic data generation capability to 
develop GAN-based defect detection or classification methods [18, 29]. In [18] a con-
ditional GAN was proposed to generate melt pool images in metal AM and the same 
network was used in-line to classify in-situ gathered melt pool image streams (Fig. 4). 
The cGAN architecture was fed with labelled images (namely video frames treated as 
independent images, thus ignoring the temporal dependence), where labels indicated the 
process parameters associated to every melt pool image. The discriminator was trained 
not only to distinguish between real and synthetic data, but also to estimate the label 
of every input image, either real or synthetic. Petrik et al. [18] also showed that the 
conditional training enabled the extrapolation of melt pool patterns under experimental 
conditions that were not included in the training. 

4 Open Issues and Perspectives 

Despite the several benefits, generative AI methods are still characterized by various 
limitations and open issues that motivate continuous research efforts. As far as GANs are 
concerned, they suffer from training instability, namely the difficulty in finding a stable 
equilibrium during the minimax game between the generator and the discriminator, and 
“mode collapse”, namely the risk for the generator to ignore a relevant portion of input 
data variability, which leads to overfitting specific patterns and reducing the synthetic 
data variability with respect to real data. The improved performances enabled by some 
types of GANs, e.g., cycleGANs, also came at the expense of a more complicated 
architecture (more parameters), which commonly implies the need for larger training 
datasets. 

One critical aspect regards the lack of methods to 1) quantify the GAN’s progress 
during the training and 2) validate the quality of its generated outputs. GAN’s architec-
tural complexity makes the training unstable, which makes convergence difficult or even 
impossible to achieve. Lack of convergence and mode collapse have a detrimental effect 
on the final output. It also makes difficult to tune the network through hyperparameter 
optimization. Despite various attempts to tackle this limitation, it still represents an open 
issue [30]. 

Regarding the validation of generated outcomes, some metrics have been proposed so 
far. They include: the Fréchet inception distance (FID), the inception score, the average
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log-likelihood, the multi-scale structural similarity (MS-SSIM) and the perceptual image 
patch similarity (LPIPS). Some authors used such metrics to compare alternative methods 
[27], but they suffer from several drawbacks. In some cases, they are based on heuristics 
that does not necessary capture salient features of interest, in other cases they rely on 
external neural networks and need very large dataset to provide reliable results [31]. 
Such limitations still make visual inspection the most effective validation approach, but 
this represents a barrier for the wide adoption of these techniques. 

Another important issue regards the extrapolation limitations. GANs, as most gen-
erative AI methods, replicate data samples that resembles input data patterns, without 
direct control on the type, location and properties of the features that shall be included 
or excluded from generate data. This means that such techniques are limited in the way 
in which they can extrapolate specific patterns and generate variants that vary in size, 
intensity, location, etc. To some extents, this issue has been recently addressed with 
conditional GANs, e.g., by embedding morphological parameters, and combining them 
with pre-processing operations or fine-tuning stages. However, this approach provides 
some control on the global properties of the image, not on specific regions of interest. 
This represents a field where additional research is needed. 

Other promising directions involve novel GAN architectures explored in few seminal 
studies to extend their capabilities moving from image data to more complex domains. 
Two examples include GANs for synthetic video generation, where both spatial and 
temporal patterns are captured and reproduced in a realistic way, and 3D GANs suitable 
to deal with three dimensional objects. 

Aforementioned challenges still represent barriers for the industrial adoption of 
GANs in real manufacturing environments. Although various real case studies have 
been presented and successfully addressed in the scientific literature, the technology 
readiness level (TRL) in the specific field of quality monitoring and control is still low, 
between TRL 3 and 5. Most of the literature focused on open datasets, whereas only few 
authors tested the proposed methods in relevant environments using real data. The lack 
of a solid validation framework still imposes subjective evaluations that in most cases 
are not compliant with stringent quality requirements and implementation constraints. 
Moreover, the difficulty in controlling the convergence of trained models and the lack of 
interpretability underpin the general caution exercised by early adopters towards these 
methods. This motivates continuous research efforts not only understand the potentials 
of the methods but also to provide industry with trustworthy solutions to highly complex 
problems. 

Moreover, synthetic data generation requires high processing power and large data 
volumes. Cloud computing infrastructures are commonly used for network training, but 
this also opens cybersecurity issues that shall be faced for effective industrial adoption. 
Not all potential adopters already have internal infrastructures compatible with the intro-
duction and integration of such novel tools. This pushes the need to bridge technological 
and cultural gaps to leverage the benefits provided by AI and generative AI in the digital 
transition. Federated learning combined with generative AI may be one way to unlock 
the potential of new advanced models while meeting security requirements. Seminal 
solutions in this direction have been already explored [32].
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Finally, the potential GANs is not limited to data generation. They can also be used 
for anomaly detection and classification. Generative models can be trained to learn the 
normal patterns of industrial processes and generate “in-control” representations, such 
that any deviation from these learned patterns can be signaled as alarms, aiding in-
line anomaly detection. Moreover, they can predict the outcomes of different process 
parameters, allowing for adjustments that may enhance the quality and performance of 
the product. In this fields, GANs can be combined with statistical methods to tackle 
complex problems opening to a range of new application scenarios. 

5 Conclusion 

Most cited studies were focused on testing GANs on open datasets, while the number of 
studies addressing real use cases in manufacturing applications is still quite limited. Such 
seminal studies demonstrated the high potential of the methods, but they also highlighted 
a broad range of open issues and challenges that deserve additional research efforts. It 
is also worth pointing out that the use of generative AI methods different from GANs 
is much less explored, despite the notable performances and capacities they exhibited 
in other applications. Generative AI has the potential to trigger new opportunities for 
the development of advanced solutions in smart and zero-defect manufacturing. This 
represents a low maturity field compared to the adoption of other machine learning 
methods, several challenges shall be faced, and new solutions are needed, but the research 
is progressing at a quite fast pace. 
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Abstract. Metal Additive Manufacturing (AM) allows producing geo-
metrically complex metal components, unlocking new design possibilities 
and making it suitable to sectors such as healthcare, automotive and 
aerospace. AM processes are complex and require the use of many sen-
sors to extract relevant process information for its monitoring and con-
trol. In the last years, many studies have applied advanced Deep Learn-
ing methods to extract knowledge from AM processes. However, these 
developments are specific to a particular setup, problem or defectology. 
Furthermore, they lack frameworks and pipelines to guide throughout 
their development, and do not include AI-related tools for data labelling, 
visualization, and AI model development and deployment. With the aim 
of simplifying the development and deployment of AM process moni-
toring systems, a dashboard-based framework that makes use of AI for 
anomaly detection and for feature extraction is presented in this study. 
The framework helps with development and deployment of monitoring 
systems by easing the incorporation of new sensors and the extraction 
of new features from captured data by end users. In this study, a Laser 
Metal Deposition (LMD) process is considered as the use case to show 
the usefulness of the developed framework. 

Keywords: laser metal deposition · process optimization · 3D 
visualization · anomaly detection 

1 Introduction 

Metal Additive Manufacturing (AM), also known as metal 3D printing, has 
transformed the manufacturing sector with its remarkable flexibility, accuracy 
and its capacity to manufacture with challenging materials. Embraced across 
diverse industries including aerospace, automotive, and healthcare, AM fuels 
c© The Author(s) 2025 
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innovation crafting or fixing three-dimensional metal components by layering 
materials and unlocking new design possibilities [ 1]. The lack of closed loop 
control and highly dynamic nature of AM processes make high quality con-
sistency and process repeatability challenging [ 2]. Numerous parameters and 
physical effects such as input energy, gas flow, melt-pool characteristics, welding 
seam geometry, heat transfer between layers, and others must be managed to 
prevent defects like Lack of Fusion (LoF), pores, deformations, and cracks [ 3]. 
AM process monitoring, control and post-process quality control requires com-
plex multi sensor setups. For instance, CCD cameras, welding cameras, thermal 
cameras, profilometers, acoustic emission among others have been used. Imple-
mentation of these setups is not straightforward and implies sensor positioning, 
calibration, data capture and storage, data synchronization, sensor data analy-
sis, multi-sensor data analysis and final integration of developments, including 
trained AI models, among others. Furthermore, optimization of parameters via 
trial-and-error mechanistic modelling or via machine learning tools are time-
consuming, and it does not warranty the quality consistency [ 4]. 

Different AI-based approaches have been used to extract process knowledge, 
detect defects, monitor or control AM processes. Among the different AI-based 
approaches, anomaly detection and deep learning-based methods are the most 
extended ones [ 4]. AI-based solutions tend to be use case and setup specific 
and lack of an integral tool that helps the user throughout the entire pipeline 
from data capture to model deployment and final process monitoring and control. 
The developed framework contains a user-friendly UI-based interface designed to 
help end users to quickly identify deviations and adjust the system. It integrates 
a set of tools that together with a reference pipeline serves to adjust the setup 
and the LMD process. Finally, data is visualized in 3D with to identify the 
position and type of deviations and defects. Its usefulness is shown within LMD 
trials in simple geometries. Powder flow and humping defects are detected via 
anomaly detection. 

2 Background 

Laser Metal Deposition (LMD), also known as Laser Cladding or Direct Metal 
Deposition, is a directed energy deposition class of AM technology that consists 
of the deposition of metal powder or wire onto a substrate using a high-energy 
laser beam [ 5]. LMD is a versatile and progressively favoured AM method [ 1]: 
material deposition can be precisely regulated, it allows the printing of complex 
geometries with minimal material loss, and it can be used to mend valuable 
components. Conversely, it remains a relatively novel AM technology, with some 
aspects of its underlying physics still awaiting full comprehension [ 4]. Gas poros-
ity (voids or gas pockets within the deposited material), lack of fusion (inad-
equate bonding between the deposited material and the substrate or layers), 
surface irregularities and humping (undulations along the printed layer’s sur-
face) are among the prevalent imperfections occurring in LMD. In the particular 
case of humps, their appearance can be due to high scan speeds, or the relation
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between input energy, amount of powder deposited and laser interaction time. 
These deviations can get exponentially worse in subsequent layers, leading to 
defects such as porosity or lack of fusion [ 6]. 

2.1 Laser Metal Deposition Process Monitoring and Control 

Process monitoring in industrial settings is crucial for ensuring product quality, 
optimizing efficiency, and maintaining safety standards. Among the different 
monitoring methods, the most common technique is in-situ sensor monitoring 
where sensors are embedded within the manufacturing equipment to collect real-
time data, i.e. temperature, pressure, material deposition rates, and acoustic 
emissions [ 7]. This approach provides immediate feedback to operators, allowing 
them to make timely adjustments to process parameters and prevent defects. 
Welding and thermal cameras [ 8], acoustic sensors and profilometry are the most 
widespread sensors used in LMD process monitoring [ 4]. 

Thermal cameras capture infrared radiation emitted by the heated material 
and surrounding components, provide visual representation of temperature dis-
tributions across the piece and enables the identification of hotpots, monitor 
heat dissipation, and detect lack of fusion or porosity. However, the spatial res-
olution of thermal cameras may limit their ability to detect subtle variations in 
temperature. Additionally, welding cameras are used to extract additional infor-
mation, such as, geometry of the newly printed area, melt-pool, layer thickness 
and humping formation. Due to their high spatial resolution, welding cameras 
are extensively used for LMD process monitoring [ 4]. 

Despite the advancements in process monitoring and control techniques 
[ 9,10], several challenges persist in industrial applications, including the inte-
gration of multiple monitoring methods into a unified monitoring system, the 
development of robust algorithms for real-time anomaly detection, and the imple-
mentation of remote monitoring capabilities for decentralized manufacturing 
facilities [ 4]. 

2.2 AI Tools: Deep Learning Models, Data Visualization 
and Labelling 

Data visualization and UIs play a crucial role in industrial processes, as they 
are the link between the industrial components and the workers, particularly 
in cutting-edge fields like AM and LMD [ 4]. In recent years, a big leap is being 
developed in regard to UIs and user experience [ 11]. These innovative techniques 
rely on precise data analysis and visualization to ensure quality control, process 
optimization, and performance monitoring. Several methods are employed to 
visualize data effectively. Through the use of UIs and dashboards, operators 
can access comprehensive displays that show images of the deposition process 
captured by high-resolution cameras. These images provide real-time feedback 
on factors such as powder distribution, surface quality, and melt-pool dynamics 
[ 4]. In addition to image data, sensor process variables such as temperature, 
pressure, and laser power are continuously monitored and visualized in the UI.
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Not all cameras include their own image analysis software and hence, devel-
opment and deployment of image analysis models for feature extraction it is an 
extended procedure. DL-based models require large amounts of labelled images, 
for manual image annotation, different tools like Labelbox [ 12] or COCO Anno-
tator [ 13] can be used to speed the process. Semi-automated labelling, where 
certain parts of the process are automated [ 14], reducing human intervention to 
annotation revision and correction, eases this process even further. Completely 
automated labelling is also possible, usually this approach is used with some kind 
of clustering algorithm [ 15]. However, these tools are not, in general, integrated 
within a unique framework that integrates AM process monitoring, with visual-
ization, data filtering and labelling, and DL-model training and deployment. 

3 Developments 

Setup definition for monitoring and close loop control continues to be an open 
task for metal AM processes. As new sensors appear and existing sensors evolve 
by their miniaturization or to stand harsh environments, setup definition, trial 
and adjustments will need to be faster, more flexible and simpler. The aim of 
this work is to ease and speed up setup implementation, to accomplish this, a 
UI-based framework with the following main features has been developed: 1) 
flexibility to be used with different kind of sensor and captured data types, 2) 
user-friendly, helpful for end-users at trial stages of setup definition, and 3) easy 
to use, with simple steps that can be executed in an interface that follows a 
simple pipeline developed for sensor configuration and setup implementation. 

Fig. 1. Pipeline for sensor data configuration for monitoring. 

In this study, a laboratory level implementation for LMD setup configuration 
is considered. Synchronization of captured data is out of scope of this article. 
The focus is placed on single sensor configuration and integration, data capture, 
visualization and anomaly detection. This study aims at laying the foundations 
of a future, more extensive tool for multisensor data analysis for process control. 
In the following subsections, the reference pipeline and an implementation of the 
use of the framework for a welding camera for an LMD process are described.
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3.1 Pipeline: Sensor Data Monitoring 

A three-step iterative loop pipeline to extract relevant data from each sensor 
has been defined (Fig. 1). The first step is to extract process information from 
captured data by using unsupervised or supervised ML or DL models. While 
some of the sensors do incorporate their own software for process parameter 
extraction, many do not, in those cases, the use of unsupervised models is a cost-
effective alternative to filtering captured data and generating proper datasets to 
fed supervised models. Among unsupervised ones, the most extended ones are 
anomaly detection models. Once the model is trained, any data outside the nor-
mal behaviour will be scored as abnormal. Anomaly detection on time series 
and images is carried out following similar steps. For instance, in the case of 
images, the user can specify the region of interest (ROI), this is useful in cases 
where the images contain relevant information about different parameters of the 
process. For example, images where the nozzle and part of the printed part is 
shown. In these cases, several ROI could be defined. In the second step, anomaly 
detection results are mapped into a 3D representation of the printed part. This 
allows filtering by layer and/or anomaly scores, with filtered values displayed in 
a new window for manual labelling to verify detection accuracy. Outputs from 
supervised models can also be visualized and annotated, this labelled data is 
used to adjust anomaly detection models, as well as supervised models for clas-
sification or feature extraction using object detection or segmentation models. 
The last step of the pipeline consists of adding / updating the DL-based models 
within the real time process monitoring. This step closes the loop of the pipeline 
and serves to adjust process parameters from observation through end-users. In 
the next iterations of the pipeline, 3D visualization is used for real time data 
monitoring of raw values, extracted features and detected anomalies. 

3.2 User-Interface Based Framework 

The developed framework unifies DL-based process analysis with visualization 
technology (Fig. 2.c and 2.e). It allows data to be visualized in an easy and 
intuitive format, and enables easy data labelling for model training. 3D environ-
ments and interfaces are key in AM and LMD processes, specially during the 
part design process, by continuing development of 3D visualization and UI tools, 
the job of design engineers can be improved and optimized [ 16], this can be also 
applied to the manufacturing and post-processing part of the process. 

A new custom software using direct calls to OpenGL is capable of smoothly 
showing up to 5 million data points in a 3D virtual space. The user is also 
able to navigate the 3D space freely, rotate the virtual representation of the 
workpiece and filter the visible data by layer, either showing all the workpiece, a 
single layer of the manufacturing process or a combination of various layers. By 
visualizing the manufacturing process in a 3D space, engineers and technicians 
can identify potential flaws or areas of improvement in real-time. This approach 
enables adjustments to be made quickly, reducing the likelihood of errors and 
minimizing material wastage.
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Fig. 2. Developed framework and pipeline for a welding camera for LMD process. 

3.3 LMD Use Case: Welding Camera and Anomaly Detection 

The integration of a welding camera within an LMD monitoring setup print-
ing a simple spiral geometry is described here. The setup consists of a Cavitar 
C300 welding camera, a Wenglor MLSL143 Profilometer, and a NIT Clamir 
thermographic camera. The welding camera, placed off axis, enables real-time, 
high-resolution observation of the laser-metal interaction during deposition. The 
Wenglor MLSL143 Profilometer, placed on axis with an offset just after the noz-
zle, adds precise topographical data measurement capabilities. Finally, the NIT 
Clamir system, on axis, gives insight about temperature distribution, thermal 
behaviour and melt-pool dynamics. Two positions were tested for the welding 
camera: One for analysing the powder flow (Fig. 2.b top), and the other one for 
determining the geometry of the newly welded area (Fig. 2.b down). In order to 
monitor the powder flow and geometry of the newly welded area, the pipeline 
described in the previous section is applied as indicated in Fig. 2. The first step 
consists of determining a ROI for each of the images (red boxes on Fig. 2.b). The 
ROI is extracted from all captured images and those related with normal process 
behaviour are used to train DL-based anomaly detection. PaDiM anomaly detec-
tion [ 17] is used in this second step, which outputs a heatmap where regions with 
higher score are indicative of anomaly regions. This output is visually inspected 
to update the training dataset and to generate a new dataset that could be 
used for alternative DL-based models. In the third step, the output heatmap 
images are reduced into a unique score to simplify filtering and selection for 
labelling. Different image scoring options have been tried: based on percentiles 
(50, 75 and 95) and based on delentropy [ 18], which is an extended version of the 
Shannon information for 2D images, a measure of the complexity of image data 
[ 19]. The fourth step consists of visualizing these scores in 3D representing the
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geometry of the printed part (Fig. 2.c). The equivalent 2D visualization of data 
together with original and heatmap images of two detected anomalies are shown 
in Fig. 2.d. Scores are then filtered by layer and/or value, and their original and 
heatmap images are loaded in a new window for manual labelling (Fig. 2.e). 
This is carried out in the fifth step just by click the images the algorithm has 
wrongly identified as anomalies. Finally, in the sixth step, manually curated data 
is used to adjust PaDiM or alternative DL-based models that are incorporated 
in posterior iterations. 

4 Conclusions and Future Steps 

To ease setup definition and process monitoring, a user-friendly framework has 
been developed, tested in a laboratory setup for LMD process monitoring for 
anomaly detection, and presented in this document. The tool has two major 
parts: an interface and a reference pipeline. The interface consist of a principal 
window for the visualization of data in a 3D plot with the geometry of the printed 
part, and a secondary window for the labelling of images to identify predicted 
False Positives (FP). Easy and intuitive data visualisation enables fast reaction 
times from technicians and the adjustment of DL-based models. Finally, the 
iterative pipeline guides the development of aforementioned DL-based models. 
Currently, the annotation is restricted to a binary classification to identify FP 
from model output that serve to generate datasets to train anomaly detection 
as well as classification models. In the future, the aim is to extend the annota-
tion by making use of alternative available annotations tools (COCO-Annotator 
and Segment Anything models for example) so that other types of models, such 
as object detection or segmentation, can be trained and used to determine the 
values of other relevant process parameters. Furthermore, additional tools for 
time series analysis will be incorporated progressively. This framework has been 
developed to be user-friendly, help in fast definition and implementation of mon-
itoring setups, and aimed towards a process control. 
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Abstract. Artificial Intelligence (AI) can significantly support manufacturing 
companies in their pursuit of operational excellence, by maintaining efficiency 
while minimizing defects. However, the complexity of AI solutions often creates 
a barrier to their practical application. Transparency and user-friendliness should 
be prioritized to ensure that the insights generated by AI can be effectively applied 
in real-time decision-making. 

To bridge this gap and foster a collaborative environment where AI and human 
expertise collectively drive operational excellence, this paper suggests an AI app-
roach that targets identifying defects in production while providing understandable 
insights. A semi-supervised convolutional neural network (CNNs) with attention 
mechanisms and Layer-wise Relevance Propagation (LRP) for explainable active 
learning is discussed. Predictions but also feedback from human experts are used 
to dynamically adjust the learning focus, ensuring a continuous improvement 
cycle in defect detection capabilities. The proposed approach has been tested in 
a use case related to the manufacturing of batteries. Preliminary results demon-
strate substantial improvements in prediction accuracy and operational efficiency, 
offering a scalable solution for industrial applications aiming at zero defects. 

Keywords: Active learning · Defect detection · Explainable AI · Manufacturing 

1 Introduction 

Quality control is an integral part of manufacturing systems [1]. Traditionally, it has 
been a manual process heavily dependent on operators’ expertise [2], and often prone to 
errors. Experience tends to reduce the frequency of such errors, but it is something hard 
to transfer [3]. 

Nowadays, Machine and Deep Learning approaches can be used to automate quality 
control and predict a defect, by identifying abnormalities in process data. This in turn 
may reduce defects and resources wasted in the processing of defective products [5]. 

Nevertheless, AI models, becoming increasingly complex, are, in a similar way, 
increasingly considered as black boxes, difficult to understand and, subsequently, to 
trust. This requires the introduction of methods to explain their operations and outputs 
[4].
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Hence, this paper investigates the combination of an LRP layer to increase the 
explainability of a CNN model adopted for the identification of defects in a product’s 
2D images. In addition, a human feedback mechanism is introduced to allow the opera-
tors to verify the result of the AI model and label new defect types, thus improving the 
efficiency of the CNN model over time. 

2 Literature Review 

AI approaches have been extensively used in manufacturing for scenarios like quality 
control [6] or predictive maintenance [7]. In [6] a CNN-based algorithm is presented 
that identifies product defects. Such approaches have also been presented in [8] where 
the importance of computer vision techniques is explored. Similarly, in [9] a survey on 
machine and deep learning techniques is conducted aiming to improve and automate the 
quality control process in manufacturing. 

Despite these advancements, and despite the availability of advanced deployment 
approaches targeting AI systems [10, 11], AI deployment on the shop floor often encoun-
ters resistance, primarily due to the complexity of these systems [12]. One of the main 
reasons is the lack of explainability [13]. While the transparency of AI models and their 
output is important to ensure human trust in AI, especially those constructed around 
the use of advanced machine and deep learning techniques, it is often challenging 
or non-existent [14]. This in turn hinders the application, by shopfloor personnel, of 
AI-generated results that can improve quality control in real-world environments [15]. 

Explainable AI (XAI) aims to address these issues by making AI decisions more 
comprehensible and justifiable. XAI techniques fall into two categories: transparent 
approaches [16–19], which are inherently interpretable models like decision trees, and 
post hoc approaches [20, 21], which include both model-specific methods and model-
agnostic techniques like SHAP [22] and LIME [23], offering explanations after model 
training. The potential of XAI to improve quality control is particularly significant in 
settings that rely heavily on human-AI collaboration. By making AI models more inter-
pretable, XAI allows line operators to understand model uncertainties while enhancing 
their ability to interact effectively with AI tools [24, 25]. However, the literature indicates 
a gap in systems that facilitate active feedback from operators to AI models; essential to 
prevent model drift and to continuously refine AI tools [26]. 

Active learning is reshaping AI in manufacturing by employing techniques like 
ensemble methods and contextual bandits, which strategically use informative samples 
to enhance learning processes [27]. Additionally, uncertainty sampling and selective data 
querying help AI adapt quickly to new defects and changes in manufacturing, merging 
operator feedback into training cycles. This fosters a collaborative and adaptive learning 
environment crucial for achieving zero-defect manufacturing goals [28, 29]. 

3 Approach 

In the study, the primary goal is the introduction of an approach (Fig. 1) that com-
bines advanced AI algorithms, with XAI coupled with a human feedback collection 
mechanism, to adjust the learning focus of the algorithm dynamically.
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A CNN algorithm is selected, due to its versatility and high customizability. The 
objective of the CNN algorithm is the classification of an image representing a product’s 
surface, based on the presence or absence of a defect. The task of identifying defects 
is translated into a classification problem due to the simplicity of the image labelling 
approach in comparison to the complex labelling approach in object detection-related 
tasks; thus, facilitating the active learning application of the approach. 

Subsequently, LRP is applied on top of the CNN model to generate explanations 
of the outputs of the model. Based on the reviewed literature, and due to the inner 
complexity of the CNN, LRP is selected. A feedback pipeline is constructed that aims 
to use the operator’s feedback to actively retrain the CNN model. 

In more detail, the approach is structured around 8 consecutive steps, which are 
presented hereafter.

• Step 1 – CNN model construction: Images are categorised as defective or non-
defective, forming the training dataset for the CNN, which is then deployed for 
real-time defect detection on the shop floor.

• Step 2 – LRP rule selection: After CNN development, the LRP-γ rule is added to 
introduce an explainable AI layer.

• Step 3 –Forward  pass: Images pass through the CNN, storing intermediate activations 
and weights.

• Step 4 – Relevance initialisation: Relevance at the output layer is set based on the 
defect presence classification.

• Step 5 – Backward relevance propagation: The relevance score is propagated back-
wards through the model’s network. For each layer of the model, the LRP rule redis-
tributes the relevance from the output layer to the input layer. To achieve this, the 
LRP-γ rule uses the dimensionless formula detailed in (1). 

Rj =
∑

i 

aj(wij + γ w+ 
ij )∑

k ak (wik + γ w+ 
ik ) 

Ri (1) 

where:

• Rj: The relevance score for a neuron j in the current layer of the model,
• Ri: The relevance score for a neuron i in the next layer of the model,
• aj: The activation of neuron j in the current layer of the model,
• wij: The weight connecting neuron j in the current layer to neuron i,
• γ : The Gamma parameter that scales the positive part of the weight,
• ∑

k 
ak (wik + γ w+ 

ik ): The normalisation term. 

Using the backward propagation results the LRP can generate the necessary expla-
nations which are then provided to the feedback interface, making them easily accessible 
to an operator. The approach concludes with the following three steps.

• Step 6 – Operator feedback collection: Operators use a user-friendly interface to 
review LRP-generated explanations in real-time, providing feedback (OK or NOK) 
and identifying potential new defect types. Operators can select between three options 
(OK, NOK and New class), which is recorded and the classification given by the 
operators is stored.
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• Step 7 – Feedback collection: Based on the provided feedback, the dataset is updated 
in an automated manner weekly. The dataset will be updated to include newly labelled 
images in existing classes, while new classes are dynamically created based on the 
users’ feedback.

• Step 8 – Active learning: Ultimately, CNN is periodically retrained with the updated 
dataset, improving its predictive accuracy and adapting to new defect types based on 
the production cycle time. 

Fig. 1. Active learning approach based on XAI and operator’s feedback. 

4 Use Case 

The proposed approach was applied to a laser welding process in battery module assem-
bly. High-resolution images captured by a 2D vision-based system served as the pri-
mary data source, processed on a computing infrastructure consisting of an Intel Core 
i7-13700H processor and an NVIDIA RTX A1000 GPU. For the initial training of the 
CNN, a dataset of 1800 mixed real-world and synthetic images was used, enhancing the 
model’s exposure to rare defects. The CNN (Fig. 2), utilized the Adam optimizer, binary 
cross entropy loss and 10 epochs for better defect detection accuracy. 

The CNN model has been trained using the initial 1800 2D images. The CNN model’s 
architecture can be seen in Fig. 2. The performance of the initial CNN model can be 
seen in Table 1, evaluated using the accuracy, precision, recall and F1-score [30]. 

LRP was applied to the CNN’s outputs to generate explainable visual data, assisting 
operators in understanding and validating defect detections, as seen in Fig. 3.
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Fig. 2. The architecture of the CNN model. 

Fig. 3. (a) LRP results presented to an operator along with original images and (b) feedback 
collection interface (grey overlay added on top of real-time data due to data confidentiality). 

As seen in Fig. 3, the LRP colorises in red the pixels of an image where defects are not 
present, while pixels in blue indicate the presence of the class characterising defects. By 
presenting the original and explained images next to each other, the operator can visually 
identify defects detected by the CNN. Due to the nature of the battery manufacturing 
process, defects, such as spots on the weld, can be small, further complicating the 
manual inspection process. Nevertheless, due to the minute size of the defects, images 
that contain products with defective welding can potentially be misclassified. 

Feedback is collected by operators to actively improve CNN’s performance. Feed-
back provided directly labels the under-examination image with either OK (representing 
the absence of defect) or NOK (representing the existence of defect). Operators are given 
a third option to introduce new labels in the dataset in cases where after manual inspection 
of the under-examination battery a new type of defect is uncovered. 

A controlled experiment conducted over a week gathered substantial feedback, 
leading to the retraining of the CNN, whose performance can be seen in Table 1. 

Post-retraining, improvements were observed: accuracy increased marginally from 
0.89 to 0.9, while recall improved from 0.57 to 0.66, and the F1-score from 0.70 to 0.77, 
indicating enhanced reliability and reduced risk of missing defects. 

The results presented in Table 1 underline the importance of enabling operators to 
provide feedback on data they utilise daily to ensure that quality standards are met. Given
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Table 1. Performance comparison of original and retrained CNN model. 

Metric Original CNN Retrained CNN 

Accuracy 0.89 0.9 

Precision 0.94 0.94 

Recall 0.57 0.66 

F1-score 0.70 0.77 

the rapid digitalisation of today’s manufacturing, AI systems are adopted and operators 
are faced with the challenge of understanding the results produced by them. With the 
application of XAI, operators demonstrated an increased reliance on the outputs of the 
CNN, given the explanations the LRP layer provided them. On top of this, the integration 
of humans in the loop of continuous model improvement is an effective approach given 
the increase in the CNN model’s performance; thus, validating the effectiveness of 
integrating active learning and XAI in manufacturing environments. 

Lastly, operators were asked to provide feedback on the usefulness of introducing 
explainability to the AI system. Approximately 83% of operators (7 men and 5 women) 
deemed the introduction of explainability as useful since it allows them to become part of 
the constant improvement process and speed up the manual defect identification phase, 
while the rest pointed out that improvements should be made to the feedback interface 
to increase its user-friendliness, such as removing pop-up dialogues and incorporating 
the feedback options beneath the model’s output. 

5 Conclusion 

This study presents an approach for detecting subtle defects in battery module assembly 
lines, utilizing a semi-supervised CNN for initial defect detection. LRP is then applied to 
the CNN’s outputs to visually explain the decision-making process, pinpointing why spe-
cific areas are flagged as defective, enhancing transparency and supporting the validation 
of detected defects, thus, providing clarity in quality control processes. 

Operators evaluate areas highlighted by LRP to confirm defect identifications and 
to uncover new types of defects. This is essential for periodic retraining of the CNN, 
enabling the system to adapt to evolving manufacturing conditions and continuously 
refine its accuracy. This dynamic approach has been tested in a battery modules assembly 
use case with its result demonstrating the potential to improve defect detection but also 
to establish a robust mechanism for enhancement of quality control practices. 

Future research will be focused on further optimising the active learning pipeline 
and expanding the areas of application of the proposed approach through the adoption 
of the LRP layer on more diverse manufacturing scenarios. Also, future research will 
aim to extend the approach to account for the uncertainty of defects in the process of 
feedback collection by operators to assist them during the feedback collection phase. 
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Abstract. High-power ultrashort pulse lasers (USPLs) represent a sus-
tainable alternative for industrial surface processing. Laser Surface Tex-
turing (LST) allows modification of surface properties such as mechan-
ical, chemical or optical properties. The adoption of USPLs in industry 
will enable the surface functionalization of large 3D parts through the 
LST process. However, a real exploitation of USPLs still faces limitations 
related to high processing resolution, quality, productivity, and the need 
for expert knowledge in laser micro-structuring strategies. It is crucial to 
increase maturity, reliability and throughput of LST on a large scale, as 
well as to provide the industry with the necessary tools for selecting the 
suitable laser process for each specific application. 

Achieving these goals requires significant effort in data collection, 
which is costly in terms of processing times, results analysis and human 
resources. Additionally, the availability of software simulators for laser 
micro-structuring is limited, posing challenges for describing USPLs pro-
cesses through numerical models and methods. In this context, Artifi-
cial Intelligence (AI) models represent a unique tool to enhance pro-
cess understanding and results analysis, providing rapid prediction and 
visualization capabilities. However, developing AI-models requires vast 
amounts of data, which are not easily obtainable experimentally, but 
simulators can play a vital role in this aspect. 

We present a combined solution based on machine learning meth-
ods fed by synthetic data generated by LS-Plume R© from LASEA for 
predicting femtosecond laser single beam-based grooves on stainless steel 
316L. The methodology for developing such applications is described, and 
several regression models are compared. The analysis of metrics and 
prediction error demonstrates that leveraging the synergy between sim-
ulation tools and AI-models can be an effective strategy for training 
AI-models, thereby avoiding the need for a complete, systematic, exper-
imental parameter sweep approach. Consequently, the improvement of 
numerical models is a valuable strategy for training AI-models that can 
boost the adoption of USPLs for laser micro-structuring on a large indus-
trial scale. 
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1 Introduction 

Ultrashort pulse lasers (USPLs) emit pulses of light with a duration in the 
femtosecond (fs) or picosecond (ps) range, enabling the fabrication of high-
precision structures at the micro- and nanoscale. Furthermore, USPLs facili-
tate superior quality in laser micromachining processes, with negligible thermal 
effects [ 13,14,16]. Recent developments in USPLs technology have resulted in 
high-power and high-pulse repetition rate (tens of MHz) laser systems, bringing 
USPLs closer to meeting the industrial demands not only in terms of processing 
quality but also productivity. Furthermore, efforts to develop high-speed beam 
scanning devices and multi-beam processing methods are also been made to 
achieve the necessary processing speeds for industrial applications with USPLs 
[ 5,18]. Another critical aspect for scaling up USPL laser processing to industrial 
scale is the required knowledge in laser processing for each specific application, 
such as laser drilling, laser cutting, or laser surface texturing. 

Laser surface texturing (LST) is used to modify mechanical, chemical, electri-
cal, or optical properties of a material by engraving a texture on its surface. LST 
has several applications, including wettability control, friction improvement, and 
increased adhesive properties, among others [ 11,17,19]. For the effective indus-
trial exploitation of LST with USPLs, it is necessary to provide the industry 
with the tools required to select the optimal laser processing strategy to achieve 
the desired surface functionality. 

Optimal LST process parameters can be found using gradient search method, 
where one parameter is changed at a time. Alternatively, the process can be mod-
eled, but incorporating subtle effects and complexities is challenging and can 
become computationally intractable. Artificial Intelligence (AI) methods emerge 
as an promising alternative, though their potential for predictive visualization 
of USPLs LST has not been extensively explored. For instance, in [ 6] a Neural 
Network was used to predict the surface profile based on binary images from a 
digital micromirror device, although it was limited to fixed laser parameter val-
ues. Another study used a Convolutional Neural Network (CNN) trained with 
experimental images to predict and optimize dimple depth and crown height 
on grey cast iron, [ 12]. Recent research used regression models to correlate laser 
system parameters with dimple diameter, [ 7]. In a different study, machine learn-
ing (ML) techniques were proposed for predicting and optimizing femtosecond 
laser percussion drilling in a nickel-based single-crystal superalloy, [ 20]. Another 
example combined theoretical modeling and ML to predict the surface width 
and depth of tapered microchannels in silica glass, [ 10]. 

State-of-the-art research demonstrates a high interest in leveraging ML tech-
niques to optimize various UPSL precision manufacturing processes. However, 
the diversity of applications and materials requires the use of different modeling 
methods and tailored solutions, making further efforts to demonstrate ML capa-
bilities and effective methodologies for prediction and optimization crucial. In
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this context, simulation tools can play a new role as trusted synthetic data gen-
erators to feed AI-models. Rather than being replaced by ML methods, software 
tools can be a key component in the early stages of their development due to 
the high cost of experimental data collection in terms of human resources, pro-
cessing times, and analysis. Moreover, whereas the former may be limited to 
prediction capabilities, often with a high computational cost, AI-models offer 
faster prediction and process optimization capabilities. 

In this work, a method description for AI prediction of ultrafast laser based 
micro-structuring using synthetic data is presented. Specifically, several ML 
regression models are developed and compared for predicting femtosecond laser 
single beam-based grooves on stainless steel 316L. The features of the models 
include process parameters such as pulse repetition rate, scanning speed, pulse 
energy, beam diameter, number of passes and pattern pitch. Synthetic data from 
LASEA LS-Plume R© simulation software were used to guide the development of 
AI solutions for these procedures. The results for metrics (MAE, MSE, RMSE 
and R2 ) along with the prediction error of groove’s depth and Full Width at Half 
Maximum (FWHM), provide further evidence that AI-methods significantly aid 
in meeting the needs of this field. 

2 Methods 

2.1 Synthetic Data Generation: LASEA LS-Plume R©

Synthetic data were generated by using the simulator LS-Plume R© from Lasea [ 9]. 
This tool allows the simulation of ablation surface topographies due to ultrafast 
laser processing for three machining strategies: scanned line or area, preces-
sion, and percussion. The use of several common materials like copper, titanium, 
and stainless steel 316L is also available. LS-Plume R© can predict the ablation 
profile based on input parameters classified into two categories: laser parameters 
and material properties. The laser parameters take into account all the user-
defined parameters: pulse energy, pulse repetition rate, spot size at focus, and 
scanning parameters (speed, pitch between two consecutives engraved lines, and 
incident angle) that can be chosen during a machining. The material parame-
ters are the initial surface topography, the ablation threshold, the laser pene-
tration depth, and the complex refractive index. The engineering model used 
to obtain ablation profiles for given processing parameters and material consid-
ers several effects appearing during the laser-matter interaction like incubation, 
surface reflectivity, and Gaussian beam diameter variation with the distance to 
the focal plane. More details about the model can be found here [ 2].
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The LS-Plume R© has been developed to respond quickly to industrial needs. 
In this context, the purpose of the simulator is to predict ablation profile thanks 
to a simple model. Since thermal effects are not modeled, the performances of the 
simulator, good match between simulated profiles and experimental profiles, are 
maximum in a regime where thermal effects during ablation are not significant. 

The simulated data were obtained by using the scanned line strategy where 
an ablation profile is simulated by the overlapping of parallel lines space at an 
identical pitch. As explained in Sect. 2.2, different combinations of laser param-
eters were tested for stainless steel 316L by varying the physical quantities that 
can be chosen by the software user. Given the amount of data generated, an 
automated data generation procedure was developed using Python code. 

2.2 Dataset Description 

Training and testing any machine learning model demands a considerable 
amount of data with good coverage in terms of the process features values. 
For this purpose, simulations of single beam-based patterns (DW) at 100 kHz 
repetition rate and 300 fs pulse width were performed, varying scanning speed, 
pulse energy, beam diameter, number of passes and pattern pitch from 10 to 
1000 mm/s, 2.87 to 144.71 µJ, 10 to 50 µm, 1 to 10, and 125 to 300% of the 
beam diameter, respectively. This results in a total of 3326 groove patterns based 
on different combinations of the features values. The dataset was split into train 
and test datasets, including 2827 and 499 patterns, which means that %15 of the 
whole dataset was held for the test. Shuffling was applied to the data before the 
split and features were standardized to zero mean and unit variance using the 
mean and standard deviation of the training samples. 

Fig. 1. Example of a simulated curve profile of a single beam-based groove pattern. 

Each pattern is represented by a profile curve as depicted in Fig. 1, taken 
as an example. Depth and FWHM (Full Width at Half Maximum) are among
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the most representative characteristics of the groove. Both are calculated from 
each curve profile and used as targets for the machine learning models. FWHM 
prediction was performed in a reduced dataset, removing those patterns with 
a pitch less than 1.5 times of the beam diameter. The reason is that for these 
configurations the adjacent grooves overlap until they join and therefore the 
width of a single groove cannot be defined. 

Finally, data augmentation was applied in order to complete the dataset 
and to improve its generalization ability and accuracy. In addition to the profile 
curves generated from the simulation data, zero-energy data were artificially 
created and added to the training dataset, where the input energy value was 
zero, and also the depth and FWHM. The same procedure was done for zero 
number of passes. This augmentation was based on the physical assumption that 
there is no groove when there is no incident pulse. Once augmented, the training 
datasets consisted of 2928 and 2374 patterns for depth and FWHM prediction, 
respectively, which correspond to 3427 and 2776 patterns full datasets. 

2.3 Machine Learning Models for Non-linear Regression 

The aim of this work is to provide an initial prediction of the LST result to 
the expert for a given configuration of the set-up. It was tackled as a super-
vised machine learning problem, training models on a dataset that correlates 
the features of the process with the targets that describe the profile curve. 

The complex relationships between features and target variables require the 
use of non-linear regression algorithms, machine learning techniques able to cap-
ture the complexity of light-matter interaction that can not be effectively repre-
sented by a linear model. For this purpose, the performance of a variety of some 
popular non-linear regression algorithms was compared to address the problem. 

The models were implemented by using different classes from scikit-learn 
library. A cross-validation grid-search over a parameter grid for hyperparameter 
optimization was applied for each model using the GridSearchCV method. It 
consisted on an exhaustive search over the main model’s parameters using a 5-
fold cross-validation strategy. Once the search is finished, the model is refit using 
the best found parameters on the whole training dataset. The Mean Square Error 
(MSE) was used as score or training loss, and different wide-spread metrics for 
the test: MAE, MSE, RMSE and R2 . 

The models and their optimized hyperparameters are briefly described below, 
assigning an acronym to each of them as a reference for the tables and figures in 
Sect. 3. Firstly, a decision tree regressor was developed by using DecisionTreeRe-
gressor class (“dtr”) and optimizing the maximum depth of the tree. Decision 
trees are simple and explainable but can be unstable, what can be mitigated by 
the use of a random forest regressor. Thus, RandomForestRegressor class (“rfr”) 
was used optimizing the maximum depth of the tree but also the number of trees 
in the forest.
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Four algorithms that work well with small datasets and avoid overfitting to 
some extent were also tried. Gradient boosting, GradientBoostingRegressor class 
(“gbr”), which builds an additive model in a forward stage-wise fashion, fitting 
a regression tree in each stage on the negative gradient of the given loss func-
tion. The optimized hyperparameters are the maximum depth of the individual 
regression estimators, the number of boosting stages to perform, the minimum 
number of samples required to split an internal node and to be at a leaf node, 
and the number of features to consider when looking for the best split. Two 
state of the art regressors, XGBoost (“Extreme Gradient Boosting” [ 3], “xgb”), 
an efficient and scalable implementation of gradient boosting framework [ 4], and 
LightGBM [ 8] (“lgbm”), that includes gradient-based one-side sampling (GOSS) 
and exclusive features bundling (EFB), were implemented and optimized in 
terms of the maximum depth of a tree, the number of boosted trees to fit, 
and the learning rate. Finally, another gradient boosted decision tree implemen-
tation, CatBoost [ 15] (“cbr”), was used optimizing the same hyperparameters 
as the later and also the coefficient at the L2 regularization term of the cost 
function. 

Other classical approaches were tested as well. A k-nearest neighbors based 
regressor using the KNeighborsRegressor class (“knn”), predicting by local inter-
polation of the targets associated of the nearest neighbors in the training set and 
optimizing the default number of neighbors to use, and an epsilon-support vector 
regression by the use of SVR class (“svr”), optimizing the regularization param-
eter and the distance epsilon from the actual value within which no penalty is 
associated in the training loss function. Finally, MLPRegressor class was used to 
develop a multi-layer perceptron regressor (“mlp”), based on Adam solver, using 
ReLU activation function, and shuffling samples in each iteration. Different con-
figurations for the number and size of the hidden layers were studied, optimizing 
the strength of the L2 regularization term, the size of minibatches, the initial 
learning rate and the maximum number of epochs. 

Each model was trained for both depth and FWHM prediction and then 
MultiOutputRegressor class was used to extend the models for multi-target pre-
diction, training separate and independent models, one per each target variable. 
Decision tree and k-nearest neighbors based regressors are also able to handle 
multi-output problems. 

3 Results and Discussion 

Evaluation of all models for single and multi-target prediction was performed. In 
all cases, the learning curve revealed that the number of samples in the training 
dataset allow a good generalization. Moreover, the influence of every hyperpa-
rameter on the training and test score was studied to ensure that the model does 
not suffer from overfitting or underfitting for the optimized values.
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Table 1. Comparison of machine learning models prediction performance on test 
dataset. 

Model depth FWHM 
MAE MSE RMSE R2 MAE MSE RMSE R2 

dtr (Decision tree) 0.14 0.11 0.33 0.9997 0.17 0.10 0.32 0.9989 
rfr (Random forest) 0.24 0.35 0.59 0.9992 0.18 0.09 0.29 0.9999 
gbr (Gradient boosting) 0.14 0.11 0.33 0.9997 0.11 0.04 0.20 0.9996 
xgb (Extreme GB) 0.14 0.12 0.35 0.9997 0.11 0.04 0.20 0.9996 
lgbm (LightGBM) 1.99 12.37 3.52 0.9709 0.30 0.17 0.42 0.9981 
cbr (CatBoost) 0.13 0.09 0.29 0.9998 0.11 0.03 0.18 0.9996 
svr (Support vector) 3.86 28.00 5.29 0.9340 1.65 4.18 2.04 0.9551 
knn (K-neighbors) 3.04 81.33 9.02 0.8083 1.29 4.76 2.18 0.9489 
mlp (Perceptron) 0.62 2.14 1.46 0.9946 0.31 0.17 0.42 0.9982 

Table 2. Comparison of machine learning models performance: depth and FWHM 
prediction using MultiOutputRegressor class (left) and multi-target models (right) on 
test dataset. 

Model MAE MSE RMSE R2 

dtr 0.19 0.34 0.54 0.9988 
rfr 0.31 0.80 0.76 0.9980 
gbr 0.18 0.29 0.46 0.9992 

Model MAE MSE RMSE R2 

dtr 0.23 0.30 0.54 0.9986 
knn 2.71 46.82 6.08 0.8613 

The metrics introduced in Sect. 2.3 were used to compare the models. The 
results are presented in Table 1 for depth and FWHM prediction on unseen test 
dataset. Similarly, some examples of MultiOutputRegressor class and native 
multi-target models potential for both targets prediction is shown in Table 2. 
They illustrate that these estimators are good predictors of the main character-
istics of the grooves engraved by DW LST. 

The regressors performance described by metrics in Table 1 is visualized in 
Fig. 2 and Fig. 3, depicting the prediction error of every model for depth and 
FWHM, that is, the difference between the actual and predicted values over the 
test dataset. 
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Fig. 2. Prediction error of the depth. 

The features importance is of interest to verify the consistency of the models 
as well. It could be also of great worth to an expert when configuring a set-up. 
In scikit-learn, the importance of a feature is computed as the normalized total 
reduction of criteria by feature, what is sometimes called Gini importance or 
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Fig. 3. Prediction error of the FWHM. 

“mean decrease impurity” [ 1]. Figure 4 and Fig. 5 show the features importance 
in depth and FWHM predictions for the models which have this attribute. As 
expected, considering that moderate values of the energy were taken, most of the 
models agree that the most relevant feature for the depth is the scanning speed, 
followed by the number of passes. On the other hand, the beam diameter and 
the pulse energy are more decisive to define the FWHM. When considering both 
targets, the scanning speed and the number of passes are the most representative. 
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Fig. 4. Features importance for depth prediction. 

Fig. 5. Features importance for FWHM prediction. 

4 Conclusions and Future Work 

Synthetic data for single beam-based groove curve profile were generated through 
the simulator LS-Plume R© from LASEA. These data were used to fed several 
ML regression models for predicting the depth and Full Width at Half Maxi-
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mum (FWHM) of grooves on stainless steel 316L. The process parameters used 
as models features were pulse repetition rate, scanning speed, pulse energy, 
beam diameter, number of passes and pattern pitch. Data augmentation for 
zero-energy and zero number of passes was applied to complete the dataset and 
improve generalization. A comprehensive methodology for developing machine 
learning models for predicting the groove’s profile curve for a given configuration 
of the set-up was presented. 

The performance of a variety of popular non-linear regression algorithms 
was evaluated and compared using metrics such as MAE, MSE, RMSE and R2 , 
demonstrating promising prediction error results. This study serves as a useful 
guide for the development of AI-models for predicting ultrafast laser surface 
texturing (USPL LST) processes, highlighting the capabilities of ML methods 
and the benefits of using synthetic data generated from simulators. Additionally, 
multi-target prediction was analysed, which is particular relevant for extending 
this work towards process optimization. 

Future work includes ongoing experimental validation of the models, with 
a dataset currently in progress. Generative AI could be employed to feed the 
models during the training and refining processes. Furthermore, the authors are 
also considering exploring the integration of physics-informed models to improve 
prediction accuracy and reliability. Finally, the use of these tools for process 
optimization will be also studied. 
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Abstract. Surrogate models of manufacturing processes are highly useful in the 
context of digital twins, as they can be considered as a prerequisite for linking 
between physics and real machines’ cases. However, in many cases of surrogate 
models, the so-called (hyper)parameters are not easy to be estimated. In this work, 
the role of AI is investigated in terms of its efficiency in doing that in an (semi) 
automated way. The case of ARX models is considered for this, where the param-
eters are clearly related to the physics of the process. In particular, the technique 
of systemic identification is adopted. The aforementioned investigation is per-
formed in this particular case regarding intuitiveness with respect to the physics, 
through adopting AI techniques that could be considered to be explicable in some 
sense. The results indicate the limitations of the AI techniques and their link to 
the process dynamics as well as their relationships with traditional techniques. 

Keywords: Manufacturing Process · Digital Twin · Surrogate model 

1 Introduction 

Artificial Intelligence (AI) integration in manufacturing is an emerging phenomenon, 
concurrently occurring simultaneously with the inclusion of human [1]. This is in line 
with Industry 5.0, since human centricity but also integration of Industry 4.0 Key enabling 
technologies are in place. As such, under the context of AI, there are various types of 
digital twins and relevant operations [2], especially at manufacturing process level, aim-
ing real-time monitoring and optimization. In fact, the Digital Twin, being an “umbrella” 
of various technologies, is subject to architecture design and its structure [3] can vary, 
including many different modules, both in terms of hardware and software (integrating 
also the concept of Cyber-Physical Systems). 

In particular, surrogate models are highly useful in forming a digital twin [3], as they 
are able to run in near-real-time (as opposed to simulations) and provide feedback about 
the status of the manufacturing process as well they can generate guidelines/control. They 
can be either data driven (utilizing techniques such as machine learning [4] and regres-
sion [5]), or deriving from simulations, i.e. numerical methods, after their acceleration 
(utilizing techniques such as ROMs [6, 7]).
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To achieve designing and implementing a digital twin and/or a surrogate model, one 
has to face the concept of identification [8, 9]. Its significance is high in those procedures, 
as the equations of the models behind the Digital Twins are taking their final form. Such 
parameters’ identification involves the estimation of the order of Auto-Regressive (ARX) 
models, or even the meta-parameters [10] engaged in the case of Machine Learning. The 
two-fold significance of Neural Networks (NN) in such a context has to with two facts: 
firstly, NN’s can be used as models themselves, but, secondly, they can be used as 
estimators of the order of ARX models. In the context of explicable AI as a means of 
human-centric technology, the added value of the current work is that it constitutes a 
numerical investigation of the capabilities of the NN’s to undertake the aforementioned 
roles. Also, the NN’s themselves can give information on why particular ARX models 
ought to be used. This is highly relevant, since automating to an extent the choice of the 
model and/or the hyper-parameters (i.e. herein the order of the ARX model) is a major 
challenge. This is evident in literature [11–13], even in manufacturing, i.e. in toolwear 
detection [14] or laser processes quality monitoring [15]. 

This work is the first step in a long chain of research steps and works under 
the assumption of linear systemic responses, i.e. being a weighted sum of exponen-
tial/sinusoidal functions and aims at providing intuition to human operators of digital 
twins. The exact benefit of the current work is the proof of concept that, for simple cases, 
order identification can potentially be automated in an intuitive way. 

2 Method  

The method constitutes mainly of numerical investigations. As briefly presented in Fig. 1, 
the dataset consists of a large number of responses, which have been prepared in a way 
so that they are distinguishable from one another up to an extent. More specifically, 
responses of linear systems such as

∑Q 
n=1 Aneλntsin(ωnt) are considered, with Q being 

the order of the system that has this response, An being numerically significant amplitudes 
and λn, ωn being distinguishable time constants. This type of responses is derived from 
linear differential equations, or their discrete equivalent [16], the ARX models (auto-
regressive models with exogenous input). 

The involved mathematical assumptions are: 

(I) response has to have time constants larger than sampling period and less than 
sampling interval 

(II) there are adequate numerical differences between the constituents of the responses 
(i.e. the amplitudes contribute significantly) 

(III) overfitting probability is reduced 

The last one is guaranteed through a simple estimation: the dataset sample is at 
minimum three times larger (per class) than the number of the coefficients that the 
NN has. The various estimators are then investigated with respect to their efficiency in 
predicting the order of the response in MATLAB, after a training phase. The dataset 
itself consists of various classes, depending on the type of the responses: (a) first 
order responses are of A1eλ1t type, (b) second order responses are of four differ-
ent types, depending on the poles placement: A1eλ1tsin(ω1t + ϕ1), A1sin(ωnt + ϕ1),
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(A1 + A2t)eλ1t , A1eλ1t + A2eλ2t , (c) third order responses that are considered are only of 
A1eλ1t sin(ω1t + ϕ1) + A2eλ2t type and (iv) fourth order responses that are considered 
limited to A1eλ1t sin(ω1t + ϕ1) + A2eλ2t sin(ω2t + ϕ2) type. 

Also, it is noted that, for reasons of explainability, the NN’s used herein are kept 
shallow. It has been found that in deep learning, both empirically and theoretically, 
the explainability is low [17]. In the same piece of literature, various definitions of 
explainability are presented; herein, the link to providing responses to the “how” question 
is adopted. 

Fig. 1. Method of generation of datasets. 

3 Results and Discussion 

This section summarizes the results of the estimators. 
Firstly, the case of Naïve Perceptron is tested, of the form Output = 

A
[
signal signal2

]
. Such an approach is based on output to classify a signal [18]. In 

this case, an augmentation in space has been made, adding the squared signal. This is an 
addition that was found empirically, through trial and error. The case of 5000 first-order 
responses and 5000 second-order response is tested. As shown in Fig. 2 (left), it is evi-
dent that even though the Perceptron works well for the case of first order, there are some 
misclassified responses of second order. Then, a traditional AIC estimator is used (Fig. 2, 
right). The AIC estimation is very fundamental and is based on taking into account the 
likelihood from stochastic estimation theory [19] but also includes some type of penalty 
for an increasing estimated order. It seems it works better than a Perceptron estimator, 
however, there are still some cases of misclassification. In Fig. 2, the responses of the 
two aforementioned classifiers are shown. The response is for the two classes of first and 
second order responses are (1, −1) for the Perceptron and (1, 2) for the AIC estimator.
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Fig. 2. Naive Perceptron results on identification (left) and AIC estimation outcome (right). 

In the latter case, the order itself is the output, after the AIC metric has been estimated 
for both classes. 

It is worth noting that a NN of a single hidden layer of 5 neurons has the best 
performance (Fig. 3). As a matter of fact, 0.74 s were required for the AIC estimator, 
while the NN required only 0.012 s (for a single decision). In any case, such a shallow 
NN gives the opportunity for explainability and is highly fast in its response. Figure 3 
summarizes the NN output (1, −1), for first and second order responses, respectively. 

Fig. 3. NN results for order estimation. 

It seems that the reason the Perceptron classifier failed is the numerical sensitivity. 
So, to this end, the NN was checked against two classes, in two cases; in the first one, 
the numerical differences between the classes (i.e. the constants in the responses) was 
large, while in the second one it was smaller. For different configurations of the NN, 
namely the number neurons per hidden layer, which was as per below: [5, 10, 15, 20], the 
regression R metric is equal to (0.945, 0.984, 0.993, 0.98) and (0.977, 0. 9957, 0.9957, 
0.9957), respectively. However, here, the limit of deep learning has been reached; in any 
case to avoid any fallacies, a statistical analysis is required.
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3.1 Capabilities of the NN’s in the Case of Multiple Classes 

As a natural continuation of Sects. 3.1 and 3.2, the performance of NN’s in the case 
of multiple classes was checked. The superimposed poles’ placement diagrams express 
the complexity/geometry of the responses and are used as resemblance indicators by 
people who are familiar with them; this indicates potential knowledge transfer, and 
hence explainability. It is noted, however, that the modelling effort is not integrated in 
such a metric, despite the fact that AIC takes it into account. 

Regarding the training, the maximum fails (validation points) have been considered 
to be 120, while the minimum gradient for training has been 1e−10. The configuration 
[6, 12] was used, as the geometry of the responses is related not only to the decay 
but also to curvature. The choice could be characterized as heuristic, however, a brief 
investigation can be found in the appendix. Also, the low number of coefficients is crucial 
for the training time. The results are shown in Fig. 4; it appears that the complexity of the 
geometry of second order responses is quite high, due to curvature. In general, the main 
limitations of the current methodology are two. The first one is that the explainability 
requirement prohibits the NN’s to reveal their true capabilities for performance. Also, 
Fig. 4 is only indicative of the NN’s and statistical metrics should be presented, as 
the repetitive training of the NN’s, due to the stochastic character of training can be 
considered part of the modelling effort. However, the step of showing the potential of 
NN’s in order identification, even for small orders, has been achieved. 

Fig. 4. A typical response of a NN with four classes, based on the number of poles.
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4 Conclusions and Future Outlook 

Coming to conclusions, the NN’s are promising in terms of automated identification 
of ARX equations. However, the knowledge embedded in them seems to have limita-
tions, due to numerical differences taken into consideration. Intuition can be built from 
the conducted experiments, i.e. hierarchical classification can be even more effective; 
grouping of the cases and then more focused classification. However, more human-in-
the-loop identification may be required, so that patterns are extracted, and investigating 
the relation to sampling. This way, there will be mutual knowledge transfer between 
human and AI. Also, the following steps should be considered: working out numerical 
differences so that per configuration, there is complete separability, elaborating data and 
knowledge libraries, so that practices for shaping NN’s are able to be generated (other 
AI techniques could also be considered), explainable deep learning being taken into 
consideration towards such matters and Finally, as an extra step, working with images, 
instead of signals, either for 2D systems or in terms of time-frequency representations. 

Acknowledgement. The current work has been supported by EU project BRIDGES 5.0 
(101069651). 

Appendix: Capabilities of the NN’s in the Context of Geometry 

This section involves checking the performance of NN’s with respect to their meta-
parameters. In Fig. 5 (top), two arbitrary classes were tested (red vs. green); their 
threshold has been a sinusoidal curve to emulate the responses curvature. The results 
rather conclusive: the complexity was addressed adequately by the configuration [6, 12]. 
Figure 5, in general, involves two axes: error vs configuration, as represented by the NN 
structure and the classes geometry. For the case in the top picture that is discussed here, 
the data size considered is ten times the number of NN coefficients, while 5000 epochs, 
goal 1e−9, 10 + 0.3N checks and (1e−10)/N for gradient limit are regarded, with N 
being the size of dataset. The same study was repeated with more elaborated geometries, 
characterized by different topology (i.e. Betti numbers [20], indicating features such as 
cavities) (Fig. 5, bottom). The difference here is that the minimum dataset size consid-
ered here is 400, due to the geometry complexity. Results show a radical decrease from 
0.1 to 0.01 utilizing different configurations, proving that the dimensionality of the data 
(e.g. 2 here) does not play a significant role here. It is also verified that the high number 
of neurons can be more representative of complicated geometries [21].
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Fig. 5. Mean square error for different classes and different NN configurations: Sinusoidal classes 
(top) and complicated classes with cavities (bottom). 
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Abstract. In recent years, accurate 6-DOF (six degrees of freedom) 
pose estimation has emerged as a pivotal technology in manufacturing, 
enabling the precise localization and manipulation of objects in complex 
environments. The effectiveness of 6-DOF pose estimation algorithms 
critically depends on the availability of diverse, well-annotated datasets. 
However, obtaining and annotating such datasets present significant chal-
lenges due to their scarcity and the intensive labor required for accurate 
labeling. To address these issues, we propose an innovative approach 
that employs synthetic data generation, powered by generative artificial 
intelligence (AI) techniques specifically tailored for industrial applica-
tions. Our method enhances the synthetic data generation process by 
utilizing generative adversarial networks (GANs), which infuse the data 
with contextual details relevant to manufacturing environments. This 
process is further augmented by advanced rendering techniques and sim-
ulations that create realistic industrial scenes, complete with accurately 
annotated ground truth for 6-DOF poses. We validate the effectiveness 
and robustness of our proposed solution through its application in a 
real-world industrial use case, demonstrating its potential to substan-
tially improve 6-DOF pose estimation in a manufacturing case, used for 
robotic picking of electronic parts. 

Keywords: Synthetic Dataset Generation · Generative Adversarial 
Networks · Machine Learning · 6D Pose Estimation 

1 Introduction 

Manufacturing environments present unique challenges [ 4] to pose estimation 
algorithms, particularly in cluttered scenes characterized by disorganized back-
grounds, occlusions between objects, and changes in lighting conditions. The 
development of robust 6-DOF pose estimation models comes with significant 
challenges, primarily due to the reliance on extensive, accurately annotated 
datasets [ 8]. Within manufacturing environments, products and industrial parts 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 71–79, 2025. 
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diverge from the commonplace objects typically found in large open datasets. 
Industrial objects often exhibit unique characteristics like complex geometries 
and uncommon material textures. Thus, they cannot be used seamlessly in man-
ufacturing applications, creating the need for a systematic framework for data 
generation. 

As highlighted in recent studies, expanding existing datasets with synthetic 
data, has proved to be a promising strategy to overcome the limitations raised by 
the absence of physical industrial data. Based on latest research in large models, 
Generative adversarial networks (GANs) can be a promising approach to over-
come such constrains, providing a virtually limitless pool of annotated data by 
adding contextual details relevant to manufacturing environments. GANs can 
be used to create synthetic datasets that are tailored to replicate complex, real-
world scenarios with remarkable accuracy, leading to pose estimation models 
that are both flexible and robust after appropriate training[ 11]. However, the 
transition from synthetic to real-world application presents its own set of chal-
lenges. The “reality gap” [ 12], a term denoting the discrepancy between model 
performance in synthetic versus real environments-remains a significant obsta-
cle [ 2]. 

Recent literature underscores a range of approaches, each addressing unique 
challenges within the domain as it can be seen summarized in Table 1. In gen-
eral, estimating 6D poses from RGB images presents a number of challenges. 
Perspective ambiguities, wherein objects exhibit similar appearances from vary-
ing viewpoints, hinder effective learning, especially in cluttered scenarios [ 2][ 3]. 
Moreover, environmental factors such as lighting variations and complex back-
grounds further complicate the algorithmic performance. 

Table 1. Comparison of Various 6D Pose Estimation Approaches 
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Implementation Testing Dataset 

PoseCNN [14] � � �� TensorFlow YCB-V, LineMOD 
DOPE [12] �� � PyTorch YCB-V 
G2L-Net [ 3] ��� � PyTorch YCB-V, LineMOD 
Megapose6D [ 6] ���� � PyTorch BOP datasets , ModelNet 
SAM6D [ 7] ���� � PyTorch BOP datasets 
FoundationPose [13]����� � PyTorch BOP datasets , YCBInEOAT 

Despite the innovative characteristics of all these mentioned approaches, 
notable gaps persist within the current landscape of 6D pose estimation 



Leveraging Generative AI for Synthetic Data Generation 73 

approaches. The integration of synthetic datasets, while beneficial for training 
due to many factors [ 1], such as time efficiency in data generation and col-
lection, they introduce challenges related to domain adaptation and real-world 
generalization. Furthermore, achieving real-time performance without compro-
mising accuracy and robustness, in terms of pose estimation, remains an ongoing 
challenge, particularly in cluttered manufacturing environments. 

In summary, there exists a need for further research to address the inher-
ent challenges and bridge the gap between synthetic training environments and 
real-world application scenarios. In context, this paper proposes a framework 
that can identify 6-DOF poses of novel objects, based solely on their Computer 
Aided Design (CAD) files, and in a textual description of their external visual 
characteristics. For further enhancing the detection precision, an automated way 
of generating the bounding boxes of these novel objects was implemented based 
upon a synthetic generated dataset. This research paper is organized as fol-
lows: In Sect. 2 the overall approach structure is defined, which is subsequently 
addressed in Sect. 3 where the implementation details are presented. The appli-
cation of the proposed synthetic data generation for 6D pose estimation is eval-
uated in the Sect. 4 using a real industrial use case. Finally, in Sect. 5 the con-
clusions and future work are reported. 

2 Approach 

An approach combining GANs, CAD models and advanced simulation tech-
niques has been developed in an attempt to construct synthetic datasets dedi-
cated to 6-DOF pose estimation in manufacturing environments.This approach 
created detailed and varied training data that enhances the model’s ability to 
accurately estimate poses of industrial-oriented objects. 

As depicted in Fig. 1, the initial stage of the process involves the utilization 
of a pretrained GAN model [ 11] dedicated to the background image generation. 

Fig. 1. Overview of the proposed framework 
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Since these type of models are trained on a vast amount of diverse environments, 
they can generate background images such as industrial floors, assembly lines and 
warehouses. This network uses both text and image prompts to accurately render 
the requested environment and its intricate patterns. The text prompt specified 
the desired outcome, such as “Produce high-fidelity background images of indus-
trial rug featuring light-blue hues and multiple circular patterns.” 

Following the background generation process, another instance of a GAN 
was set up, aimed specifically for object texture generation. This model uses the 
object’s exported UV mapping as a reference image, and a textual description 
outlining the desired texture characteristics. Both inputs fed into the network 
for it to generate an accurate texture that can wrap the object’s geometry. This 
technique achieves a high degree of visual fidelity within the synthetic scenes. 
In this GAN, a text prompt guides the network to generate textures that mimic 
the desired material industrial characteristics. Using prompts such as “Generate 
high-quality image suitable for texture mapping focusing on plastic PBR mate-
rial”, it was possible to generate several accurate texture images, as can be seen 
in Fig. 1, leading to the synthetic dataset containing the objects of interest. 

The integration of background images and detailed CAD models, in com-
bination with advanced simulation techniques such as physics-based modeling, 
varying lighting conditions, and dynamic camera movements, generates synthetic 
scenes annotated with 6-DOF poses. These scenes exhibit a high degree of variety 
and realism, closely mirroring actual manufacturing environments. To automate 
this process and minimize human intervention, a YOLO based object detection 
system was developed and trained on the generated synthetic dataset. It suc-
cessfully produced 2D bounding boxes for the physical components, which were 
subsequently used as fine-tuning inputs for the pose estimation model. 

3 Implementation 

In order to add photorealism to our data, Stable Diffusion XL model [ 9] was  
selected as the GAN architecture for the proposed work as illustrated in Fig. 2. 
Stable Diffusion XL model requires a text prompt as an input to render images 
based on the provided text. Diffusion models are designed to refine images by 
adding noise to them and then removing it, effectively diffusing the noise across 
the image space. The synthesis and generation of a synthetic dataset cover-
ing different scenarios, was achieved using BlenderProc2 [ 5]. This is a Blender 
pipeline capable of rendering realistic images after randomly placing the objects 
in a simulation environment. 

All the physics-based calculations are applied to the simulation environment 
via a Python API. In this study, the synthetic data generation pipeline was 
executed on an Nvidia RTX 3060 GPU, in Ubuntu 22 environment, resulting in 
the creation of a dataset consisting of 50,000 synthetic images accompanied by 
the ground truth 6D poses of the objects. 

The YOLO (v8) (You Only Look Once) object detection framework, as 
described in [ 10], was trained on the generated synthetic dataset with the 50,000 
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Fig. 2. a)Text-to-image texture generation using GANs b) Background image genera-
tion using GANs 

images to provide the 2D bounding boxes of the industrial objects given an 
unseen image. The training procedure included 100 epochs on the synthetic 
dataset with a ratio of 70-15-15% for training, validation and test images respec-
tively. The extracted bounding box was essential for the subsequent stages of 
the pose estimation process, thus enhancing the accuracy and automation of the 
system. 

Regarding the 6D pose estimation, the MegaPose model [ 6], was utilized for 
estimating the translation and orientation of the objects. This model plays a 
benchmark role in order to demonstrate the reliability of the proposed method. 
As depicted in Fig. 1, the system receives as an input a real (not previously 
known) image of the region of interest, a CAD file with no specific texture of 
the part of interest, and two textual descriptions. One for the external visual 
characteristics of the industrial part, and the second for the surrounding envi-
ronment. As it will be described in the following sections the evaluation of this 
method was performed both in the synthetic and the real domain. 

4 Case Study 

The presented work for the generation of an estimated 6D pose, has been 
deployed and tested into two use cases, that involve the detection and the han-
dling of electrical parts placed randomly in a bin. These parts include terminal 
blocks, relays and circuit breakers as can be seen in Fig. 3. The proposed appli-
cation for incorporating synthetic datasets for 6-DOF pose estimation is crucial 
for manufacturing, as it significantly augments the accuracy of object local-
ization and manipulation in complex industrial environments. This field faces 
significant challenges due to the occlusions, varying lighting conditions, and 
diverse geometries of industrial parts, which complicate accurate pose estima-
tion. The first case study involves comparing the impact of the GAN-textured 
CAD objects to texture-less CAD on the results of pose estimation algorithm. 
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Furthermore, the synthetic dataset of electrical parts was employed to train 
the YOLO model, enabling it to generate 2D bounding boxes for the detected 
parts. These bounding boxes were then used to compare the performance of the 
Megapose6D method on synthetic images, both with and without the fine-tuning 
provided by the bounding box input. 

Following the proposed approach, a simulation was performed through 
Blenderproc resulting in a synthetic dataset comprising 50 scenes and each scene 
containing 100 frames. In order to evaluate the impact of GAN-generated tex-
tures on the produced synthetic data for 6-DOF pose estimation, metrics such 
as the angular difference of quaternions and Euclidean distance between trans-
lations are used to quantify the enhancement in the detected parts’ poses esti-
mation. Results were categorized based on whether the synthetic data included 
GAN-generated textures or not, and whether real data was used with or with-
out GAN textures. The findings revealed a notable improvement in performance 
with the application of GAN textures. When the CAD models were overlayed by 
the GAN generated textures, a noticeable increase in the pose estimation accu-
racy was observed. On the other hand, the accuracy remained almost the same. 
Moreover, the impact of GAN textures was even more noticeable when analyzing 
real-world data. These results, as it can be observed at Table 2, demonstrate that 
GAN-generated textures enhance the accuracy and robustness of pose estimation 
models, especially in scenarios involving complex and varied textures. 

Table 2. Comparison of pose estimation accuracy with and without GAN textures 

With GAN texture Without GAN texture Difference 
Synthetic Data 

Blue terminal block 85.92% 85.90% +0.02% 
White circuit breaker 83.06% 78.12% +4.94% 
Black relay 81.12% 80.07% +1.05% 
Real Data 

Blue terminal block 92.43% 74.50% +17.93% 
White circuit breaker 95.55% 74.30% +21.25% 
Black relay 80.44% 80.43% +0.01% 

Similar pose estimation tests were carried out with real images of electrical 
parts. The results of the pose estimation followed the previous logic, with lower 
pose scores presented in occluded conditions or when the bounding box was 
not sufficiently precise to indicate the exact boundaries of the object. These 
scores were lower than those for synthetic objects, ranging from 65% to 80%. 
Realistic object textures from GAN were added to the synthetic data, along 
with an extracted bounding box from the YOLO trained model. The predicted 
bounding box of the electric part, as a result from the YOLO training on the 
dataset, achieved markedly higher pose scores, reaching 95% to 98%, even when 
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the object was not easily disguised from the environment, as illustrated in the 
Fig. 3. 

Fig. 3. Pose estimation results on real sample 

5 Conclusion 

In this paper, a synthetic dataset enhanced by GAN-generated textures is pre-
sented to improve pose estimation. The distinguish feature compared with novel 
6-DOF pose estimation models, is the utilization of GAN generated content 
that augmented key characteristics of the approach, mimicing real industrial 
parts, and environments. These characteristics consist of the textures of the 
CAD models, and the industrial background spaces. For further enhancing the 
estimation results, a YOLO based object detection network was implemented, 
trained upon the GAN generated images and scenes. The proposed method was 
tested and evaluated in a real industrial use case, consisting of a set of 3 different 
components: a term block, a circuit breaker and a relay switch. Using the CAD 
files of the parts, and real images taken from a top-view camera, this approach 
was able to correctly identify the poses of all the components and even success-
fully handling the random occlusions. Comparisons with and without assist from 
the GAN image generation were performed, demonstrating significant improve-
ments in the pose estimation accuracy, indicating an almost 18% increase. In 
conclusion, this framework highlights the effectiveness of GAN content genera-
tion, and proves its usability in industrial environments and complex use cases. 
However, despite achieving high evaluation scores, a number of challenges arouse. 
Future work aims to create an ecosystem of tools that finalize the application 
of an autonomous bin-picking, achieving an end-end interaction from the robotic 
environment. Finally, smart 3D scanner technologies, reconstructing the CAD 
models of industrial parts, can be utilized, further simplifying the overall flow. 
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Abstract. With an increase in flexibility in industries adopting the 
tenets of shared, skill-based, and modular production, a higher vari-
ability of products a single manufacturer offers can be anticipated. An 
immediate consequence is a potential inability to instruct assembly per-
sonnel in an adequate and detailed manner. This problem would pri-
marily affect small and medium enterprises engaged in individual and 
small series productions. To face the issue, this paper examines the suit-
ability of facilitating an AI assistant to support workers handling an 
ever-expanding range of assembly tasks. This assistant would be realized 
through a retrieval-augmented generation system, founded on an Large 
Language Model (LLM) and a knowledge base. We especially propose 
a locally trained and hosted LLM, aiming to enhance effective flexibil-
ity and applicability while minimizing individual installation and setup 
times. By strictly formalizing descriptions of assembly or disassembly 
steps in a knowledge base, manufacturing difficulties can be presented 
as informational problems, at which LLMs excel. Through this, we are 
trying to extend the increased efficiency of knowledge workers empow-
ered by utilization of LLMs such as GPT-4 into manufacturing. Using 
verbal inputs as well as reading the generated feedback back to a worker, 
we aim to keep a worker engaged with their primary tasks and, fur-
thermore, reduce idle times caused by knowledge gaps. By taking this 
verbal/auditive-only approach, we secondarily aim towards increasing 
worker autonomy by answering miscellaneous workplace-related ques-
tions alongside knowledge-based problems of the day-to-day business. 

Keywords: Worker assistance · Large Language Models · AI in 
manufacturing · Capability-Skill-Service model 

1 Introduction and Motivation 

Humans still hold one of the most important positions inside modern manu-
facturing shop floor environments, mainly due to their adaptability, their ver-
satility as well as their problem-solving skills. While appearances like Figure’s 
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Figure01 [ 15] or the new iteration of Boston Dynamics’ Atlas [ 4] are aiming to 
replicate the general dexterity of humans, neither robot is supposed to replace 
a human in the complex and flexible sectors that are small series or even indi-
vidual part production, with Figure aiming to support the warehouse and retail 
workforce and Boston Dynamics being factored in for automotive serial pro-
duction [ 5, 7]. Neither these two humanoid robots, nor conventional stationary 
robots, can replace the skilled personnel required to operate agile production 
lines [ 8]. Still, these skilled workers face problems with the ever-changing prod-
uct palette of the modern, flexible shop floors. 

Within this paper, we are concerned with just the small-scale problem that 
is manual product assembly, within which we are focusing on issues regard-
ing assembly instructions. Key challenges regarding manual assembly have been 
identified by [ 9] as  
– instructions being of poor quality and too general in their nature, 
– a detailed, digital documentation being unavailable to staff facing problems, 
– and conventional paper-based instructions lacking traceability. 
This is by no means an argument for extraordinarily formalized assembly instruc-
tions, as a recent study has found human workers preferring to pick a cognitively 
demanding task, while allocating manual labor to a cobot [ 12]. 

Regardless of whether there is a cobot to take up other, repetitive tasks, 
the mentally demanding tasks of figuring out new and not yet learned assem-
bly instructions is an adequate example for a relevant problem-solving skill. But 
while a human might more or less enjoy the time spent working out how to 
assemble a new product, they might benefit from an assistant supporting them. 
While not solving the workers’ problems for them, a smart personal assistant 
can still be of benefit by increasing problem-solving skills in the long term, as 
shown by [ 14]. If applicable, this would enable workers to more easily comprehend 
instructions initially found to be rather incomprehensible. On the other hand, 
if there is a possibility to formalize and standardize assembly instructions to a 
point, where the manual assembly itself is solely considerable to be a problem 
of knowing the next steps, then the findings of [ 2] regarding the increase in effi-
ciency of knowledge workers utilizing Generative Artificial Intelligence (GenAI) 
can be transferred into manual assembly. 

2 Context and Background 

Following, we highlight the background, concepts, and technologies necessary for 
our concept. Next to the benefits of verbally communicating assistants, we cover 
the Capability-Skill-Service model (CSS model) and GenAI as well as Natural 
Language Processing (NLP). 

2.1 Benefits of a Verbally Communicating AI Assistant 

In  a study, [  13] have found difficulties when integrating a worker assistance 
system relying on visual input for the personnel. Workers with cognitive dis-
abilities sometimes forgot to use their assistance systems. Experienced workers
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even chose to disregard system instructions, while still appreciating the systems’ 
potential for alerting them in cases of potential assembly errors. Furthermore, 
their study showed problems when using, for example, a Microsoft HoloLens or 
projectors for visual assistance, stating the HoloLens’ limited battery life and a 
projectors’ increased need for maintenance. 

Considering an approach contrary to using visual interactions between per-
sonnel and an assistance system, a system could be interactive with on a voice-
first basis. A voice-first approach would – in the case of worker assistance – mean 
using verbal outputs of a human as the primary system input. Advantages of 
such a voice controlled system are the flexibility to individually adapt them to 
any environment or worker, as well as being user-agnostic and therefore open to 
anybody willing to use it. [ 11] 

Taking just these two positions into account and, furthermore, [ 11]’s state-
ment of AI-based personal assistants having a high potential when a user would 
need to interface with machinery as well as [ 2]’s values regarding the increase 
in performance observed in knowledge workers when utilizing an AI assistant 
(12.2 % more tasks completed, being 25.1 % faster, while achieving 40 % bet-
ter results), leads to the premise of an AI-based and voice controlled assistance 
system. Notably, the averaged values reported by [ 2] were drastically lower for 
already better-than-average workers, while still being a net positive, but – more 
importantly – the increase in performance was even higher for workers below the 
average initial performance levels. 

2.2 Capability-Skill-Service Model 

The CSS model is a conceptual framework that unifies the terminology and 
defines a vocabulary for capabilities, skills, and services in the context of pro-
duction processes. A simplified overview of the model is shown in Fig. 1. It aims 
to enhance understanding and interoperability in new production concepts and 
support standardization activities in the manufacturing industry. The model 
is an extension of the Product-Process-Resource representation paradigm and 
focuses on capturing functions at different levels: Capabilities represent func-
tions in production process steps; skills are implementations of these functions 
provided by specific resources; and services define offerings of capabilities in 
broader supply chain networks. 

In the scope of the concept proposed in this work, the relevant parts of 
Fig. 1 are the offered service, which provides the offered capability and the 
skill realizing it, as well as the resource providing said capability and skill. 
From a top-down view, the service offered is an outside representation and offer 
towards other agents in need of the specific service. A capability, provided by the 
service and the resource, is a representation of an action, complete with options 
for parametrization and beforehand information regarding, example given, run-
times or, ever-more important, energy and material consumption or greenhouse 
gas emissions. As a capability is an abstract entity provided by said services and 
provided by certain resources but not tied to either definitely, if there were mul-
tiple resources providing a certain capability, the service would be the provider
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Fig. 1. Simplified overview on most important aspects of the CSS model [ 3]. 

for each of them. The implementation of a capability down into the machine and 
module level is the so-called skill [ 3]. 

2.3 Generative Artificial Intelligence and Natural Language 
Processing 

Generative Artificial Intelligence is a term used colloquially for Artifi-
cial Intelligence (AI) capable of generating new information. Common tasks 
for GenAI stem from the field of NLP, taking the form of text interpretation 
and generation. Other media generated are songs, images, as well as videos. The 
generation follows a user input, which is often given in text form, optionally sup-
plemented by documents, web pages, images or sound files. The topics covered 
by this diverge greatly, with a user being able to extract information about topics 
ranging from culinary advice, over an overview of Albrecht Dürer’s Fechtbuch, 
through an explanation of general relativity fit for elementary school kids, to 
details regarding internationally less known tabletop role-playing games [ 6]. 

NLP is the field of automatic analysis and representation of human language. 
It is concerned with understanding, interpreting and generating human language 
on a meaningful scale. Further NLP tasks are, for example, speech recognition, 
translation, or summarization. [ 10] 

Using AI networks for NLP tasks has been a long-going trend, with statis-
tical language models and then neural language models being having been used 
for NLP tasks. Further development resulted in pre-trained language models 
trained on extensive datasets, the largest of which are known as LLMs. The  
emerging abilities of the models were: a sharp increase in general performance;
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suddenly being able to generate very high-quality text samples; possessing robust 
learning; and reasoning abilities. 

3 Proposed Concept 

The generalized description of the concept is summarized in Fig. 2. A workers’  
spoken query is first picked up by a headset connected to the module and, 
using NLP, transformed into text. Semantic information is then extracted from 
this text by an LLM, before it is matched with information from the knowledge 
base, possibly utilizing knowledge graphs. From the knowledge base, information 
is retrieved and through the LLM expressed in natural text. This text is then 
turned into speech using NLP and played back to the worker. The separation of 
NLP and LLMs, as suggested in Fig. 2 is not strictly necessary, as LLMs tend 
to be generally efficient in NLP tasks. A separation might still prove useful, in 
case information modelling is a task utilized best by an LLM without additional 
tasks. 

Fig. 2. Overview of the core concept. 

3.1 Test Demonstrator and Demo Use-Case 

During a previous project, ‘KoKoBot – Setup of a collaborative and cooperative 
robotics platform’, a demonstrator consisting of three Cyber-Physical Produc-
tion Moduless (CPPMs) has been set up. The demonstrator and other project 
results can be seen in [ 1]. As one project requirement has been equipping the 
demonstrator with industrial-grade hardware, it will suit well as an assembly 
station, noting that one of the three modules is, in fact, called ‘manual worksta-
tion’. An NVIDIA Jetson Orin already built into the demonstrator is meeting 
estimated computational requirements and will therefore be the hardware plat-
form hosting the LLM and NLP applications. Additionally, in case the Jetson 
Orin proves to be a computational bottleneck, a workstation utilizing an RTX
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graphics card is part of the module as well, serving as an ample backup. Further 
equipment needed for the proof of concept would be a product to be used for 
the assembly or disassembly task. For this, the toy trucks used in the previous 
project would suffice. After a first proof of concept, more sophisticated assembly 
groups would undoubtedly be needed. Furthermore, any combination of micro-
phone and speaker would suffice to capture vocal instructions and play back the 
assistant’s replies. 

3.2 Foreseeable Issues 

When integrating an LLM a number of issues have to be addresses upfront. One 
of these is limiting the system’s access to work-unrelated information. While the 
working personnel should be free to ask anything with a reasonable connection 
to their work, misconduct should preemptively be inhibited. Furthermore, hal-
lucinations have to be addressed. For this, the proposed concept will initially 
be used as a test bed, closely monitoring the AI’s behavior and enabling timely 
implementation of preventive measures. 

3.3 Integration of the CSS Model 

When integrating the CSS model with the above concept, the granularity of rep-
resenting functions becomes a core question. One way of implementation would 
be to make the complete worker assistance into a single skill. In this case, an addi-
tional external input would cause the start of the event chain, beginning with the 
workers’ verbal input. The skill would have no parametrization options, as well 
as not having any output except for the verbalized response of the system.a 

Another, preferable, possibility would be to encapsulate most functionalities 
into singular skills, calling each other when in execution. This would enable the 
individual testing of each step of the general concept. Therefore, we propose 
splitting the functions into the following skills: 

Skill 1: A skill that is always running and waiting for a command to start the 
next Skill. 

Skill 2: The skill responsible for NLP in both directions, being configurable to 
either transcribe spoken text or verbalize textual input, either passing 
it on to skill three or playing it back to the human. 

Skill 3: A skill taking text inputs and using them to fetch requested information 
from a database, while also capable of translating the database entries 
into human-readable text, which it transmits back to skill two. 

Correct system behavior can thus be tested by using spoken as well as textual 
standard phrases with skill two, testing the correct textualization and verbaliza-
tion, and calling the third skill either with a search string or a given database 
entry. The worker states a query, which is checked against the manual and a 
database, and results in a response by the module. Additionally, both skills can
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be used in other ways, with skill two also able to be used to give the user a heads-
up in case of system-wide errors or warnings and skill three being available to 
different users for questioning the database. 

Figure 3 shows a simplified version of this concept in action. Assuming skill 
one to be running and triggered by the command word, skill two is used to pick 
up the workers’ query and call skill three. The relevant manual is identified and 
checked, as well as a database being consulted, before the information is sent 
back into skill two to be read out to the human. 

Fig. 3. Simplified depiction of a worker stating a question, a manual and a database 
being consulted, and the system giving an answer. 

4 Conclusion and Future Directions 

Summarized, our concept is aiming to take an assembly workers’ verbal input 
regarding a new product, the assembling steps of which are at least partially 
unknown. This verbal input is then compiled into a search query for a database 
containing information regarding the new part. The output of the database 
search is then compiled into natural language and read back to the human. 

This endeavor is only a first step, with multiple possible next steps already 
figured out. Instead of taking the verbal input for a search query, it might also 
be a control sequence for the CPPM, triggering different functions and enabling 
more intuitive control of certain aspects of production. Moreover, the search 
queries don’t necessarily have to relate to the part currently worked on, different 
other aspects of work might be included in the database, from a guide on how 
to correctly fill out applications for vacation time to information regarding the 
current menu in the canteen, stimulating a worker during otherwise possibly 
boring work and sating the need for certain information. Another aspect of the 
system is the relatability to different production environments. Human-Robot-
Cooperation might be more easily coordinated, if the human can tell the robot 
what they will do next, as well as giving instructions on what the robot might 
be supposed to do. The system would likewise suit chemical or pharmaceutical 
laboratory environments processing a doctor’s or pharmacists recipes as well as 
more classical shop floors, where part specifications could be checked on the fly 
without having to leave the working equipment to check the specification.
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Abstract. Automated authoring enables simplified deployment of 
applications and services for complex use cases, especially in the field 
of machine learning. This paper presents the development and imple-
mentation of a specialized authoring tool that can be used for computer 
vision applications, enabling automated creation of machine learning ser-
vices. The proposed authoring tool realizes a microservices architecture 
to facilitate the conversion and deployment of machine learning infer-
ence services, especially in image classification and object detection use 
cases. The authoring process addresses the interoperability issues com-
monly faced in machine learning frameworks, leveraging the Open Neu-
ral Network Exchange (ONNX) for model conversion into a standardized 
format. By encapsulating machine learning tools in containerized appli-
cations, this authoring tool offers a modular solution that can be eas-
ily adapted to various industrial applications. The developed authoring 
tool integrates the common machine learning frameworks PyTorch and 
TensorFlow, coupling DevOps methodologies such as CI/CD, ensuring a 
robust, maintainable, and user-friendly system that meets the growing 
needs of machine learning use cases in manufacturing. 

Keywords: Machine Learning · Computer Vision · Containerization · 
Microservices · ONNX · PyTorch · TensorFlow · ML Authoring · ML 
Life cycle 

1 Introduction 

Machine Learning (ML) has revolutionized the manufacturing industry by 
enabling manufacturers to increase efficiency [ 12], reduce costs [ 13] and improve 
quality [ 8]. It is evident that effort-intensive and time-consuming manual tasks 
are being automated or facilitated by tools and services involving automation 
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and ML. The sheer amount of data encountered every day can be trained and 
applied to a specific use case using diverse ML models. 

For the training of the data, numerous frameworks in different programming 
languages are available today, such as PyTorch [ 15] or TensorFlow [ 19]. Each of 
these frameworks has its own format with its own characteristics and are gener-
ally not compatible with other frameworks. This causes problems, among other 
difficulties, in the area of sustainability and re-usability [ 6], as a new model 
has to be trained for each framework, making it difficult for researchers from 
different technical backgrounds to collaborate. Open Neural Network Exchange 
(ONNX)[ 5] offers a generalized platform enabling the interoperability for these 
ML models [ 7], but there lacks an automated solution for the deployment of the 
models to production environment. As the application of ML use cases increases, 
it is necessary to automate the application generation process, enabling effi-
cient and error-free tools and services. This need gives opportunities for the 
development of automated authoring tools, capable of generating ML appli-
cations efficiently. Since no single framework is suitable for every problem in 
industrial applications, a combination of diverse tools and algorithms are often 
required to address different use cases. 

The main contributions of this paper are the development of a generalized 
authoring tool, that can be utilized for ML deployments for computer vision-
based use cases, and the evaluation of the authoring tool. This tool leverages a 
microservice architecture to facilitate the conversion of models and deployment 
of ML applications. It addresses the interoperability challenges commonly faced 
in ML by utilizing the ONNX framework for model conversion, into a unified 
format. By encapsulating ML applications in standalone lightweight executable 
containers, the tool offers a modular solution adaptable to various manufactur-
ing scenarios in industrial applications. Additionally, the paper discusses the 
integration of PyTorch and TensorFlow frameworks to ensure a robust, main-
tainable, and user-friendly system that meets the growing needs of manufac-
turing. This paper is structured to provide a background and motivation for 
our work in Sect. 2, followed by a detailed description of the project’s system 
architecture and methodology in Sect. 3, including insights into the integration 
with existing technologies like PyTorch, ONNX. Subsequent sections discuss the 
design and implementation of the tool, highlighting its capabilities in facilitating 
model conversion and deployment. We conclude the paper with a summary of 
our findings and potential future developments in Sect. 4. 

2 Background 

ML applications have significantly advanced industrial practices, especially in 
image classification and object detection for quality control and defect detection. 
Convolutional Neural Networks (CNNs) like MobileNet [ 9] or EfficientNet [ 18], 
as well as object detection models such as SSD [ 11] or Faster R-CNN [ 16], are 
widely used for their effectiveness in identifying patterns and anomalies [ 20]. 

Container-based solutions offer consistency and ease of scaling for ML models. 
TensorFlow Serving [ 2] and TorchServe [ 4] facilitate model deployment but can
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be resource-intensive and challenging for low-cost edge devices [ 10], due to their 
requirements for high-performance hardware to efficiently handle model serv-
ing. ONNX provides a more lightweight and versatile solution that facilitates 
model interoperability. However, the conversion process is frequently manual 
and complex [ 7]. 

Automated deployment tools are often used to prepare, configure and deploy 
ML applications to production environments. These tools often integrate con-
tinuous integration/continuous deployment (CI/CD) methods, which emphasizes 
the importance of automated testing and efficient deployment pipelines in the 
life cycle of ML applications. 

Fig. 1. Overview of the Automated ML Authoring Tool, illustrating the components 
involved in model and microservice authoring. 

The concept of generalized automated deployment tools for ML models, par-
ticularly those involving deep learning models for image classification and object 
detection, is an emerging area in the field of artificial intelligence. While this idea 
is gaining traction, it remains relatively unexplored in the current academic lit-
erature. The development and implementation of such tools represents a signifi-
cant step toward simplifying and rationalizing the deployment of models, thereby 
increasing their accessibility and usability in various application domains. 

3 Automated Authoring Tool 

In contrast to existing deployment frameworks like TensorFlow Serving and 
TorchServe, this paper presents a unique, generalized tool for preparation, con-
figuration, and deployment of ML model. It integrates automated pre-processing, 
post-processing, model conversion, and encapsulation of a REST API within a 
standalone container. This tool utilizes a microservice-based orchestration archi-
tecture, containerization, and ONNX standardization to address interoperability, 
sustainability, and usability challenges when deploying computer vision-based 
ML applications. Specifically, this work automates the entire process from model 
input to containerized deployment, making integration and use in production
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environments easier. The tool’s innovation lies in its holistic approach, which 
combines multiple automated steps into a single, seamless workflow. This pro-
vides a modular and adaptable solution suitable for a wide range of industrial 
applications. 

Authoring tools are software components that prepare Assets for integra-
tion into the target Platform. These Assets can be data, models, algorithms or 
microservices. Traditionally, the preparation of microservices for integrating ML 
methods has been a manual task. In the context of this project, the visionary 
goal is to develop an automated authoring tool specifically for ML. This tool will 
support developers throughout the process of preparing and configuring execu-
tion environments for ML models and microservices. The automated authoring 
tool adopts a microservices architecture, with specialized components such as 
the user interface, conversion microservices each dedicated to converting models 
of a specific framework into the ONNX format, a database, inference microser-
vices for image processing and prediction, and a microservice container creation 
and registration service for model encapsulation. Figure 1 provides the overview 
of the ML authoring tool developed in this research. As seen in the Fig. 1, the  
proposed authoring tool contains a model authoring and microservice authoring 
components. The Fig. 2 gives a detailed architecture of the ML authoring tool 
and its components. The tool’s microservices interact via REST APIs. 

Fig. 2. Overview of the microservice architecture of the automated authoring tool, con-
sisting of user interface, database, container registry, converter microservices, inferences 
microservices and a shared network storage.
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3.1 Model Authoring 

In the initial phase of the automated model authoring process, a user contributes 
a pre-trained ML model through the front-end component in a format depending 
on the framework the model has been trained. For instance, models trained in 
PyTorch are exported as entire models in .pth utilizing python’s pickle mod-
ule or the common .pt format. Similarly, TensorFlow models typically adopt 
the SavedModel format, which consists of a directory containing multiple files 
representing the neural network and its attribute values. To ensure uniformity, 
the user submits the model encapsulated in a .zip archive. The tool currently 
supports pre-trained ML models primarily focused on image classification and 
object detection tasks, with the possibility to incorporate additional model types 
in the future. 

The archived model, in addition to the user-provided metadata, such as spe-
cific pre-processing parameters or the dataset the model was trained on, is then 
passed to a converter microservice. Given the diversity of formats prevalent in 
ML, multiple libraries come into play during this conversion process, as there 
is no singular library capable of handling all possible formats. PyTorch, for 
instance, has built-in capabilities for ONNX conversion, which can be easily 
integrated into the process. In the case of TensorFlow, model conversion is per-
formed by the tf2onnx [ 3] library. In addition, there are general purpose conver-
sion libraries such as ONNXMLTools that provide support for a wide range of 
ML frameworks, including TensorFlow, scikit-learn and Apple Core ML [ 1,14]. 

The result of this conversion is the authored ONNX model, which is stored in 
a configured network storage, as illustrated in Fig. 2. The storage and retrieval 
of these models are managed through an internal SQL Database. This converted 
model is then passed to the microservice authoring component for further pro-
cessing. 

3.2 Microservice Authoring 

The microservice authoring module encapsulates an ML model in ONNX format, 
that has been generated in the model authoring stage, into a container image. 
This has REST API endpoints to perform the inference and thus the predic-
tion. Within this authoring process, specific pre- and post-processing steps are 
integrated based on the framework and the use case. 

In the pre-processing phase, an image is converted using the metadata spec-
ified by the user or required by the original framework, as shown in the Fig. 3. 
The image is first converted to a consistent format through operations such as 
resizing, cropping, and then normalized based on the mean and standard devi-
ation of the training dataset. After this transformation process, the image is 
turned into a NumPy-array-based Tensor. Since most ML models are trained 
with open source datasets such as ImageNet, this step can be predefined and 
even preselected by the user. 

The inference step within the microservice authoring process relies on the 
pre-processed Tensor from the previous step. For this, the ONNX Runtime mod-
ule is used to perform the inference by generating an ONNX Inference Session.
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Fig. 3. The image pre-processing and post-processing pipeline. This illustrates an 
example process by which the original image is transformed to produce processed 
tensor data with the required dimensions. Inference is then performed using the 
authored ONNX model, and the resulting prediction tensor is transformed to a human-
readable JSON format. 

This session receives the processed Tensor and performs the prediction. Follow-
ing the ONNX Inference session, the output is subjected to a further transfor-
mation in the post-processing step. Here, the raw results of the inference are 
transformed to a human-understandable JSON format. This JSON format also 
contains additional information, including the image class and the confidence 
probability. The generated microservices are pushed to a container registry with 
unique tag names. This final container image name, including the container reg-
istry URL and tags, is provided to the user after the authoring process. The user 
can use this information to configure the deployment on the target platform or 
their local environment. 

The generated inference microservice follows a workflow as given in Fig. 4, 
which has been illustrated with an example use case of an image processing ML 
application packaged as Docker container. 

Fig. 4. Workflow of inference microservice packaged in Docker, generated using the ML 
authoring tool, illustrated with an image classification example, where a client sends 
an input image and receives a response in JSON format.
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3.3 Container Image Registry 

After successfully encapsulating ONNX models into ML applications as container 
images, these containers are pushed into a container image registry, such as the 
Docker Registry [ 17]. The container registry serves as a central repository for 
storing and managing container images, facilitating version control and ensur-
ing accessibility. Users can push their containerized applications to the registry, 
making them readily available for deployment. 

The container registry also aims to provide a secure and scalable storage 
solution that allows users to efficiently manage and share their container images. 
To deploy the encapsulated models, users can pull the images from the registry 
into their desired environments. 

4 Conclusion and Outlook 

The implementation of a generalized authoring tool for computer vision ML 
applications provides a comprehensive solution to the challenges of model con-
version and deployment through automation. By leveraging a microservice archi-
tecture, the tool streamlines the process from user interaction through model 
conversion to containerized deployment, ensuring isolated and standardized exe-
cution across different frameworks. This modularity increases the tool’s versatil-
ity, enabling the deployment of diverse ML applications and use cases. 

While the tool currently supports image-based machine learning use cases, 
such as image classification and object detection, future extensions could broaden 
its applicability. Expanding support to include additional types of ML models, 
such as those used in natural language processing or audio analysis, would require 
ensuring that the REST API remains consistent and may involve introducing 
standardized interfaces to handle various data formats and model outputs. 

Future work could explore the integration of additional frameworks in other 
programming languages, broadening the tool’s applicability and facilitating its 
use across a wider range of machine learning tasks. 
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Abstract. The application of federated learning (FL) in industrial set-
tings offers promising advancements in maintaining data privacy while 
collaboratively training machine learning models. This study focuses on 
the comparative analysis of federated image classification versus locally 
trained models within a shared production environment. Specifically, we 
explore the classification of windshields in truck cabins, which is a cru-
cial task for quality inspection in manufacturing of trucks. Our research 
involves four clients, each producing different types of truck cabins and 
research based on FL process between them. Various deep learning 
architectures, including VGG19, ResNet50, InceptionNetv3, DenseNet-
121, and EfficientNetv2-s, were evaluated under a FL framework imple-
mented using the FLOWER framework. A custom plain averaging strat-
egy was used for weight aggregation. The global model’s performance was 
assessed using a combined test set from all clients and compared against 
models trained locally by individual clients. The results highlight the 
effectiveness of FL in enhancing model generalization and adaptability 
to new product variations in industrial applications, promoting its adop-
tion for collaborative quality inspection tasks. 

Keywords: Federated Learning · Image Classification · Quality 
Inspection · Deep Learning · Industrial Applications 

1 Introduction 

The quality of the dataset is pivotal in training machine learning models. 
High-quality datasets lead to the development of robust models that perform 
effectively across a range of applications [ 4]. Federated learning (FL), a dis-
tinct paradigm of machine learning, facilitates the training of a cohesive model 
through the collaborative efforts of multiple clients. This approach involves the 
aggregation of model weights from each participant, ensuring that the training 
data remains on the local servers, and enhancing the model’s ability to perform 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 98–106, 2025. 
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in unfamiliar testing environments [ 16]. Recent years have witnessed a surge in 
FL applications, driven by the growing demand for data privacy and the need 
for collaborative solutions across industries [ 21,22]. Despite its increasing pop-
ularity, the application of FL in visual tasks within the manufacturing sector 
for custom datasets does not have much research compared to the FL algo-
rithms and architectures tested on IID (independent and identically distributed) 
datasets such as CIFAR-10 and MNIST [ 9,21]. Furthermore, there is a notable 
scarcity of studies comparing models trained via FL with those trained using 
traditional, local datasets. Such comparisons are crucial in the commercial sec-
tor, as they highlight the differences in performance on test datasets between 
locally trained models and those trained through a federated approach [ 3]. This 
contrast not only showcases the effectiveness of FL in enhancing model general-
ization across diverse datasets but also encourages more companies to engage in 
FL initiatives [ 15]. 

This research focuses on the comparative analysis of federated image classifi-
cation within a shared production environment. Our study involves four clients, 
each producing different types of truck cabins, with or without windshields. We 
examine the efficacy of various deep learning architectures in a FL setting and 
evaluate two distinct strategies for weight selection in federated models. This 
investigation aims to shed light on the optimal configurations and strategies 
that enhance performance in FL applications, particularly in industrial settings. 

2 Related Work 

The adoption of FL in industrial applications, particularly for quality inspec-
tion and predictive maintenance, has garnered significant interest. This interest 
is driven by FL’s ability to train models collaboratively without compromising 
data privacy. [ 5] explored failure prediction using FL on production lines, illus-
trating the efficacy of FL in real-world scenarios. [ 9] furthered this research by 
developing federated object detection algorithms for quality inspection tasks in 
manufacturing environments. 

Introduced by McMahan et al. [ 16], Federated Averaging (FedAvg) has 
become a foundational algorithm in FL, enabling multiple devices to collabo-
ratively train a model while maintaining data localization and privacy. However, 
there has been limited exploration into comparing different deep learning archi-
tectures within FL frameworks like FedAvg to assess their impact on model per-
formance [ 8,13]. Evaluating these architectures in an FL context is particularly 
important, as highlighted by [ 1], given their widespread use in image classifica-
tion and the varying complexity they offer. Studies such as those by [ 8, 9], and 
[ 10] have begun addressing this gap by analyzing the performance differences 
between federated and centralized models in industrial settings. Additionally, 
[ 14] explored strategies for integrating new clients into FL networks, enhancing 
performance in dynamic environments. Further work by [ 7] demonstrated FL’s 
ensemble capabilities, showing improved object detection in previously unseen 
scenarios, further supporting the case for FL’s application in complex industrial 
contexts.
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3 Implementation 

This section outlines the FL architecture and framework utilized, the distribution 
and characteristics of the dataset for experimentation, and the external test 
dataset employed for evaluating the globally generated models against the locally 
trained client models. 

3.1 Federated Learning Framework 

Several FL frameworks facilitate research by simplifying the integration and test-
ing processes. Notable frameworks include TensorFlow Federated [ 12], PySyft 
[ 20], and FLOWER [ 2]. Among these, FLOWER is chosen for its ease of inte-
gration and effectiveness in research-oriented applications. FLOWER is a flexible 
and user-friendly framework that supports various experimental setups. 

In our FL setup, all clients shared the same deep learning architecture and 
hyperparameters to ensure consistency across the federated learning process. The 
architectures varied, but the hyperparameters were kept constant: batch size=16, 
optimizer=SGD with momentum=0.8, learning rate=0.001, loss function=cross-
entropy, and image size=300. Deep learning architectures-EfficientNetv2 (small) 
[ 19], VGG19 [ 17], ResNet50 [ 6], DenseNet-121 [ 11], and InceptionNetv3 [ 18] were 
selected for their proven performance in image classification tasks and their vary-
ing complexities in terms of trainable parameters. This selection allows for a 
comprehensive analysis of how different architectures impact the effectiveness 
of federated learning in handling diverse and complex data scenarios, particu-
larly in an industrial setting. The FL strategy employed was plain averaging of 
model weights for the global federated model, customized within the FLOWER 
framework for each architecture as mentioned in Table 1. 

3.2 Dataset 

The primary scenario for this research involves detecting the presence of a wind-
shield in truck cabins as a quality inspection application. The dataset com-
prises four clients, each identified by the color of their cabins: Blue, Green, 
Orange, and Red. Each client’s dataset includes two labels: ‘No windshield’ and 
‘With windshield’, as illustrated in Fig. 1. The total data distribution can be 
referred to in Fig. 2. An external test dataset was also developed to challenge 
the robustness of local models under FL paradigms. This dataset includes cab-
ins of different colors (gray and purple) and features a novel type of windshield, 
depicted on the right side of Fig. 1. 

3.3 Experimental Procedure 

We began with an FL architecture where all clients shared the same deep learning 
architecture and hyperparameters. The architectures were varied, but the hyper-
parameters were kept constant: batch size=16, optimizer=SGD with momen-
tum=0.8, learning rate=0.001, loss function=cross-entropy, and image size=300,
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Fig. 1. Local Client dataset for each client in FL (left) and external test dataset with 
2 Colored Cabins along with a novel Cabin type which none of the clients have ever 
seen before (right) 

Fig. 2. Distribution across clients and global/external testsets. ‘No windshield’ is rep-
resented as 0 and ‘With windshield’ is represented as 1. The Global dataset is a com-
bination of the test set of all 4 clients. 

using the final weights from each local epoch. The FL strategy employed was 
custom plain averaging of model weights for the global federated model, cus-
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tomized within the FLOWER framework for different deep learning architec-
tures as mentioned in Table 1. To expedite the testing process, a global test set 
was created by amalgamating the test sets of all clients. The global model was 
evaluated against this global test set following each communication round to 
achieve the best combination of global weights and hyperparameters. This app-
roach was used to evaluate the final global models and the best locally trained 
models, demonstrating the effectiveness of the federated global model. 

4 Results and Discussion 

Table 1. Performance Metrics for Various Architectures on Global Test Dataset 

Architecture Metric Client1 Client2 Client3 Client4 Global Model 
DenseNet-121 Accuracy 0.7438 0.8287 0.7818 0.6823 0.9971 

Precision 0.8207 0.8495 0.8210 0.6837 0.9971 

Recall 0.7438 0.8287 0.7818 0.6823 0.9971 

F1 score 0.7278 0.8262 0.7752 0.6818 0.9971 

EfficientNetv2 Accuracy 0.6633 0.7277 0.6281 0.6310 0.9898 

Precision 0.7694 0.7695 0.7580 0.6320 0.9899 

Recall 0.6633 0.7277 0.6281 0.6310 0.9898 

F1 score 0.6272 0.7170 0.5756 0.6302 0.9898 

VGG19 Accuracy 0.8594 0.8389 0.8873 0.6428 0.9912 

Precision 0.8827 0.8399 0.8923 0.7920 0.9913 

Recall 0.8594 0.8389 0.8873 0.6428 0.9913 

F1 score 0.8574 0.8389 0.8869 0.5913 0.9912 

ResNet50 Accuracy 0.5754 0.7130 0.5007 0.5666 0.9941 

Precision 0.7709 0.8148 0.7507 0.7401 0.9942 

Recall 0.5754 0.7130 0.5007 0.5666 0.9942 

F1 score 0.4834 0.6883 0.3374 0.4727 0.9941 

InceptionNetv3 Accuracy 0.4978 0.4890 0.4890 0.4978 0.5212 

Precision 0.2478 0.4569 0.4704 0.2478 0.6231 

Recall 0.4978 0.4890 0.4890 0.4978 0.5212 

F1 score 0.3309 0.3636 0.3829 0.3309 0.3998 

After extensive experimentation with different communication rounds (CRs) and 
epochs, the optimal global federated model was achieved using 5 local epochs and 
15 CRs. This section presents the performance metrics of various deep learning 
architectures, comparing both individual client models and the federated global 
model on the global test dataset. Table 1 outlines the Accuracy, Precision, Recall,
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and F1 scores for each model. The federated global model consistently outper-
formed individual client models across all architectures. For instance, DenseNet-
121 achieved a global model F1 score of 0.9971, significantly higher than the 
individual client F1 scores, which ranged from 0.6818 to 0.8262. Similar trends 
were observed with other architectures, where the federated model demonstrated 
superior performance, underlining the effectiveness of federated learning (FL) in 
improving model generalization. 

Table 2. F1 Scores on External Test Dataset (Gray and Purple Cabins) for Centralized 
vs. Federated Training 

Training Type DenseNet EfficientNet VGG ResNet InceptionNet 
Centralized 0.8569 0.6102 0.9100 0.7654 0.4967 
Federated 0.9821 0.9876 0.9586 0.9917 0.4394 

To further evaluate the robustness of these models, we tested both centralized 
and federated models on an external test dataset consisting of gray and purple 
cabins with an unseen windshield type. This scenario simulates a real-world use 
case where a company integrates a new windshield type into its manufacturing 
process, and the goal is to assess how well pretrained models can handle such 
unseen data. Table 2 presents the F1 scores for both centralized and federated 
models on this external test dataset. The results indicate that federated models 
generally outperform their centralized counterparts, particularly with DenseNet, 
EfficientNet, VGG, and ResNet architectures, achieving F1 scores of 0.9821, 
0.9876, 0.9586, and 0.9917, respectively. This demonstrates the superior robust-
ness and generalization capability of federated models when exposed to unseen 
data, highlighting their potential for real-world industrial applications where new 
components or product variations are frequently introduced. 

In summary, the results highlight that federated learning not only enhances 
model performance on combined datasets but also significantly improves the 
model’s ability to generalize to new, unseen scenarios. The VGG19 model has 
approximately 143.67 million parameters, ResNet50 has around 25.56 million 
parameters, DenseNet-121 has about 7.98 million parameters, EfficientNetv2 has 
approximately 21.55 million parameters, and InceptionNetv3 has about 23.85 
million parameters. Despite having a relatively lower number of trainable param-
eters, DenseNet’s federated global model achieved near-perfect performance met-
rics, demonstrating its efficiency and suitability for resource-constrained environ-
ments. These findings emphasize the efficacy of federated learning in industrial 
settings, where data privacy and the ability to adapt to new conditions are 
paramount. 

5 Conclusion and Outlook 

This study explored the application of Federated Learning (FL) for image clas-
sification within a shared production environment, focusing on classifying wind-



104 V. Hegiste et al.

shields in truck cabins. We evaluated the performance of several deep learn-
ing architectures, comparing models trained locally by individual clients with a 
global model obtained through FL using a custom plain averaging strategy. The 
experimental results indicate that FL significantly enhances model performance 
across all tested architectures, consistently achieving higher accuracy, precision, 
recall, and F1 scores compared to individual client models. This portrays FL’s 
potential to create robust and generalized models by aggregating knowledge from 
multiple sources while preserving data privacy. Furthermore, testing on an exter-
nal dataset with unseen windshield types demonstrated the adaptability and 
robustness of federated models in handling unforeseen data. Considering both 
performance metrics and the total number of trainable parameters, DenseNet-
121 emerged as the most suitable architecture, offering near-perfect performance 
with fewer trainable parameters, making it both efficient and resource-friendly. 
In contrast, InceptionNetv3 consistently underperformed, indicating its unsuit-
ability for this task. 

The results also highlight the limitations of local models trained on isolated 
datasets, which perform poorly in comparison. FL addresses this by enabling 
a superior global model without data sharing, critical in industrial applications 
where data privacy is paramount. Future work will extend this approach to other 
quality inspection tasks and explore advanced FL strategies, such as differential 
privacy and secure multi-party computation, to enhance data security. Addition-
ally, integrating FL with real-time industrial systems for continuous learning and 
adaptation to new production scenarios will be investigated. 
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the Sustainable Embedded AI project (P2021-02-009). 
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Abstract. Artificial Intelligence can allow cobots to work autono-
mously, perceiving and understanding the environment, planning 
tasks, and properly acting to achieve production goals. However, effec-
tive deployment of AI technologies in real plants is not straightforward. 
This paper proposes the extension of SOHO (Sharework Ontology for 
Human-Robot Collaboration), an ontology for Human-Robot Collabora-
tion, with OPIS concepts, a language for describing manufacturing pro-
cesses. We also present a new extended implementation of TENANT, 
a Knowledge Engineering tool based on SOHO and OPIS. We show its 
suitability in a realistic collaborative scenario with a human and a robot 
operator cooperating to perform an assembly process. 

Keywords: A.I. · Knowledge Engineering · Collaborative Robotics 

1 Introduction 

Achieving an effective deployment of collaborative robots in manufacturing is 
a complex task. According to [ 4], different latent dimensions can be consid-
ered in evaluating a human-robot collaboration (HRC) framework. The first 
is autonomy, i.e. the ability to sense, plan, and act according to the task. High 
level autonomy requires control systems able to efficiently implement production 
tasks while adapting to changes in the environment. Artificial Intelligence (AI) 
plays a key role in this context, enabling robots to operate autonomously, per-
ceiving and understanding the working environment, planning their tasks, and 
properly acting to achieve specific goals. However, effective deployment of AI 
technologies in real industrial environments is not straightforward. In particu-
lar, building proper input specifications for an AI framework is usually complex. 
Indeed, there is a lack of a generally accepted modelling methodology and this 
potentially leads to large efforts to define suitable robot control specifications. 
Moreover, there is still a clear need for knowledge engineering tools to facilitate 
communication and interaction between AI and Robotics engineers as well as 
with domain experts. It is essential to develop tools that can help these experts 
and enable seamless collaboration. Recently, a software tool called TENANT 
[ 3] was proposed to assist production engineers in defining goals, tasks, and 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 107–116, 2025. 
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operational constraints to provide the automatic generation of task planning 
specifications for robot control in collaborative scenarios. The representation 
framework behind TENANT relies on SOHO (Sharework Ontology for Human-
Robot Collaboration) [ 15], a state-of-the-art domain ontology that provides a 
“standard” semantics to represent production-related knowledge and, therefore, 
interpret production engineers’ input. It supports a contextual and hierarchical 
structuring of knowledge. This structure is encapsulated by TENANT to collect 
production-related information, store knowledge, and implement an automatic 
task planning model generation. However, it is clear the need to support also a 
complete (abstract) representation of specific production knowledge for a whole 
manufacturing shop-floor, and not only concerning a single-robot production pro-
cess. In particular, a tool was needed to model also large-scale manufacturing 
systems, while maintaining the possibility to selectively and dynamically vary 
the level of detail at which the system can be observed. In this regard, OPIS 
[ 14] is a framework used in real manufacturing scenarios particularly relevant 
to our objective. It proposes a well-structured formalism describing production 
resources and operations carried out within a manufacturing system. Our goal 
is to propose a process-independent and complete knowledge engineering app-
roach for the synthesis of AI planning models. To this aim, SOHO and OPIS 
are used as the knowledge structure in TENANT. Introducing OPIS concepts 
is also crucial to maintain consistency between SOHO and TENANT to tightly 
integrate a Knowledge Base (KB) built upon SOHO and to further facilitate task 
planning models definition. Linking an ontology can contribute in reducing the 
risk of user errors. Indeed, the ontology’s reasoning mechanisms can be exploited 
to introduce semi-automatic steps in TENANT pipeline. The contributions of 
the paper are: definition of an extension of SOHO with OPIS concepts, presen-
tation of a new TENANT implementation based on SOHO+OPIS, and showing 
its suitability in a realistic collaborative scenario. The paper is organized as fol-
lows: Sect. 2 provides an overview on Knowledge Engineering and OPIS; Sect. 3 
discusses the use of ontology in manufacturing and the pursued approach; Sect. 4 
describes the representation formalism and the modeling process; Sect. 5 shows 
the functioning of TENANT in a collaborative use case; Sect. 6 draws some con-
clusions. 

2 Knowledge Engineering for Production Planning 

Knowledge Engineering (KE) includes methods and tools aimed at improving 
the process of acquiring, using, and implementing engineering knowledge and 
automation. The definition, validation and reuse of knowledge within automa-
tion processes are central to engineering, contributing to reduction in costs and 
product development time [ 12]. The reuse of knowledge indeed decreases the 
engineering resources required relieving engineers from non-value-adding activi-
ties. Several works have investigated the design and use of KE tools to formally 
describe complex products and processes, and reduce the costs of automation 
processes [ 1, 5, 7, 9]. These works address important challenges of KE but do not
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support production engineers to model production dynamics and to automati-
cally synthesize planning models suitable to control autonomous robots at both 
the “production unit” level (e.g., within a collaborative cell [ 3]) and the shop-
floor level. Other works addressed the automatic synthesizing of scheduling plans 
[ 11], or their manual creation, editing and management [ 8] through graphical 
user interfaces. However, these approaches do not primarily focus on the initial 
phase of modelling the environment and its dynamics, relying instead on the 
automatic retrieval of requirements or on the manual creation of plans. In [ 13], 
KE and Automated Planning are integrated to support engineering of human-
robot interaction dynamics, which are then translated into a planning model 
for the actual coordination of robot parts. Although in a different domain, this 
work pursues a similar objective but we are interested in addressing the prob-
lem of modeling large-scale manufacturing systems, and OPIS is relevant to our 
discussion. OPIS [ 14] is a general framework for modeling manufacturing sys-
tems, with a focus on large-scale ones. It is particularly relevant as it provides 
an extensible set of modeling primitives that emphasize the development and 
use of hierarchical models of manufacturing processes and required resources. 

Utilizing OPIS in describing manufacturing processes offers several advan-
tages. First, it allows for the detailed specification of the myriad of constraints 
that govern manufacturing environments, such as resource limitations or pro-
duction deadlines. In doing so, it ensures that models accurately reflect the 
realities of the manufacturing process. Secondly, OPIS supports the develop-
ment and use of hierarchical models, providing a clear and organized representa-
tion of the manufacturing environment. This hierarchical structure is essential as 
manufacturing processes and resources are often structured hierarchically, with 
multiple levels of processes and sub-processes, each requiring specific resources. 
Additionally, OPIS provides an extensible set of modeling primitives and cap-
tures the dynamic nature of manufacturing environments, where processes and 
constraints can change over time. This extensibility and flexibility ensure long-
term applicability and utility. These capabilities are crucial for effective pro-
duction management and control decision-making, as they enable the identifica-
tion and resolution of potential bottlenecks and inefficiencies as well as enabling 
more effective planning and scheduling. A model is specified in terms of five 
basic types of entities. Resources describe of the various physical/logical enti-
ties required to perform manufacturing activities. OPIS proposes a hierarchical 
description of resources, that can be organized into Aggregated Resources, which  
can be either aggregated entities composed of several (simpler) parts/objects, or 
more abstract sets of resources. Operations describe specific activities performed 
within the manufacturing system. Operations are hierarchically organized to 
create descriptions of manufacturing processes. OPIS distinguishes two forms 
of process abstractions: conjunctive abstractions: operations decomposed into a 
sequence of (sub-)operations at a lower level of the hierarchy, disjunctive abstrac-
tions: operations decomposed into a set of alternative (sub-)operations at a lower 
level in the hierarchy. In this sense, manufacturing processes are just sets of hier-
archically organized operations. Products describe materials produced by manu-
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facturing systems, either as final outputs or as input materials for more complex 
objects (e.g., semi-worked pieces to be used in production sub-processes). Prod-
uct descriptions are organized hierarchically into Product Families, represent-
ing sets of products that share commonalities in their manufacturing processes. 
Demands describe obligations for product delivery and specify requests for quan-
tities of specific products to be satisfied, with their production constraints, e.g. 
time constraints or client-dependent priorities. Production units represent col-
lections of products manufactured together and created in response to product 
demands. 

3 Semantic-Aided Definition of Production Knowledge 

Describing procedures, capabilities of working entities, and their possible inter-
actions to support (agile) production objectives is challenging. The description 
should take into account different perspectives (e.g., the single “local perspec-
tive” of each acting entity and the “global perspective” of the whole produc-
tion system) and contextualize production dynamics (e.g., operative constraints, 
production goals) to the different features and skills of the involved agents 
(e.g., human workers, machines, autonomous robots). SOHO is structured in 
3 main contexts, each considering a specific perspective. The Environment Con-
text characterizes the physical objects composing the modeled production envi-
ronment and the general properties that can be observed. The Behavior Context 
characterizes the behavior of the entities that can actively participate in the 
production processes, both in terms of low-level operations (and the capabilities 
required to perform them) and different levels of collaboration. The Production 
Context defines the production requirements and the tasks that should be per-
formed to achieve desired production goals. The description of a production pro-
cess follows a hierarchical, task-oriented approach. SOHO is a domain ontology 
specifically designed for characterizing production dynamics within collaborative 
cells. In contrast, OPIS is focused on modeling large-scale systems, e.g. an entire 
shop floor, but it does not explicitly support the requirements of HRC scenarios. 
Therefore, we propose the extension of SOHO including some key concepts from 
OPIS. We can then develop a more complete and versatile ontology to model 
the entire manufacturing process and support HRC scenarios as well. This can 
also support knowledge engineering tools like TENANT. 

First, we augment the knowledge definition of resources in SOHO by inte-
grating Aggregated Resources from OPIS to encourage granularity of knowl-
edge. Also, Workpiece-type Resources, present in SOHO, are replaced by 
OPIS Products, which basically represent the same concept. However, by intro-
ducing Products as a separate concept in SOHO, we can incorporate also the 
hierarchy based on product families from OPIS. This addition will be partic-
ularly useful in future versions of TENANT, as it will naturally facilitate the 
reusing of knowledge about manufacturing processes. Regarding the definition of 
Production Processes, SOHO provided a greater level of detail compared to 
OPIS, where all types of tasks are simply defined as Operations. In SOHO,
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the ontological concept ProductionGoal defines general goals to be achieved 
by the execution of the ProductionMethod. Each  ProductionMethod is made of 
several hierarchically organized ProductionTask and is associated with several 
ProductionNorm constraining the task execution. SOHO distinguishes between 
ComplexTask and SimpleTask. ComplexTask describes an operation resulting 
from the composition of other tasks. This is used to characterize hierarchical 
decomposition of production tasks. A ComplexTask can be associated with either 
SimpleTask or other ComplexTask. Inspired by OPIS, we differentiate between 
two types of ComplexTask: Conjunctive or Disjunctive; a  SimpleTask rep-
resents a leaf of the hierarchical structure and describes primitive production 
operations executed by performing a series of Function. Finally, according to 
[ 6], in SOHO the execution of a HRCTask can entail four different collabora-
tion modalities between a human and a robot: (i) Independent, human and 
robot perform their tasks on different work-pieces without collaboration; (ii) 
Simultaneous, human and robot perform distinct tasks on the same work-piece 
at the same time, still without physical contact; (iii) Supportive, human and 
robot perform the same task on the same work-piece, working simultaneously 
and cooperatively on the same task. (iv) Synchronous, human and robot com-
plete sequential tasks on the same work-piece, operating consecutively without 
any physical contact. The concept HRCTask is thus further specialized into four 
types of tasks. IndependentTask are implemented by a single Function that 
can be performed by a HumanWorker or by a Cobot. A human/robot performs 
the function independently from the other. SimultaneousTask are implemented 
by precisely two instances of Function, one function performed by a Worker 
(i.e., HumanFunction), another performed by a Cobot (i.e., RobotFunction). In 
this case, the human and the robot work on the same WorkPiece performing 
two different functions that can be carried out without any specific constraint. 
SynchronousTask are implemented by a RobotFunction and a HumanFunction. 
The pattern in this case forces the human and the robot to perform these two 
functions following a strict sequential order (this type of task is associated with 
the production norm SequentialExecution). SupportiveTask are implemented 
by a RobotFunction and a HumanFunction. It forces the human and the robot 
to perform two functions in parallel (this type of task is associated with the 
production norm ParallelExecution) achieving the highest level of collabora-
tion. The basic structure of SOHO is then preserved with the only introduction 
of conjunctive and disjunctive abstractions in the definition of complex tasks. 
Finally, Demands are included in SOHO with the same specifications as in OPIS, 
while Production Units were not considered. 

4 Knowledge Definition with TENANT 

To be compliant with the knowledge defined in the SOHO extension, a new 
implementation of TENANT was developed. In this new version of TENANT, 
the knowledge base definition process consists of several modeling steps as shown 
in Fig. 1. The first step requires users to describe the physical configuration of a
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production environment and the objects that belong to it i.e., resources. Each 
resource is characterized by a name, a textual description, a capacity, and a type, 
which can be selected from some predefined types. In addition, a resource may 
belong to an aggregated resource. Each aggregated resource is characterized by a 
name and may belong to another aggregated resource, forming a hierarchy with 
multiple abstraction levels. 

Fig. 1. Production modeling pipeline of TENANT 

HRC acting 
entities, i.e., 
robots and 
human workers 
(agents), are res-
ources that actively 
participate in the 
collaborative production process. They are characterized, in addition to the prop-
erties of general resources, by a list of operations that they can perform according 
to their structure and skills, i.e. capabilities. At this stage, users must also spec-
ify these technical capabilities, each characterized by a name. The second step 
in the pipeline requires users to describe the products manufactured by the pro-
duction system, both as final products and as intermediate ones. Products are 
characterized by a name and may be part of a product family. Unlike aggregated 
resources, the hierarchy of products is restricted to one level, i.e., a product can 
be part of a product family but each product family is characterized only by 
its name and cannot belong to another product family. However, this constraint 
can be easily removed if needed. Then, users must define processes in terms of 
tasks and operational requirements. The description of production processes fol-
lows a hierarchical, task-oriented approach. The goal of a manufacturing process 
is to produce a product by performing a series of operations (i.e., tasks). Thus, 
each product is associated with at least one process, while a process always refers 
to only one product. Moreover, each process is composed of several tasks and is 
associated with a set of relationships that impose “constraints” on the execution 
of such tasks. As a last step, users specify the production goals to be achieved, 
i.e. demands to state the requests for the shop floor and define the general pro-
duction goals. The tool is implemented as a web-based application that provides 
the user with an interactive graphical environment for a step-by-step definition 
of the information characterizing the specific production environment. The tool 
is publicly available on GitHub 1. 

5 TENANT at Work 

An assembly scenario inspired by a real plant [ 2] and requiring a human and a 
collaborative robot to assemble a mosaic is considered here to assess TENANT 
and validate its functions.

1 https://github.com/pstlab/TENANT sa.git. 

https://github.com/pstlab/TENANT_sa.git
https://github.com/pstlab/TENANT_sa.git
https://github.com/pstlab/TENANT_sa.git
https://github.com/pstlab/TENANT_sa.git
https://github.com/pstlab/TENANT_sa.git
https://github.com/pstlab/TENANT_sa.git
https://github.com/pstlab/TENANT_sa.git
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Fig. 2. TENANT interface. 

The shape of a “mosaic” consists 
of 5 rows and 10 columns to be filled 
with cubes of different colors. Each 
cell is identified by a letter for the 
column and a number for the row. In 
the end, the letters SW are formed, 
with the letter S made of orange 
cubes, the letter W made of white 
cubes, and the background made of 
blue cubes. The assembly process 
is also subject to some constraints: 
orange cubes can only be handled by 
the robot, white cubes can only be 
handled by the operator, and blue 
cubes can be managed by both. Addi-
tionally, there are some precedence 
constraints: Row 3 should start after 
the end of Row 1, Row 4 should start 
after the end of Row 1 and Row 2, 
Row 5 should start after the end of 
Row 1, Row  2 and  Row 3.  

The knowledge to represent this 
scenario was defined through TEN-
ANT and stored in a DB. The first step in the pipeline involves describing 
the physical configuration of the mosaic scenario, i.e. the objects needed in the 
assembly process. Figure 2 shows the resources page after adding all relevant 
resources. In this scenario, the “pick and place” action is the only relevant capa-
bility for the acting entities, i.e. a human worker and a cobot. As a consequence, 
it is the only capability added when defining the agents, as shown in Fig. 3(a), 
3(b). Then, the products are defined by their names. Both the final product (the 
Mosaic) and the intermediate ones (the individual cells) were entered. 

Fig. 3. TENANT user interface: information for (a) a cobot and (b) a human worker
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The next step in the pipeline is the definition of the process in terms of the 
tasks to be achieved. This is the most time-consuming step and the one that 
would benefit the most from integrating TENANT with a KB. 

Fig. 4. Intermediate Process definition 

Figure 4 shows an intermediate 
step in the definition of the process. 
The top-level task called Root, is a  
ConjuctiveTask that is decomposed 
into five tasks, each defining the 
operations needed to complete a row 
in the mosaic. The Root task is 
important as it allows setting the 
precedence constraints of the require-
ments. Figure 5 shows how they are 
added, at the end of the new process 
page. 

The first 3 cells of the mosaic, i.e. 
A1, B1, and C1, consist of orange 
cubes that can only be moved by the robot. For this reason, they are repre-
sented as SimpleTasks in the Independent modality and are associated with a 
single function of pick and place performed by the robot. The target products 
of these functions are the cells themselves, while the resources required are sim-
ply the orange cubes. A similar description applies to the cells that need to be 
filled with white cubes, e.g. E1. 

Fig. 5. Constraints definition. 

On the other hand, the cells that 
need to be filled with blue cubes, 
e.g. D1, are defined in a slightly 
more complex way. Since the blue 
cubes can be moved by both the 
human operator and the robot, the 
user must first add a disjunctive task 
that denotes the operation of assem-
bling the cell. Then, two different simple tasks are added at the lower level in 
the hierarchy, assuming which operator will perform them. Finally, the last step 
is to add information about demands through an ad hoc interface. 

6 Conclusions and Future Works 

We propose the extension of a knowledge engineering tool to support production 
engineers with a visual knowledge construction procedure to define shop-floor 
and HRC information. The tool is now based on SOHO and OPIS concepts to 
increase its effectiveness. TENANT can be useful to support also other func-
tionalities to facilitate the deployment of planning and execution technologies 
in, e.g., a ROS environment [ 10]. Among future works, we aim to further inves-
tigate how to leverage TENANT to investigate the dimensions mentioned in [ 4] 
and improve its effectiveness in supporting HRC applications. Also, it is essential 
to evaluate its usability with domain experts.
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Abstract. Reconfigurable manufacturing systems are becoming the 
only viable option to respond to changing product volumes and product 
specification, which are currently major challenges for the manufacturing 
industry. Part of this adaptation requires vision systems to be quickly 
updated to handle new unseen products. For deep learning-based vision 
systems, this means re-training on images that might not be available. 
Although there is some existing work on synthetic image generation in 
manufacturing contexts using a variety of domain randomisation tech-
niques, there is a lack of understanding of which domains are critical in 
the effectiveness of the resulting trained model. There are currently no 
open tools to systematically conduct such ablation studies. This paper 
presents a tool based on Blender and CAD models to enable the study 
of domain randomisation in the generation of synthetic-only datasets 
that can yield accurate object recognition models. Preliminary results 
to validate the implemented domain randomisation techniques and the 
ability to generate the synthetic images are presented. Once generated, 
synthetic data sets are used to train a YOLOv8 model for object detec-
tion as a second tool validation step. Future work will look at perform-
ing ablation studies and expanding the range of domain randomisation 
methods to further study the capabilities of synthetic images. 

Keywords: synthetic data · cad model · domain randomisation 

1 Introduction 

Reconfigurable manufacturing systems (RMS) are starting to get more atten-
tion as a viable option to improve responsiveness and resilience of current man-
ufacturing systems [ 1]. With the current advancements of object detection and 
segmentation using Machine Learning (ML) [ 2], it is possible for these systems 
to flexibly perform different tasks such as pose estimation for object pick and 
place [ 3], quality inspection [ 4], among others. To train such ML models, a large 
number of labelled images need to be available, with enough variability (noise, 
background, rotation, obstruction) to achieve generalisation. With a changing 
manufacturing environment and new product specifications, it is challenging to 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 117–124, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_13
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have large amounts of real labelled images available. Although pre-trained mod-
els can be leveraged [ 5], some real images of the new object are needed. One way 
to address this challenge is to use synthetic images. Recent works have shown 
that domain-randomised, synthetic training images can yield object detection 
accuracy equivalent to real training images. However, there is a lack of under-
standing of which domains are critical for generating a fully synthetic data set 
that can yield such results. To understand this, more exhaustive and systematic 
ablation studies need to be performed across multiple manufacturing scenarios. 
There is currently no open implementation tool that can support such studies. 
Domain randomisation methods can be implemented in various ways and so open 
implementations need to be available to ensure comparability of ablation studies. 
With this context, this paper presents an open tool for the automatic generation 
of synthetic images and conduction of ablation studies. The tool is developed in 
a modular way to easily incorporate additional domain randomisation methods. 
To validate the implementation of the tool, tests of image generation and initial 
training of an object detection model using YOLOv8 have been performed. The 
rest of the paper is organised as follows. Section 2 provides a state-of the art on 
current developments in domain randomisation for synthetic images. Section 3 
introduces the methodology proposed for implementing different domain ran-
domisation techniques using Blender to manipulate the virtual scene. Prelimi-
nary results on the implementation validation of the tool are presented in Sect. 4 
and Sect. 5 presents conclusions and future work. 

2 Related Work 

Automated pipelines for developing manufacturing-relevant synthetic images is 
an area of research that has got recent attention. An emerging way to generate 
synthetic data is through the use of generative models. Jain et al., for exam-
ple, use Generative Adversarial Models to generate new images from existing 
real images of hot-rolled steel strips for surface defect detection [ 6]. Another 
way is through computer-aided design (CAD) models. Synthetic object data for 
nearly all manufactured parts is available in the form of a CAD file. Although 
this opens the door to automatic synthetic image generation, there is a real-
ity gap; a model trained using synthetic images only will learn to recognise the 
synthetic object and not its real-life counterpart. One way to overcome this 
is to make the synthetic images as realistic as possible using object textures, 
colours, and scene lighting that matched the real object and scene [ 7]. Alex-
opoulos et al. present an automated pipeline for synthetic data generation using 
digital twins [ 8], introducing details of the real manufacturing environment to 
make the resulting images more realistic from a context/background point of 
view. These approaches assume some of the working environment is known, 
which may still be able to yield general deep learning models provided such 
models do not pick up on features of the environment itself. A contrary app-
roach is using synthetic images that utilise the full range of visual variation 
that can be achieved synthetically, this is referred as domain randomisation.
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Conceptually, a model trained under such high synthetic variation will see the 
real world as just another one of these environments [ 9]. Dekhtiar et al. propose 
a methodology based on the use of CAD models and several domain varia-
tions such as random rotation, background, saturation, contrast, brightness and 
blurring [ 10]. The authors successfully leveraged pre-trained models to classify 
objects from the synthetic images. The authors implement some of the known 
domain randomisation techniques. These works, however, do not focus on the 
study of the randomisation techniques and their influence in object detection 
accuracy. Manettas et al. propose a synthetic image generation pipeline focusing 
on only top and bottom views of the object and focusing on varying the rotation 
achieving very good accuracy from only those view points [ 11]. The studies pre-
sented by Tobin et al., Hinsterstoisser et al. and Trembaly et al. [ 9,12,13], present 
a more in depth study on the influence of different domain randomisation tech-
niques in object detection accuracy. Through a series of ablation experiments, 
all these three studies conclude that the resultant models outperform their real 
image-trained counterparts. In each methodology, one or more of the domain 
randomisation parameters are excluded/weighted differently for each training 
data set and results are compared. Hinterstoisser et al. found that blurring and 
light colour are the most influential factors in detection accuracy. By varying the 
weight of randomisation types, Toby et al. found that the object detection accu-
racy was reliant on all domains except for noise. Finally, Tremblay et al. excluded 
randomisation types one at a time and found lighting position and textures to 
have the greatest effect on object detection accuracy. Overall, the three stud-
ies combined do not agree on a clear answer to the importance of each domain 
randomisation type. It is consistent, however, that lighting randomisation has a 
substantial effect on accuracy relative to other domains. 

3 Methodology 

In this work, a methodology for generating and labelling synthetic images using 
CAD models is introduced. As shown in Fig. 1, there are for image generation 
steps, followed by a ML model development step to enables the ablation study. 
The automation pipeline was developed in the 3D physics simulator Blender [ 14]. 
Within Blender, a CAD part and a virtual camera can be manipulated in a 3D 
environment to capture images (Step 1). Here, object, background, and lighting 
are fully customisable, making this software a good option for implementing 
modularised domain randomisation methods. This is important for allowing the 
user full customisation of each domain during ablation studies (source available 
in [ 15]). 

3.1 Camera Positioning 

For positioning the camera, the various angles from which to take the images 
must be decided. One potential approach is to use the 12 vertices of an icosa-
hedron as the camera positions [ 12]. More vertices can be created by repeatedly
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Fig. 1. Synthetic image generation pipeline used for the proposed tool using domain 
randomisation (DR) techniques. 

splitting each face of the icosahedron to create additional vertices [ 16]. Although 
this method provides equal coverage of angles, it limits the number of angles. A 
more randomised approach is used by Tobin et al. [ 9]. Here, the position and 
orientation of the camera are randomised within the 3D space for each image. 
However, images are only captured from above the objects. In this study, a 
method similar to the one proposed by Dekhtiar et al. is implemented [ 10]. 
Here, the camera moves around the object on a primary axis. Each time this 
axis intercepts a rotation axis, the camera then follows the rotation axis, tak-
ing a set number of images of the part along the way. By allowing the user to 
define the number of rotation axes and image points, a unique angle can be used 
for every image regardless of the number of images. In addition, this approach, 
compared to having a fixed camera and a rotating object, avoid restraining the 
variation in the lighting between images. 

3.2 Lighting 

With the camera in position, the remaining domain randomisation features need 
to be set before the image is captured (Fig. 1, phase 3). Lighting is the most 
influential domain randomisation type for object detection accuracy according to 
the literature. Tobin et al. varies three light domains: number of lights, colour and 
position [ 9]. The same study also restricts the lighting conditions to those that 
are offered by the lights within the software. Lighting in the real world is far more 
complex than that generated by spotlights. In this study, a more diverse lighting 
method was used: high dynamic range images (HDRIs). HDRIs are a type of 
360-degree image containing complex lighting [ 17] that can be wrapped around 
the scene in Blender. When used as a background, they impart the full range of 
lighting conditions from that image onto the object. For the tool, a random HDRI 
background is automatically loaded into the scene for every image taken. Each 
HDRI imparts lighting of varied position, colour, and intensity on the object, 
having complex bright and shaded areas. Thus, all three lighting domain types 
are randomised using one HDRI loading function. With this, and all remaining 
domain randomisation types added (i.e. random colour, background, texture, 
position and distance), the image is captured and ready for labelling.
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3.3 Labelling 

Accompanying all images used for training object detection models must be 
an image label (Fig. 1, phase 4). In this study, image label data was retrieved 
using the Python library OpenCV. To avoid background interference, a duplicate 
image is taken with the object in an identical position, but against a black 
background. This duplicate image is then processed using OpenCV to extract 
labelling information. After phase 2 (Fig. 1), the position of the object in the 
camera frame is unchanged. Hence, the label extracted from the duplicate image 
can be directly used as the label for the final image. 

4 Tool Validation and Verification 

To validate and verify the implemented domain randomisation techniques and 
the tool as whole, a test to generate a set of synthetic images given a CAD model 
of a real part was performed followed by the development of a deep learning 
model for detecting the part in a real environment. The testing of the image 
generation process starts with inputting first the parameters for each of the 
domains to be randomised. This is done via a simple Python-built user interface, 
where domains to randomise in the images can be selected by entering either 
1 (select) or 0 (deselect), and introducing the number of images to generate. 
Finally, a set of background images, HDRI lighting images, and part(s) to be 
used by the tool are uploaded to the working directory. Once this is set up, 
images are generated by the tool. The following parameters were selected for 
verifying the correctness of the domain methods implementation: 

– The number of axes for positioning the camera was 45, with 45 images being 
taken on each axes (45*45 = 2025 images) 

– Distance was randomly selected using a set of 4 different camera focal length 
values. These range from the focal length where the object fills the image, to 
one 40 mm less (  −10 mm, −20 mm, −30 mm, −40 mm). 

– The object roughness, how reflective it is, and colour were randomised. 
– Backgrounds that depict different examples of tables available on this github 

project [ 18] were used and selected randomly for each generated image. It is 
worth noting that there is no intention to replicate the real environment in 
the synthetic data. 

– The lighting is randomly selected from a set of 3 HDRI images: a studio lit 
room, an indoor lit house, and a lit town at night. 

– The object position is randomised in both X and Y directions. 

Once generated, the images were visually inspected to verify each domain 
was rendering the expected results according to their implementation. Figure 2 
shows some examples of the generated images. As it can be observed, changes in 
rotation, texture, distance are present. Texture does not seems to be particularly 
noticeable, but reflective properties of the object can be observed. 

After this, the images were used to train a YOLOv8 model (Ultralytics 
Python Library). This model was chosen for being a widely used and efficient
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Fig. 2. Examples of images generated randomising background, lighting, position, dis-
tance and texture. 

Fig. 3. Box, classification and distribution focal loss and precision during training 
on the training (top) and validation (bottom) sets. Validation shows mean average 
precision at different intersection over union thresholds. 

model when working in real time [ 19]. The complete set of 2025 images were 
used for training and further 100 images were generated and used as a validation 
set. For testing, 20 real images taken within a robotics cell at University of Not-
tingham Robotics Lab where used, which contain white and black 3D printed 
parts corresponding to the CAD model. For using YOLOv8, the last layer was 
modified to introduce the class “Sensor Lid”. The pre-trained model was then 
trained for 30 epochs as it was observed on the training/validation curves (Fig. 3) 
that accuracy results in the validation set were already reaching the highest pre-
cision. The resulting model was tested on the real images (some of them shown in 
Fig. 4). The model was able to detect 47% of the white lids but failed to detect 
any of the black lids. Although the colour is highly varied in the training images 
and is not expected to play a factor in detection, it is evident that the model 
struggles with this particular colour. This may be related to the YOLOv8 model 
itself using the colour and contrast of the object. Also, some particular angles 
seem to be difficult to detect. It is worth noting that no particular pose strategy 
was used in this initial test, which according to Hintertoisser et al. can highly 
increase the accuracy of the model. Despite the low accuracy, it was possible to 
successfully validate the implementation which then will allow thorough ablation 
studies to be carried out. The results highlight why it is indeed important to
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understand the importance of domains and suggest that some domains are more 
useful to be randomised and others to be more strategically used. 

Fig. 4. Examples of tested real images with their corresponding bounding boxes. 

5 Conclusions and Future Work 

Advancing the object detection accuracy that can be achieved by using domain 
randomisation is the next step in facilitating object detection, and enhanced flex-
ibility in manufacturing. In this work, a tool for testing domain randomisation 
for the creation of synthetic images in manufacturing is presented. The lack of 
consistency between the domains randomised in recent studies, and the limited 
industrial testing of synthetically trained deep learning models demand for a 
novel range of domain randomisation types, combining all of those previously 
tested. Preliminary results have provided an initial validation of the implemen-
tation. Future work will look at performing different ablation studies as well as 
to implement distractor objects. 
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Abstract. Recognition of human hand gestures in industrial environ-
ments is gaining popularity, especially in the context of assistance sys-
tems, thanks to advancements in deep learning-based vision methods. 
Also, head-worn devices with cameras are becoming more popular espe-
cially for smart assistance using Extended Reality (XR) technology, 
even for industrial use cases. Employing sensors from head-worn devices 
such as HoloLens enhance the communication between human and robot 
hereby providing interaction using ego-centric vision. This study delves 
into human-robot interaction by investigating ego-centered hand gesture 
recognition for commanding robots. A pipeline is developed for collect-
ing these HoloLens video frames and to detect hand landmark labels 
on them using MediaPipe library by Google. Then, a Long Short-Term 
Memory Network (LSTM) model for hand-gesture recognition was devel-
oped that classifies the hand-gesture from the given hand landmarks 
in near real-time, which can then be translated into robot commands. 
We also present results for our network’s performance and implementa-
tion pipeline. 

Keywords: Egocentric Gesture Recognition · Hand Gesture 
Recognition · Human-Robot Interaction 

1 Introduction 

Hand gestures are a natural, intuitive and non-verbal communication method 
that humans use. These human-gestures can be translated into related robot 
commands [ 14] and enable hand gesture-based direct interface for human-robot 
interaction (HRI). Gesture-based control is a type of HRI system that allows 
a human worker to control the robot’s movements using gestures in a fac-
tory environment. Vision-based recognition systems enable workers to command 
robots which offers exciting possibilities for collaboration between human work-
ers and machines [ 15]. Extended reality (XR) in the context of worker assistance 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 125–133, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_14
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system on account of its ability to augment information on to real-world to 
support human workers. These XR based assistance systems can be coupled 
with a robotic assistance system [ 6,11], which can support workers in a smart-
manufacturing environment. The head-mounted devices such as HoloLens2 1 con-
sist of a camera that provides the egocentric view [ 10,13] of the person using it. 
This data could potentially be used for robot interaction. Since it is a head-
mounted camera, it is capable of providing constant data from the moving 
human, unlike a fixed camera. Also unlike robot-mounted cameras where the 
human must necessary be in the field of view, robots and humans can col-
laborate and cooperate at various scenarios in smart factories. However, this 
research aims to leverage both static and dynamic hand gesture including sin-
gle as well as double-handed gestures to interact with robots in smart factories 
using First-Person-View(FPV) cameras. Firstly, we need to collect data. Sec-
ond, after collecting the required data, a deep learning model to classify the 
hand gestures should be developed. So, in the end, a pipeline can be estab-
lished that includes data collection module, hand-gesture recognition module, 
and robot-communication module. 

2 Literature Review 

Ambient or fixed cameras offer the advantage of observing humans, their full-
body gestures, and their environment. However, ambient camera-based hand 
gesture recognition (HGR) systems are often restricted by the sensor’s range, 
requiring users to be near and/or directly in front of the camera. On the contrary, 
wearable camera-based HGR systems overcome this limitation due to their porta-
bility [ 2, 7]. Wearable cameras such as head-mounted cameras provide an egocen-
tric view of the users that makes the users always observable. However egocen-
tric videos come with unpredictable movements and low quality due to constant 
motion blurs [ 2]. Other than RGB sensors, different kinds of data sources such 
as depth information can be used to enhance the quality of recognition. In [ 5], 
authors proposed a novel architecture which combines RGB and depth modal-
ities evaluated on MECCANO dataset [ 12] that contains various hand gestures 
to mimic industrial settings. The paper [ 8] introduces a mobile humanoid robot 
that can assist humans in public spaces by following HGR using RGBD data 
from a robot-mounted camera. The paper [ 9] focuses on development and evalu-
ation of a multistage spatial attention-based neural network for HGR which are 
gaining popularity. There two type of gestures, the static ones and the dynamic 
ones [ 2], also they can be further classified as single-handed or two-handed ges-
tures. Static gestures can be easily detected using the Mediapipe which in its 
first step involves detecting the presence of a hand in the image. This is typi-
cally done using a CNN-based detector that identifies bounding boxes around 
hands. Once a hand is detected, another CNN is used to localize and predict the 
coordinates of specific hand landmarks within the detected hand region. Medi-
aPipe’s hand landmark model predicts 21 key points representing the knuck-
1 https://www.microsoft.com/de-de/hololens. 
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les and fingertips. 2 library for hand pose tracking in real-time [ 16]. Mediapipe is 
used with a supporting algorithm based on Support Vector Machine (SVM)for 
hand-gesture recognition in [ 4]. In dynamic gestures the hand poses vary with 
time, for which Recurrent Neural Networks (RNN) are used which considers the 
relationship between consecutive frames. Long short Term Memory Networks 
(LSTMs) are type of RNNs that capture spectral, spatial as well as temporal 
features in a dataset [ 3]. Thus, it would be interesting to explore LSTMs together 
with CNN-based models for recognising static as well as dynamic hand gestures 
using single or both hands for real-time interaction with a robot, especially in a 
smart factory setting. 

3 Problem Definition and Conceptual Approach 

In smart manufacturing, a seamless interaction between human workers and 
robots is critical for optimizing workflow efficiency and flexibility. Gesture recog-
nition offers a promising approach for enhancing this interaction by enabling 
intuitive and natural communication. In this paper, we explore the concept of 
using an egocentric view of the human worker-as a basis for recognizing ges-
tures that facilitate human-robot interaction. The egocentric vision is particu-
larly advantageous in scenarios where the human worker is physically distant 
from the robot, making direct visual contact or remote human-robot interaction 
(HRI) challenging. This capability is crucial for maintaining operational effi-
ciency and safety in dynamic and flexible manufacturing settings, where workers 
may need to interact with robots from varying distances and locations. The 
objective of this research is to develop a comprehensive workflow for human-
robot interaction using a combination of data collection, deep-learning model 
training, and evaluation. A method for recognizing and classifying hand ges-
tures from an egocentric perspective is developed, utilizing a Long Short-Term 
Memory (LSTM) model and Mediapipe hand landmak feature extractor, with 
the Microsoft HoloLens2 device camera. The project also emphasizes the impor-
tance of data pre-processing, and evaluation on both recorded and real-time data. 
Alongside this work, an effort is made to implement gesture-based interaction 
between the factory worker and the robot using ROS communication. 

Three classes of gestures needed to be classified. The “stop” and “come” ges-
tures are both-handed, whereas the “continue” gesture could be done with either 
of the hands. The intention was to have diverse gestures. For which 1000 short 
videos of 39 frames for each class are recorded for the training dataset. For single 
handed gesture, around 500 samples were collected using the right hand, and the 
rest were collected using the left hand. For collecting data, Microsoft HoloLens2 
is used. To save video data for further processing on a computer using HoloLens2 
Sensor Streaming [ 1] application is utilized which transmits sensor data via TCP. 

During data collection phase, different randomization techniques were 
included such as variable hand poses. Lighting conditions were also varied, as 
shown in Fig. 1. The RGB data was not relevant in dataset collection phase, since
2 https://ai.google.dev/edge/mediapipe/solutions/guide. 
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the RGB data is used by the Mediapipe to give hand landmarks. Moreover, dur-
ing certain data collection sessions, intentional hand tilts were introduced to 
simulate real-world scenarios and data with motion blur was also introduced, as 
depicted in Fig. 1. Hand overlapping or occlusions is common, so various hand 
overlapping conditions were included. Moreover, the dataset was collected from 
8 different individuals with varying hand sizes and gesture styles. These efforts 
aim to enhance future model training and improve the model’s robustness and 
generalization. 

Fig. 1. Recorded data samples with different conditions of illumination, backgrounds, 
angles of hand poses and occlusion. 

Fig. 2. Hand-gesture recognition pipeline 

MediaPipe 3 already propose a CNN based approach trained on high quality 
and diverse dataset for hand landmark detection. It also performs very well and 
meet the real-time requirements. Based on the mentioned concerns and the fact 
that the MediaPipe hand-landmark detection model is powerful enough, a mod-
ular hand-gesture recognition approach, consisting of two modules, considered in
3 https://github.com/google/mediapipe. 
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this project. First, recorded video frames are fed to the MediaPipe CNN model 
to extract the hand keypoints, and save the keypoints for each frame. Then, these 
keypoints will be fed into a LSTM model for gesture detection. Each video con-
tains 39 Numpy arrays of hand landmarks. Thus a complete gesture recognition 
pipeline was chaled out as shown in Fig. 2. 

3.1 Hand Landmarks 

In the feature extraction phase, MediaPipe is used to extract hand landmarks. 
As illustrated in Fig. 3, MediaPipe applies a robust model based on CNN to 
determine the keypoint localization of 21 hand-knuckle coordinates inside the 
detected hand regions. Mediapipe model was trained using around 30K real-
world images as well as synthetically created hand models with a variety of back-
grounds [ 16]. A palm detection model and a hand landmarks detection model 
are included in the MediaPipe hand landmarker model bundle. The palm detec-
tion model detects hands inside the input image, while the hand landmarks 
recognition model recognizes specific hand landmarks on the palm detection 
model’s cropped hand image. 

Fig. 3. From left to right, the stop, continue, and come hand gesture data labelled 
with hand landmarks 

3.2 Classification Model 

Although classification is a static problem usually tackled using CNNs alone. 
However humans use diverse gestures including static and dynamic ones in the 
most intuitive ways. In dynamic gestures such as waving, the hand pose change 
with time. There is noise in the input data that needs further filtering to have 
robust recognition of gestures which would be used as commands for the robot. 
Thus for the classification model a LSTM model was used together with Medi-
apipe feature extractor to tackle the non-linear problem of dynamic gestures. A 
stacked LSTM architecture was created consisting of a series of LSTM layers, 
followed by Dropout and Dense layers. The input to the model is a sequence of 
hand landmark data, represented by frames containing 21 key points, each with 
x and y coordinates, resulting in 42 features per frame. The model is trained to
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classify these sequences into one of three possible actions, as indicated by the 
final dense layer with a softmax activation function. SGD optimizer with learning 
rate = 0.001 used as an optimizer and the activation function is softmax for the 
last dense layer and ReLu for other units. Also Categorical Cross-Entropy was 
used as the loss function. The corresponding model in block diagram is shown in 
Fig. 4. 

Fig. 4. Model architecture block diagram 

4 Results 

The final dataset was divided into 2186 samples for training, 243 for validation, 
and 608 for testing. The training phase is for 200 epochs, however after 10 epochs 
without significant improvement, training phase will stop. The model was trained 
in total for 82 epochs. The final test loss is 0.1287 and accuracy is 96%. In Fig. 5, 
the model loss and accuracy is depicted over all epochs. From the graphs, it can 
be derived that the training happens without overfitting or underfitting. 

In Table 1 the precision, recall, and f1-score is depicted for each class on the 
test dataset. The performance of all classes are mostly similar with f1-score being 
0.96 for ‘stop‘, 0.98 for ‘continue‘, and 0.95 for ‘come‘. The confusion matrix, as 
depicted in Fig. 5, summarize the performance of the classification model. Based 
on the confusion matrix, the model performs better on ‘stop‘ and ‘continue‘ in 
comparison to ‘come‘. For the ‘come’ gesture there was false classification as 
‘stop’ gesture. This can me improved with more data. 

5 Robot Communication 

In a factory scenario where humans collaborate with robots on tasks such as 
maintenance, the robot is mainly used to bring the necessary tools to the human. 
The recognized gestures were used to command the robot. The ‘come’ gesture-
based command is used to call the robot when the worker needs any help from 
the robot, provided the robot is aware of the worker’s location, the ‘stop’ com-
mand is used to pause the robot if the help is no longer needed. The ‘continue’ 
command is used to resume the task the robot was previously performing before 
‘stop’ command. In this way a direct human-robot interaction is carried out.
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Fig. 5. Model loss and accuracy for train and validation set in 82 epochs, and confusion 
matrix 

Table 1. Classification report on test dataset. 

Label Precision Recall F1-Score Samples 
Stop 1.00 0.93 0.96 439 
Continue 0.96 1.00 0.98 390 
Come 0.93 0.96 0.95 386 

6 Conclusion and Future Work 

In this research we explored the potential of ego-centric hand gesture-based 
human robot interaction. Google’s MediaPipe library was used as the basis for 
hand-landmarks feature extraction. These sequences of hand landmark features 
were then used for a classification of dynamic hand-gestures using an LSTM 
neural network. The performance of the model was promising (accuracy= 0.96, 
loss = 0.1287) and both the total accuracy as well as classification report, for each 
class as an evaluation metric, were considered. Although the results seem good, 
the amount of false positive classification of ‘come’ gesture with stop gesture can 
be corrected using a larger dataset. Also experiments with videos with varying 
lengths could be used for training. More classes could be added to see how 
the model performs on more classes. Additionally, the potential of this gesture 
recognition model for hand-pose based action and activity recognition can be 
explored. 
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Abstract. Computer Vision (CV) and Machine Learning (ML) have 
transformed manufacturing by enabling real-time monitoring and opti-
mization. This study introduces a novel CV-based system employing 
multiple RGB 2D cameras for the localization of human workers on the 
shop floor. The system utilizes the SCRFD pre-trained 2D person detec-
tion neural network, leveraging existing surveillance and common video 
cameras to monitor worker positions accurately. By tracking workers 
in real time, the system enhances safety by detecting hazardous situa-
tions, thereby preventing accidents. The proposed methodology was vali-
dated using videos from an industrial setting in the production of wooden 
house modules, demonstrating robust performance with a detection rate 
of 67.37% and a mean absolute error of 0.5 m. This approach provides a 
cost-effective and precise solution to improve worker safety and opera-
tional efficiency in manufacturing environments, advancing the integra-
tion of advanced CV techniques in industry. 

Keywords: Human Worker Localization · Human Monitoring · Safety 

1 Introduction 

Advanced digital technologies in manufacturing environments enable the collec-
tion and analysis of vast amounts of data from sources such as sensors, cam-
eras, and other devices in manufacturing environments. This vast amounts of 
data can now be harnessed to monitor and optimize manufacturing processes, 
improve product quality, and enhance worker safety. The integration of Artificial 
Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques 
has further enabled the analysis and interpretation of this data, offering valuable 
insights and supporting decision-making in manufacturing environments. 

Building on these advancements, this work explores the use of Computer 
Vision (CV)-based techniques for Indoor Positioning Systems (IPS) [ 4] in man-
ufacturing settings, as an alternative to traditional radio-based approaches and 
emerging 3D vision technologies like LIDARs. Specifically, CV-based person 
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detection supported by DL models is utilized to locate and monitor individ-
uals on the shop floor. This approach offers a balanced trade-off between perfor-
mance, accuracy, precision, and computational cost. The data generated not only 
improves worker safety by detecting and signaling hazardous situations but can 
also be leveraged for various other applications and services. By accurately locat-
ing workers in real time, this methodology aims to prevent accidents and enhance 
overall safety in the workplace, marking an advancement in the practical appli-
cation of CV and DL technologies in manufacturing environments. 

2 Related Works 

Recent advancements in computer vision and deep learning have enabled real-
time object detection using video cameras. OpenPose [ 1] was the first real-time 
multi-person system to detect 135 human body, hand, facial, and foot keypoints 
in single images, estimating human poses in real-time. Since then, many AI tech-
niques for human pose detection and analysis have seen significant application 
in the industrial sector [ 19], particularly for safety and manufacturing process 
monitoring [ 20]. The lack of specialized datasets for Person Search [ 18] often leads 
to the use of general object detection datasets and models. Common approaches 
involve fine-tuning pre-trained models like YOLO [ 13] or Faster R-CNN [ 14] 
on custom datasets, with examples applied to manufacturing workers identifica-
tion [ 7]. Additionally, datasets for sub-tasks such as Pedestrian Detection [ 9] and  
Re-Identification [ 5] have been effective. 

Alternative strategies for worker detection employ Radio Frequency (RF) 
and Light Detection and Ranging (LIDAR) technologies. RF-based systems use 
radio waves to locate workers in real-time, with applications in industrial envi-
ronments [ 11,12]. LIDAR systems use laser light to measure distances and cre-
ate 3D maps of the environment, with applications in worker safety and mon-
itoring [ 15]. While these technologies offer high accuracy and reliability, they 
are often expensive and require specialized equipment, limiting their widespread 
adoption in manufacturing environments. 

InsightFace [ 3, 6] offers a deep learning-based facial detector library for 
Python. Despite its initial design for face detection, InsightFace models have 
proven effective in detecting workers in real-time video streams on shop 
floors [ 10]. Combining these models achieves high accuracy and robustness in 
tracking people on shop floors, integrating with other safety systems like machine 
learning-based fall detection for comprehensive safety monitoring. 

3 Methodology 

The proposed methodology aims to localize indoor human workers in a man-
ufacturing environment by employing commercially-available monocular RGB 
cameras. The acquired single-view videos are processed using CV techniques and 
analyzed using a DNN person detection model to finally derive workers location



136 F. Berardinucci and M. Urgo

Fig. 1. Schema of camera-based positioning and hazardous situation detection. 

in the 2D factory floor space. The approach supports the utilization of mul-
tiple RGB 2D cameras strategically positioned to provide redundant coverage 
of the same area, providing multiple detections of the same worker in different 
camera views, without identifying the worker. This redundancy is critical for 
ensuring comprehensive visibility and reliability in data acquisition, even in the 
presence of potential occlusions or environmental changes that are common in 
a manufacturing environment. The combined perspectives from these cameras 
create a robust framework for real-time monitoring and analysis where, if at least 
one detection is found in an hazardous area, an alarm can be triggered. The fol-
lowing sections detail the sequential steps of the approach, from preprocessing 
video signals to inferring multiple workers’ positions on the shop-floor layout, 
that are crucial to develop hazard detection systems and improve worker safety. 

The methodology is designed grounding on the following assumptions: (i) 
At least two cameras should cover the considered area; (ii) Cameras must be 
calibrated and synchronized. 

Since the objective is the localization of workers rather than their identifica-
tion, this approach is more viable from a regulatory perspective and less intrusive 
for workers’ privacy while still ensuring necessary safety features, at the cost of 
possible multiple detections of the same worker. 

The approach comprises the following steps: (1) Preprocessing of the video 
stream (distortion correction, perspective transform derivation); (2) Detection 
of human beings in the video stream; (3) Localization of one or more human 
operators on the shop-floor space. The detailed process steps are presented in the 
following paragraphs. Figure 1 provides an overview of the approach structure, 
integrated in a hazardous situation detection application. The human workers are 
localized using the processed video streams and DNN model, thus obtaining 2D 
location coordinates of the shop-floor. Externally, the system receives identified 
hazardous regions’ coordinates in the same reference system. Safety hazards are 
detected by testing workers’ positions in the defined regions. 

3.1 Preprocessing of Video Signals from Calibrated Cameras 

The first phase consists in preprocessing the video signals of calibrated and syn-
chronized cameras. This step involves synchronizing the video signals, correcting
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Fig. 2. Video frame showing the distortion correction using the intrinsic calibration 
parameters of the camera lens and the resulting undistorted image. 

the lens distortions and aberrations, to be able to estimate the spatial configu-
ration of the cameras. The first requirement for measuring using cameras is to 
work on calibrated video streams. Thus, the geometrical distortion caused by 
the camera lenses must be corrected. This correction requires a suitable mathe-
matical model for the lens to model the introduced distortion and the associated 
parameters. Data supporting this correction are sometimes available by the lens 
manufacturer, by external databases [ 17] or measured by performing an intrin-
sic calibration of the lens [ 2]. A sample distortion correction result is shown in 
Fig. 2. 

3.2 Person Detection, DNN Occlusion Inference and Positioning 

The next phase consists in the detection of persons in the video stream and the 
extraction of bounding boxes in pixel space. This step involves using a DL model 
to analyze each distortion-corrected frame of the videos and identify the presence 
of humans in the scene. The output of the neural network consists in a vector of 
(4 + 4) ∗ n keypoint values in frame space (percentages), corresponding to the 
vertex coordinates of two bounding box per person detected (Fig. 3). The first 
set contains a bounding box for each visible person in the frame (in green), while 
the latter are estimates of the entire person body, including possibly occluded 
body parts (in red). The second set will be used for the localization to ensure 
robustness against occlusions. Each bounding box is defined by its four vertex 
points in pixel coordinates. For this detection, the InsightFace SCRFD neural 
network model [ 6] has been selected after validating its performances in videos 
with one or multiple operators present and with partially occluded bodies. The 
model uses a ResNet backbone and accepts RGB images as input (w × h × 3). It 
was selected after testing performances of multiple models in videos where one or 
multiple operators where present and with partially occluded bodies and after 
the performance evaluation that showed that the model is capable to be run 
in real-time (see Sect. 4) which is a requirement for safety applications, and 
the SCRFD network’s capability to estimate the entire body bounding box, even 
in the presence of occlusions, in addition to the visible body bounding box. 

The objective is to obtain operators’ location in real-word coordinates, there-
fore it is wanted to derive a point value from the detections. To achieve this, 
the worker’s feet location will be used as an approximation for his/her position 
on the factory floor. This point value (in pixel-space) is derived, specifically, by 
considering the middle point of the lower side of the bounding box of the whole
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Fig. 3. Person detection model output with partial occlusion. The considered position 
point is shown (star), based on the inferred body bounding box. 

human body (Fig. 3, star symbol), assuming that the worker is operating on the 
factory floor. Additionally, using the estimated bounding box provides robust-
ness against occlusions of the lower part of the body. 

Considering this point as the position of the operator in the camera pixel-
space, his/her successive locations in the shop floor are derived by projecting 
his/her coordinates in the shop-floor-space, using the described extrinsic projec-
tion matrix (Sect. 3.3). 

3.3 Transformation of Bounding Boxes Coordinates from Pixel 
Space to Real-World 2D Space and Reconstruction of Shop 
Floor Status 

The final step in the methodology is the transformation of the derived reference 
location point estimates (Fig. 3) from pixel space to real-world 2D space and 
the reconstruction of the shop floor’s current status. This allows for a recon-
struction of the current status of the factory floor, including the location of the 
detected operators. Known the camera angle of view and direction in real world 
coordinates, each point is projected from pixel space to the real-word space by 
a perspective transform. 

Specifically, It is necessary to derive a mathematical function to map each 
point in the pixel space to the shop-floor coordinate space. For this application, 
since the objective is to locate the operators on the shop floor, a 2D carte-
sian space is considered, corresponding to the physical floor of the factory. An 
extrinsic calibration is required to derive the mathematical function of the pro-
jection between the two spaces. To this aim, the parameters listed in Table 1, 
related to the position of the camera on the shop floor, are required. Using these 
parameters, it is possible to project each point defined in the pixel-space to the 
shop-floor-space, by deriving a rotation matrix R and a translation vector t. The  
extrinsic matrix P is obtained by appending the vector t to the R matrix, then 
the extrinsic matrix is used to model the relation between the camera pixel-space 
and the shop-floor-space.
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Table 1. Input parameters of the extrinsic calibration. 

Parameter Unit of measure 
αi: Camera angle of view degrees 
(w, h): video resolution pixels 
θi: Orientation of camera i (vertical axis, yaw) degrees 
ψi: Orientation of camera i (pitch) degrees 
Pi: 2D position of camera i (in world coordinates) meters 
CSYS: Shop-floor coordinate system — 

The extrinsic matrix is used to model the relation between the camera pixel-
space and the shop-floor-space: 

P = [R|t]
[
Xc 

Yc

]
= P 

⎡ 

⎣Xw 

Yw 

1 

⎤ 

⎦ (1) 

An example frame showing the transformation applied to each pixel of the input 
image is presented in Fig. 4. Finally, the detected position of the worker (the mid-
point of the lower segment of the bounding box, Sect. 3.2) is projected on the shop 
floor frame-by frame, as shown in Fig. 5. The resulting trajectory of positions 
can then be employed with external systems and downstream applications to 
detect hazardous situations in the shop floor by comparing the worker’s position 
with the location of dangerous areas. 

4 Validation and Results 

The described approach has been tested in an industrial setting involving the 
construction of wooden house modules. The videos come from surveillance cam-
eras installed in the factory, above the module assembly area, directed towards 
a crane loading/unloading area. This area was selected due to the potential 
safety risks for workers handling the house module components. A control region 
was defined within this area, prohibiting worker access during crane operations. 
To test the methodology, multiple videos have been recorded in which a single 

Fig. 4. Video frame illustrating the perspective transform and projection of the image 
on the shop-floor plane using extrinsic calibration parameters.
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Fig. 5. Test output. The distortion-corrected and re-projected floor is shown. On the 
foreground are overlaid the detected worker positions and their coordinates. 

worker is operating, visible from two cameras’ fields of view. The method is 
tested on the complete video, a 30 s recording (30 fps) containing a total of 900 
image frames. 

The intrinsic calibration has been performed by selecting a set of intrinsic 
parameters of a suitable equivalent lens, adapted by the crop factor, from the 
LensFun database [ 17]. As the obtained calibration has resulted to be reason-
ably accurate for the application, the undistorted video stream has been further 
processed according to the described approach. Nevertheless, an on-site intrin-
sic calibration could further improve the accuracy of the results. The extrinsic 
calibration was performed using existing references available from the camera 
point of view (machinery, road signs) for which a CAD model is available. To 
implement the approach in areas where such references are not available, tem-
porary visual markers on the shop floor are needed. The used SCRFD model 
implementation is InsightFace, developed using PyTorch and provided by the 
authors of SCRFD [ 6] along with the model weights trained on the CrowdHu-
man dataset [ 16]. 

In Fig. 5, a complete output from one of the recorded videos is presented, 
where the complete detected path of the worker is plotted (in blue). The results 
show a robust detection of the workers and a reasonable accuracy for the con-
sidered safety application. The performances meet the requirements for running 
sustainably in real-time, since the model can run at approximately 60–80 fps per 
single core on an Intel i9 CPU, while surveillance videos are usually recorded 
at 15–30 fps. The quantitative results on the analyzed experimental test are 
reported in Table 2. Overall, the model is able to detect the walking operator 
in approximately two-thirds of the total frames. If continuous trajectory data 
is required, an interpolation and/or filtering must be performed. The localiza-
tion achieves a mean error of approximately 0.5 m. For reference, in Fig. 6a the  
detected trajectory of the operator on the shop-floor is reported, alongside the 
ground truth. 

Additionally, the absolute errors per frame, computed as the norm of the 
distance vector between the real and detected positions are shown in Fig. 6b. 
It is visible, when comparing the diagram to the trajectory, that the absolute
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Table 2. Quantitative results for the test video experiment. 

Metric Value 
Detection Rate 67.37% 
Mean Absolute Error [pixel] 33.39 
Mean Absolute Error [mm] 534.37 
Average FPS (CPU, single-threaded) ∼65fps 

(a) Ground-truth and detected 

operator paths, projected on the 

shop-floor. 

(b) Absolute errors for each frame. 

Values are missing for frames with 

no detection. 

Fig. 6. Comparative analysis of the results. 

errors increase with the distance of the worker with respect to the camera, as 
expected. Furthermore, oscillations are visible due to the strides of the operator 
since the position is derived from the bounding box of the body in the frame. An 
ad-hoc filtering could be implemented to filter out the oscillations, if necessary. 

5 Conclusions 

In this work several key findings are observed. The core of the vision-based 
solution, revolves around the utilization of video signals to accurately localize 
workers. This process begins with the application of machine learning techniques 
to detect and identify humans within the camera feed. Following the successful 
detection, the next step involves estimating the location of the detected person-
nel directly from the video frames. However, it is important to note that the 
detection algorithm’s performance, while commendable, achieves correct detec-
tion in approximately two-thirds of cases on average. This level of performance, 
although significant, introduces gaps in the obtained trajectory data, underscor-
ing the necessity for advanced trajectory estimation methods to fill these gaps, 
increasing the complexity of the development. Additionally, the limited field 
of view provided by a single camera further complicates the detection process, 
making it clear that a network of multiple cameras is essential to ensure continu-
ous and comprehensive coverage across the entire area of interest. Nevertheless, 
thanks to the chosen per-video analysis strategy and without performing person
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identification, introducing redundancy through multiple cameras do not compli-
cate the approach, but rather enhance its robustness and reliability, especially in 
safety applications. 

One of the most notable advantages of this camera-based method over alter-
native solutions, such as those based on RF and LIDARs, is the simplicity of 
implementation, by using non-specialized equipment, often already installed in 
industrial environments. Additionally, the structure of the approach tailored to 
work with multiple single-view localizations, allow to optionally integrate in the 
system alternative positioning systems if needed. Further developments could 
include data fusion with other sensors, such as RF or LIDAR, to enhance the 
system’s robustness and reliability. Additionally, the prediction of the worker tra-
jectory [ 8] can be investigated to predict hazardous situations ahead of time and 
to identify near-misses. Finally, by implementing a depth estimation algorithm, 
the system could avoid the need for extrinsic calibration, further simplifying the 
setup process and allow for simple reconfiguration. 

Acknowledgements. This work was partially funded by the European HE research 
project 5G-TIMBER, GA no. 101058505. The authors thank Harmet O ̈U for their 
support in defining the case study. 

Declaration of Interests. The authors have no competing interests to declare that 
are relevant to the content of this article. 

References 

1. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-
person 2D pose estimation using part affinity fields. arXiv:1812.08008 (2019) 

2. De la Escalera, A., Armingol, J.M.: Automatic chessboard detection for intrinsic 
and extrinsic camera parameter calibration. Sensors 10(3), 2027–2044 (2010) 

3. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: RetinaFace: single-shot 
multi-level face localisation in the wild. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 5202–5211. IEEE, Seattle, WA, 
USA (2020) 

4. Farahsari, P.S., Farahzadi, A., Rezazadeh, J., Bagheri, A.: A survey on indoor 
positioning systems for IoT-based applications. IEEE Internet Things J. 9(10), 
7680–7699 (2022) 

5. Fu, D., et al.: Unsupervised pre-training for person re-identification. In: 2021 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 
pp. 14745–14754. IEEE, Nashville, TN, USA (2021) 

6. Guo, J., Deng, J., Lattas, A., Zafeiriou, S.: Sample and computation redistribution 
for efficient face detection (2021) 

7. Hu, J., Gao, X., Wu, H., Gao, S.: Detection of workers without the helments in 
videos based on YOLO V3. In: 2019 12th International Congress on Image and 
Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–4 
(2019) 

8. Katsampiris-Salgado, K., Dimitropoulos, N., Gkrizis, C., Michalos, G., Makris, S.: 
Advancing human-robot collaboration: Predicting operator trajectories through AI 
and infrared imaging. J. Manuf. Syst. 74, 980–994 (2024)

http://arxiv.org/abs/1812.08008


CV for Industrial Safety: Human Worker Localization Using Deep Learning 143

9. Khan, A.H., Nawaz, M.S., Dengel, A.: Localized semantic feature mixers for effi-
cient pedestrian detection in autonomous driving. In: 2023 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR), pp. 5476–5485. IEEE, Van-
couver, BC, Canada (2023) 

10. Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: 
a new perspective for pedestrian detection. In: 2019 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 5182–5191. IEEE, Long 
Beach, CA, USA (2019) 
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Abstract. With an increased flexibility in the production new schedul-
ing techniques are necessary to accommodate this change. Though there 
have already been published many scheduling algorithms fostering this 
demand for flexibility, there is no common ground on a benchmark data 
set to compare these approaches against each other. Therefore, this paper 
aims at the generation of a benchmark data set for the flexible job shop 
problem (FJSP) with setup and transportation times on which differ-
ent scheduling algorithms can be evaluated. The data set is specified 
by several key parameters from which FJSP are created. The use and 
advantage of the large-scale online scheduling (LOS) data set is exem-
plified by its application on a Reinforcement Learning online scheduling 
algorithm and dispatching rules. Furthermore, backward compatibility is 
established with the former FJSP notation. 

Keywords: Benchmark · Scheduling · Flexible Job Shop · Data Set 

1 Introduction 

Industry 4.0 increases the flexibility of the production in the shop floor. Hence, 
new approaches for scheduling are required to accommodate for the accompany-
ing changes introduced in Industry 4.0. On the hardware side the flexibility is 
often enabled by the use of modular production systems. In this connection, the 
resulting scheduling problem is formally defined by the flexible job shop problem 
(FJSP) with setup and transportation times. Though there have already been 
published many scheduling algorithms fostering this demand for an increased 
flexibility, there is no common ground on a benchmark data set to compare 
these approaches against each other. 

Towards this end, the data sets which are used are either not published and 
explained in detail, small scale or only have few instances. This makes a broad 
adaptability difficult. Hence, a comparison between the algorithms as well as 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 147–156, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86489-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-86489-6_16


148 K. Hengel et al.

the evaluation of its advantages and disadvantages is not possible. Therefore, we 
present a benchmark data set for the FJSP with setup and transportation times 
on which different scheduling algorithms can be evaluated. 

The data set is specified by several key parameters from which FJSPs are 
created. A new notation is introduced for better extensibility and readability rea-
sons. The use and advantage of the large-scale online scheduling (LOS) data set 
is exemplified by its application on a Reinforcement Learning online scheduling 
algorithm and dispatching rules. Furthermore, backward compatibility is estab-
lished with the former FJSP notation. As example the existing FJSP data set 
published by [ 12] is converted to our notation. This allows the comparison of the 
results between previous and newly published algorithms using either of these 
notations. 

The remainder of this paper is organized as follows. An introduction to the 
FJSP with setup and transportation times as well as an overview for existing 
scheduling data sets is given in Sect. 2. Afterwards the method for the creation 
of the FJSP data set is introduced in Sect. 3. At last a RL scheduling algorithm 
and dispatching rules are applied on the data sets. The results are demonstrated 
in Sect. 4 and discussed in Sect. 5. 

2 State-of-the-Art 

2.1 Flexible Job Shop Problem 

An overview of the taxonomy of scheduling problems is given in [ 14]. To handle 
a high degree of flexibility in the shop floor we focus on online scheduling for 
FJSP with setup and transportation times. 

Given are n jobs J = {j1, j2, ..., jn}. Each job ji is composed of r operations 
Oi = {oi 1, o

i 
2, ..., oi r}. Each operation oi u must be processed before every operation 

oi v with u < v. Every operation must be processed on one of the machines 
M = {m1,m2, ..., mh}. A machine can only process one operation at a time. 
While an operation oi u in the general job shop problem (JSP) must be processed 
on one specific machine, the FJSP relaxes this condition and an operation can be 
process by a specified subset M iu ⊂ M of all machines. The processing time of an 
operation oi u on machine l is given by piu l . Between the processing of two different 
jobs on a machine, a setup time might occur. The setup time is denoted by ciu,vw 

l 

with l being the machine id and oi u and ov w being the operations. Furthermore, 
tlk denotes the transportation time of a job between the machines l and k. 

2.2 Benchmarks 

Figure 1 show an overview of publicly available data sets applicable for testing 
FJSP scheduling algorithms. Since the FJSP is a generalization of the JSP, every 
flexible job shop scheduling algorithm can also be applied to a JSP instance. A 
large data set of JSPs is contained in the OR-library [ 4]. It includes JSP by 
[ 1, 2, 8, 10, 11, 15, 16]. Since the OR-library’s JSP instance are rather small, [ 6]
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Fig. 1. Taxonomie of benchmark data sets 

created a large scale set of JSP. In their first approach they hereby extended the 
benchmark set of [ 16]. 

The FJSP instances can be differentiated into two groups: 

1. Existing JSP instances can be extended to the FJSP case by defining M iu 
2. FJSP can be created from scratch by selecting parameters withing given 

ranges 

[ 3, 9] are examples of the first group which extend existing JSP instances 
from [ 1, 8] resp.  [  8, 10]. The JSP differs from the FJSP only in the definition 
of M iu, i.e. the operation oi u can be processed by multiple machines m ∈ M iu 
with |M iu| ≥  1. In contrast |M iu| = 1  holds in the JSP case. Hence, only M iu 
must be redefined. To do so [ 9] fixes  avg 

i,u 
|M iu| and max 

i,u 
|M iu|. By using  the  

parameter selection depicted in Table 1 four different subsets are created, named 
sdata, edata, rdata and vdata. Hereby, the edata represents the instances where 
only few operations can be processed by different machines. In the rdata most 
operations can be assigned to a few number of different machines and in the 
vdata each operation can be assigned to many different machines. 

Table 1. Parameter assignment for the FJSP instances by [ 9] 

avg 
i,u 

|M iu| max 
i,u 

|M iu| 

sdata 1 1 
edata 1.15 2, if h ≤ 6 

3, otherwise 
rdata 2 3 
vdata 0.5 h 0.8 h
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On the other hand in [ 3] the cumulative processing time (CPT) and the num-
ber of critical operations are utilized to replicate machines of one JSP instance. 
More specifically an instance is modified in one of the following ways: 

– the machine requiring the greatest CPT is replicated once 
– the machine requiring the greatest CPT is replicated twice 
– the machine requiring the greatest CPT is replicated three times 
– the machines requiring the greatest and second-greatest CPTs are replicated 

once each 
– the machines requiring the greatest, second-greatest, and third-greatest CPTs 

are replicated once each 
– the machine with the greatest number of critical operations is replicated once 
– the machines with the greatest and second-greatest number of critical oper-

ations are replicated once each 

Table 2. Parameter selection of [ 5, 7] 

Parameter [ 5] [ 7] 
n = |J | n ∈ N n ∈ N 
h = |M | h ∈ N h ∈ N 
r = |Oi| r ∈R [rmin, rmax] 

rmin ∈ N, rmax ∈ N 
r ∈R [rmin, rmax] 
rmin ∈ N, rmax ∈ N 

M iu |M iu| ∈R [1, b
iu 
max], b

iu 
max ∈ N P (l ∈ M iu ) ∈ [0, 1] 

piu 
l piu 

l ∈R [pmin, pmax] 
pmin ∈ N, pmax ∈ N 

piu :=
∑

l∈M iu p
iu 
l 

|M iu| ∈ [pmin, pmax] 

pmin ∈ N, pmax ∈ N 
with |piu 

l − piu 
k | ≤  Δpl∀l, k ∈ M iu , Δpl ∈ N 

In case no JSP instance is the basis for the FJSP creation, all FJSP parame-
ters must be set. [ 5, 7] do so by using a set of parameters and boundaries within 
which they are selected. Table 2 presents a comparison of both approaches. Let 
x ∈R S denote that x was selected from R uniformly at random while x ∈ S 
denotes that x was selected manually from S. In [ 7] a probability P (l ∈ M iu) 
∈ [0, 1] is set for every M iu. P is the probability of a machine l being in M iu. In  
the case M iu would be empty a machine l is selected randomly and M iu = {l}. 

A collection of FJSP instances by [ 3, 5, 7, 9] is provided by [  12]. It encom-
passses in total 313 benchmark instances in standard FJSP notation syntax. All 
instances use the standard FJSP notation syntax. In the first line the number 
of jobs and the number of machines is specified. It is followed by a line for each 
job. Each job specification starts with the number of operations of the job. It 
is followed by a sequence for each operation specifying the number of machines 
which are able to process the operation and the machine ids and the processing 
times of them. An example of this notation is given below using the instance 
mt06 by [ 8]:
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6 6 1  
6 1 3 1 1 1 3 1 2  6  1  4  7  1  6  3  1 5 6  
6 1 2 8 1 3 5 1 5 10 1 6 10  1 1 10  1 4 4  
6 1 3 5 1 4 4 1 6  8  1  1  9  1  2  1  1 5 7  
6 1 2 5 1 1 5 1 3  5  1  4  3  1  5  8  1 6 9  
6 1 3 9 1 2 3 1 5  5  1  6  4  1  1  3  1 4 1  
6 1 2 3 1 4 3 1 6  9  1  1 10 1 5  4  1 3 1  

3 Method 

A job is defined by a sequence of operations. While an operation describes “the 
application of a skill on a defined product type with a desired outcome” [ 13], the 
term skill defines “the ability of a resource to perform a process” [ 13]. Hence, the 
term skill relates to processes and resources while the term operation relates to 
products. Even trough the represent the same, they show different viewpoints on 
the process. By using a fixed set of skills S = {s1, s2, ..., sg} instead of operations 
in the definition of the FJSP, reusable building blocks can be formulated. Instead 
of defining the processing time for an operation oi u, we define the processing time 
of a skill su, i.e. pu l . Furthermore, we define the setup time cuv l of a machine 
between skills su, sv and a job as sequence of skills. In this way, we can scale 
the number of jobs and machines upwards while limiting the skills without a 
blow-up of the instance specification. 

For the generation of our benchmark data set we used approaches from [ 5, 9]. 
We defined the parameters for the FJSP creation as follows: 

– n ∈R [nmin, nmax], nmin ∈ N, nmax ∈ N 
– h ∈R [hmin, hmax], hmin ∈ N, hmax ∈ N 
– g ∈ N 
– r ∈R [rmin, rmax], rmin ∈ N, rmax ∈ N 
– avg 

i,u 
|M iu| ∈  R+ 

– max 
i,u 

|M iu| ∈  R+ 

– pu l ∈R [pmin, pmax], pmin ∈ N, pmax ∈ N 
– cuv l ∈R [smin, smax], smin ∈ N, smax ∈ N 

Furthermore, let τ ∈ N be a scaling factor for the transportation times. The 
machines are arranged in a square matrix inside the factory. The distance 
between two machines is then defined by the manhattan distance between the 
machines multiplied by the scaling factor for the transportation times. The skills 
of a machine are selected following the approach of [ 9]. Using a triangular distri-
bution with lower limit 1, upper limit max 

i,u 
|M iu| and mode avg 

i,u 
|M iu| the number 

of machines per skill is defined. Afterwards the selected number of machines are 
sampled randomly from the set of machines. The processing time of the machine 
for the skill is randomly sampled from the uniform distribution between the
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given limits. The setup times are selected randomly using a uniform distribution 
within the given limits. For the definition of the jobs we select the number of 
jobs, for each job the number of skills and for each skill the skill itself uniformly 
at random. 

With the utilization of skills, we could not follow the standard FJSP notation. 
Instead, we used a yaml based syntax for the LOS data set instances. This also 
allows easier extensibility and readability. Each FJSP is described by a map 
with the keys distances, skills, changeovers and jobs. The values are represented 
as (nested) lists. To ensure the comparison with benchmarks specified by the 
standard FJSP notation, we established backwards compatibility with it. By 
setting the setup and transportation times to 0 and mapping every operation in 
the former notation to a different skill in our yaml notation, the comparison to 
previous used benchmarks can be established. 

4 Results 

We applied the dispatching rules of Table 3 and a scheduling algorithm using 
Reinforcement Learning (RL) on the benchmark data set of [ 12] as well as on  
the LOS data set. Since the setup and transportation times are 0 for the instances 
in [ 12], the dispatching rules SST and SST + SPT are not applied in this case. 
In Figs. 2, 3, 4, 5 and 6 the resulting make span of the scheduling algorithms are 
presented. The results are illustrated as box plot created by 21 FJSP instances 
of [ 3], 10 of [ 5], 18 of [ 7], 264 of [ 9] and 100 of the LOS data set. 

Table 3. Overview of dispatching rules 

Abbreviation Dispatching Rule 
SIRO Setup in Random Order 
SST Shortest Setup Time min(ciu,vw 

l + tlk) 

SPT Shortest Processing Time min piu 
l 

SPT + SST Shortest Processing + Setup time min(piu 
l + ciu,vw 

l + tlk) 

For the results of the data set of [ 12] (Figs. 2, 3, 4 and 5) the results do not 
vary much between the different algorithms. The boxes as well as the whiskers 
overlap most of the time. The largest difference of the mean respectively the 
median occurs in the data set of [ 7]. Here the median differs between the RL algo-
rithm and the SPT dispatching rule by 1063, the mean respectively by 1922.5. 
While RL performs the best in the data set of [ 3], SPT has the best performance 
in the data sets of [ 7, 9]. In [ 5] RL and SPT perform nearly the same. 

For the evaluation of the LOS data set, we created over 8000 FJSP instances 
with the following parameter assignment: n = 100, h = 25, g = 25, r ∈R [5, 8], 
avg 
i,u 

|M iu| = 12.5, max 
i,u 

|M iu| = 20, pu l ∈R [10, 100], cuv l ∈R [10, 50], τ = 20.
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Fig. 2. Evaluation of dispatching rules 
and an RL scheduling algorithm on the 
data set by [ 3] 

Fig. 3. Evaluation of dispatching rules 
and an RL scheduling algorithm on the 
data set by [ 5] 

Fig. 4. Evaluation of dispatching rules 
and an RL scheduling algorithm on the 
data set by [ 7] 

Fig. 5. Evaluation of dispatching rules 
and an RL scheduling algorithm on the 
data set by [ 9] 

Figure 6 shows the results evaluated on 100 FJSP instances of the RL schedul-
ing algorithm and the dispatching rules. In contrast to the Figs. 2, 3, 4 and 5 
not all boxes for the different scheduling algorithms overlap anymore. The mean 
performance of the algorithm increases in the order RL, SST+SPT, SPT, SST, 
SIRO with values 3007.3, 3308.8, 3466.35, 4262.19, 4287.16. While the dispatch-
ing rules SIRO and SST have a rather larger box and long whiskers, the RL 
algorithm as well as the dispatching rules SPT and SST+SPT have a smaller 
box with shorter whiskers. 
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5 Discussion 

The boxes and whiskers of the different scheduling approaches all overlap in the 
data sets of [ 3, 5]. Hence, there is no advantage between the scheduling algo-
rithms visible. The results are only slightly better for the data sets of [ 7, 9]. Here 
one can see an advantage of the dispatching rules SIRO and SPT in contrast 
to the RL algorithm. These observations suggest, that the RL algorithm is not 
able to generalize well. One possible reason is that there are too few instances 
for training of the RL algorithm. Since there is also no advantage between the 
dispatching rules in Figs. 2 and 3 and only a slight advantage in Figs. 4 and 5, 
this also suggests that the data sets only have few potential for online schedul-
ing. Since they were created in the 90 s before the fourth industrial revolution 
started, they were invented for offline scheduling rather than online scheduling. 
At that time manufacturing systems were rather static and fixed. Thus, offline 
scheduling techniques where production plans can be computed in advance are 
generally in favor, since they can achieve more optimal results. With Industry 
4.0 dependencies within and among manufacturing systems increased. Hence, 
flexibility and agility became more important and with this the necessity for 
online scheduling approaches. This makes these ancient data sets insufficient 
and outdated for the current research. 

Fig. 6. Evaluation of a RL scheduling algorithm and multiple dispatching rules on the 
LOS benchmark 

For this reason, a new FJSP data set for online scheduling is necessary. By 
adjusting the values of e.g. the transportation times, setup times or the process-
ing times, we can vary the impact of these factors. This affects the performance 
of the scheduling algorithm. Hence, we can see a real advantage of the RL algo-
rithm as well as the SST+SPT and SPT dispatching rules over the SIRO and 
SST dispatching rule in the FJSP as one would expect. This is evident by a 
visible shift in the boxes and the whiskers, as well as their absolute length. The 
later is indicating a lower variance in the scheduling results, making the schedules 
more robust. 

The FJSP instance is variably adjustable by its parameter selection. In this 
way we can scale up the instances itself and examine scheduling algorithms on 
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large scale instances. On the other hand it is also possible to generated numerous 
amounts of instances for the given parameters. Thus we can generate a large 
data set with sufficient training instances for e.g. Reinforcement Learning based 
algorithms to train on. Due to the explicit characterization of the used data set 
by its parameters the FJSP instances can be recreated. Hence, a comparison of 
different scheduling algorithms is possible. 

6 Conclusion and Future Work 

We present a method for the creation of a benchmark data set for FJSP with 
setup and transportation times. Furthermore, we ensure backwards compatibility 
to former FJSP data sets. We present results for different dispatching rules on 
the data set showing its potential for optimization using online scheduling. While 
the data set was invented for online scheduling, it is not limited to it and can 
also be used for offline scheduling. Through the potential of the data set for 
offline scheduling needs to be investigated in further studies. Besides that, future 
research might focus on the extension of the data set to holonic manufacturing 
systems and how the holons can be represented in the data set and considered 
during generation. 
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Abstract. Small batch sizes and individualized products are man-
aged with the concept of Cyber-Physical Production Systems (CPPS), 
enabling flexibility through interchangeable constellations, but increases 
complexity, especially when dealing with dependencies between decen-
tralized subsystems. To increase the resilience and self-healing capabil-
ities, greater automation of fault detection and diagnosis (FDD) is a 
key factor. It is a challenge to gather knowledge about faults, as these 
rarely occur compared to normal behavior. The flexibility in skill-based 
production systems makes this situation even more difficult. To over-
come this challenge, data and knowledge about faults and their con-
text from several Cyber-Physical Production Modules is used, which 
leads to federated knowledge databases. The knowledge databases are 
modeled in the Capability-Skill-Service-Fault-Symptom model (CSSFS 
model). To achieve the goal of high availability, resilience and auton-
omy of CPPS, automated decision-making for FDD using CSSFS appli-
cations is required. Therefore, automatic communication between FDD 
components is necessary. Therefore, focus of this paper is on the develop-
ment of a communication scheme, which models participants using Asset 
Administration Shells and the I4.0 Language to model their interactions 
to enable automated communication and makes distributed knowledge 
accessible. To ensure decentralized control of these services, functionali-
ties from several factory levels are encapsulated by Multi-Agent Systems 
(MAS) that follow a holonic structure. 
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Language · Asset Administration Shell 
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1 Introduction 

Greater automation of FDD is a key factor in increasing the resilience and self-
healing capabilities of manufacturing systems. However, the demand for individ-
ualized products requires small batch sizes down to batch size one, that leverages 
the challenge of FDD. One solution to increase flexibility in factory automa-
tion is a modular factory structure and skill-based production. The concept of 
Cyber-Physical Production Systems (CPPS) enables flexibility through multi-
ple, interchangeable constellations of production subsystems, but on the other 
hand increases complexity, especially when dealing with the decentralization of 
models and knowledge bases [ 1, 2]. Even in non-decentralized production envi-
ronments, it is a challenge to gather experience and knowledge about so-called 
faults and failures, as these rarely occur compared to the normal behavior of such 
systems. The increased flexibility in skill-based CPPS makes this situation even 
more difficult. Individualized tasks and small batch sizes lead to small amounts 
of individual data and knowledge, which extends the challenge of overall data 
usage. 

One way of overcoming this challenge is to use data and knowledge from 
several Cyber-Physical Production Modules (CPPM), which lead to federated 
knowledge databases in which faults are stored with their context. Knowledge 
databases about faults and their context are modeled in the Capability-Skill-
Service-Fault-Symptom model (CSSFS model). 

In order to achieve the goal of high availability, resilience and autonomy 
of CPPS, automated decision-making for FDD using CSSFS applications is 
required. This requires a communication option that is as autonomous as possible 
between the components required for FDD. 

Against this background, the research objective of this work is on the devel-
opment of a communication scheme that enables automated communication 
between FDD components for a decentralized control structure and makes dis-
tributed knowledge accessible. Therefore, on the one hand the topic of Asset 
Administration Shell (AAS) for modelling of CPPMs as communication partic-
ipants is focused. On the other hand the modelling of the messages between 
the participants using Industrie 4.0 language is examined. For this purpose, the 
required FDD components and their tasks and services are defined, which encap-
sulate distributed forms of knowledge. In order to ensure decentralized control of 
these services, various functionalities from several factory levels are encapsulated 
by MAS, that follow a holonic structure. For each task, a heuristic communica-
tion scheme is defined to retrieve the corresponding knowledge. 

The paper is structured as follows. Section 2 gives an overview of related work 
in the field. In Sect. 3 an architecture describes the modelling of communication 
participants and the messages between them using I4.0 components and AAS as 
well as I4.0 Language. A prototypical implementation of the concept is shown 
in Sect. 4, whereas Sect. 5 discusses the results and gives an outlook for further 
research.
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2 State of the Art 

Following the introduction a brief state of the art in the identified main topics 
of modular and skill-based production, AAS and I4.0 language as well as fault 
diagnosis based on multi-agent systems is given in this section. 

2.1 Modular, Skill-Based Production 

A main element of a modular and flexible production environment is the topic of 
CPPM, which can provide standardized interfaces for their functionalities and 
be combined to build CPPS [ 3]. The CPPMs thus encapsulate their functionality 
by using the skill-based approach for usage in a flexible production structure [ 4]. 
Production skills are part of the information model for capabilities, skills and 
services (CSS-Model), in which capabilities are described as abstracted func-
tions that are required in a production process and skills as the implementation 
of such a function and deployed on a specific production resource [ 5]. Skills can 
be implemented with industry standards such as OPC UA, to realize a generic 
interface that can be accessed and executed on higher control levels of a produc-
tion system [ 6]. 

Skills of production resources are useable in a distributed organized control 
software, enabling their application into an agent-based setup within a MAS [ 7]. 
The integration of production skills of production modules into a MAS using 
resource agents and the design of skills for agent functionality is shown in [ 8]. In 
the current contribution, the fault diagnosis in skill-based production environ-
ments using agent-based communication is focused. 

2.2 Asset Administration Shell and I4.0 Language 

The Asset Administration Shell (AAS) is a standard provided by the I4.0 plat-
form and standardized by the Industrial Digital Twin Association with the aim 
to implement a vendor-independent Digital Twin [ 9]. In the context of this arti-
cle, AASs are used as a standardized interface between different subsystems of 
the CPPS for data exchange, as proposed in [ 10]. Thereby, AASs extend and 
represent production assets and leverage them in that way to I4.0 components. 

These I4.0 components are accessed by an agent as a part of a holonic multi-
agent system (MAS) [ 11]. This approach uses the agent definition of [ 12], in 
which agents are autonomous, problem-solving and goal-driven entities, observ-
ing and acting upon an open and dynamic environment. AASs configure and 
parameterize these agents and represent a standardized interface enabling a het-
erarchical communication between agents, which enables agents to act and react 
dynamically to changes in the environment. By the usage of holonic MAS, in the 
sense that agents can access, dynamically spawn and kill other agents along the 
ISA-95 factory hierarchy, the AASs of the respective I4.0 components are also 
hierarchically structured. 

Accordingly, the AAS can be used to describe a standardizable structure of 
interfaces that can also be linked with semantic technologies. For example, the
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use of knowledge graphs and RDF stores offers potential for applications in the 
context of Industry 4.0, as presented in our approach in the following sections. 

Complete AASs and AAS elements are sent through messages in the I4.0 
language. VDI/VDE 2193 standardizes this message format. This guideline is 
divided into two parts. The first part [ 13] describes the vocabulary and structure 
of messages, and the second [ 14] the semantic interaction protocols. An I4.0 
message consists of a message frame and the message content defined by AAS 
elements [ 9, 10]. 

First, the frame contains several required elements: the message type, the 
AAS ID of the sender, the message ID, and a semantic protocol depending on the 
message type. Specifically, the message type defines the intention of the message, 
e.g., data inquiries, while the AAS ID and message ID ensure unambiguous 
tracking and order integrity. In addition, the semantic protocol describes the 
standardization of message intentions. Secondly, the message content is specified 
by the interaction elements, for example, the referenced AAS element.[ 9, 10] 

The interaction protocol of the I4.0 language is defined through a bidding 
procedure in which external participants communicate with internal participants 
(AAS sender/recipient) that communicate in the I4.0 language. This communi-
cation is supported by an I4.0 language handler, that transforms data elements 
into the I4.0 message format.[ 9, 10] 

2.3 Fault Diagnosis Based on Multi-agent Systems 

In the field of fault diagnosis in manufacturing, the role of MAS is the incorpo-
ration of different entities that cover different tasks each. The use of such MAS 
increases the flexibility in encapsulating multiple resources, tasks and knowledge 
sources that enable an automated FDD in flexible production systems. For the 
task of fault diagnosis that is encapsulated in a holon, that is in this work real-
ized by a MAS, a knowledge-based approach is used. The related work in the 
fields of FDD based on MAS and knowledge based FDD is shown in the following 
subsection. 

For the automation of a fault diagnosis system in power systems, McArthur 
et al. use a combination of MAS and intelligent systems. Different intelligent 
decision support systems based on SCADA data and fault records are wrapped 
within agents to enable automated communication between the systems [ 15]. 

In [ 16], the KARMEN MAS is introduced that covers the task of process 
monitoring and notification. Component Agents are used that provide opera-
tional data of each process component, as well as Condition Monitor Agents 
that contain logical expressions to evaluate the conditions of the components. 
The logical expressions are manually defined by the user and can include data 
of multiple components. After evaluation of the Condition Monitor Agent, a 
Notification Agent handles the notification and escalation process [ 16]. 

The concept of leadership in MAS brings advantages of centralized and decen-
tralized architectures together. Therefore, a set of agents observe sensor values 
and evaluate them for normal and anomal behaviour. The leader agent is the 
agent that firstly detects the anomal behaviour. The information of the other
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agents are aggregated and a spatio-temporal pattern is generated. The patterns 
are compared with existing fault patterns for fault identification [ 17, 18]. 

The safety monitor is realized with a hierarchical MAS including a federated 
monitoring model and handles multiple system levels. Agents locally reason at 
subsystem level and collaborate for global reasoning. For monitoring, a model 
of hierarchical state machines is used for behaviour modelling. This model is 
combined with a fault propagation model, that consists of numerous fault trees 
[ 19– 22]. 

A hybrid reinforcement learning MAS is proposed in [ 23] focusing the iden-
tification of anomalies in industrial microservices. Local outlier determination 
is executed by agents for each microservice using reinforcement learning. After-
wards the local results are merged to extract global outliers by an intelligent 
communication strategy. 

In the area of knowledge-based fault diagnosis a semantic framework, 
that describes the manufacturing domain is introduced in [ 24]. Manufacturing 
resources, processes and their context are used in combination with system obser-
vations to enable stream observations to diagnose situations potentially leading 
to failures [ 24]. In [ 25] connection and component models are developed, that cal-
culate fault symptoms based on components behaviour and their relations. Once 
a faulty component is identified, the system is reconfigured to bypass it. The new 
configuration is then fed back as a system update [16]. A general overview of the 
state of the art of fault diagnosis on CPPS is given by Niggemann and Lohweg 
in [ 26]. 

Although, the stated work in this subsection covers fault diagnosis in CPPS 
it still lacks the integration of the CSS-model and AAS for knowledge represen-
tation and the combination with holonic MAS for automated communication to 
enable fault diagnosis. Therefore, in this work the focus is on the CSSFS-Model 
presented in [ 27] and its usage as a basis for knowledge representation and com-
munication schema introduced in [ 28] for automated communication. The com-
munication schema is extended with modelling its participants as actice AAS and 
the message based on I4.0 messages paving the way to higher interoperability, 
resilience and autonomy of the concept. 

3 Structure for Automated Communication for Fault 
Diagnosis in Flexible Production Systems 

For the integration of FDD in flexible production systems, three components 
are required to be implemented on suitable hierarchy levels of CPPS: A fault 
detection component, a fault diagnosis component and a knowledge base. 

In general, the Fault Detection component triggers a request for a diagnostic 
task in the event of a deviation from the target behavior. It must therefore trans-
mit the required information to the fault diagnosis component, which queries the 
knowledge base for possible solutions. 

The main task of the fault detection component is the determination of one or 
multiple faults present in the system. Therefore, a set of symptoms is generated
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that relates to a fault class. A detailed description of the applied fault detection 
task can be found in [ 29]. The fault diagnosis component uses the input of the 
fault detection component to elaborate analysis on fault classification, root cause 
analysis and recommendations on the handling of faults. Accordingly, a heuristic 
communication scheme for the FDD components to execute the different tasks 
is presented in [ 28]. 

In this work, the focus is in the modelling of the communication partici-
pants as I4.0 components based on AAS and the messages on I4.0 language (see 
Sect. 2.2) to enable a knowledge-based approach for fault diagnosis. The prop-
erties of a fault and its context are modeled in an information model and made 
accessible via knowledge graphs. Each fault is modeled at least with its symp-
toms, the resource on which it occurred, the product produced and the skill that 
was executed when the fault occurred. This follows the concept of the CSSFS 
model [ 27]. Both, the production context and the faults themselves are initially 
modelled in corresponding AASs to have the knowledge available in a standard-
ized, structured format. To increase searchability and accessibility, these AASs 
are transformed into knowledge graphs. Doing this, the I4.0 components rep-
resentation can be used for communication purposes and the knowledge graph 
representation for analysis and searchability purposes. 

In the following, the I4.0 components representation of the communication 
participants are described. Afterwards, the message structure is described based 
on the I4.0 language standard. 

3.1 Communication Participants 

For the usage of I4.0 language, the communication participants need to be mod-
elled as I4.0 components. Therefore, the physical asset is extended with a digital 
representation to act as a I4.0 component. In this work, type 2 AAS are used 
as a form of digital representation. AAS of type 2 are reactive AAS, that can 
be used as an interface. I4.0 components are modelled on the CPPM and CPPS 
level, whereas multiple CPPM belong to a corresponding CPPS. 

On both hierarchy levels submodels are added that contain general informa-
tion about the asset that are not FDD related in the first place. The mentioned 
submodels are a minimal configuration and can be extended, depending on the 
domain and use case. For the FDD use case the modelled information can be 
used for further analysis. 

A digital nameplate submodel, that contains information as usually found on 
physical nameplates in an interoperable manner, is added to the AAS. Addition-
ally, a submodel for the Bill of Material structure is introduced. This submodel 
contains the hierarchical structure of industrial equipment that can be composed 
of different subsystem levels. On the CPPM level, the components of the CPPM 
are described, whereas on the CPPS level the topology of the corresponding 
CPPM is modelled. Each CPPS subsystem can have its own AAS. The informa-
tion about the hierarchical resource structure is required for FDD tasks. Finally, 
the manufacturing skills that a system can provide is modelled in a submodel. 
There, the required information about each offered skill is modelled separately in
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Fig. 1. Overview of the system including participants and messages 

a submodel element collection. The information includes an ID for identification 
purposes and properties for parametrization of the skill. 

Additionally to the AAS modelling of the physical components the tasks of 
FDD need to be integrated in the CPPS hierarchy. The Fault Detection com-
ponent with its task to monitor executed skills, simulate nominal behavior and 
generation of symptoms is integrable in a MAS on the CPPM level. A detailed 
description of the Fault Detection tasks can be found in [ 29]. Consequently, a 
submodel is added containing the information about the symptoms that are gen-
erated by the symptom generation task. Since the fault detection, and accord-
ingly the symptom generation, is executed on the CPPM level, the symptom 
submodel extends the CPPM AAS. 

Based on the introduced concepts, an integration of a detection agent into 
a MAS can be proposed, that executes the corresponding tasks and triggers 
communication with the other agents on CPPM and CPPS level. 

Depending on the tasks of the Fault Diagnosis component, further submodels 
need to be added to extend the information of the AAS. Since information of 
all CPPMs of the CPPS is available on the CPPS level, the diagnosis is located 
there. For the tasks of fault classification and root cause determination, a sub-
model containing fault classes and root causes can both be added. Analog to the 
CPPM level, a Diagnosis Agent can be suggested for integration in a MAS that 
handles the tasks and communication.
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For a better accessibility and searchability, the AAS are transformed in a 
knowledge graph, like described in [ 27], that can be accessed by the Diagnosis 
Agent. The use of a knowledge graph representation ensures a higher accessibil-
ity and enables more sophisticated analysis like similarity analysis. The system 
overview is shown in Fig. 1. 

3.2 Message Structure 

After modeling faults and their context, the knowledge graph must be queried to 
access the stored knowledge that is used to answer the fault diagnosis tasks. Each 
task requires a separate definition for the queries used. As different scenarios are 
possible, a hierarchical query schema is developed for each task. 

Both, the communication between the fault detection and the fault diagno-
sis component and the access between the fault diagnosis component and the 
knowledge graph are modeled according to the I4.0 language. 

Using the I4.0 language full AAS or AAS elements can be sent in a standard-
ized format. I4.0 messages consist of a message frame and content, that needs 
to be defined by a list of AAS elements. 

In the frame message, type and ID as well as the AAS ID of the sender are 
mandatory. Since the message type defines the intention of the message, the 
message type “fault diagnosis” is used. The AAS ID of the sender is the AAS 
ID of the CPPM that triggers the interaction with the Diagnosis Agent. The 
message ID is automatically set and ensures unambiguous tracking and tracing 
of the messages. 

The content of the message is specified by interaction elements in form of 
AAS or AAS elements. In the FDD use case the symptoms that have been 
detected as well as information about the resource and the executed skill need 
to be submitted. 

Therefore, the submodel element collections of the generated symptom as 
well as the submodel element containing the skill ID are added to the message 
content. The required information about the resource is already part of the 
message frame in the form of the AAS ID of the sender. 

4 Proof of Concept and Results 

The system will be implemented as a holonic MAS in the SmartFactoryKL 

demonstrator environment. This demonstrates the application of a holonic man-
ufacturing system to encapsulate the intricacies of systems consisting of multiple 
individual subsystems that are essential for managing complexity in distributed 
capability-based manufacturing. 

Therefore, the entities responsible for FDD along with their respective tasks 
are defined individually and then integrated into the already existing holonic 
MAS. Both direct and indirect manufacturing tasks are managed for the CPPS 
demonstrator, which can ensure a holistic view of the integration of the FDD 
components in the manufacturing context.
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The AAS were modelled using the Eclipse AASX Package ExplorerTM 1 and 
then deployed using Eclipse BaSyx middleware 2. For the implementation of the 
holonic MAS in this work SARL language running on Janus Agent and Holonic 
Platform 3 is used. The communication between the agents follows the standard-
ized structure of Industrie 4.0 language. 

4.1 Agent Communication for Fault Detection and Fault Diagnosis 

The functionality for fault detection and diagnosis is encapsulated as own agents 
in the prototypically implemented MAS of the SmartFactoryKL and realized with 
the Janus Framework, which is an open-source framework for the development of 
holonic agents, based on the agent-oriented programming language SARL [ 30]. 
The agent communication is shown in Fig. 2. 

The relevant communication part in the system begins with a request for a 
production skill execution by a resource agent, which controls the skill execution 
of a production module. The resource agent informs the fault detection agent 
about a scheduled skill execution on this production module to prepare a skill 
monitoring. The fault detection agent monitors the behavior of corresponding 
production modules during the skill execution and considers the result of this 
monitoring activity. Detected fault-related data are prepared by the fault detec-
tion agent for further analysis by the fault diagnosis agent. The request for fault 
diagnosis is then used in the fault diagnosis agent to prepare a request to the 
knowledge base, in which the diagnosis is processed. As a knowledge base, a 
knowledge graph is used as presented in [ 27], so that the fault diagnosis agent 
encapsulates and provides the functionality to build a query for accessing the 
stored information of this knowledge graph. 

4.2 Asset Administration Shell and Agent Based Structure 
and Communication Implementation 

For the implementation, one AAS for the Resource Agent of the running pro-
duction module and one AAS for the SmartFactoryKL demonstrator are applied. 
Both in Fig. 3 displayed AASs are modelled and implemented in AAS version 3. 

The CPPM agent AAS contains all described standardized submodels such 
as Nameplate, BOM, Skills, Technical Data, Asset Interface Description, Mon-
itoring, and Symptoms. During the execution of the production module, the 
detection agent detects new symptoms and adds them to the AAS. As soon 
as the execution stops, aborts or gracefully ends with a monitoring result, the 
detection agent sends all newly detected symptoms together with the respective 
skill ID of the agent to the central diagnosis agent to request a fault diagno-
sis. The diagnosis agent then checks the detected symptoms via the knowledge

1 https://github.com/admin-shell/aasx-package-explorer. 
2 https://eclipse.dev/basyx/about/. 
3 http://www.sarl.io/runtime/janus/. 
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Fig. 2. Sequence Diagram for Agent Communication for Fault Detection and Fault 
Diagnosis 

graph, like describe in [ 27], and adds references to known faults stored on the 
CPPS AAS to the symptoms submodel on the production module AAS. 

For communication between different agents, messages are sent via inter-
action protocols. For this purpose, all agents of the MAS have the ability to 
communicate event-based in the same event space inside the MAS, which is pro-
vided by the Janus framework for agent communication. This works perfectly for 
agents running on the same or closely connected event spaces. This is the case for 
the CPPM agent and the detection agent, since the CPPM agent dynamically 
spawns the detection agent on starting a production task and both agents thus 
share the same agent context. The same situation appears between the CPPS 
and the diagnosis agent. However, the detection agent and the diagnosis agent 
might not be deployed on the same device and take part in the same event space. 
This is why all messages between the agents are embedded into an industry 4.0 
message framework, adding more meta-information. Based on the specification
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Fig. 3. Asset Administration Shells of a CPPM agent (left side) and the CPPS agent 
(right side) 

of the I4.0 message in [ 12], a metamodel for I4.0 Messages is defined in Java 
which contains all mandatory and optional fields of I4.0 messages. 

5 Discussion and Conclusion 

An agent-based communication structure for the integration of FDD in skill-
based production environments is elaborated. The involved participants are 
described and modelled using type 2 AAS whereas the communication is realized 
by a MAS and a message structure on the basis of the I4.0 language. Type 2 
AAS and the corresponding agents act together similar to the concept of the 
active type 3 AAS. 

In the first step, the FDD tasks were integrated into the different hierarchy 
levels of CPPS. The Fault Detection Tasks are executed on the CPPM level due 
to the monitoring and simulation tasks of the behaviour of the CPPM during the 
execution of manufacturing skills. The tasks are modelled as agent behaviours 
and encapsulated in a Fault Detection Agent, that covers the communication 
with other participants. The CPPM as well as the fault symptoms are modelled 
as AAS and AAS submodels. 

The Fault Diagnosis tasks are integrated on the CPPS level, since the access 
to the information of the whole CPPS is available there. The CPPS is modelled 
as type 2 AAS as well and required submodels for fault diagnosis are added. A 
Fault Diagnosis Agent is introduced that manages the internal elaboration of 
the requested tasks and the communication with participating agents. 

The message structure is based on the I4.0 Language standard defined in 
[ 9, 10]. Therefore, the needed information and its AAS representation is defined 
and integrated in the message structure. 

Finally, the defined structure is prototypically implemented as part of the 
holonic MAS of the SmartFactoryKL demonstrator environments. Besides the 
proof of concept the basic interactions between the existing agents in the MAS 
are shown. In this work, the focus was on the detection and diagnosis of a priori 
known faults. In this case, it is possible to get existing matches of instances, 
that are already in the knowledge base. In the case of a priori unknown faults, 
further analysis needs to be executed to elaborate suggestions on possible fault



168 P. Rübel et al.

classes and root causes. Future research can tackle the topic of similarity analysis 
for suggestions on a priori unknown fault cases. Machine Learning techniques, 
especially graph learning, can be used for the similarity analysis as well as graph 
completion in future work. 

Additionally, the scenario of the usage of knowledge across company borders 
is especially interesting in the FDD case, since faults in industrial environments 
occur rare compared to nominal behaviour. The challenge of sharing data and 
knowledge of multiple companies using data spaces can be developed in future 
research. 
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Abstract. Decision Support Systems (DSS) can help factory workers in the 
decision-making step of multiple tasks. In digital factories, these systems make 
use of data towards a human-centered manufacturing. Rolling of large and thick 
plates into cans is a common practice in the metal forming industry to fabricate 
pipes or tanks. The process is adjusted by trial and error with a high level of oper-
ator intervention. Furthermore, only a small number of cans are identical. The 
objective of this work is to prescribe, by means of a DSS, the process parameters 
to be applied by the operator in the machine to optimize the can fabrication. The 
development of the DSS involved several steps, including firstly signal prepro-
cessing and classification and then data extraction, aggregation, and regression in 
a multi-stage prediction framework. A significant use of domain knowledge for 
a data-centric solution contributes to the quality of the recommendations and the 
ability to organize and transfer know-how among operators. 

Keywords: Decision Support System · machine learning · data-centric 
regression · classification · metal forming · data aggregation · domain 
knowledge-based feature extraction 

1 Introduction 

Decision Support Systems (DSS) are expected to play a relevant role in the implemen-
tation of the Industry 5.0 paradigm, which promotes to maximize the benefits of factory 
digitalization under a human-centered approach. DSSs have indeed the potential to pro-
vide workers with the necessary information in the decision-making step in operations 
design, execution and evaluation. Up to date, DSSs have been proposed for multiple 
manufacturing tasks, from the design and optimization of products and processes to the 
diagnosis of either processes or machinery [1–3]. With the rise of the digital factory,
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new options open up for DSSs through the increasing amount of data which are more 
and more readily available [4]. Decision-making models can benefit not only from an 
increased amount of data but also from the integration of artificial intelligence techniques 
that can enhance the results of the decision-making process. 

Rolling of large and thick plates into cans is an apparently simple manufacturing 
process but yet challenging. Each can is almost unique, with continuous variations in 
the material and dimensions. The process requires from important manual intervention 
and an error in the setting of the process parameters can be fatal due to the high value 
of each part. Numerical models can support the phase of parameters setting [5] but, in  
practice, they are economically unaffordable for a close to one-of-a-kind production. 
Furthermore, numerical models do not take into account the machinery evolution under 
heavy working conditions. Being manually operated machines, the operator becomes an 
additional factor with criteria varying between different operators. Difficulties in training 
skilled operators is another challenge which cannot be skipped either. 

In this paper, a DSS for cans rolling based in machine data, domain knowledge, 
the application of machine learning techniques and an inference learning strategy is pre-
sented. The solution has been designed for the ease of the setting of the rolling parameters 
as well as to be a training tool for new machine operators. The development of the DSS 
involved several steps that are explained in the following sections: Methodology includ-
ing domain contextualization, materials and data, domain-knowledge based feature 
extraction, data aggregation and predictive regressions; validation, and conclusions. 

2 Methodology 

2.1 Domain Contextualization 

The analyzed can rolling process is made in a three-roller bending machine. This essen-
tially consists of a metallic plate, an upper front roller, and two lower rollers (front and 
rear). The position of the front roller is fixed, as shown in Fig. 1 and the distance between 
the upper roller and the lower rollers is adjusted according to the thickness of the plate. 
These two rollers apply no bending pressure on the plate; they just support it and rotate 
allowing it to pass through without slipping. 

The operation starts by inserting one end of the plate into the bending machine. 
Then the plate is bent into a curve by adjusting the position of the rear roller, while the 
front rollers rotate making the plate advance. Curvature is given in steps of about 1 m, 
and for each step a multi-pass strategy is carried out. Each pass requires at least one 
forward movement to overcome the yield point and one backward movement to achieve 
the curvature. This process is repeated until the curved plate reaches tolerances, checked 
by the operator with a template. The multi-pass forming bases on “trial and error” and 
is very time consuming every time a new can design must be fabricated. Furthermore, 
the operator is expected to set the right parameters with no other support than his own 
know-how and despite the continuous changes of material and design. 

The process parameters to define are: 1) position of the wedges (left and right) that 
adjust the gap between the front rollers, 2) position of the rear roller for the forward 
movement related to the overcome of the yield point, 3) range (min, max) of positions 
of the rear roller for the curving.
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Fig. 1. Three-roll bending picture and diagram. 

2.2 Materials and Data 

The curving machine is equipped with a PLC (Programmable Logic Controller) signal 
acquisition system, though the recording must be activated manually by the operator. 
The data recorded are as follows: 216 files of process signals (time-series) out of which 
113 were correctly recorded and 103 were rejected due to errors during the manual 
activation of the recording. Out of the 113 correct files, there are 34 different can design 
combinations of diameter, thickness and material. Iterations in the design range from 
just one sample up to 35. Each can recording provides 98 variables (both analogue and 
binary) sampled at 2 Hz. The present work is based on data from steel cans with diameters 
ranging between 1840 and 7730 mm and thicknesses between 9,5 and 79,4 mm. 

In addition to the PLC data, there is a knowledge base based on the operators’ 
experience that provides parameters recommendation for a reduced number of previously 
manufactured cases. 

Based on the results of a previous related work [6] the signals of interest for parame-
ters setting were already identified. Concerning the analogue signals, those of interest are: 
the rotation speed of the top (main) cylinder, the position and pressure of the hydraulic 
cylinder moving the rear roller, the timestamp and the variables that fix the gap between 
the top and bottom front rollers (position of the left and right wedges). In terms of binary 
signals, that of the main motor actuator provides useful information to differentiate the 
active process (rolling) from the non-active one (no rolling). 

2.3 Domain-Knowledge Based Feature Extraction 

It has been demonstrated [7, 8] that in the manufacturing domain data-centric models, 
which take into account domain knowledge for data pre-processing and feature extrac-
tion, show better prediction outcomes and help to better identify the most influencing 
physical variables. 

In the rolling process under study, manual operation of the machine is source of 
highly uneven signals due to high variability in the process execution (e.g. plate curving 
or manipulation, process in standby) or errors when activating the recording. In order to 
mitigate the impact of these irregularities on the feature extraction, the reception of the 
signals was automated following domain knowledge criteria. 

First of all, a human in the loop strategy decides whether each signal is appropriate 
for feature extraction and which portion of it is meaningful for it. To do so, the three 
different stages of the process are checked on the signal: (1) forming of the 1st head, (2)
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forming of the 2nd head plus 1/4 of the plate, and (3) forming of the middle part of the 
plate from the formed 1/4 up to the 1st head (Fig. 2). 

Fig. 2. Three main stages of the rolling process: (1) forming of the 1st head, (2) forming of the 
2nd head plus ¼ of the plate, (3) forming of the remaining plate from the ¼ up to the 1st head. 

Between stages (1) and (2), there is a timeframe when the rear roller applies no 
pressure on the plate, it turns down and the gap between the front rollers increases to 
take out the plate and reposition it for the upcoming stage. This can be tracked through 
the rear roller position, which drops below an identified threshold (350 mm). Signals 
with more than two drops below threshold are rejected since that means they contain the 
rolling of more than one can. 

On the other hand, curving is made at regular steps which are preceded by a forward 
movement of the plate of 1 to 1.5 m length. This sequence keeps tracked through the 
upper main roller rotation signal with the forward movement showing regular duration 
(about 30 s). Along the transition between stages (2) and (3), the plate also moves 
forward, though from the curved section (2nd head plus 1/4) in stage (2) all the way to 
the front 1st head to start with stage (3). The movement takes more than twice compared 
to that associated to curving, as shown by the green arrow in Fig. 3. This allows to split 
stage (2) from stage (3). 

After dividing and manually labelling the signals into two classes:1) suitable for 
process parameter identification (with several peaks) and 2) non-suitable (without peaks); 
a gradient boosting classification model was trained to recognise the shape of the signals 
from the following features: the number of identified peaks in the rear roller position 
signal within the operating range, the mean value of these peaks and the area under the 
signal divided by the length of the signal, all normalized. Signals suitable for process 
parameter identification are those with segments with a sequence of peaks as saw teeth, 
such as in the first two stages in Fig. 3. The target feature for the displacement of the 
rear roller to the bending position is related to the maximum value of the peaks. 

A total of 318 signal segments were used, divided as per the previous description. 
The model was created to identify the appropriate segment of the signal for parameter 
recognition. 

To evaluate the performance of the model, 5-fold cross-validation was used. In this 
process, the data is divided into 5 groups or “folds”. The model is then trained and tested 
5 times, each time using a different fold as the test set (20%) and the remaining folds 
(80%) as the training set. This approach provides a more robust measure of the model’s 
performance by averaging the results over multiple runs (Table 1). 

Data for creating this model were slightly unbalanced (40% vs 60%). Data balancing 
methods were tried, and results did not show relevant differences, except in detecting
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Fig. 3. Rolling process signals (red: position of the rear roller, blue: rotation of the main cylinder) 
divided into stages and features extracted to represent the position of the rear roller (orange and 
purple). 

Table 1. Results of the classification model. 

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Accuracy 0.8714 0.9143 0.9143 0.9565 0.8551 0.9023 

Precision 0.8787 0.9275 0.9275 0.9569 0.8559 0.9093 

Recall 0.8714 0.9143 0.9143 0.9565 0.8551 0.9023 

F1-Score 0.8705 0.9141 0.9141 0.9565 0.8548 0.9020 

false positive which is critical in this application. For this reason, an unbalanced dataset 
was finally chosen. 

Once the segments of the signals in which rolling parameters can be robustly extracted 
was identified, feature extraction was carried out. The displacement of the rear roller for 
forward movement and for bending were obtained by identifying peaks and valleys in 
a range of the active process signal where curving occurs (orange and purple lines in 
Fig. 3). For the position of the wedges that adjust the gap between the rollers, the mode 
value of the corresponding signal segment during the non-active process is used. 

Thanks to this procedure, signals containing valuable information are identified and 
their features extracted automatically. Those features will be used as the labels for the 
predictive regressors of the DSS. 

2.4 Data Aggregation 

Another crucial step in the work was to relate the process parameters obtained from 
signals with dimensions and material properties. The material design information is 
stored at the Enterprise Resources Planning (ERP) platform. Each material, each plate,
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has an ID number and the signal fields are stored with the ID of the corresponding plate. 
Thanks to these codes, it is possible to link the information from the signal with the 
characteristics of the plates. 

The correlation between material properties and signal characteristics was analysed. 
Despite the limited number of designs produced (only 34 different combinations of 
material, thickness and radius) the results pointed out that large curvature radii are 
associated to small displacements of the rear roller. Regarding the width of the plate, no 
trend was observed in relation to the position of the rear roller, only to say that the width 
is related to the weight and heavier plates result in higher pressures. In terms of material, 
it shows an influence in the rolling process, but the exact effect in the parameters is not 
clear with the data available at this point. 

The descriptors obtained from the signals by feature extraction and the information 
about the design of the cans were merged into spreadsheet files. 

2.5 Predictive Regressions 

Once the data were organised, regression models were proposed: on the one hand, to 
follow the logic of the workers, the nearest neighbour’s strategy was considered, but the 
data sample did not cover the area of use in a homogeneous way, and it could happen 
that the nearest neighbours were far away or very different. Other types of regression 
models were also considered, such as decision trees, but they were discarded because of 
the limited data. There are only 34 different combinations of design. 

Finally, with the data available, multi linear regression models were chosen. Table 2 
shows selected inputs and outputs for each parameter recommendation. As the elastic 
limit, ultimate strength and elongation are related to the material, it is sufficient to enter 
the thickness, radius and material to obtain a recommendation from decision support sys-
tem in rolling design. The recommendation for the rear roller displacement for forward 
movement has not been considered because this value is not relevant for small diameter 
cans, the risk of overbending is much lower and the value is not repeated. Leaving aside 
small diameter cans, there are not enough samples to consider a regression model for 
rear roller displacement for forward movement. 

5-fold cross validation was used to evaluate the performance of the selected algo-
rithms. Due to the limited data, the number of samples in each fold is limited, and each 
validation is highly dependent on the data, e.g. for the position of the wedges the fold 
4 is not representative for the data set, or for the displacement of the rear roller the fold 
1 is less representative for the data set. Table 3 shows the results of the cross validation 
for the regressions. 

To put the results in context, it should be noted that for the same references, the 
parameters show differences from the median due to manual operation. This is shown 
in Table 4, where the parameters are numbered as in the previous table. The results are 
positive considering the lack of repetitively of the process but need to be validated with 
more data.
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Table 2. Inputs used for the regression models of the rolling parameters. 

Parameter (Outputs) Inputs 

1) Position of left wedge to adjust the gap 
between rollers 

Thickness 

2) Position of right wedge to adjust the gap 
between rollers 

Thickness 

3) Displacement of the rear roller for curving 
(max) 

Thickness, Radius, Material properties and 
estimation from a parabolic regression of the 
operators’ data 

4) Displacement of the rear roller for curving 
(min) 

Thickness, radius, material properties and 
regression result for displacement of the rear 
roller for curving (max) 

Table 3. Results of the regression models of the rolling parameters. 

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

1) Position of left wedge to adjust the gap between rollers 

Mean Squared Error (MSE) 3.78 2.19 3.01 24.06 5.26 7.66 

Mean Absolute Error (MAE) 1.63 1.29 1.45 2.93 1.94 1.85 

R-squared (R2) 0.86 0.94 0.91 −0.67 0.69 0.55 

2) Position of right wedge to adjust the gap between rollers 

MSE 6.04 2.60 3.87 9.28 7.30 5.82 

MAE 1.78 1.34 1.63 2.38 2.21 1.87 

R2 0.83 0.93 0.87 −0.26 0.65 0.60 

3) Displacement of the rear roller for curving (max) 

MSE 229.86 98.20 15.54 56.39 192.06 118.41 

MAE 12.84 7.64 2.96 6.13 12.04 8.32 

R2 0.39 0.95 0.99 0.85 0.89 0.81 

4) Displacement of the rear roller for curving (min) 

MSE 177.31 245.87 100.72 233.74 180.55 187.64 

MAE 11.05 8.52 8.97 11.20 11.47 10.24 

R2 0.50 0.88 0.91 0.70 0.83 0.77
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Table 4. Averaged differences to each design median. 

Parameter 1 2 3 4 

Averaged differences to each design median (mm) 1.24 1.35 4.82 7.59 

3 Limitations 

These models need to be tested in a real production environment and with more data 
for the following reasons: a) The feature extraction has been done using real process 
signals and as the process follows a multi-pass trial-and-error strategy, the results for the 
same reference are not strictly repeatable; b) also, there is more than one worker using 
the rolling machine and each of the machine operators have their own skills, some are 
more cautious and others, due to their experience, take more risks in the trial-and-error 
strategy; c) the new responsibility for the recording of the process signals lies on the 
operators and they sometimes forget to start or stop the recording at the right time, which 
affects the results; d) sometimes the head of the plates is formed in advance and this 
step of the process is excluded from the recorded signals and other times it is included; 
e) the amount of available data to build up the models up to date is low f) and last 
but not least, parameters extraction is based on a AI model and it could produce error 
propagation. These aspects make the feature extraction less reliable and the results less 
repeatable, so it is crucial to record the signal in the right way and validate the models 
in real environment. More data is needed to obtain a robust solution and an industrial 
validation, but the solution is ready for retrains and read knew data. 

4 Conclusions 

This work presents a Decision Support System (DSS) for the manufacturing engineering 
of cans rolling, aiming to optimize the process reducing the trial & error current practises. 
Despite the limited data and the inhomogeneity of the signals, good results have been 
obtained in prescribing the parameters, although validation is pending. The DSS is 
designed to learn incrementally as it is used, updating the data from machine signals and 
recommendation models accordingly. 

A web application has been developed to roll out of the development. It will allow 
to update the data and the recommendation models. Workers will be able to search the 
parameters from the workshop before facing a new can. 

While the tool is prepared to retrain the models, introducing a criterion for this update 
is necessary. Techniques for evaluating concept drift could be beneficial in this context, 
ensuring the models remain accurate and relevant over time. This could be a valuable 
addition to the system, but due to the limited data it is not addressed in this work. 

Overall, this work represents a significant step forward in the application of artificial 
intelligence and data-centric regression techniques in low volume and highly manual 
manufacturing operations. 
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Abstract. This paper analyses how to solve the challenges in the implemen-
tation of Mass Customization in manufacturing using Artificial Intelligence 
agents/services/tools. Considering that humans alone cannot cope with mass cus-
tomization due to the huge amount of information, it is required AI based solutions 
that help humans to take decisions. We consider that those AI based solutions must 
communicate with other AI based solutions in order to obtain a holistic improve-
ment (this is the Multi Agent System concept). More in detail, this paper addresses 
how to solve the challenges identified when AI based agents use external data 
coming from outside the company, so a Data Space to guaranteeing a secure data 
transaction and data ownership and sovereignty is required. 

This paper presents the solutions implemented in several projects to address 
the challenges created by the requirements on a-the implementation and scalability 
of AI based solutions in Manufacturing, b-for the implementation of multi-Agent 
AI-based systems and for c-implementing Data Spaces. 

Keywords: Artificial Intelligence · Manufacturing · Data Spaces · Multi Agent 
System (MAS) · Value Chain (VC) 

1 Introduction 

The future of manufacturing in Europe is poised towards mass customization, driven by 
market variations, supply disruptions, and changes in auxiliary resources (such as energy 
and water) due to demographic shifts and climate change. While this scenario promises 
faster fabrication lead times, reduced time-to-market efforts, and improved customer 
customer satisfaction [1], it also presents significant challenges related to flexibility, 
responsiveness, and sustainability. 

To address these challenges, this paper presents a solution enhancing inter-
organizational information exchange within a Multi-Agent System (MAS) framework. 
The approach involves integrating various AI-based services for manufacturing and aux-
iliary processes. Additionally, standardized data, models (using the Asset Administration 
Shell, AAS) is employed for efficient data storage, while new communication protocols 
and connectors (such as the International Data Spaces, IDS) facilitate seamless data 
transactions.
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AI-based services, acting as agents, play a crucial role in optimizing manufacturing 
process parameters, maintenance, and scheduling. These agents consider multi-objective 
requirements and adapt to the use of novel recycled materials, aligning with circular-
ity objectives. The result is improved accuracy and responsiveness in manufacturing 
operations. 

But when dealing with supply or value chain or when addressing the whole product 
lifecycle, the data that AI based agents use is coming from many different sources 
outside the company. In order to guarantee a secure data transaction, guaranteeing the 
data ownership and sovereignty it is required to implement a Data Space (DS) that 
permits the seamless data transaction amongst numerous stakeholders. 

With this in mind, this paper analyses the requirements that currently exist for these 
issues, how they interrelate and how they can be addressed. This analysis is guided by 
the research questions (RQs) presented below:

• RQ1. – What are the requirements for the implementation and scalability of AI based 
solutions in Manufacturing and in Circularity?

• RQ2. – What are the requirements for a Multi-Agent AI-based system?
• RQ3. – What are the requirements implementing Data Spaces? 

As a result, this paper present the challenges addressed when following the require-
ments and aims also to answer the question What do Data Spaces (DS) bring to AI 
applications?. This question will be discussed as one of the paper conclusions. 

The paper is organized as follows:

• Section 2 introduces the theoretical background about DS and AI.
• Section 3 describes the requirements found in previous projects and the experience 

acquired overcoming them.
• Finally, the paper ends with conclusions and proposals for future research in Sect. 4. 

2 Theoretical Background 

2.1 Background on AI in Manufacturing and Circularity 

In the EU, manufacturing systems are advanced yet not fully optimized for flexibility 
and resiliency, particularly in terms of energy and water use. Traditional approaches 
focus mainly on efficiency and cost, often overlooking the significance of optimizing 
machine parameter configurations for resource consumption. 

There is a gap in integrating these considerations into production planning, which 
leads to missed opportunities for reducing energy and water usage. Additionally, most 
existing systems are not designed to dynamically adapt machine settings based on real-
time operational data, which could significantly enhance sustainability and operational 
efficiency. In projects like DIGIPRIME and MASA4AI, the problems of planning and 
reconfiguration of machines have been addressed to make them more efficient, but this 
has been done by combining different agents within a factory and without considering 
data or results coming from outside or essential resources such as water or energy. 

Current manufacturing systems in the EU are optimized mainly for efficiency within 
single entities, lacking in comprehensive Value Chain (VC) integration [2]. This narrow 
focus results in operational scoreboards and VC assessments do not provide a complete
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picture of the supply chain’s dynamics and risks. Additionally, existing solutions fall 
short in considering the stochastic behaviour and risks of the organization’s VC, leading 
to gaps in seamless system performance and optimal resource utilization. 

Several studies have proposed different indicators to assess VC, but there is no 
standardized set of indicators to measure it. Regarding the development of digital tools 
to assess the VC, the majority of identified tools focused on the human domain [3], 
while others, such as DHL [4], have worked on a transportation process tool and only 
for external factors (natural disasters, meteorology, accidents…). 

In order to provide a concise overview of the artificial intelligence technologies that 
will be used in our services, these technologies will be grouped into 4 areas:

• AI-1: Data Analysis. This group includes techniques that enable data analysis to 
enhance users’ understanding of its functioning. It encompasses techniques such as 
data cleaning, univariate analysis, bivariate analysis, statistical inference tests, outlier 
identification and active learning.

• AI-2: Machine and Deep Learning. This group encompasses various algorithms used 
in classification and regression problems, such as neural networks, convolutional 
networks, random forests, Support vector machine (SVM), among others.

• AI-3: Optimization Algorithms. This group includes algorithms used for modelling 
and solving single or multi-objective optimization problems. The algorithms belong-
ing to this group include metaheuristic algorithms (such as genetic algorithms, bee 
colony optimization), mixed-integer linear programming, Bayesian optimization, or 
deep reinforcement learning.

• AI-4: Generative Models. This group includes technologies used to artificially gener-
ate data samples, such as Diffusion Models, Variational Autoencoders, and Generative 
Adversarial Networks. 

2.2 Background on Multi Agent Systems (MAS) 

Assessing MaaS requires collaboration and data sharing among stakeholders to identify 
data sources, define data requirements, and develop analytical models that can optimise 
VC performance and resilience [5]. Currently, however, data is often siloed within com-
panies, preventing other stakeholders from accessing it, and many stakeholders lack the 
knowledge to analyse the data they have access to; thus, an assessment tool is necessary 
to identify incentives on how data sharing and data-driven management can improve the 
transparency, efficiency and resilience of VC activities [6]. 

Manufacturing Digital Services (or AI based services for manufacturing) have 
evolved in the last years reaching highest TRLs, being found in many sections of a 
manufacturing company (production, business, scheduling, purchases, quality…). Nev-
ertheless, the relation of different agents to act coordinated as an integrated holistic 
system is still a pending issue. 

An attempt to create a holistic [7] (MAS) was addressed in MAS4AI project, taking 
AAS and JANUS platform as the technology bricks for the seamless interaction of agents. 
But the technology is still at very low TRLs and based at machine and process level but 
not at VC level. Meanwhile, TRICK project addressed the data interaction of materials 
and products based on the DPP.
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The main limitations for the creation of a MAS involving manufacturing data owners 
and external service providers were: i) the lack of standardized data due to the lack 
of confidence of manufacturers in data transactions, and ii) the lack of confidence of 
technology and service providers in uploading their developments in a central platform. 
AAS information contains data in motion and at rest. While some information is nominal 
and can be public, other is confidential as well as the know-how of the manufacturing 
companies. The latest information must be restricted to specific stakeholders. 

2.3 Background on Data Spaces 

A Data Space refers to the physical or virtual space where data is stored, transfered and 
managed. It can include databases, data warehouses, data lakes, and other data storage 
systems. The focus is not only on the storage and organization of data but also on the 
data transaction and data monetization. 

On top of it, a data space is a more comprehensive solution that provides not only data 
storage but also tools for data integration, transformation, analysis, and visualization. It 
enables organizations to manage their entire data lifecycle, from data acquisition to data 
consumption. A data space often includes APIs, connectors, and other tools that allow 
data to be easily accessed and shared across different systems, applications and tools for 
managing the entire data lifecycle across different entities, facilities or companies. 

Circular Data Spaces and Data Spaces for circularity refer to Data Spaces designed to 
support circular economy principles, with a stronger focus on circularity and optimized 
for circular data management. 

The main stakeholders on a DS ecosystem can be clustered in the following families 
according to the Design Principles for Data Spaces, Position Paper, v1.0. April 2021 [8]:

• Data owner: Data owner is responsible for the quality of acquired and primary pro-
cessed data, in all related to accuracy, reliability, resolution, availability, etc. Decides 
how its data can be used by third parties.

• Data provider: Collects and prepares data and provides them to others on behalf of 
a Data owner. This role remains close to Data owner and as a part of the agreement 
and to improve its current business, it may use apps and results which uses collected 
data. Manufacturing SMEs will be able to share industrial process data with the value 
chain in a secure way in order to get revenues through it.

• Data processor: It is the expert company who knows the real value of the data obtained 
from the provider and who can holistically preview business possibilities which cannot 
be accessed by Data owner. We can distinguish two roles:

• Data Transformers and service providers: Tech companies will be able to develop 
apps in order to provide services to consumers based on the data of providers.

• Data/service consumers: Industrial companies will be able to improve their services 
based on third parties’ data.

• Brokers/Operators/DS Managers: It is the entity to provide infrastructure needed for 
all the data transactions which are about to occur, as software systems, hardware 
or data-processing tools. It is also responsibility of the Marketplace operator the 
governance of all support services, permissions, log files. They are needed, as a new 
business sort of service, to get things happen in the complete scenario.
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3 Methods 

In this section, the requirements for the implementation, how they interrelate and how 
they can be addressed are presented. This analysis is guided by the research questions 
(RQs) presented below:

• RQ1. – What are the requirements for the implementation and scalability of AI based 
solutions in Manufacturing and in Circularity?

• RQ2. – What are the requirements for a Multi-Agent AI-based system?
• RQ3. – What are the requirements implementing Data Spaces? 

3.1 RQ1. – What are the Requirements for the Implementation and Scalability 
of AI in Manufacturing and Circularity? 

The requirements for an Artificial Intelligence (AI) system to run are:

• Data availability: AI systems require large amounts of high-quality relevant data to 
train on.

• Data consistency: To avoid data inconsistency some technical requirements for an AI 
system may include: 

– Data pre-processing techniques; such as data cleaning, normalization, and feature 
scaling, which can help to reduce data inconsistencies and improve the accuracy 
of predictions [9]. 

– Data augmentation techniques; such as data synthesis and data sampling can be 
used to increase the amount of training data and improve the diversity of the data 
set, reducing the risk of overfitting and improving the accuracy of the model [10]. 

– Data quality assurance techniques; such as data profiling and data validation, can 
be used to identify and address data inconsistencies, reducing the risk of errors 
and improving the accuracy of the model. 

– Data governance policies and procedures can be also put in place to ensure that 
data is consistent, accurate, and reliable, reducing the risk of errors and improving 
the performance of the AI system.

• Sufficient data for training: One straightforward solution to the lack of data is to 
collect more data through various methods such as web scraping, crowdsourcing, 
and data partnerships. Further technical requirements for an AI system, to address 
this challenge may include: 

– Transfer learning: since such techniques, can be used to train an AI system on a 
related task or data set and then transfer the learned knowledge to the target task 
or data set, reducing the amount of training data required. 

– Active learning: since such techniques can also be used to selectively choose 
which data points to label and use for training, reducing the amount of labelled 
data required [11].



AI Based Solutions for Manufacturing Mass Customization 185

• Programming skills and Algorithms availability: to analyse and interpret complex data 
patterns, make decisions and learn from new data. It requires expertise in program-
ming, machine learning (ML), and software engineering: Programming languages: 
Python, Java, etc. [12]; Data processing through the use of libraries such as Pandas, 
NumPy, and SciPy. Machine learning libraries such as TensorFlow, PyTorch, and 
Scikit-learn provide pre-built algorithms and functions [13].

• Computing power: to process large amounts of data, run complex algorithms, re-
train the deployed models and to analyse and learn from large data sets. Hardware 
such as Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), or Field 
Programmable Gate Arrays (FPGAs). In addition, large amounts of memory to store 
and process data efficiently using high-capacity Random Access Memory (RAM) or 
Solid-State Drives (SSDs). To store large datasets and trained models, using hard disk 
drives or Network-Attached Storage (NAS) devices. Moreover, high-power supplies 
to support processing requirements using high-wattage power supplies or redundant 
power supplies [14]. 

And the functional/performance requirements for an Artificial Intelligence (AI) 
system are:

• Accuracy: AI systems must be accurate and reliable in their predictions and decisions;
• Transparency and explainability: Users should be able to understand how the system 

arrived at its decisions and what factors were considered in the process.
• Security and privacy: AI systems must be secure and protect user privacy
• Scalability: AI systems should be able to scale up or down to accommodate changes 

in data volume or user demand without sacrificing performance or accuracy.
• Integration: AI systems must be able to integrate with other systems and applications 

in a seamless and efficient manner, to ensure that they can be used effectively within 
larger workflows and processes. 

3.2 RQ2. – What are the Requirements for a Multi-agent AI-Based System? 

As stated before, a Multi Agent System (MAS) is a system that permits the interaction of 
several agents working together to obtain holistic improvement. The main requirements 
are:

• Well-identified goals: Setting clear goals is a critical requirement for AI systems to 
produce consistently accurate and useful results. It requires Appropriate evaluation 
metrics (e.g., KPIs), Domain expertise to obtain a Well-defined problem statement 
and User feedback: to refine and adjust the goals of the AI system over time.

• Managing exceptions when an AI systems, fails to operate as expected. Address-
ing Robust error handling, Monitoring: its own behaviour and log any exceptions 
that occur. Even analysing exceptions and identifying the root causes of errors. And 
providing Rigorous testing to ensure that the system can handle a wide range of 
exceptions and edge cases.

• Managing limitations: while AI systems provide advanced capabilities to the deployed 
systems, some limitations apply. While the AI systems will be assessed for their 
accuracy and performance, it is expected that in some very rare cases, specifically 
on extremely rare circumstances where the system has not been exposed before, it



186 L. Usatorre et al.

is possible for a system to produce an inaccurate result. Constant training of the AI 
systems ensures a smooth operation, and explainability techniques as well as casual 
analysis can further assist with preventing and correcting accuracies.

• Multi-objective factors weighting: to find the best possible solutions for multiple 
conflicting objectives. Defining clear objectives aligned with the goals of the organi-
zation or users and weigh and prioritize multiple objectives, considering the relative 
importance of each one.

• Transparency: The AI system should be transparent, with clear documentation and 
explanations of how it works, what data it uses, and how it makes decisions. This can 
help users and developers understand the system’s limitations [15].

• Validation and verification: The system should be tested and validated to ensure that 
it performs as expected and that its limitations are well understood. This can involve 
techniques such as validation testing, sensitivity analysis, and stress testing [16].

• Continuous monitoring and evaluation: The system should be continuously monitored 
and evaluated to detect any changes in its behaviour or performance. This can involve 
techniques such as drift detection, model retraining, and model updating [17].

• Human oversight: AI systems should be designed with human oversight in mind, 
allowing humans to intervene when necessary and ensuring that the system’s decisions 
are fair, transparent, and aligned with ethical and legal frameworks. 

3.3 RQ3. – What are the Requirements Implementing DS? 

There are two types of requirements in a Data Space: Technical (like Interoperability) 
and business (like Trustworthy and data monetization) requirements. In the following 
points, the System requirements (in general) are presented. 

Technical Requirements:

• Connectivity: to support trust, security, and data sovereignty not devoted only to 
ensure the communication or data exchange, but also to expand partnerships and 
value creation. The IDS Connector is the focal point for securely manage data and its 
interchange among stakeholders, but keeping the control in hands of the data owner. 
Permit to trace every piece of data, knowing its origin and checking its quality. To 
control all options, a vocabulary provider offers ontologies, reference data models, 
metadata on core data and complete de information of the datasets which are moved 
and processed along every interaction [18].

• Data filtering and aggregation: To ensure privacy of sensitive data, its processing 
(e.g., filtering, anonymization, aggregation or analysis) should take place as close to 
the data source as possible and performed by the backend services or Applications. 
Only data intended for being made available to other Participants should be offered 
by Connectors.

• Data storage: a Data Space does not require central data storage capabilities, It pursues 
the idea of decentralization of data storage, which means that data physically remains 
with the respective data owner until it is transferred to a trusted party. This approach 
requires a comprehensive description of each data source and the value and usability 
of data for other companies, combined with the ability to integrate domain-specific 
data vocabularies [19].



AI Based Solutions for Manufacturing Mass Customization 187

• Trusted Data transaction: reassuring participants that other participants really are 
who they claim to be and that they comply with defined rules/agreements. This can 
be achieved by organisational measures (e.g., certification or verified credentials like 
in GAIA X) or technical measures (e.g., remote attestation like IDSA DAPS) [20].

• Decision support or actuation: data analysis and decision support systems followed 
by the possibility to actuate events directly in the real environment. 

Business Requirements:

• Data monetization: Data Spaces should provide a structure for defining and enforcing 
agreements on the use of data (including potential monetization of both data provision 
and data use).

• Data business model: in a Data Space, actors providing and/or consuming data, as 
well as software vendors need to set agreements and then maintained over time [21].

• Data sovereignty is the capability of an individual or organisation to self-determine 
their data. Through Data Sovereignty Agreements and Industrial Agreements. The 
final “Study on technological and economic analysis of industry agreements in current 
and future digital value chain” [22] pointed out that there is a widespread consensus 
over the importance of such agreements for the development of fertile data sharing 
environment and fruitful Data Spaces for the manufacturing domain. From the point 
of view of data sovereignty, IDS Identity Provider module identifies and register who 
is playing when, how and with whom. This sort of register is a whole logbook of 
what is really happening and the history of all data transactions [23].

• Trustworthy: the lack of trust among the industrial players and stakeholders is inter-
related with the regulatory uncertainties, the protection of commercially sensitive and 
personal data, doubts and concerns on how data will be used or reused when they are 
further aggregated, the evolving regulatory framework legal landscape on the data 
sharing operations, on the integrity of the systems used to collect, or be related to 
the issues relating to the protection of commercially sensitive information. Likewise, 
the collaboration within a Data Space are often hampered by the fear of losing the 
competitive advantage or the negotiation power when disclosing business informa-
tion. In view of fostering trust building and access to data it is recommended that 
new approaches, such as the data trust structures and approaches [24], are explored. 
The data trust approaches could also help in distributing the benefits arising from 
data-sharing more equitably, including monetary benefits. 

Data ownership: represent a major obstacle to the Data Space for enabling the sharing 
of circular information about materials and products towards and should be addressed 
in the Data Sovereignty Agreements regard [24, 25].

• Data quality: regards the lack of clarity on the circumstances under which liability 
may be incurred for damages due to inaccurate data. Such uncertainty has a relevant 
impact on the willingness of industry actors to enter into a data sharing environment 
and Data Space. it is possible that the datasets used to train the AI system contain 
personal data, as well as it is possible that the technology itself violates the right to
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privacy in its functioning, often in an unforeseeable manner. Data pools combining 
data and analysis might reveal unexpected information. 

4 Challenges Addressed and Research 

This section presents the challenges addressed and the research carried out when follow-
ing previous requirements and aims also to answer the question What do Data Spaces 
(DS) bring to AI applications? 

Considering that Manufacturing mass customization affects the Process, the produc-
tion chain and the company, this section has been separated accordingly. 

4.1 Challenges and Research at Manufacturing Process Level 

As presented on this paper, at the moment there are numerous AI based agents addressing 
manufacturing optimization. But these tools apply mainly at process level. For instance, 
TECNALIA has developed AI based services for improving manufacturing or auxiliary 
processes like metal machining, plastic extrusion, welding, robot programming, predic-
tive maintenance or production scheduling optimization according to the requirements 
described on previous chapters. 

Results obtained are satisfactory with a clear improvement on the KPIs defined 
in each case: Improving efficiency; Enhancing decision-making, Personalizing experi-
ences, Increasing revenue, Reducing costs, Improving quality and Explainability. 

The challenge is that a company is composed of many different manufacturing 
processes and all are interrelated. 

4.2 Challenges and Research at Manufacturing Chain Level 

The next challenge has been the integration of several agents in a holistic system, where 
AI services interact one with each other to obtain a holistic approach. As presented in 
figure below, our research has been directed towards a structured way of storing data and 
organizing agents. AAS, JANUS and KAFKA have been the tools applied to obtain the 
desired results. In the following figure (Fig. 1), TECNALIA presents the solution applied 
in the MAS4AI project considering previous requirements to create a MAS to optimize 
grinding wheels manufacturing performance integrating tooling selection, machining 
parameters optimization and scheduling recalculation and optimization. In this solution, 
data are stored in different types of data bases (MySQL, Elastic Search, Postgre), the AI 
based tools are distributed in different Python frameworks (LMS, Tecnalia, Sisteplant) 
and the AAS of the agents are on a Basyx framework. 

4.3 Challenges and Research at Company Level 

But to extend the MAS solution, applied at company level, to the value chain level 
requires the implementation of a Data Space for the seamless (secure and trusted) trans-
action of data. As mentioned before, DS implementation requires to address two aspects: 
technical and business. Both aspects are important. While the business aspects are still at
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Fig. 1. Implementation of a Multi Agent System 

an embrionary level, the technical requirements have been already addressed and today, 
Data Spaces have been tested by TECNALIA on a peer to peer basis (MARKET4.0, 
AI REGIO) and using different connectors (TRUE, EDC…) according to the classic 
standard framework IDSA RA (Reference Architecture). 

Fig. 2. AI REGIO DS implementation
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Fig. 3. MARKET4.0 DS implementation 

But the solution to the technical requirements is still uncertain and protocols and 
standards are not yet clear. At the moment these are the main technical challenges we 
are facing:

• DS Connectors (EDC, TRUE, DSC, SOVITY, EDC GAIA X type,…) do not interact 
one with each other

• Most connectors do not interact with previous or latter versions of the same connector. 
As an example, EDC does not interact with TRUE. TRUE does not with SOVITY, 
SOVITY does not with DSC… and none of them with the central modules (i.e. Broker, 
clearing House, Identity Provider…)of the others.

• Some connectors early versions are deprecated
• Connectors do not cope with streaming data transactions
• Connectors do not work on a multipeer environment. As an example, a data receiving 

connector cannot be connected to several data emitting connectors. The receiver is 
not able to handle the information. So the connection today must be peer to peer 
(connector to connector) and not multipeer. 

The solution to solve these issues is being applied in CIRC TWAIN. Connectors are 
used to solve the business aspects (data control) while the pure data transaction takes 
place out of the connectors and directly between data repositories. This solution permits 
to solve most of the previously identified technical constraints (see Figs. 2, 3, and 4).
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Fig. 4. Eclipse DS components 

5 Discussion and Conclusion 

This section presents the conclusions on our research. 
On the first hand, we can conclude that Manufacturing Mass customization cannot 

be implemented without involving different levels of the company (process, production 
chain and value chain). 

We can also conclude that to address the upper levels (value chain) it is required to 
have solved the lower ones (process). 

A third conclusion is that a secure, trustworthy data transaction is essential. But 
on top of the technical challenges, it is also essential to address the business aspects 
and build trust among the industrial players and ensure a greater cooperation among 
them in distributed value chains to set common frameworks and rules for data sharing. 
This includes the creation of the conditions to enable such players to build trustworthy 
relationships and of a trusted environment for data sharing within and across industries. 
And, as a summary, DATA SPACES provide the infrastructure to improve holistically 
the manufacturing plant through MAS where each AI based AGENT Improve each 
manufacturing process. 
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Abstract. Traditional maintenance procedures often rely on manual data pro-
cessing and human expertise, leading to inefficiencies and potential errors. In the 
context of Industry 4.0 several digital technologies, such as Artificial Intelligence 
(AI), Big Data Analytics (BDA), and eXtended Reality (XR) have been devel-
oped and are constantly being integrated in a plethora of manufacturing activities 
(including industrial maintenance), in an attempt to minimize human error, facili-
tate shop floor technicians, reduce costs as well as reduce equipment downtimes. 
The latest developments in the field of AI point towards Large Language Mod-
els (LLM) which can communicate with human operators in an intuitive manner. 
On the other hand, Augmented Reality, as part of XR technologies, offers use-
ful functionalities for improving user perception and interaction with modern, 
complex industrial equipment. Therefore, the context of this research work lies 
in the development and training of an LLM in order to provide suggestions and 
actionable items for the mitigation of unforeseen events (e.g. equipment break-
downs), in order to facilitate shop-floor technicians during their everyday tasks. 
Paired with AR visualizations over the physical environment, the technicians will 
get instructions for performing tasks and checks on the industrial equipment in 
a manner similar to human-to-human communication. The functionality of the 
proposed framework extends to the integration of modules for exchanging infor-
mation with the engineering department towards the scheduling of Maintenance 
and Repair Operations (MRO) as well as the creation of a repository of historical 
data in order to constantly retrain and optimize the LLM. 

Keywords: Large Language Model · Generative AI · Augmented Reality · 
Maintenance 

1 Introduction 

The current industrial landscape is highly characterized by the immense digitization and 
digitalization of the processes, the tangible products and the services offered by compa-
nies. This transformative wave is supported by the Industry 4.0 paradigm, which entails 
a plethora of digital technologies, among them being Artificial Intelligence (AI) and
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eXtended Reality (XR). Despite the fact that AI is not a new concept, it has been revis-
ited due to the technological advances in terms of computational power [1]. Especially in 
engineering, AI has found an abundance of applications, such as predictive maintenance 
[2], constituting one of the pillar technologies for the upcoming evolutions. 

The last few years, AI has met a great deal of attention. By extension, existing meth-
ods and tools have been further developed as well as new models have been introduced, 
such as Large Language Models (LLM). The latter falls into the category of Natural 
Language Processing (NLP). However, LLMs are more capable than traditional NLP 
models, due to the fact they can learn without human supervision, and as a result can 
produce more robust results [3]. Further to that, according to recent market research, the 
market size for Generative AI for the year 2023 is calculated at 16 billion USD and is 
expected to grow by approximately 30% during 2024 [4]. Despite the apparent capabil-
ities of such models in everyday life (see ChatGPT [5]), there is no clear evidence that 
their usability has been fully explored and exploited in Engineering applications [6]. 
Therefore, the context of this research work revolves around the integration of LLMs to 
industrial maintenance in conjunction with AR technology, in an attempt to further auto-
mate/digitalize the field of Maintenance and Repair Operations (MRO). Consequently, a 
framework is presented to serve as a proof of concept for the above-mentioned challenge. 
The framework is elaborated by integrating key technologies beyond AI and AR, such 
as Cloud technologies for remote deployment and access to the services provided. 

The rest of the manuscript is structured as follows. In Sect. 2, the most recent and rel-
evant literature is investigated in the key topics of maintenance, LLMs, and AR. Then, in 
Sect. 3 the case study on which the development of the framework is based, is discussed. 
Following, in Sect. 4 a detailed presentation and discussion of the proposed framework 
is provided including the necessary technical details. Then, in Sect. 5, the current imple-
mentation strategy is presented. Finally, the manuscript is concluded in Sect. 7, along 
with the provision of steps for future development of the existing framework. 

2 State of the Art 

Zhang et al. [7] have performed a literature in the context of LLM integration in robotics, 
aiming at improving Human–Robot Interaction (HRI), indicating the current level of 
maturity followed by ongoing challenges. It is notable that contextual understanding 
is an ongoing challenge, which highlights the need for further development of LLM 
models before they are adequately integrated to hybrid and collaborative robotic cells. 

In their work, Fan et al. [8] have fine-tuned an LLM in order to analyze formalized 
academic papers and extract knowledge regarding the process of Incremental Sheet 
Forming (ISF). This is an interesting work, in which the model can be prompted by the 
user in an attempt to provide process optimization steps. In the context of maintenance, 
Wang and Li [9] have fine-tuned an LLM model for facilitating technicians to perform 
MRO. Interestingly, the results indicate that a domain specific fine-tuned LLM can 
produce more relative results in comparison with a general-purpose model, however, 
there is still for further improvement, since the responses lack technical details and, in 
some cases, the suggested tasks are not feasible. 

Specific context training LLMs is a complex process, which requires careful planning 
and execution. Chen et al. [10] compared fine-tuning versus prompt tuning an LLM in



Industrial Maintenance Optimization 199

the context of generating taxonomies for ontologies. Their findings indicate that prompt 
tuning the LLM has yielded better results, however, fine-tuning might be more suitable for 
a more controlled environment. Considering this point the current work is based on LoRA 
fine-tuning method. Further to that, the authors have proceeded with the compilation of 
the most prevalent fine-tuning methods, accompanied by prons and cons, as presented 
in Table 1. 

Following the literature investigation, it becomes evident that despite LLMs being 
fine-tuned in a plethora of specific contexts, there is a lack in the field of engineering. 
The literature gap becomes more evident in the field of MRO, which coincides with 
the scope of the current work. The majority of LLM fine-tuning attempts are based on 
structured data, or by implementing prompting techniques. In that context the current 
work focuses on the utilization of MRO manuals, which do not follow a standardized 
format. 

3 Case Study 

The design and development of the proposed methodology has been based on a real-life 
case study deriving from the dairy industry. Consequently, the main products of interest 
are raw milk and a wide variety of milk-based products (e.g. carton milk, yogurt, desserts 
etc.). The shop floor can be considered as a combination of complex and interconnected 
production and packaging procedures involving several equipment assets that need often 
and complicated maintenance tasks. With maintenance being considered as a key econ-
omy and efficiency challenge for any factory, the proposed case study implements and 
examines the effect of LLMs as a means of maintenance assistance to personnel towards 
more accurate and cost-effective maintenance activities. The integrated LLM will be 
trained based on previous maintenance queries of the factory involving task specifi-
cations, user manuals and equipment manuals. With this historical information being 
acknowledged, the model will be offered to employees to facilitate their everyday rou-
tine by proposing the correct maintenance encounter to equipment failures or regular 
maintenance needed with text prompts representing the major data input type. For testing 
and validation purposes, the experiments revolve around the replacement of the LCD 
module from a machine PLC. 

4 Proposed System Architecture 

The proposed framework can be realized as an online tool which is hosted on a Cloud 
platform and is accessible to all the users of the platform through AR GUIs or desktop 
instances. For that purpose, a general system architecture has been designed and is illus-
trated in Fig. 1. Further details regarding the operation of the framework are discussed 
in the following paragraphs. 

4.1 Augmented Reality Module 

In the form of an AR application, the user exploits the device’s (e.g. smartphone, tablet, 
HMD – Head Mounted Display) integrated camera in order to scan the industrial equip-
ment. Following the recognition of the machine type, and model, the user can prompt this
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Fig. 1. General System Architecture of the Proposed Methodology 

information along with any question related to the maintenance and/or repair actions for 
that specific asset. Consequently, the model responds with a list of actions and propo-
sitions to the user according to its training on the official manuals provided by the 
manufacturer. The key concept of the AR module is to extend the functionality of the 
LLM by creating keywords which could be utilized for the retrieval of AR scenarios 
from the Cloud Database. 

4.2 Desktop Application 

The desktop application follows the same operating principle as the mobile application 
discussed in the previous paragraph. However, due to the limitations of desktop comput-
ers, instead of automatically recognizing the machine model by scanning the QR code, 
the user has to manually enter such information through the prompt. Furthermore, the 
desktop application supports additional functionalities related to the maintenance of the 
framework, handling of the digital material (e.g. AR scenarios) and additional support 
to the fine-tuning process of the LLM. 

4.3 Dataset Preparation and Expansion 

One of the most important tasks ensuring the optimal operation of the LLM is the prepa-
ration of the dataset involving maintenance and repair manuals of industrial equipment. 
Initially, the dataset contains manuals in PDF. Therefore, in order to be appropriately 
prepared, the documents are automatically retrieved, and processed in order to be tok-
enized. The preprocessing method is based on the exclusion of figures and the extraction 
of raw text from each PDF file. It is stressed that the tokenization process divides the 
text (tokens) on a sentence scale, in order to maximize the fine-tuning process efficiency 
by maintaining the context. An indicative example of the format of the custom mainte-
nance and repair dataset is presented in Table 1. Concretely, the dataset, following the 
preprocessing process (i.e., sentence tokenization), consists of approximately 250.000 
sentences. A similar process is implemented for improving the fine-tuning process by 
considering maintenance records which have been digitized and saved as historical data
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to the Cloud platform. Contemporary LLMs, as the ones deployed in this case study, 
require specialized datasets, formatted as prompts and responses. Therefore, one of the 
contributions of this research work lies in the development of a module which is capable 
of analyzing unstructured data derived from operation and maintenance manuals and 
translating them to meaningful datasets for LLM models. 

Table 1. Example of maintenance steps extracted from the current dataset. 

Computer Module and LCD Enclosure Replacement 

Step 1 Turn off power to the machine and control 

Step 2 Unplug all the connectors from the rear of the pendant 

Step 3 Remove the pendant from the pendant arm by removing the 3/8 – 16 bolt and nut that 
secures it in place 

Step 4 Place the pendant assembly on a clean and secured table with the display pointing 
away from you 

Step 5 Remove the (6) 8 − 32 × 3/8ʺ Pan Phillips head screws securing the computer module 
to the LCD/enclosure 

Step 6 Replace the computer module or LCD/enclosure 

Step 7 Follow the instructions in reverse order when reinstalling the new computer module or 
LCD/enclosure 

5 System Implementation 

In the following paragraphs the implementation strategy of the proposed framework will 
be discussed in terms of software and hardware. The framework has been developed as 
a python-based stand-alone desktop application, using Python 3.12.0 64bit version. The 
Graphical User Interfaces were developed using tKinter library. For developing and 
adjusting LLM operations, the Hugging Face API (Application Programming Interface) 
has been utilized. In terms of hardware a desktop PC equipped with an AMD Ryzen 
5900X 12-core processor, 64GB RAM, and Nvidia GeForce RTX 4090 24GB GPU has 
been utilized. The LLM model is based on a pretrained instance of the phi-2 model, 
which has been developed by Microsoft [11]. This is a relatively small and compu-
tationally lightweight model consisting of 2.7 billion parameters, best suited for the 
generation of answers based on user prompts. The trainable parameters for that model 
are approximately 21 million. Further model hyper parameters are provided in Table 2.
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Table 2. LLM hyper-parameters selection 

Parameter Value 

Warmup steps 100 

Train batch size/device 8 

Gradient accumulation steps 4 

Max steps 1000 

Learning rate 2e-4 

Optimizer Paged_adamw_8bit 

Seed 42 

Training/test split 75% 

6 Results and Discussion 

The training procedure lasted approx. 3 h, while memory and computational usage 
were both restricted to a maximum of 90% utilization rate. Below, the training loss and 
evaluation loss diagrams are presented (Fig. 2). Training results are based on the fitting 
of the LLM on the training dataset (75% of total) including approx. 187.000 sentences, 
while evaluation results represent the performance of the model on the testing dataset 
(including approx. 67.000 sentences). 

Fig. 2. Training and evaluation loss of the model 

The training monitoring results (Fig. 2) indicate a convergent training session, with 
continuous improvement of the model over the course of iterations and a gradual decrease 
in performance loss. Early stoppage has been integrated towards the avoidance of overfit-
ting effects on the model. The following prompt has been input to the models: “Computer 
Module and LCD/Enclosure Replacement for TRAk TRL 1440EX”. The models used for 
the validation are i) the public version of the GPT [6] model (v3.5, through its official 
website), ii) the original pre-trained Microsoft phi-2.0, and iii) the fine-tuned Microsoft 
phi-2.0, towards comparing their performance on a specific maintenance prompt. Con-
sidering the output of the three models for a specific MRO (see Table 3), it is evident that
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the GPT model suggests feasible actions that, however, lack detailed technical informa-
tion, and the original Microsoft phi-2.0 does not provide a useful response at all. On 
the contrary, the fine-tuned phi v2.0 model offers more accurate responses, that better 
resemble the needs of a dairy industry and its personnel, with attention to the exact 
equipment asset that is questioned by the user. 

Table 3. Example prompt comparison between ChatGPT versus the fine-tuned model 

Model Response 

Gpt 1. Access the Computer Module: Locate and open the compartment 
housing the computer module 

2. Disconnect Cables: Disconnect all cables from the computer module, 
noting their positions 

3. Unscrew and Remove the Module: Remove the screws securing the 
computer module and slide or lift it out 

4. Position the New Module: Place the new computer module in the 
compartment, aligning it with the screw holes 

5. Secure the Module: Insert and tighten the screws to secure the module 
6. Reconnect Cables: Reconnect all cables to the new computer module 

Pre-trained phi v2.0 I’m sorry, but it seems like you may be referring to a different product 
than the one I am currently assisting with. Can you please provide more 
information about the specific computer module or LCD/ enclosure 
replacement that you are looking for? 

Fine-tuned phi v2.0 1. Turn off the power to the machine and control 
2. Unplug all the connectors from the rear of the pendant 
3. Remove the pendant from the pendant arm by removing the bolt and 

nut that secures it in place 
4. Place the pendant assembly on a clean and secured table with the 

display facing away from you 
5. Remove 6 Phillips head screws securing the computer module 
6. Pull the computer module a few inches and stop. Pulling the 

computer module too far will damage the ribbon cables 
7. Remove the IDE flash drive from the motherboard 
8. Firmly insert the replacement IDE flash drive into the motherboard. 

Secure the connector with RTV adhesive such as REP Fast Gasket 
adhesive, P/N 1430 

9. Secure the computer module back to the LCD/enclosure by 
following the instructions in reverse order 

10. Make sure that the overlay cable is properly seated before fastening 
the unit back in place
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7 Concluding Remarks and Outlook 

Under the scope of this research work, the design and development of a stand-alone 
application for integrating LLM to industrial MRO has been presented. The current study 
serves as a proof-of-concept for achieving this goal. Concretely, it has been observed 
that the developed application is capable of providing actionable items to the shop-floor 
engineers. However, margins for further improvement still exist since some symbols 
related to machine hardware (bolt type/size) have not appropriately been captured by the 
model and could serve as an indicative driver for future improvement and the provision 
of an updated algorithm. Another aspect which will need to be further elaborated in 
the future is fine-tuning the model using more data from manufacturers regarding MRO 
as well as the integration of historical knowledge from previous MRO. It is evident 
that the current research acknowledges certain limitations. Therefore, it is foreseen that 
alternative methods for fine tuning the model will have to be investigated. Concretely, 
the authors plan to implement the prompting method, in order to explore the capabilities 
of such models. Finally, in order to capture other modalities such as vision, multi-
modal LLMs will also be tested considering images along with text. In the future the 
authors will also focus on the integration of methods such as regularization, controlled 
response generation, rule-based systems in order to mitigate risks and maintain the 
model’s reliability. 
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Abstract. This paper focuses on the design and implementation of an AI-based 
architecture diagram. Each module of this diagram contributes to the generation 
and programming of different components, namely robot, fixtures, grippers, fences 
etc. that are necessary to create a robotic cell in virtual environments. Addition-
ally, the application includes modules that perform self-correcting suggestions, 
checking for any anomalies, such as overlapping parts, in the generated scene, 
providing corrective feedback to the user. The aim of the architecture is to help 
with the creation of an AI-based application that would enable the users create 
demos of robotic cells in VR-based environments, similar to the real ones. In this 
paper, the background of the architecture is introduced, then a description of the 
architecture is provided. In the use case, an AI-based application is demonstrated 
as example, while in the end, results and next steps are enclosed in the conclusions. 

Keywords: Generative AI · VR application · Robotics · Manufacturing 

1 Introduction 

Manufacturing is an important activity for society that creates jobs and wealth, acting as 
one of the main incentives for major technology developments [1]. This paper focuses 
on Virtual Reality (VR), which keeps growing, offering great possibilities to the manu-
facturing. It is used with functionalities such as robot programming, training, decision 
support, workplace design and optimization, since there is no need to create prototypes 
which entail high costs and implementation time [2]. An example of Digital Twin (DT) 
representation of the physical cell in VR environment is discussed in [3]. Human move-
ments have been recorded in VR, which are used to program a real robot. Then when 
the human is reproducing those movements with the real robot, it has the same behavior. 
This application has been demonstrated in a case study for cleaning of ceramic casting 
molds for robot movements that are hard to program. Another example is the use of VR 
for training operations [4], mapping the main features of a physical object or process, 
enabling simulation, prediction and optimization in the areas of system servicing. 

Another type of technology development that can heavily contribute to manufactur-
ing, and this paper is focused on, are the new Artificial Intelligence (AI) technologies and 
tools [5]. AI approaches have been tested for facilitating the design, planning, control, 
management, and integration of products and processes, which are expected to empower
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companies to scale up and move from conventional manufacturing to autonomous fac-
tories [6]. Another system that has been investigated uses a combination of LLMs, DT 
and industrial automation systems to enable intelligent planning and control of produc-
tion processes [7]. Low-level functionalities are executed by automation components, 
and high-level skills are performed by automation modules. Based on the retrofitted 
automation system and the created DTs, LLM-agents are designed to interpret descriptive 
information in the DTs and control the physical system through service interfaces. 

AI is also used to align a 3D point cloud multi-modality model, with 2D image, 
language, audio, and video [8]. Guided by ImageBind, a joint embedding space between 
3D and multi-modalities is constructed, enabling many promising applications, e.g., 
any-to-3D generation, 3D embedding arithmetic, and 3D open-world understanding. 
3D-LLMs can take 3D point clouds and their features as input and perform a diverse 
set of 3D-related tasks, including captioning, dense captioning, 3D questions answer-
ing, task decomposition, 3D grounding, 3D-assisted dialog, navigation, and so on [9]. 
Similar applications where the LLMs have been used to explore and improve the spatial 
reasoning have been made by other researchers as well [10]. In this work, the out-of-
the-box performance of ChatGPT-3.5, ChatGPT-4 and Llama 2 7B models have been 
investigated when confronted with 3D robotic trajectory data from the CALVIN baseline 
and associated tasks, including 2D directional and shape labelling. 

Moving beyond the LLMs that are related with spatial activities, new scenes have 
been generated using LLM prompts and uncurated object databases [11]. In this work, 
the prompts are not limited to a fixed vocabulary of scene descriptions, but they lever-
age the world knowledge encoded in pre-trained LLMs to synthesize programs in a 
domain-specific layout language that describes objects and spatial relations between 
them. Executing such a program produces a specification of a constraint satisfaction 
problem, which the system solves using a gradient-based optimization scheme to pro-
duce object positions and orientations. To produce object geometry, the system retrieves 
3D meshes from a database. On a similar note, another LLM-based scene generator has 
been introduced in [12], which introduces a 3D-visual-language model that enhances 
embodied agents’ abilities in interactive 3D indoor environments by integrating the rea-
soning strengths of LLMs. This LLM adopts a hybrid 3D visual feature representation, 
that incorporates dense spatial information and supports scene state updates. 

Similar to the above work, this paper aims to demonstrate how a robotic cell can 
be created in a virtual environment using LLM agents. Developing a robotic cell in 
Virtual Environments requires an appropriate 3D engine capable of building applications 
suitable for VR devices. The most popular engines have an Editor associated with them, 
that allows developers to create, test and build VR applications, they come with a variety 
of tools to build and program scenes. However, proper familiarity and usage of this 
tools require significant effort and expertise to master. To ease this process for non-
expert users we have designed and implemented custom editor tools that use LLMs and 
algorithms, substantially simplifying the creation and programming of robotic cells in 
VR environments, through natural language interaction.
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2 Approach 

As shown in the figure below (Fig. 1), to prepare a scene in VR, there are several steps that 
should be followed, most of which require a high level of expertise and familiarization 
with coding and design tools. Starting with the models that should appear in the scene, 
the user should use existing models or create new ones. These models should be inserted 
in a new scene and combined with the scripts that should be written by the user and other 
game objects created in Unity, the user is able to create a prefab. Using multiple prefabs 
that interact to each other and with the user, the final scene is created, while combining 
multiple scenes, the final VR application is created. 

LLM, aims to facilitate this process, taking over certain steps in the scene generation 
part. More specifically, the user is required to create or edit the models in a design tool, 
but an extra level of detail is required, such as to define the sides of an object, namely top, 
bottom, front, back etc. as well as anchor points to be used to connect different objects. 
Then, similar to the traditional way, these models should be inserted in the Unity scene 
and the LLM would be able to take over the implementation of the scene, given a query 
from the user. In other words, the LLM would understand from the query how to connect, 
place them in the scene, create game objects and scripts or even create multiple scenes 
to have the final application. Thus, the user would be able to avoid following the steps 
in the green boxes. 

Fig. 1. VR application creation steps – Blue boxes are actions manually performed, Green boxes 
are actions that can be executed by the LLM 

In order to achieve this, an LLM-based architecture, depicted in Fig. 2 has been 
designed for generating robotics cells in VR environments, based on the user require-
ments. The system is characterized with close integration with the 3D engine of choice 
and worker in the loop modality. As described above, in order for the LLM as well as 
for the VR application to work properly, it is assumed that a suitable collection of “pre-
fabricated objects” or prefabs for all the necessary components, such as robots, grippers, 
fixtures, tool changers and other parts, already exist, with all the necessary properties 
required of them. Through custom editor windows the user can interact with the LLM 
and update the scene, without the need for coding or having extensive familiarity with 
the 3D engine functionalities. When the user prompts the LLM additional information 
is appended to his input or system prompt from the 3D engine regarding the current 
state of the scene, data of all the available prefabs and training data. The LLM generates 
an appropriate response based on the JSON schema and user-feedback in natural lan-
guage, this response is processed further and passed into the validation module, where 
programmatical checks and conditions are performed, providing this feedback also to 
the user. The user can preview the changes, if he accepts them a new iteration with the 
updated scene state can begin to which the user can provide a new query. Additionally,
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he/she can also perform manual changes to the scene using the 3D engine interfaces, 
and re-initiate with the updated scene state as before or manually insert a new query 
for updates to the LLM, starting a new iteration with the updated scene state. Last but 
not least, there is the capability to automatically evaluate the validation feedback and 
inform the user. In other words, the system is checking if certain conditions from the 
initial query are met, such as the proper relation between the parts or if the parts overlap 
to each other etc. and informs the user, allowing him to either take corrective measures 
or create a new query for the LLM to perform the corrections. The benefit of the above 
architecture is its general applicability, enabling the developers to adapt it for different 
cases. 

Fig. 2. Architecture diagram of the content creator 

3 Implementation 

A more detailed diagram tailored to the scene generation LLM is shown in the figure 
below (Fig. 3). The key components shown in this diagram are the following, while 
their functionality is described in detail in the following sub sections: Prefab retriever, 
Scene state retriever, Training examples, Scene image capture, Scene operation update 
manager, Scene validator and user decision 

3.1 Prefab Retriever 

The role of the Prefab Retriever/Serializer module is to search the assets of the editor 
from a specific folder and load and serialize their properties into a JSON format which is 
included to the LLM once in the system prompt, since we assume that no extra prefabs 
are created during the scene creation process. 

In order for this to work properly, all the prefabs must have some common properties: 
name, type and a natural language description. A prefab can be a gripper, robot, part, 
static part, tool-changer etc. To ease the placement by the LLM without overlapping, a 
bounding box is defined along with a description of where its origin is located. 

For their proper hierarchical placement in the scene, each prefab has connector points 
associated with them relative to its origin for child prefabs to be attached to. The LLM
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Fig. 3. Instantiation of the system architecture for scene generation 

provides the 6D pose to place a child prefab relative to the connector of the parent prefab, 
but for some connectors some axis might be excluded. Given this data for each prefab the 
LLM can create a coherent 3D hierarchical scene. Additional information per prefab type 
can be placed mostly for compatibility and functionality purposes, such as the gripper 
type (suction, two-finger) or a robots reach and payload. Lastly, some prefabs can also 
have size dimensions provided by the user or the LLM, including tables or fences, these 
are programmatically generated in runtime from a template prefab. 

3.2 Scene State Retriever 

In addition to the properties of the available prefabs, we need to provide to the LLM 
the current state of the scene, as a hierarchical nested tree JSON. This is provided to 
the LLM in each query; thus, it has access to all the previous states of the scene. The 
module responsible for this is the Scene State Retriever that recursively parses the tree in 
a depth-first search mode and serializes the scene into a corresponding JSON structure. 
The properties of the prefabs are not included in this step since they are available from 
the prefab retriever module. Also, the key fields are intentionally kept small to decrease 
the size of the scene data both in the LLM context and most importantly in its output. 

3.3 Training Examples 

Newer LLMs, like GPT-4, have an increased context window of ~200k tokens enabling 
us to provide them with a list of user queries combined with the desired scene JSON 
outputs. The associating module can retrieve these manually created scenes from mem-
ory, serialize them and provide them to the LLM system prompt to ground it in a desired 
behavior. For example, “I want three tables surrounding the robot” will place the tables 
similar to what has seen in the training examples.
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3.4 Scene Image Capture 

In addition to the user prompt, the newest models like GPT-4 and Claude-Opus can also 
accept Images as input, the user can take pictures of the scene, directly from the editor, 
saving also the 6D pose of the camera that this picture was taken from. This way the 
LLM can visualize how the prefabs actually look. However, this did not significantly 
improve the Scene Creation Process. 

3.5 Scene Operation Update Manager 

The LLM outputs a list of operations that must be performed in the hierarchical scene, 
substantially reducing its size, and enabling it to operate on very large scenes, since it 
must provide only the modifications required. This module is responsible on reading the 
generated operations from the LLM and updating the current scene appropriately. The 
output of this module is the updated scene in serialized form. 

For ADD operation we instruct the LLM to include the tree path of the parent that 
the generated prefab is to be added. For REMOVE operations, the LLM needs to provide 
the corresponding tree path of the prefab to be removed with the prefab data array left 
empty. MODIFY operations are used to modify properties of an existing prefab. 

3.6 Scene Validator and User Decision 

Once operations are generated from the LLM, a new scene is constructed in JSON 
format, which is used to recursively spawn the prefabs, with their parameters. Using 
programmatic tests, errors can be detected, i.e. overlaps or incompatibilities, and feed-
back is generated. Based on that the user can fix them performing manual changes and 
reinitiating the validation or he can pass this feedback to the LLM for auto-corrections. 

4 Case Study 

To validate and assess the effectiveness of the proposed LLM-based system architecture 
to generate and program robotic cells in VR environments, a use case from the automotive 
industry has been created in Unity 3D engine, consisting of an industrial robot, part 
fixtures, tables, fences, two robot tools, safety zones, and car parts. The operation goal 
is for the robot to transfer a differential axle from one base to another and then pick 
each drum. The operator must perform a manual guidance operation to insert and screw 
the drums to the differential axle. The list of available prefabs, whose CADs have been 
designed in Blender, used for this scene along with the initial and subsequent queries to 
construct that scene are below (Fig. 4).
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Fig. 4. LLM-based scene generation 

The user queries have been processed using the GPT-4 engine, and the first scene 
has been created with the following one: 

I want an area of 10 by 12 meters enclosed by fences. Behind the fences, I want a 
square safety zone with yellow thickness of 0.5 meters and red thickness of 1 meter. 
Place the robot at the center of the cell. Arrange three tables as follows: one large 
table in front of the robot and two medium tables on each side, rotated 90 degrees. 
On the large table, place a differential axle base in its center and slightly in front. 
At each corner, place two screw bases filled with four drum screws each. Position 
two screw-drivers one on each corner of that table. On the table to the right, place 
one tool-changer with a drum gripper and another tool-changer with an axle 
gripper. On the remaining table, place an axle base containing a differential axle 
in its center, rotated by 90 degrees. In the center, place two drum bases containing 
drums, spaced out from each other and from the differential axle base. Place a 
safety eye 4.5m above the robot. 

With a starting scene created the user can now provide update queries: Move the 
differential axle to the other empty compatible base and rotate by 90 degrees. 
Move the screwdrivers closer to the corners. Switch the grippers and rotate the 
tool-changers by 90 degrees. Remove the fence right and in front of the robot. 
Reduce the length of the fences by 2 meters. Do the appropriate changes to the 
safety zones, remain behind the fences and increase the yellow zone length to 2m. 
Bring the side tables closer to robot. 

5 Results and Conclusion 

The discussed AI-based system significantly outperforms the manual approach in gener-
ating and programming robotic cells in VR environments, being faster, more efficient and 
simpler. Tasks shown in Fig. 1, that traditionally took hours, can now be accomplished 
in minutes. Also, high accuracy and precision has been proved by getting correct scenes 
when different type of queries were provided, while the inclusion of multiple iterations 
and validation steps improved this characteristic as well. The implementation of natural 
language interaction simplifies the process for users without extensive coding knowl-
edge, while the modular design allows customization for various use cases. Integration 
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with popular 3D engines leverages robust features and enhances them with AI-driven 
automation, making VR application development more efficient and powerful. Future 
work will include more corrective mechanisms and closer integration between scene 
creation and programming to further improve accuracy and efficiency. 
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Abstract. Monitoring critical machine components is a key element for maxi-
mizing production while minimizing non-operational costs and unplanned down-
times. Continuous monitoring and anomaly detection techniques are highly rel-
evant for ensuring these operational objectives. Anomaly detection remains an 
active research area, where researchers are continuously exploring novel algo-
rithms and approaches, from traditional techniques (e.g., regression, decision trees, 
clustering) to novel deep learning approaches (including foundational models). 

In general, traditional machine learning processes require domain expertise 
and significant manual intervention to design features and interpret model results. 
One of the main advantages of foundational models is their ability to automatically 
learn complex patterns and relationships in the data without requiring extensive 
manual feature manipulation. Among these foundational models, language models 
(LM) or large language models (LLM) excel in working with data in text or 
sequential format, such as time series. 

In this paper, building on the principles of LLM models, we propose a novel 
vector-based anomaly detection solution applied to pneumatic cylinders. The pro-
posed solution leverages the power of vector representations to capture complex 
patterns and relationships from an in-house test bench consisting of four double-
effect pneumatic cylinders. The obtained results confirm how this vector-based 
approach can offer promising outcomes without prior knowledge of the system’s 
behavior, being able to detect data-drift and anomalies in the data. 

Keywords: Foundational models · Language Model (LM) · Vector-based 
anomaly detection · Time series data · Pneumatic cylinders 

1 Introduction 

Pneumatic cylinders are critical components in many manufacturing processes, provid-
ing linear motion through the use of compressed air, for clamping, handling, packaging, 
cutting or movement control purposes. Double acting cylinders are the most widely used 
pneumatic actuators compared to single acting cylinders, given their ability to extend 
and retract within a shorter time.
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A double-acting pneumatic cylinder uses air to move in two directions, extension, 
and retraction. These cylinders have two ports. When pressurized air enters through one 
port, it pushes the piston to move in one direction. Once the task is accomplished or a 
change in direction is needed, air flow is applied through the opposite port. This causes 
the piston to return to its original position or continue moving in the opposite direction. 
During this phase, air from the initial side needs to escape; hence, that port turns into an 
exhaust port allowing air to exit. 

Those cylinders have a long lifetime (e.g., millions of cycles). To be able to test 
different types of failures and degradation processes in a reasonable time, accelerated 
life test [1] has been a widely used method with the aim to obtain reliability information 
on components. Among the most reported failures in a pneumatic cylinder are piston 
seal hardening, causing leakage, and wear due to friction or obstruction of the rod [1–3]. 

Different techniques to identify failures in pneumatic cylinders have been reported 
[2], from expert systems to other approaches using model-based and machine learning 
(ML) techniques. There is also abundant literature on failure and anomaly detection tech-
niques in a variety of mechanical components such as rotating elements (e.g., bearings). 
However, the use of foundational models for this purpose is still novel. 

The objective of this paper is to understand and detect degradation modes in double-
acting pneumatic cylinders applying a novel technique based on foundational models. 
After an introduction to the field of work, in Sect. 2 foundational models are explained 
in more detail. Then, in Sect. 3 the followed methodology is explained, beginning with 
the construction of a test bench for data acquisition and analysis. The results of the work 
are summarized in Sect. 4 and conclusions are drawn in Sect. 5. 

2 Foundational Models 

Foundational Models (FMs), including Large Language Models (LLMs), with their stan-
dardized approach, assist Artificial Intelligence (AI) systems in comprehending complex 
data across various modalities, such as human language, images, speech, and tempo-
ral data relations in time series. They offer several distinguishing features compared to 
previous ML architectures: (i) they employ self-learning, eliminating the requirement 
for labelled data during the training phase, unlike supervised or unsupervised learn-
ing approaches, (ii) trained on diverse large datasets; they become robust, versatile and 
general-purpose models, (iii) despite being pre-trained, they demonstrate adaptability 
and possess the remarkable ability to continuous learn from new data inputs during 
inference and (iv) they play a crucial role in accelerating the development of novel ML 
applications, thereby enhancing efficiency and cost-effectiveness for data scientists. 

In recent years, Natural Language Processing (NLP) has undergone a revolution 
thanks to the alignment of Foundational Models (FMs) with Transformers [4], an archi-
tecture introduced by Vaswani et al. in 2017, focused on the self-attention mechanism. 
This architecture allows Language Models (LM) (i.e., LLMs) to efficiently process input 
sequences in parallel, capturing dependencies across the entire input. 

There are various industry applications of FMs and LLMs, including customer sup-
port chatbots [5], automated marketing content generation [6], and Deep Learning (DL) 
for predictive maintenance [7]. However, it is now that the full potential of language
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models in capturing long-range dependencies and interactions is being realized. This 
has led to notable advancements [8, 9], suggesting that more research should be carried 
out in this direction. 

3 Methodology 

Aiming to understand the behavior of double-acting pneumatic cylinders over time and 
to demonstrate the effectiveness of language models in detecting potential deterioration 
or errors in these components, a dedicated test bench was assembled and monitored. 
The following section presents the characterization of the test bench, the employed data 
acquisition and preparation, and the developed LM approach. 

3.1 Double-Acting Cylinder Test Bench 

The objective of this test bench is to provide a testing facility to bring different double-
acting cylinders to the end of their life cycles to analyze their degradation and potential 
for breakage. The test bench is composed of 4 cylinders located in 4 positions (see 
Fig. 1). The cylinders are of 2 commercial brands (Festo and SMC), in 2 different stroke 
lengths, 1150 mm and 1400 mm with a piston diameter of 63 mm. For accelerated life 
testing, a 5.8 kg weight is used at the end of the cylinder rod. Festo VTEM controller 
has been used for controlling the air flow for each cylinder valves. 

Fig. 1. Cylinder test bench. 

For each cylinder, there are 6 sensors that provide pressure, flow, and position data 
in the cylinder volumes (3 sensors for the first port and 3 sensors for the second port).

• Pressure: Pressure values are obtained using Festo VTEM. Unit of measurement: 
mbar.

• Flow rate: Flow rate values are obtained from VTEM (in “Virtual Valves” operation). 
Unit of measurement: l/min.
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• Position: Position values are obtained from additional sensors located on the cylinder 
limit switches. SMC and Festo brands are mounted in accordance with the corre-
sponding cylinders, i.e. 2 different types of position sensors are available. Unit of 
measurement: mm. 

In addition to the values obtained from the 6 sensors that provide pressure, flow and 
position data, the number of cycles and number of measurements have been registered. 
All these variables have been gathered using Savvy IoT Gateway device [10] with an 
acquisition frequency of 50 ms. 

3.2 Data Acquisition and Preprocessing 

In this study, measurements consisting of 10 cycles (including forward and return oper-
ations) are recorded every 1,000 cycles, with the movement of other cylinders paused 
to prevent data interference. Each measurement is consolidated in a single file, encom-
passing data from both ports, such as position, pressure, and flow data, alongside the 
number of cycles and recorded measures. 

Data is systematically collected and organized using an automatic script. A specific 
naming convention, including the measurement instance, cylinder position, cylinder 
identification, and applied weight of the test, aids the script in identifying and organizing 
files into respective folders grouped by day. 

Double-action cylinders operate by performing two movements, extension, and 
retraction, requiring differentiation between these directions. The direction of the move-
ment was determined by applying a local maxima search algorithm to the position 
sensor values. Moreover, it was decided to keep only the steady-state period, avoiding 
the unwanted jumps present in the changes of direction. 

Furthermore, some data cleaning was required to ensure that measurements of the first 
cycle always start in the same position. Since the cylinders on the test bench are constantly 
in motion, recording does not always start from the same position. To guarantee that all 
cycles start in the same direction, in the retracted position before transitioning towards 
extension, the first cycle of each file is discarded. For this study, the “SMC-1400” cylinder 
has been used. Data from 18 December 2023 to 18 March 2024 has been considered. 

3.3 Language Model Application 

The study outlined in this paper seeks to leverage the well-known capability of Large 
Language Models (LLM) and Language Models (LM) to understand complex data 
relationships, comprehending the behavior of pneumatic double-acting cylinders and 
identifying potential degradation, such as air leaks, within the system. 

A LM method has been applied to the “SMC-1400” cylinder of the test bench. 
The method consists of the following steps: (i) data consolidation, (ii) data scaling and 
labelling, (iii) text feature implementation, (iv) data to vector transformation, (v) dimen-
sion reduction and finally, (vi) anomaly detection. The following paragraphs provide 
detailed explanations of the implementation and underlying principles behind each step. 

First, a consolidated file was created. For each measurement file, a single sample was 
taken: the first cycle after preprocessing the file. These samples were then concatenated
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sequentially. As a result, an instance of the cylinder’s state was obtained for every 1,000 
cycles. This file comprises more than 47,000 observations and 6 variables. 

After filtering the data to isolate the steady state, data scaling was applied to the 
numerical flow and pressure data, while one-hot encoding and label encoding were used 
to enhance the effectiveness and efficiency of the model for the direction and cycle 
number variables, respectively. Then, a process was employed to create a new summary 
column; data from the 6 variables were transformed into a unified text format, where 
each variable’s name and corresponding value were concatenated, as shown in Table 1. 

Table 1. An example of text feature (summary) implementation for each row. 

As the objective is to use language models, the remaining variables were discarded, 
and only the new text-based variable was utilized. The “all-MiniLM-L6-v2” model [11] 
was employed to transform the data into vectors. “all-MiniLM-L6-v2” is a pretrained 
Transformer-based language model that efficiently comprehends textual data, captures 
contextual dependencies, and processes information effectively in a lower-dimensional 
space. 

Afterwards, Principal Components Analysis (PCA) was employed to reduce the 
dimensionality of these vectors, and the cumulative sum (CUSUM) analysis was used 
to identify the optimal number of principal components to retain. 

Finally, summary statistics, including the mean, were derived from the retained 
vectors by grouping the data into 10-cycle intervals and calculating the mean for each 
group. Subsequently, Z-score analysis was employed to detect anomalies within the 
statistics. 

4 Results 

The outcomes derived from the applied methodology have proven to be remarkable. In 
this section the relevant results are explained. The implementation of the “all-MiniLM-
L6-v2” over the summary variable resulted in the generation of a vector with 384 embed-
ding dimensions. Applying PCA dimension reduction technique combined with CUSUM 
analysis on these embeddings, it was found that 32 significant components were needed 
to achieve an explanation of 80% of the total variance. 

The 2D visualization of this PCA clearly distinguishes the two directions (i.e., exten-
sion and retraction) of the cylinder, as shown in Fig. 2. The extension movement points, 
depicted in light grey, form a single cluster, whereas the retraction points, shown in 
dark grey, are distributed among two distinct clusters. Further complementary tests have
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been conducted to verify whether these differentiated dark grey clusters result from a 
change in behaviour over time. The conclusion is that this differentiation among groups 
is inherent from the beginning. 

Fig. 2. 2D PCA representation labelled by cylinder movement. 

Z-score detected an anomaly within the mean values (see Fig. 3). The range between 
[2024–01-20 21:57:42 - 2024–01-21 14:41:54] exceeded the threshold (highlighted in 
red), indicating the need for further analysis. The analysis conducted on this value range 
is explained below. 

Fig. 3. Z-score applied to the PCA-reduced embedding points. 

For the detailed analysis of outliers, visual analysis has been chosen. The extracted 
embeddings reveal hidden structures that are challenging to recognize from an exami-
nation of the raw data. Therefore, domain knowledge was applied to create features that 
best represent the operation of double-acting pneumatic cylinders, specifically the sum 
of the introduced and released air flows in each direction, as well as the sum of the pres-
sures. Figure 4 allows to observe how the cylinder behaves over time in a single picture, 
pressures are represented above and flows below. The left side depicts the extending 
direction, while the right side shows retraction. Each plot’s right values represent port 1
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and the left values correspond to port 2; dark grey denotes pressurizing moments, while 
light grey indicates exhausting moments. The anomaly peak detected by the system is 
highlighted in red, demonstrating that the system accurately identified a performance 
change during extension movement. 

Fig. 4. Pressure and flow distribution over time. 

5 Discussion 

The methodology outlined in this study generated comparable conclusions to those we 
derived in a previous analysis using traditional AI methods (feature engineering and 
several anomaly detection techniques), but with a more straightforward procedure. 

By transforming raw data into a unified text format and converting it into vec-
tors, alongside dimensionality reduction techniques, the study effectively differentiated 
between the movements of the cylinder. Furthermore, Z-score analysis on PCA-reduced 
embeddings accurately pinpointed a change in cylinder performance. 

In the previous analysis with traditional methods, feature engineering took us more 
effort and time. The differences in pressures and differences in flows resulted to be the 
most significant features, while a variety of features were initially created. All these 
preprocessing steps were skipped with the proposed method. 

The detected anomaly corresponded to a decrease in the effort (flow and pressure) 
to accomplish the extension movement due to an air leak. 

While our method successfully identified abrupt behavioral change using embed-
dings, its applicability may vary depending on the nature of the behavioral change. For 
instance, in cases of more gradual changes, alternative anomaly detection techniques 
like clustering or isolation forest may offer more robust results. Moreover, the inter-
pretability of embeddings without sufficient domain knowledge presents challenges that 
could limit the broader understanding and suitability of our findings.
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6 Conclusions 

Overall, our methodology effectively understands cylinder performance and detects 
potential degradation, significantly easing the workload of data scientists. Unlike tra-
ditional AI methods, it eliminates the need for domain expertise and manual feature 
engineering. However, some limitations have been identified, such as its effective-
ness in identifying gradual behavioural changes. Additionally, the interpretability of 
embeddings poses a challenge in the absence of domain-specific knowledge. 

Future research directions should expand this approach to detect different error 
types and explore more intricate machining processes. Additionally, investigating the 
interpretability of data through feature contribution analysis could yield deeper insights. 
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Abstract. Despite ongoing digitization in industry, many companies 
still work with paper instructions or ‘paper-on-glass’ solutions (e.g., 
PDF files on screens). In recent years, various digital work instruc-
tion (DWI) technologies have become available that provide shop-floor 
employees with information during their activities, e.g., sequences of 
instructions for tasks at hand. Engineering new instructions in these 
systems for new products or product variants is however expensive and 
time-consuming. To scale up, there is a need for methods to generate 
work instructions (semi) automatically. Recently, Generative AI models 
and Large Language Models (LLMs) have taken center stage with their 
abilities to interact fluently with humans, both in understanding user 
questions/statements and in convincingly producing natural language 
texts. These models however suffer from several problems, including hal-
lucinations where unsubstantiated content is presented as facts and lack 
of domain-specific data about products and procedures. For instruction 
generation however, we need verifiably correct statements about the task 
at hand. To tackle both problems, we have created a pipeline that com-
bines the generative abilities of LLMs with explicit domain-specific data. 
We deploy a variant of Retrieval Augmented Generation (RAG) and 
incorporate an ontology that augments the instructions with additional 
information (policies, warnings, tools). Our results show an increase in 
correctness of output. 

Keywords: Instruction Generation · Manufacturing · Generative AI · 
Large Language Models · RAG · Pipeline 

1 Introduction 

In a.o. manufacturing, care and construction, the European labour market is 
tight [ 1]. To help new employees work independently quicker, quality instruc-
tions are essential. Digital work instructions can have advantages over paper 
instructions [ 2], by dosing information in a clear step by step fashion, combining 
short texts with visual representations, e.g., pictures with annotations, videos, or 
c© The Author(s) 2025 
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even projections and AR [ 3]. Especially in a high mix low volume environment, 
where workers have to stay informed about the details of the current product. 
However, creating and keeping work-instructions up to date, requires substantial 
effort [ 4]. 

Information for instructions may be visual (images, videos), or text-based 
and stored in natural language sources (notes, manuals), or expressed in e.g., 
databases (parts list, available tools). This includes information on specific tools 
for a task, specific safety policies, or warnings (‘connection is high voltage’). 
This knowledge is essential for the worker, but processing and interpreting these 
sources with often unstructured information can be difficult [ 5]. 

AI algorithms that analyze for example CAD models [ 4], written texts and 
visual data, can find relations between information in these sources and improve 
the quality of instructions. Large Language Models (LLMs), as a subset of Gen-
erative language models, provide the ability to interact with humans in fluent, 
natural language [ 6]. They can be used to produce natural language output 
upon request. By using these models as assistive technologies, instructions on 
work order and processes of the planned work could be extracted. 

In this paper, we perform instruction generation from text input and improve 
correctness of the output of LLMs by using RAG and incorporating knowledge 
from external sources. Our contribution is threefold: (1) we apply an LLM to 
generate step-by-step instructions from unstructured instruction text, (2) we use 
an ontology with the main concepts of the assembly process that provides context 
information to generated instructions, (3) we use this ontology to augment the 
instructions generated by the LLM. We have demonstrated our setup in a small-
scale demonstration scenario for a single assembly. 

2 Related Work 

Digital Instructions. Research has so far focused on reducing the time to adapt 
to changing demands, or improved product designs by automating the creation of 
manufacturing instructions [ 7]. To that end, information can be extracted from 
e.g. CAD models [ 4, 8, 9] or e.g. from workload models [ 10] to create instructions 
for an assembly sequence. AI algorithms can also be applied to generate digital, 
interpretable instructions [ 11]. 

Large Language Models. Language modeling gained popularity recently, due 
to the emergence of Large Language Models (LLMs) [ 12]. These are pre-trained 
language models of a certain size (potentially billions of parameters), demon-
strating better performance than smaller-scale LMs and capabilities that emerge 
from their size [ 12, 13]. Thanks to their natural language generation capabilities, 
their use in various fields of industry is increasing [ 12, 14]. There are however 
numerous challenges related to their application [ 15], such as: hallucinations 
[ 16], lack of interpretability [ 17], lack of domain specific knowledge [ 12], high 
training costs [ 15].
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Ontologies are structured models, that explicitly describe knowledge and gener-
ate interpretable results due to their symbolic reasoning capacity [ 18]. They can 
be used to store schemas for instructions and/or instructions themselves [ 19]. 
Ontologies can easily be updated to include new concepts and data, whereas 
LLMs require costly fine-tuning or retraining. Ontologies however, require much 
more expertise on explicating domain knowledge than LLMs [ 20]. 

Integration of LLMs and Ontologies can leverage the advantages of both 
because of their complementary nature and addresses some of the issues associ-
ated with LLMs as described above. Pan et al., [ 17] present a research overview 
and a roadmap for integration of LLMs and Knowledge Graphs. 

Retrieval Augmented Generation or (RAG) ([ 21]) is a technique for retriev-
ing information from an external database in order to ground the answers of 
Large Language Models and to enhance their trustworthiness, accuracy, and reli-
ability [ 22]. This technique helps to solve some of the common issues regarding 
LLMs, such as hallucinations, lack of domain specific knowledge and knowledge 
cut offs. 

3 Method 

This section will provide a description of the pipeline created during our research 
and an overview of the knowledge base that models the assembly process. 

3.1 Pipeline Structure 

In this work, we implement a variant of Retrieval Augmented Generation and 
apply it to instruction generation. In a naive RAG architecture (Fig. 1), the 
documents that constitute the external knowledge are split into chunks, then a 
numerical embedding of each chunk is created and stored in a vector database. 
When the LLM is queried, the query embeddings are used to look up similar 
documents in the vector database. The documents most similar to the query 
are then used to augment the model’s answer. While this approach works well 
with unstructured information, we observed that it does not have good results in 
applications that require high retrieval accuracy. Therefore, we propose a pipeline 
that uses structured data (i.e. an ontology) as external knowledge and inverts 
the retrieval and the generation steps compared to the traditional RAG archi-
tecture. This has proven to work better than the traditional RAG architecture, 
as mentioned in Sect. 4. 

The pipeline, shown in Fig. 2, is made up of two main components: the 
Large Language Model, for instruction generation and the Knowledge Retriever, 
responsible for retrieving the relevant context information. 

The Large Language model is used to extract short step by step instruc-
tions from snippets of unstructured (spoken) instruction text. Every time it is 
prompted, the language model is given an example of the expected structure of
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the output (the same example for every prompt) and is asked to generate short 
step by step instructions using the provided text snippet. 

After the instruction generation step, the instructions are passed to the 
knowledge retriever. The function of the knowledge retriever is to identify the 
action a specific instruction is referring to and retrieving all the relevant infor-
mation about it from the ontology. The current action is identified by querying 
a vector database. By splitting the text into snippets that describe a single step, 
we ensure that each vector in the database represents a step and holds infor-
mation about the action carried out in that step. Via a similarity search with 
the instruction, the current action is returned, and used to retrieve the relevant 
information from the ontology. 

Finally, the knowledge retrieved from the ontology is added to the instruc-
tions generated by the large language model. This is done by simply ‘appending’ 
the additional information to the generated instruction text. In Sect. 4 we show 
and discuss examples of the input and output of the pipeline and its components. 

3.2 Ontology Creation 

The assembly process is represented in an ontology (knowledge base), which 
contains some of the main concepts of the assembly process: steps, actions, com-
ponents and tools and the relationships between these concepts, e.g.: a step 
consists of an action; an action requires a tool etc. The structure of the ontol-
ogy is inspired by and simplified from existing ontologies in the manufacturing 
process domain [ 23, 24] and can be seen in Fig. 3. The ontology can be filled 
with instances of each of the concepts, based on the specific application. In our 
application, the component class contains different types of components, such as 
a tire, a rivet, a bolt etc. 

Fig. 1. Typical naive RAG architec-
ture. 

Fig. 2. Architecture of the pipeline.
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Fig. 3. Structure of the ontology (extracted from Protégé [ 25]). 

4 Experiment 

In this section, we will provide a description of the experiments that were carried 
out, with snippets of input and output results. 

4.1 Method 

To test our pipeline, we have created an example implementation using the 
TurtleBot Burger Robot [ 26] assembly instructions as our dataset. The input 
data was created by writing an unstructured text that contains assembly instruc-
tions (simulating instructions that could be extracted from an instruction video). 
The assembly process was then modelled using the ontology structure in Sect. 3.2. 
An important requirement for this pipeline was the use of an open source LLM, 
because it would allow the model to be run locally and it would not put any 
private company data at risk. Therefore the model that was chosen was a fine-
tuned model based on Llama2 [ 27], called Xwin-LM [ 28]. To minimize memory 
consumption and inference time, a quantized [ 29] version of this model was used, 
that is 7 times lighter than the not quantized version. The vector database was 
created using Pinecone [ 30] and a sentence transformer [ 31] model  was used to  
create the vector embeddings. We expect that this pipeline to generate instruc-
tions will yield the following results: 

1. It is expected that the LLM will generate brief and concise instructions by 
paraphrasing the input text and by excluding the phrases present in spoken 
text, but unrelated to the assembly process. 

2. The external source of information (i.e., the ontology) is expected to improve 
the instructions generated by the LLM, by augmenting the LLM’s answer 
with knowledge that it would otherwise not have access to. 

3. We expect that inverting the retrieval and generation steps will improve the 
retrieval step. 

4. We expect that an ontology will be a more advantageous way of represent-
ing background knowledge specific to this application (i.e., list of tools and 
components required for an action, warnings etc.) rather than unstructured 
text.
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The pipeline was tested using the Turtle Bot dataset. Snippets of the unstruc-
tured instruction text are used as input to the pipeline. First, the Large Lan-
guage model is prompted to generate brief step-by-step instructions based on 
the input text. Then the generated instructions are passed to the knowledge 
retriever. For each step, the retriever finds the action the instruction is refer-
ring to and retrieves all the information related to it from the ontology. In this 
case the concepts related to an action are: required components, required tools 
and warnings. Finally, each assembly instruction is combined with the related 
information retrieved in the previous step and the final output is obtained. 

4.2 Result 

An example of the experiments described above can be seen in Fig. 4. They  
illustrate the input to the pipeline, the intermediate output of the LLM and 
the final output, that incorporates the information from the ontology. After the 
experiments, it was observed that: 

1. Given the input text (Fig. 4), the model outputs concise instructions, that 
follow a stepwise format, therefore succeeding in reducing unnecessary text. 

2. Compared to a scenario where the LLM is queried without an external source 
of information, this pipeline allows to augment the output by adding any 
amount of new information to the output. The ontology can be easily updated 
to add new information about an assembly process (updated tools, warnings, 
or protocols) as well as to remove any outdated knowledge without needing 
to retrain the language model. 

3. Inverting the traditional RAG structure proved to work well. The reason 
for this is that the input is made up of short paragraphs of unstructured 
text that do not contain a predefined number of assembly steps. This makes 
it impossible to determine a priori how many steps are referred to in one 
paragraph, therefore how much and what information should be retrieved. 
Generating the instructions beforehand makes it easier to ‘separate’ the text 
into steps and to query the ontology to obtain information about each step. 

4. The ontology is better suited to represent this background information. The 
background information used for our application consists of lists of compo-
nents or tools, making it better suited for a structured representation. Retriev-
ing all the components associated to an action becomes easier than extracting 
this type of information from text. 

5. The LLM still has the tendency to hallucinate. The hallucinations appear 
when the model, after correctly generating the instructions, continues gen-
erating text until it reaches the token limit. The hallucinations were still 
pertinent to the instructions but were not correct and were not generated 
using the provided input. This most likely is due to the model size (as men-
tioned, the model is a quantized version of a 13 billion parameter model). 
We have attempted to solve the hallucination problem using prompt engineer-
ing and parameter tuning. Few shot examples were used to show the model 
the expected output. Giving a one-shot example to the model helped improve



230 L. Holvoet et al.

the results significantly and the model was able to adhere to the given for-
mat. However, providing more than one example in the prompt did not lead 
to the expected improvement (i.e., that the model would learn when to stop 
the generation). 
Parameter tuning, i.e., lowering the temperature parameter or decreasing the 
token limit, did not lead to significant improvements. 
Finally, we attempted to use a different LLM for the task [ 32]. It showed 
promising results, however due to time constraints, we were not able to thor-
oughly test it within the pipeline. 

Fig. 4. Examples of the input and output of the pipeline components. 

5 Conclusion 

LLMs are a promising technology that can support in producing convincing nat-
ural language instruction texts and alleviate the burden of manual engineering. 
In this paper, we have created a pipeline that mitigates some of the unwanted 
hallucination effects of LLMs by applying RAG. We show how an ontology of 
explicit domain-specific instruction data supports the LLM by providing infor-
mation the LLM does not possess. More specifically, we state that: 

LLMs Improve over Manual Engineering Instructions: The pipeline only 
requires some (spoken) text from a person that explains how to do the assembly 
and the one-off cost of creating the ontology. 

Advantages of Using the Ontology: An ontology adds structured, external 
information that the LLM does not possess, thus improving the quality of the 
generated instructions over using a simple text source; 

Hallucinations Remain: The LLM still starts hallucinating after correctly 
generating the instructions. Larger models could potentially reduce hallucina-
tions. In addition, a language model could be fine-tuned specifically for this 
task.
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Manual Engineering in the Ontology Remains: The ontology and all the 
steps, actions and tools need to be created and inserted manually, respecting the 
original structure of the ontology. An automated approach to ontology creation 
could further reduce the manual labor. 

In order to evaluate the quality of answers generated by the LLM and its 
ability to generate complete and comprehensible instructions, we propose to 
obtain evaluations by utilizing both human evaluators and existing LLM based 
validators as a future direction [ 33]. The work presented in this paper can also 
be a solid foundation for other types of applications, such as a Q&A system for 
instructions on specific procedures (e.g., for maintenance purposes). Our current, 
limited setup is therefor a first step towards a more elaborate investigation of 
our approach in a more dynamic, real-world manufacturing environment, with 
a.o. challenges of far bigger datasets. 
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Abstract. Materials play a pivotal role in manufacturing, serving as the foun-
dation upon which the functionality and overall quality of products are built. In 
the material science domain, an overwhelming amount of knowledge is gener-
ated and stored as text encoding a humongous amount of information related to 
materials performance along the product life cycle that results fundamental in 
the manufacturing landscape, addressing adaptability and circularity . This study 
explores the application of Natural Language Processing techniques to analyze 
data availability, with a specific focus on the domain of polyvinyl chloride materi-
als across the chemical, environmental, health, social and economic dimensions. 
While acknowledging the expanse of available academic data, this research also 
ventures into exploring vast web platforms, not often emphasized in the exist-
ing literature. Latent Dirichlet Allocation is employed to autonomously extract 
interconnected topics from textual data, providing a flexible tool to structure mul-
tifaceted datasets. Furthermore, its integration with question-and-answer schemes, 
powered by Large Language Models, represents a step forward in comprehensive 
data mapping. This combination aids in expediting the extraction of relevant infor-
mation while contributing to the creation of a structured database where all rele-
vant information pertaining to a particular topic is organized, identifying specific 
missing data or noncorrelated information. This approach promises to contribute 
to the evolution of data analysis methodologies, offering insights into the data 
landscapes of material science with impact in the current manufacturing scenario. 

Keywords: materials · natural language processing · product lifecycle· 
sustainability 

1 Introduction 

In today’s fast-evolving manufacturing sector, a diverse array of information is crucial for 
enhancing process efficiency [9]. Moreover, current regulations require the adoption of 
Life Cycle Assessment (LCA) strategies [14], which depend on extensive data regard-
ing material value chains and their social and environmental impacts. The landscape 
of data sources is complex, encompassing databases, scientific literature and industry 
reports. Time and resource constraints, as well as data availability, significantly impact 
the manufacturing process.

© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 234–241, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_24 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86489-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-86489-6\sb {24}


NLP for Materials Insight and Optimization 235

Data-driven models have the potential to significantly accelerate the design of new 
materials [2]. Large Language Models (LLMs) facilitate the analysis of material prop-
erties [15], the retrieval of maintenance logs [10], and the creation of recommendation 
systems to enhance management [11]. However, AI tools that consider LCA in product 
design are not fully exploited [1]. Additionally, LLMs can produce inaccurate results 
in knowledge-intensive tasks due to their training on generic datasets [7]. Although the 
Retrieval-Augmented Generation (RAG) method addresses this issue [7], it still suffers 
from inaccuracies due to the presence of excess irrelevant data within the dataset. 

This work aims to present a methodology to facilitate information retrieval within 
the manufacturing value chain, taking into account socioeconomic and safety impacts 
to provide valuable information for decision-making. The proposed approach integrates 
RAG with Topic Modeling for filtering out non- relevant data and improving computa-
tional efficiency. This article is structured as follows: The introduction section outlines 
the motivation behind the problem and presents the foundations of the retrieval tool. 
This is followed by the Methodology section, which details the technical approach, and 
the Results section. Finally, the paper concludes with the conclusions and future steps. 

2 Methodology 

We present a pipeline for creating a knowledge resource tailored to specific industries, 
illustrated through a case study in PVC. This pipeline delivers customized responses 
that address socioeconomic, chemical, and safety aspects. The structure of the tool is 
depicted in Fig. 1. 

2.1 Data Acquisition 

Data sources were identified from open-access bibliographic repositories and large online 
databases. Bibliographic information was extracted using the UnstructuredFileLoader 
module of the Langchain library, which is designed to handle PDF complex layouts. For 
web data extraction, Selenium WebDriver was used to simulate user actions and retrieve 
dynamically loaded content; the fetched URLs were then parsed with BeautifulSoup 
library. Tabular data was preprocessed by concatenating each table’s header with its 
corresponding cells, creating a more comprehensive textual representation to help NLP 
techniques understand column correlations. Data is stored in a JSON file with the format 
data: extracted content, metadata: reference to ensure traceability. Ethical considerations 
were taken into account throughout this process, ensuring that no user-specific details 
were stored. 

2.2 Topic Modelling 

The Latent Dirichlet Allocation (LDA) model was used for topic modeling [12]. The 
implementation was carried out with the Gensim library, which required specifying the 
number of topics and control parameters affecting the specificity of topic distributions. 
We set these parameters to 0.1 to enhance topic distinctiveness and manually assessed 
the model’s performance across 2, 3, and 5 topics. Only nouns, verbs, and adjectives
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Fig. 1. Structure of the Information Retrieval Tool 

were retained, and lemmatizing was applied to preserve semantically significant words. 
Words that appear in over 60% of documents were filtered out to exclude overly common 
terms. Additionally, terms related to web page characteristics, such as “cookies”, were 
removed and varia tions of PVC (e.g., ‘poly’, ‘vinyl’, and ‘chloride’) were standardized 
to improve consistency in the analysis. 

2.3 Retrieval 

Retrieving information from a textual database involved several key NLP steps. 

– Splitter. Textual data was divided into smaller fragments to fit within the model’s 
context window. RecursiveCharacterTextSplitter from the Langchain library was 
used, setting a fragment length of 900 tokens (approximately 120 words) with 100 
overlapping tokens. 

– Embedding. The fragmented data and query were transformed into vector represen-
tations using the XL-Instructor embedding model, chosen for its open-source nature 
and strong performance in embedding benchmarks. 

– Vector store. The Chroma vector store was employed to manage the storage of 
embedded data. We chose Chroma for its open-source nature and ability to operate 
entirely on a local machine. 

– Retriever. Similarity between the query embedding and those in the vector store 
was computed using cosine similarity, noted for its simplicity and effectiveness. We 
retrieved the three most similar results, prioritizing longer, more relevant documents 
over a diverse set of shorter, less related ones. 

2.4 Answer Generation 

A generative LLM was deployed to generate responses prompted by the retrieved data. 
We chose the 7B version of the Llama2 model, fine-tuned for chat and provided by Meta, 
due to its open-source nature, suitable window size, and compatibility with local GPUs. 

2.5 Evaluation 

The performance of the retrieval was assessed using various approaches: (i) statistical 
scorers that measure token matches between phrases (e.g., BLEU, METEOR, ROUGE) 
[3], (ii) NLP-based scorers that compare the semantic meaning of sentences (e.g., BERT 
Score, BLEURT) [13], and (iii) scorers utilizing an LLM to evaluate content adequacy 
according to a user-provided rubric (e.g., Prometheus) [6]. The six scorers were applied to
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compare the retrieved information with a manually defined reference. As it is not always 
possible to generate a reference answer, it was also compared the retrieved information 
directly with the question posed. Concordance between the scorers and human judgment 
was evaluated using Spearman’s and Kendall’s correlations [8]. 

3 Results 

3.1 Data Extraction 

Data on the PVC value chain was gathered from 67 sources, including blogs, Comptox 
and PubChem platforms, reports, and research papers. To explore the effect of noisy 
data, we included 10 sources related to the welding industry. 

3.2 Topic Modeling 

LDA implementation with 2 topics identified two distinct groups in the dataset: one 
related to the welding industry and the other to PVC. Increasing the number of topics to 
3 retained the welding topic but split the PVC topic into two indistinct subtopics. With 
5 topics, results became mixed. This demonstrates that LDA, when properly tuned, can 
effectively detect distinct themes and filter out irrelevant data. 

Applying LDA exclusively to PVC data resulted in topics that combined chemical, 
economic, and safety terms. While this approach provided insights into dataset patterns, 
it was insufficient for hierarchical clustering. To achieve clearer topic definitions, we 
trained the LDA model on a curated subset of sources focused on chemical, safety 
and economic data and then applied it to the entire PVC dataset. This revised method 
yielded well-defined topics (see Fig. 2). To measure data availability for each dimension 
objectively, the dataset was divided into three groups, each containing sources where 
the corresponding topic was present in at least 60% of the data. The analysis showed 
that chemical data was predominant and socioeconomic data was the least represented, 
highlighting the challenge of accessing such information. Safety documents frequently 
appeared in conjunction with other topics. 

Fig. 2. Definition and distribution of topics in the dataset related to PVC.
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3.3 Retrieval and Answer Generation 

The information retrieval process was evaluated using the query “What is the melting 
point of PVC?” across different datasets: the entire dataset (PVC and welding data, com-
posed of 77 data sources), the PVC-specific dataset (66 data sources), and subsets classi-
fied by the LDA model (chemical, safety, and economic). The results are summarized in 
Table 1. The pipeline successfully generated correct answers when the dataset included 
chemical data, indicating that the retrieval system effectively located documents related 
to thermal properties. In contrast, the economic and hazards subset contributed only 
noise, as it contained no relevant documents about PVC’s thermal properties, resulting 
in a poor answer to the query. 

Execution time was higher with the larger dataset. Removing the 10 noisy sources 
reduced the execution time by 6%. Further, filtering the dataset to include only documents 
with at least 60% relevance to the chemical topic reduced the execution time by 94.8%. 
The execution time for the safety-related dataset was unexpectedly high. This dataset 
was notably diverse, as its documents mixed content related to chemical properties and 
socioeconomic impacts. This suggests that diversity in the dataset, beyond just its size, 
significantly affects embedding and retrieval efficiency. Although this was a small-scale 
test, it indicates that larger and more diverse datasets will require more sophisticated 
retrieval strategies. The LDA model’s filtering capabilities can enhance efficiency by 
reducing irrelevant data. 

Table 1. Generated answers for the question “What is the melting point (m.p.) of PVC?” across 
different dataset sizes with execution times 

Dataset Nº sources Execution time (s) LLM answer 

PVC + weld 77 711 the m.p. is around 100–260 °C, but can vary 
depending on the specific formulation of the 
PVC 

PVC 66 668 the m.p. is around 100–260 °C, but can vary 
depending on the specific formulation of the 
PVC 

Chemical 25 36.6 the m.p. is around 100–260 °C, but can vary 
depending on the specific formulation of the 
PVC 

Socioeconomic 15 5.07 the m.p. of PVC is likely to be influenced by 
the price of crude oil 

Safety 2 470 PVC is a thermoplastic material that can be 
melted and reformed multiple times
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3.4 Evaluation 

The retrieved information was compared to a reference text using the scorers from 
the Methodology. Metrics rated the Chemical Topic highest for relevance on melting 
point data. Although subtle, the Hazards Topic, which included discussions of chemical 
properties, was more relevant than the Economic Topic. A direct comparison with the 
query is used as an alternative when reference answers are unavailable. This approach 
consistently showed that the Chemical Topic scored highest, while the Socioeconomic 
and Safety data were rated similarly. 

Spearman’s and Kendall’s correlations revealed that NLP-based scorers were consis-
tent with human judgment when compared to a reference response; however, their consis-
tency may be reduced when lacking this ground truth. METEOR and Prometheus showed 
the most robust correlation with human judgment, even without a defined reference. 
Figure 3 illustrates the results. 

Fig. 3. Evaluation of the information retrieved for each topic (A) with the reference answer, (B) 
with the query and (C) Spearman’s and Kendall’s correlations. 

4 Conclusions and Future Work 

In this paper, we present the design of a tool to efficiently extract information from an 
extensive database. The proposed framework comprises three key components: (i) topic 
modeling to tailor the dataset according to the query topic, (ii) retrieval of information 
relevant to a user query, and (iii) generation of an answer based on the retrieved infor-
mation. The pipeline was applied to retrieve information about the PVC value chain 
and LCA, providing users with easy access to relevant sources to expand on the pro-
vided information. Integrating LDA into the retrieval process significantly improved 
pipeline efficiency and reduced execution time, especially when handling diverse and 
broad datasets. This open-source solution ensures data privacy, offering an alternative 
to commercial options such as the OpenAI API. 

This work also aims to emphasize the importance of developing new strategies to 
leverage the vast amount of information available in web content. This area remains rel-
atively unexplored, with academic papers typically constituting the bulk of datasets used 
for retrieval tests. Academic sources often raise more significant ethical and legal con-
cerns related to data privacy, security, and intellectual property. In contrast, responsibly
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using web data can be more straightforward to assess, as web content is generally more 
public and accessible, reducing the complexities associated with sensitive academic data. 

Future research will focus on several key areas: automating parameter tuning for 
LDA, incorporating quantitative metrics to enhance reproducibility, and studying noise 
reduction techniques to improve dataset quality. We will also explore scalable NLP 
techniques, such as neural topic modeling, to handle more complex datasets efficiently. 
Evaluating the generation capabilities of LLMs will be prioritized, utilizing a broader 
range of evaluation metrics and user satisfaction surveys to provide a comprehensive 
assessment of the system’s effectiveness in managing the inherent subjectivity of these 
tasks. Additionally, optimizing retrieval keys will be essential to maximizing the effec-
tiveness of information extraction. While this study focused on the PVC value chain, the 
proposed framework will be adapted for other domains, providing valuable insights for 
sustainability assessments and decision-making in the manufacturing sector. 
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Abstract. Despite the effectiveness of closed-set object detectors, recent 
advancements have introduced zero-shot detectors that can recognize 
a wide range of object categories across different environments. These 
detectors rely on text prompts, such as object tags. This study explores 
using multimodal large language models (MLLMs) to gather and refine 
object information from NeRF scenes into tags. We propose a training-
free pipeline for extracting object-specific details, such as category, 
color, material, and functionality, from 3D scenes via prompting. Sub-
sequently, we investigate how to apply the object tagging problem to 
NeRF-reconstructed scenes, particularly in a manufacturing context. 
This pipeline is evaluated in manufacturing environments for object 
recognition, with the resulting categories serving as inputs for zero-shot 
object detection and other tasks. 

Keywords: Multimodal Large Language Models · 3D Scene 
Understanding · NeRF · Object Recognition · Prompting 

1 Introduction 

In industrial settings such as factories, 3D scene understanding enables intelli-
gent agents to execute complex tasks. For instance, factory robots can recognize 
and interact with objects, navigate the factory floor, and assist in assembly 
tasks. This technology holds significant promise for various applications, includ-
ing object inspection, safety enhancement, layout design, and production process 
optimization [ 1, 2]. Our study focuses on exploring multi-label object recognition 
within the context of 3D scene understanding. 

Multi-label object recognition for object tagging is essential in computer 
vision for tasks like object detection and segmentation. In particular, open-
vocabulary pipelines, such as zero-shot object detectors, support a much wider 
label set than closed-set ones, and a tagging system can assist users in those 
pipelines by offering natural text prompts as labels. Advancements in vision-
language models, e.g., CLIP [ 3], and their integration with large-language models 
(LLMs) [ 4] have enabled to recognize common objects in images with zero-shot 
capabilities, as shown in recent studies [ 5, 6]. However, the recognition problem 

c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 242–250, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86489-6_25&domain=pdf
https://doi.org/10.1007/978-3-031-86489-6_25


Prompting to Gather Object Categories in NeRF 243

has primarily been studied for interpreting objects in images. Additionally, Mul-
timodal Large Language Models (MLLMs) like LLaVA [ 7] and  GPT-4V  [  8], 
which demonstrate strong reasoning abilities with both language and image 
prompts, can be used for tagging without training. 

Following this, our study explores the use of LLaVA-NeXT [ 9] for object 
recognition in 3D scenes. While most research focuses on image-based models, 
3D visual modalities are less studied. We examine Multimodal Large Language 
Models (MLLMs) for recognizing objects in 3D scenes, leveraging their language 
capabilities to categorize objects with attributes across different views using a 
training-free approach. By various prompts (see Fig. 1), we gather rich informa-
tion including various attributes from multiple scene perspectives. 

As one of our target, the tagging solution is integrated into a web-based 
application to investigate the environment, particularly the clutter one. Modules 
that refine tag proposals according to users’ search criteria, such as objects by 
functionality or material or categorizing items as damaged are also integrated 
into the interface. This interface can be embedded in intelligent systems as a 
monitoring tool to improve automated manufacturing processes with increased 
user interaction or as an annotation tool for collecting image-text data pairs. It 
is worth noting that our study presents preliminary findings from a pipeline still 
under development. 

Fig. 1. Collecting objects through MLLMs from views of 3D scenes: (a) shows our 
pipeline for querying a MLLM and (b) shows our prompts. 

2 Background 

This section first gives the basics of NeRF representation and then briefly 
presents an overview of large multimodal models. 

Neural Radiance Field (NeRF). NeRF [ 10] is a technique for novel view 
synthesis, encoding scenes as continuous volumetric radiance fields. These fields
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return density σ and color c for each 3D point p and viewing direction d, allowing 
rendering of 2D images for rays r with color values of 

I ′(r) =
∫ tf 

tn 

T (t)σ(t)c(t)dt, (1) 

where T (t) =  exp
(
− ∫ t 

tn 
σ(s)ds

)
with near and far bounds tn and tf . During 

training, the rendered values, I ′(r), is compared to the ground truth pixel values, 
I(r), with a rendering loss L =

∑
r∈R ||I ′(r) − I(r)||2 2 where R is the set of rays. 

NeRF is less commonly used in industrial applications compared to point 
cloud representations, with only a few basic attempts [ 11]. In selecting NeRF 
for scene modeling, we aim to empirically test its effectiveness when integrated 
with MLLM for our task. 

Large Multimodal Models. Our work leverages the latest advancements in 
Large Language Models (LLMs) such as GPT [ 4] and LLaMA [ 12], known for 
their exceptional generalization abilities and use as universal interfaces for var-
ious language tasks with a single model. Instruction-tuned versions like Chat-
GPT [ 4] and InstructGPT [ 13] are developed through fine-tuning or involving 
humans in the loop. While LLMs have strong reasoning abilities, they may strug-
gle in task-specific scenarios. Fine-tuning and chain-of-thought (CoT) prompt-
ing [ 14] enhance their performance. There are also some recent studies utilizing 
LLMs in industrial applications, such as quality inspection [ 15] and human-robot 
collaboration in assembly [ 16], through fine-tuning and CoT prompting. How-
ever, these studies primarily rely on language capabilities. 

Recently, multimodal large language models such as Gemini [ 17], LLaVA [ 7], 
and GPT-4V [ 8] have been introduced. Among these, we employ the open-source 
LLaVA-NeXT [ 9], improved version of LLaVA-1.5 [ 7]. Despite being trained on 
a small dataset, LLaVA-NeXT outperforms Gemini Pro [ 17] and achieves scores 
comparable to GPT-4V [ 8]. In our study, we explore the vision and language 
capabilities of this model across various scene views to gather object-level infor-
mation via prompting. 

3 Our Approach for Collecting Objects 

There exist strong image-based 2D foundational models that rely on billion-scale 
datasets. To leverage these models for 3D scene interpretation, Neural Radiance 
Field (NeRF), which connects multiple 2D views into a 3D scene via a deep 
neural network with 2D rendering capability, is used as the 3D representational 
model in this study. 

Both the captured images to reconstruct NeRF and the rendered images from 
NeRF can be directly input into MLLMs like LLaVA, since these models accept 
2D images. We first render multiple images from the NeRF model of a scene and 
then collect categories and object-level information from LLaVA via prompting.
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3.1 Prompts for Multimodal Large Language Model 

A set of prompts is defined to gather high-level object-related information from 
multiple rendered images of NeRF scenes using MLLMs. By querying these 
prompts to LLaVA-NeXT, a state-of-the-art visually-assisted large language 
model, we request the following information for each scene view: the category 
of the < scene >, a  < description > of the scene, < objects  >  with attributes 
and parts, < unsaf e objects >, and  < damaged objects >. Given in Fig. 1, the  
prompt summaries are as follows: 

– Given an < image  >, prompt1 and prompt2 asks MLLM to provide with 
the < scene > category and a < description > of the scene, respectively. 

– Given the < image  >  and < description >, prompt3 asks MLLM to gener-
ate a list of scene < objects  >  using WordNet. This list includes each object’s 
name, color, material, brand, OCR label, and two affordance actions. 

– Given the < objects  >, prompt4 asks MLLM to return 10 object parts for 
each object category from the object list using WordNet. 

– Given the < image  >, < scene > category, and < objects  >, prompt5 asks 
MLLM to identify the five most unsafe objects, along with their names, the 
unsafe parts, and the two most important safety issues. 

– Given the < scene > category and < objects  >, prompt6 asks MLLM to 
identify the five most damaged objects, providing the name of each object, 
the damaged part, and a brief description of the damage. 

Leveraging the capabilities of a multimodal model with both visual and textual 
inputs, prompts gather object knowledge across views of a 3D scene. Rather than 
fine-tuning the model, the pre-trained model weights are used. To ensure con-
sistency in object category names, object lists are requested from WordNet [ 18] 
(see prompt3-4). Due to MLLM processing time, prompting is applied in an 
offline setting where all images for NeRF construction are queried with a set of 
predefined prompts in the initial experiments. 

3.2 Aggregated Object Categories Across Views 

By collecting sets of objects with attributes for each view of the 3D scene, the 
object lists from the images are then combined into a unified object category list. 
Our scene tags specifically encompass all object categories. We conduct exper-
iments on both the images captured for NeRF reconstruction and the sampled 
views rendered by the NeRF model. These aggregated categories serve as input 
for downstream tasks, such as open-vocabulary object detection, to perform per-
image object detection on the rendered images. 

4 Experiments 

Datasets. Two small-scale datasets, the Replica [ 19] including high-quality 
indoor scene scans with ground-truths, and our data collection in the manu-
facturing context, are used during our experiments. Scenes from our collection
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Fig. 2. Our manufacturing-related scenes via (a) Vanilla-NeRF and (b) DvGO. 

cover uncommon object categories such as various robots and assembly tools 
(see Fig. 2). First, we use pre-rendered Replica data of 8 scenes with 2D instance 
labels provided by Zhi et al. [ 20] to evaluate recognition performance. Later, 
some qualitative experiments are conducted on our data collection. 

NeRF Results. We employed various NeRF reconstruction techniques, includ-
ing vanilla NeRF [ 10] and the accelerated Direct Voxel Grid Optimization 
(DvGO) [ 21]. Figure 2 presents reconstructions of our manufacturing-related cap-
tures and includes rendered images from challenging viewpoints via DvGO. 

Recognition Results. Category names for querying are often limited to a pre-
defined vocabulary, as traditional systems trained on closed-label sets may not 
support categories beyond this range. Additionally, users may have difficulty 
identifying category names in natural text, even if the system supports an open 
vocabulary. Given the diverse range of object categories in the scenes, a compre-
hensive list of image tags is advantageous for enabling effective user searches. 

Our LLaVA-based solution is compared with the Recognize Anything Plus 
Model (RAM++) with swin-large 14M version [ 6] on both pre-rendered [ 20] 
and NeRF-rendered Replica scenes. RAM++ is a recent image tagging system 
that accurately identifies a wide range of categories using large-scale image-text 
pairs for training rather than relying on manual annotations. While RAM++ is 
image-based, it is the most relevant comparison for our study, as we propose a 
MLLM-based tagging approach for NeRF-generated images. 

Although semantic labels are available as ground-truth for the Replica 
dataset, there are discrepancies between the predicted object categories from 
LLaVA (or RAM++) and the Replica ground-truth categories. The object tags 
proposed by the models are quite diverse, offering a wide range of suggestions, 
including synonyms and multi-word phrases. To evaluate recognition perfor-
mance, we employed a strategy using LLMs. We first collected tags from vari-
ous scene views using RAM++ and our method. These tags were then aggre-
gated into tag sets per scene for each method. Next, we used LLaVA to map 
LLaVA-tags and RAM-tags, respectively, as the prediction list < prelist  >  to 
Replica-tags as the ground-truth list < gtlist >  using the following prompt: For
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a category name in the prediction list, find the synonymous category from the 
ground-truth list. Make the most reasonable guess. If there is no match, map to 
“unknown”. The predicted categories list is < prelist  >, and the ground-truth 
category list is < gtlist >. Please return in a json format where the keys are 
ground-truth categories. 

Tag prediction results using our model with the LLaVA-7B, LLaVA-13B, 
and RAM++ are detailed in Table 1. There is not a standard metric to apply 
for evaluation. Our evaluation metric for recognition performance involves the 
number of shared tags that are calculated between the predicted-tags (LLaVA-
tags or RAM-tags) and ground-truth tags (Replica-tags). This count is then 
normalized by the total number of Replica-tags per scene and scaled over 100%. 
This is the percentage of relevant predicted tags over ground-truth tags. Despite 
promising performance of LLaVA, we noted a significant decline in tag genera-
tion for NeRF-rendered images due to image quality issues. The performance of 
all models on pre-rendered images consistently exceeds that on NeRF-rendered 
images. This shows the prediction accuracy is strongly affected by the reduced 
image quality in some viewpoints after the reconstruction. Moreover, we observed 
cases of failed NeRF reconstruction, such as office3. 

Table 1. Object category recognition performance using (a) RAM++, (b) ours with 
LLaVA-7B and (c) ours with LLaVA-13B. 

Pre-rendered images [ 20] 
Model office 0 office 1 office 2 office 3 office 4 room 0 room 1 room 2 
ram++ 37.04 45.83 50.00 65.52 68.42 50.00 62.5 56.52 
llava7b 59.26 54.17 66.67 60.00 68.42 100.0 87.5 77.27 
llava13b 70.37 50.00 70.83 70.00 78.95 74.07 87.50 77.27 

NeRF-rendered images 
Model office 0 office 1 office 2 office 3 office 4 room 0 room 1 room 2 
ram++ 51.85 00.00 29.17 – 31.58 100.0 37.50 40.91 
llava7b 29.63 41.67 37.50 – 57.89 60.71 75.00 39.02 
llava13b 37.04 45.83 20.97 – 47.37 100.0 58.33 63.64 

Qualitative Results. Along with recognition evaluation, we conducted quali-
tative experiments on our data collection, including manufacturing samples. We 
developed an application that integrates our LLaVA-based tagging solution with 
downstream tasks and the NeRF reconstruction pipeline (see Fig. 3(a)). This tool 
includes an interactive interface that allows users to filter object tags by criteria 
like affordance (e.g., sitting) and select subsets for zero-shot tasks. Grounding-
DINO [ 22] localizes objects by creating bounding boxes using provided tags, 
while Segment Anything [ 23] returns object masks. 
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Our first qualitative evaluation focused on generating object summaries, as 
illustrated in Fig. 3(b). After collecting object details from multiple images, we 
used LLaVA to generate summaries for the selected category. Our second evalu-
ation tested downstream tasks, including open-vocabulary object detection with 
the recent Grounding-DINO [ 22], as given in Fig. 3(c). By providing a list of 
object tags and an image, this detector localizes objects identified by our tag-
ging solution. Please note that the user interface supports the selection of a small 
tag subset from this list. 

Fig. 3. (a) Web-based interface, and qualitative results for (b) MLLM Summarization 
and (c) Grounding-DINO detections. 

5 Conclusion 

Our study introduces prompts for querying multimodal large language models 
and presents preliminary tag results for NeRF scenes by leveraging their visual 
and language reasoning capabilities. LLaVA-NeXT has been used to generate 
object tags with semantic information. The proposed solution aims to reduce the 
need for human labeling when integrated into an annotation tool, or enable zero-
shot capabilities for open-vocabulary tasks. Our pipeline has been integrated into 
a web-based application that can be used as (1) an annotation tool to obtain 
text-image pairs and (2) a monitoring tool attached to intelligent agents. 

Our preliminary findings suggest that the object tag proposals are in natural 
language form, providing a range of language expressions. Although the current 
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tag list covers a broad range of object categories, it is extensive and could be 
improved through further refinement using a fine-tuned model in future work. 
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Abstract. The advent of large Machine Learning models and the steep 
increase in the demand for AI solutions occurs at the same point in time 
in which policies are being enacted to implement more sustainable pro-
cesses in virtually every sector. This means there is a need for more, bet-
ter and larger models, which require significant computational resources, 
while at the same time a call for a decrease in the energy spent in the 
processes associated to MLOps. In this paper we propose a reduced set 
of meta-features that can be used to characterize sets of data and their 
relationship with model performance. We start from a large set of 66 
features, and reduce it to only 10 while maintaining the strength of this 
relationship. This ensures a process of meta-feature extraction and pre-
diction of model performance that is in line with the desiderata of Frugal 
AI, allowing to develop more efficient ML processes. 

Keywords: Frugal AI · MLOps · Meta-Learning · Manufacturing 

1 Introduction 

In the last years, Machine Learning (ML) moved from being mostly a research 
topic, to being an applied and engineering one. The methodologies involved also 
changed accordingly, giving birth to what is nowadays known as Machine Learn-
ing Operations (MLOps) [ 5]. The field of MLOps is rapidly evolving to address 
the challenges of deploying and managing ML models in real-world scenarios. 
A particularly significant challenge arises when dealing with data streams that 
exhibit concept drift, in which the underlying relationship between the input 
features and the target variable changes over time [ 3]. This phenomenon can 
significantly degrade the performance of deployed models. 

Traditional MLOps practices often rely on retraining models with the entire 
accumulated data, leading to increased computational costs, downtime during 

c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 253–261, 2025. 
https://doi.org/10.1007/978-3-031-86489-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86489-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-86489-6_26


254 E. Peixoto et al.

redeployment, and potential storage bottlenecks. These issues become partic-
ularly acute for resource-constrained environments or applications processing 
high-velocity data streams. 

In this context, the concept of Frugal AI has emerged as a promising paradigm 
for designing and deploying ML models in resource-scarce settings. Frugal AI [ 9] 
strives towards ML processes that are efficient in terms of computational power, 
memory usage, and data footprint. While this can be achieved in different ways 
(e.g. data minimization, transfer learning, active learning), this paper focus on 
the specific case of data streaming with concept drift. Specifically, we propose an 
approach to reduce the need for training new ML models by reusing previously 
trained models. To this end, we investigate a minimum set of meta-features to 
characterize the similarity of data blocks, as a proxy to select potentially similar 
models. Results show that reused models have, in average, a difference of 6% in 
accuracy, but require, in average, 17 times less time to be placed in production. 

2 Contextualization 

Frugal AI is a set of methodologies focused on developing resource-efficient and 
cost-effective AI solutions. This concept aligns with the principles of Green 
AI, which seeks to mitigate environmental impacts by optimizing algorithms, 
improving hardware efficiency, and adopting sustainable data management prac-
tices [ 2]. In the current context, where the demand for AI solutions is growing, 
coupled with increasing concerns over sustainability and efficiency, Frugal AI 
emerges as a crucial approach for balancing these divergent needs. 

The computational side includes post-training optimization methods such 
as pruning (removing unnecessary parts of a model [ 6]), quantization (reducing 
the precision of parameters [ 6]), distillation (transferring knowledge from larger 
to smaller models), sparse representations, and low-rank factorization (decom-
posing matrices to reduce computation). It also involves leveraging pre-trained 
models and transfer learning to adapt models trained on large datasets to new 
tasks. Continuous learning techniques play a significant role as well, includ-
ing active learning (prioritizing the most informative data points for training) 
and rotation-based methods like Local Fisher Discriminant Analysis (reducing 
dataset dimensions and improving model performance). Independent Compo-
nent Analysis is another technique used to separate a multivariate signal into 
additive, independent components, further enhancing learning efficiency. 

From the data perspective, Frugal AI employs data reduction techniques, 
including selection methods like stratified random sampling, replacement strate-
gies, and transformation techniques such as PCA [ 4, 7]. It also involves data gen-
eration approaches, which allow to minimize the resources and time spent in col-
lecting and labeling data. These include data augmentation, synthetic/simulated 
data generation, and oversampling methods like SMOTE and ADASYN. 

In this work, we achieve a Frugal AI solution through meta-learning. 
Meta-learning aims to improve the performance of ML algorithms by leveraging 
knowledge from previous ML tasks. This knowledge, encoded as meta-features,
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contains meta-characteristics of datasets and the resulting model performance 
metrics. These meta-features include simple statistical properties, advanced sta-
tistical measures, information-theoretic metrics, or model-based features [ 8]. 

3 Methodology 

The methodology followed to find the reduced set of meta-features had two main 
phases (Fig. 1). It’s main goal is to find a reduced set of meta-features that can 
be used for past model retrieval and reuse, thus minimizing the resources spent 
in training new models, in line with the Frugal AI view. In the first phase we 
selected 6 streaming datasets with concept drift, 3 of which synthetic. Each 
dataset was divided into a number of fixed-sized blocks, depending on the size of 
the dataset. For each block we extracted an initial set of 66 meta-features using 
the PyMFE library [ 1] and we also trained a Random Forest model using the 
default configuration. We extracted the main performance metrics of each model 
(e.g. Accuracy, precision, recall) and built 6 meta-datasets. Each of these meta-
datasets has one row for each block of data in the original dataset, and makes the 
correspondence between the characteristics of that block of data (meta-features) 
and the quality of the model trained. 

Fig. 1. Graphical representation of the methodology. 

We then trained one Random Forest with each of the meta-datasets to pre-
dict accuracy (dependent variable) based on the meta-features (independent 
variables). These meta-models were trained with the purpose of calculating the 
relative importance of each meta-feature in predicting the accuracy of the cor-
responding model. After training each meta-model, we selected all the meta-
features that had a relative importance of at least 1% (compared with the most
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relevant meta-feature). After doing this for the six meta-models, we selected the 
meta-features that were pre-selected as relevant in at least 3 out of the 6 cases. 

Finally, and since Random Forests are ensembles of Decision Trees trained 
on subsets created by randomly sampling from the original dataset, we repeated 
this process 10 times, to rule out the effect of luck. This resulted in 10 reduced 
sets of meta-features that ranged between 5 (9th iteration) and 10 (4th and 
6th iterations). The final set of 10 meta-features was selected according to their 
highest frequency over all 10 iterations. These are described in Table 1, in which  
the frequency quantifies the number of iterations in which this meta-feature was 
selected (out of 10). 

In the second phase, the main goal was to validate the selected set of meta-
features as appropriate to reuse models based on the distance between the under-
lying data. To this end 24 new datasets were used. Similarly to the first phase, 
each dataset was split into fixed-sized blocks, meta-features were extracted for 
each block (using both groups of 66 and 10), and a model was trained for each 
block. Blocks and models were then randomly split into two groups: pool and 
validation. 

Table 1. Reduced set of 10 selected meta-features and their frequency over the 10 
iterations of the process. 

Meta-feature Description Frequency 
nre Normalized relative entropy 10 
one_nn.mean Performance of the 1-Nearest Neighbor classifier 9 
freq_class.sd Relative frequency of each distinct class 9 
linear_discr.sd Performance of the Linear Discriminant classifier 9 
elite_nn.mean Performance of Elite Nearest Neighbor 7 
naive_bayes.sd Performance of the Naive Bayes classifier 5 
linear_discr.mean Performance of the Linear Discriminant classifier 4 
best_node.mean Performance of the best single decision tree node 4 
naive_bayes.mean Performance of the Naive Bayes classifier 2 
mean.sd Mean value of each attribute (standard deviation) 2 

For each block in the validation group (which represents an oncoming new 
block of data), we retrieved the closest block of data in the pool and the cor-
responding model. Distance was measured using the Bray-Curtis distance and 
considering the meta-feature vectors of both blocks, for 66 and 10 meta-features. 
This allows to compare how both groups of meta-features perform when used to 
select similar data. We then test both retrieved models (using 10 and 66 meta-
feature) on the validation block of data, and compare their performance with 
that of the corresponding validation model. The goal is to retrieve (reuse) models 
that have a similar performance on the new data as a model that was specifically 
trained on that new data, and that is what is simulated and evaluated by this
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process. At the end we analyze the correlation between the performance of the 
validation models and the reused models, as well as the distance between the 
accuracy of each pair of models. 

Finally, and since the performance of this approach also depends on the 
number of models on the pool and on their diversity, and since models are 
randomly selected to be in the pool, we ran these experiments with 5 different 
pool sizes (10% to 50%), and repeat each experiment 5 times to rule out the 
effect of luck. In the following section we analyze the performance of both sets of 
features in reusing models, and show that the smaller set of only 10 features has, 
in average, a similar performance, while being less computationally intensive. 

For this research work to identify the most relevant meta-features of the data, 
the computational effort to find the similar model is smaller. This reduced set 
of meta-features can then be utilized to build more efficient and lightweight AI 
systems, aligning with the principles of frugal AI. 

4 Results 

This section presents the results of validating the methodology described above 
with a group of 24 datasets, which were not used when selecting the reduced set 
of meta-features. We do so based on two indicators: 1) the correlation between 
the accuracy of each model in the validation group and that of the model reused 
from the pool; and 2) the Mean Absolute Difference (MAD) between the accuracy 
of the models in the validation group and that of the reused models. The former 
quantifies how well aligned the retrieved models are with the actual models, 
whereas the latter reveals how distant they are in terms of performance. Table 2 
shows the results of this analysis for the 24 datasets considered and a pool size 
of 20%. 

In general, for the 20% pool size, using the selected 10 meta-features main-
tained a strong correlation compared to sets of 66 meta-features across a vari-
ety of datasets, in many cases even surpassing the full set (Table 2). This hap-
pens, for example, in the “Social_Network_Ads”, “bank_10000” or “hyper_f” 
datasets. There are however a minority of cases in which using only 10 meta-
features to reuse models resulted in worse correlation between models and/or 
increased error. This includes datasets such as “cardio_vascular_10000” and 
“pima_indians_diabetes” and points out that a case by case selection of meta-
features should be done for each use case, following the proposed methodology. 

When considering a pool size of 20%, the reduction to 10 meta-features out-
performed sets of 66 meta-features concerning the correlation in 62.5% of the 
datasets, while obtaining a smaller MAD in 37.5% of the datasets. 

Table 3 presents a comparative analysis of the performance of two sets of 
meta-features (66 and 10) at different pool sizes: 10%, 20%, 30%, 40% and 50%. 
The table shows the average values of correlation and MAD for both groups of 
meta-features, and a count of the percentage of datasets in which the models 
retrieved using 10 meta-features outperform those retrieved using 66. Looking 
at the average values, the 10 meta-features outperform the 66 in 2 out of the 5
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Table 2. Performance Comparison between Meta-Features sets of 66 and 10. 

Dataset 66 Meta-Features 10 Meta-Features 
Correlation MAD Correlation MAD 

airlines 0.85 0.04 0.8 0.04 
elec 0.54 0.06 0.6 0.01 
general_data 0.32 0.07 0.46 0.05 
german_credit_data 0.69 0.05 0.8 0.06 
Social_Network_Ads 0.81 0.05 0.91 0.01 
agr_a 0.84 0.01 0.87 0.01 
cardio_vascular_10000 0.74 0.01 0.4 0.07 
pima_indians_diabetes 0.74 0.06 0.48 0.06 
sea_a 0.43 0.01 0.85 0.05 
wpbc 0.71 0.13 0.07 0.03 
abalone_dataset 0.42 0.04 0.51 0.19 
cardiovascular_diseases_dv3 0.72 0.01 0.73 0.02 
bank_10000 0.08 0.78 0.85 0.01 
covtype 0.57 0.27 −0.12 0.08 
winequality_red 0.74 0.06 0.34 0.11 
creditcard_1000 0.37 0.03 0.69 0.01 
winequality_green_4500 −0.31 0.08 0.02 0.02 
Housing −0.05 0.18 0.79 0.01 
framingham_heart_disease 0.71 0.02 0.58 0.06 
hyper_f 0.35 0.02 0.74 0.02 
HR_Employee_Attrition 0.93 0.01 0.86 0.02 
wdbc 0.2 0.05 0.29 0.38 
world_food_scrubbed −0.07 0.03 0.03 0.09 
calories_9000 0.73 0.01 0.02 0.06 

pool sizes considered, while this is true for 4 out of 5 when considering the MAD. 
When considering each dataset individually, the 10 meta-features outperform the 
66 for the pool sizes of 10% and 20%, and match it for 50% (respectively 54%, 
63% and 50%). In what concerns the MAD, the proposed set of meta-features 
outperforms the 66 in 38% to 46% of the cases. 

We also analyzed the computational cost of the proposed approach. Specifi-
cally, we measured the average extraction time for the sets of 10 and 66 meta-
features (Fig. 2(a)). It can be noted that a 6-fold reduction in the number of 
meta-features does not lead to a 6-fold reduction in the extraction time. This is 
explained by the nature of the 10 selected meta-features, which are mostly model-
based, and computationally more expensive than other simpler meta-features, 
such as those based on statistics. However, the extraction time, whether for 10
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(below 3 s in average) or 66 meta-features (below 5 s in average), is still much 
lower than that of training models, which takes 54.47 s in average. This means 
it takes, in average, 10.5 times longer to train the model than to extract the 66 
meta-features, and 17 times longer than to extract the selected 10. This is thus a 
computationally less expensive operation that always training new models when 
new data is available. 

Table 3. Summary of the results for different pool sizes when comparing 66 vs. 10 
meta-features. 

Pool Size 66 Meta-Features 10 Meta-Features Outperforms 
Corr. MAD Corr. MAD Corr. MAD 

10% 0.45 0.067 0.37 0.07 54% 38% 
20% 0.50 0.09 0.52 0.06 63% 38% 
30% 0.53 0.064 0.42 0.062 46% 33% 
40% 0.45 0.062 0.47 0.06 46% 46% 
50% 0.58 0.09 0.51 0.06 50% 46% 

(a) Comparison of Extraction 

Times: 10 vs. 66 

Meta-Features. 

(b) Distribution of model 

training time. 

Fig. 2. Distribution of the duration of extracting meta-features (10 vs. 66) and of 
training models. 

5 Conclusions 

In this article, we described an approach aiming to reduce the computational 
overhead of training new models in scenarios of streaming data with concept 
drift, based on the reuse of previously trained models, selected according to a 
reduced set of meta-features.
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One key contribution of this paper is thus the reduced set of meta-features 
that can be used as a proxy for model performance. The fact that these meta-
features were computed using a publicly available library makes these results 
reproducible and applicable by other researchers. 

We also show that the computational cost of extracting these meta-features 
and reusing past models is, in average, 17 times smaller than that of train-
ing the actual models. This approach would thus scale better than traditional 
approaches, in which models are simply re-trained with the new data. These 
results were obtained from applying the proposed methodology to a set of 24 
ML problems, which gives some confidence on the generalization of the results, 
and the applicability of the proposed approach to other domains. 

We also show, as would be expected, that results improve with a larger pool 
size. That is, the larger the historic of models, the more models there are to select 
from, and hence the likelihood of retrieving better suited models increases. More 
interestingly, we show that using the reduced set of features leads to similar or 
even better results than using the full set. As shown in Table 2, the correlation 
between the accuracy of the retrieved models and that of the validation models 
(which represent the new models that would have to be trained), is generally 
high. The average distance of the accuracy between each pair of models is also 
generally low. 

While these results vary according to the datasets, i.e., there are cases in 
which the distance between meta-feature vectors is more strongly correlated with 
model performance, the approach can generally be used to reduce computational 
resources with the training of ML models, while generally maintaining their 
predictive performance. 

In future work we will explore additional meta-feature optimization tech-
niques, such as dimensionality reduction with PCA and LDA, as well as heuris-
tics such as genetic algorithms and simulated annealing. These techniques can 
provide a better understanding of the most influential meta-features, further 
optimizing computational efficiency and prediction accuracy. 
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Abstract. Explainable Artificial Intelligence (xAI) techniques are 
nowadays widely accepted as one of the paths towards addressing the 
interpretability and transparency issues of using black box models. Such 
techniques may allow to understand, to a certain extent, how or why a 
model produced a certain output, which may even help identify prob-
lems with the model or the data. As in many other domains, the use 
of xAI techniques in the context of manufacturing is seen as fundamen-
tal towards understanding model outputs, supporting informed decision-
making, or enabling more human-centric approaches. In this paper, we 
specifically look at LIME, one of the most widely used approaches to 
xAI, and at how it needs to be adapted to the manufacturing context. 
Specifically, we show how the image permutations introduced by LIME 
might deceive the underlying model and generate poor explanations, and 
propose a methodology to address this issue. The specific use-case is on 
defect detection in the textile manufacturing industry. 

Keywords: Explainable AI · Explainability · Defect Detection · 
Manufacturing 

1 Introduction 

Over the past decade, the development of Artificial Intelligence (AI) was unprece-
dented, and is now intertwined in virtually every aspect of our lives. Develop-
ments in new model architectures, new algorithms and new hardware allowed AI 
to take big leaps in performance, especially with the advent of Deep Learning. 

However, this development was much more evident in the technical aspects 
than in other secondary but equally relevant dimensions. Indeed, while the sur-
prising abilities of AI took the world by surprise and have quickly been integrated 
into our day-to-day living, fundamental dimensions such as the legal or ethical 
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frameworks of its use are still being discussed and set up, and apparently with 
far more difficulty than AI’s technical aspects [ 2, 6, 8]. 

Aspects such as explainability and interpretability of AI models are part 
of the desiderata, with the goal of making these models more transparent and 
open to human interpretation, and ultimately allowing for more oversight, con-
trol, alignment and compliance. In that regard, many tools, techniques and 
frameworks are now being put forward that allow, to some extent, to peer into 
the internal processes of AI or to generate post-hoc information that improves 
human-decision processes within an AI ecosystem [ 3, 4]. 

Existing tools are, however, generic in nature and are often inadequate to be 
directly used in contexts with specific requirements or characteristics, such as the 
manufacturing one. This is the case of approaches such as SHAP (SHapley Addi-
tive exPlanations) or LIME (Local Interpretable Model-agnostic Explanations), 
when used with image classification tasks, which rely on perturbing superpixels 
of the images by painting them with a black background [ 5]. This may mislead 
the underlying model, and limit the quality and faithfulness of the explanation. 

This paper addresses the causes for this issue, and proposes a methodology to 
address it. We validate this methodology in the specific domain of textile defect 
detection, with a model trained on the MVTec dataset [ 1]. While we develop the 
case study using LIME, this contribution extends to other similar approaches 
such as SHAP. 

2 Contextualization 

LIME is a technique designed to explain predictions of ML models, including 
those used in computer vision tasks. The core idea behind LIME is to pro-
vide explanations that are both interpretable and locally faithful to the model’s 
behavior around the specific prediction being explained, which entails several 
steps. 

First, for any given image to be explained, LIME generates several perturbed 
versions. For object detection tasks, as is the case, this often involves modifying 
random regions of the image. These regions are called super-pixels, which are 
obtained using a segmentation algorithm. The vanilla version of LIME paints 
the perturbed superpixels black. This process produces a collection of modified 
images that differ more or less from the original, depending on the number of 
superpixels that were perturbed [ 9]. 

Next, the modified images are passed through the underlying object detection 
model being explained, to obtain predictions for each one. This helps understand 
how different parts of the image influence the model’s detection results: if the 
prediction for two perturbed versions of the image changes significantly when one 
superpixel was changed, that region is most likely important for the prediction. 

A local surrogate interpretable model is then trained, such as a linear regres-
sion, to approximate the behavior of the complex model in the local region 
defined by the perturbed images. The simple model aims to capture the relation-
ships between features (the perturbed super-pixels) and the prediction output.
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One can then look at the relevance of each feature in the surrogate model, to 
identify the super-pixels that are relevant in the original image to classify the 
object. 

One key aspect in this process is on how to fill in the perturbed sections of 
the images that are generated. The vanilla version of LIME fills them in black. 
However, while this tends to work generally well in generic tasks, there are cases 
in which this black artifact that is created in the image might be confused by the 
underlying model with an actual object. This is exemplified in Fig. 1. The top row 
shows three detections of the defect color, which may be caused by oil or paint 
stains in the fabric. The bottom row shows three examples of perturbations 
generated during the use of LIME to explain the predictions, using different 
backgrounds, and the output of the underlying model for each one. 

In d), the actual defect is not detected (false negative), and the model detects 
three color defects in the super-pixels that were painted black by LIME in this 
perturbation (false positives). Using other colors or even more complex patterns 
might have similar results. In e) and f) a complex background and the color pink 
were respectively used instead of black. In the case of e) the actual defect, while 
visible, is not detected (as in d)), while two of the superpixels are mistakenly 
classified by the model as cut and metal contamination, which are another two 
defects that the model has been trained on. In f) the model wrongfully detects 
three color defects on super-pixels that were painted pink in the perturbation, 
when actually no defect should have been detected since the actual defect is 
hidden by the perturbation. 

Thus, when using LIME, it is fundamental that an appropriate color or back-
ground is selected for filling in the perturbed superpixels, so that these are not 
mistaken by actual objects by the underlying model. While this may be labori-
ous to achieve on a case-by-case basis, in Sect. 3 we propose a methodology to 
do this automatically for any use-case. 

Another relevant aspect is that the quality of the explanations generated by 
LIME is directly dependent on the quality of the underlying model, and on the 
eventual similarity between the objects and the perturbations created by LIME. 
In this specific use-case, we are using a previously trained model of the YOLOv7 
class to detect 4 different defects (color, cut, hole and metal contamination). To 
train the model, we used the MVTec Anomaly Detection Dataset [ 1]. 

3 Methodology 

This section proposes a methodology to address one of the key limitations of 
LIME, described in the previous section and made evident in Fig. 1. We aim  to  
automate the process of selecting a suitable color or pattern for LIME to generate 
perturbations for each specific use-case, ensuring that the underlying model, 
whatever it is, does not mistake perturbed super-pixels with the objects/defects 
being detected. Doing this by hand may be time-consuming and not exhaustive, 
so automating the whole process is advantageous for the manufacturing domain.
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(a) Original detection (b) Original detection (c) Original detection 

(d) Detection after 

perturbation (FN + 

3xFP) 

(e) Detection after 

perturbation (FN + 

2xFP) 

(f) Detection after 

perturbation (3xFP) 

Fig. 1. Top row shows textile defect detections by the underlying YOLOv7 model. 
Bottom row shows cases in which the perturbations are mistaken by actual defects 
(FP: False Positive) and/or in which the actual defect is no longer detected (FN: False 
Negative). 

The proposed methodology takes as input a group of images with defects and 
their corresponding bounding boxes (ground truth), which contain the coordi-
nates and class of each defect. For the sake of completeness, these images should 
contain a few examples of each class being detected. It also takes as input a group 
of colors and/or background patterns that the user intends to test as potential 
candidates to fill-in the perturbed superpixels. 

For each input image and each background being tested, we then generate 
a pre-determined number of copies with random perturbations. The underlying 
model being explained is then used to predict on each of the perturbed images 
and its predictions will be compared with those of the same model on the original 
image. The general intuition is that if the predictions of the model when the 
defect is visible are generally the same as those on the original image, then 
the model is not significantly affected by the background color/pattern being 
tested. On the other hand, when the defect is not visible, the model should not 
detect any defects. If it does, it is likely confusing the perturbed superpixels with 
objects in the image that are not there (false positives).
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The model is thus asked to predict on each perturbed image, and the per-
formance of each background color/pattern is assessed for each individual class. 
Namely, we consider the four following cases: True Positive: the model detected 
a defect in the perturbed version and the original image did indeed have the 
same defect in the same region; False Positive: the model detected a defect in 
the perturbed version but there wasn’t a defect in that region of the original 
image or it was of a different class; and False Negative: the model did not detect 
a defect in the perturbed version but the defect (or the majority of it) was actu-
ally visible. As for True Negatives, in object detection these are not counted as 
all the bounding boxes that are not predicted are True Negatives. 

It must also be noted that multiple cases may exist in the same image. For 
instance, Figs. 1 d) and e) show examples of multiple False Positives and one 
False Negative in the same image, as the original defect is not detected in the 
perturbed version, but non-existing defects are detected. The results of applying 
this methodology in this specific use-case are detailed in Sect. 4, in which  the  
results of each background tested are reported by defect. 

4 Results 

This section presents the results of evaluating the proposed methodology. In this 
use case, in the domain of textiles defect detection, we considered 9 different 
colors and patterns to create the perturbations in LIME, and use the proposed 
methodology to find the most suitable background for this specific domain. The 
colors and backgrounds were defined arbitrarily since, due to the nature of Deep 
Learning models, it is virtually impossible to estimate which will not be confused 
by the model with the defects being detected. 

We evaluate the suitability of each background through the ability of the 
baseline model to identify defects in the perturbed images, using the metrics of 
the PASCAL VOC object detection challenge, which are based on the Precision 
x Recall curve and Average Precision [ 7]. In the computation of the metrics we 
used an IoU = 0.5. 

In order to compute these metrics, it is also necessary to define the threshold 
at which a defect is considered visible in the perturbed images. Indeed, when 
LIME creates the perturbed images, three different cases can occur: the defect is 
completely visible, the defect is partially hidden by one or more perturbations, 
or the defect is completely hidden. Images that are partially hidden must still be 
labeled as containing the defect or not, so that the model can then be accurately 
evaluated. For the results reported herein, we assumed that a defect is only 
considered visible if 10% or less of the area of its bounding box is covered by the 
perturbation. 

Table 1 shows the counts of the visible defects in the 2000 perturbations 
generated for each background (18.000 in total) in the Ground Truth column, 
and the detections by the underlying model in the Detections column. It is clearly 
visible that the model tends to mistake certain backgrounds with actual defects, 
as happens with the color defect in the first two colors and in patterns 1 and 3, 
or in the cut defect in pattern 4.
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Table 1. Number of defects of each type visible in the 2000 images with perturba-
tions (ground truth) vs. the number of defects detected by the model (detections), by 
background. 

Background Ground Truth Detections 
color cut hole metal color cut hole metal 

(0,0,0) 146 52 53 134 9136 127 22 53 
(255,15,192) 116 33 71 142 10449 0 9 10 
(255,255,255) 123 37 52 139 73 3672 1041 383 
(0,177,64) 125 43 55 152 155 29 180 173 
Pattern 1 108 39 49 171 8193 50 27 54 
Pattern 2 108 44 58 142 232 127 249 227 
Pattern 3 139 41 57 143 6387 0 14 20 
Pattern 4 101 39 64 148 86 6083 259 0 
Pattern 5 118 33 59 147 11 4031 415 5137 

Table 2 summarizes the results for the different backgrounds compared. 
Specifically, it shows the average precision by class, and the mean average preci-
sion (mAP). It allows to compare the different backgrounds in terms of how they 
confound the model, and also how the same background is more or less confused 
with each of the defects. 

For this specific use case, the best background is Pattern 2, with an mAP = 
0.62, followed by color R = 255, G = 15, B = 192, with an mAP = 0.43. All the 

Table 2. Performance of the model when predicting on images with permutations 
generated using different colored/patterned backgrounds. The last row shows the per-
formance of the model when predicting on the original images. 

Background AP per class mAP 
color cut hole metal 

(0,0,0) 0.0 0.08 0.15 0.33 0.14 
(255,15,192) 0.50 0.15 0.41 0.64 0.43 
(255,255,255) 0.0 0.0 0.11 0.07 0.05 
(0,177,64) 0.43 0.0 0.03 0.14 0.15 
Pattern 1 0.0 0.01 0.10 0.14 0.06 
Pattern 2 0.63 0.51 0.64 0.70 0.62 
Pattern 3 0.0 0.0 0.11 0.14 0.06 
Pattern 4 0.38 0.0 0.04 0.30 0.18 
Pattern 5 0.09 0.0 0.04 0.06 0.05 

Baseline 1.0 1.0 1.0 0.8 0.95
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(a) (0,0,0) (b) (255,15,192) (c) 

(255,255,255) 
(d) (0,177,64) (e) Pattern 1 

(f) Pattern 2 (g) Pattern 3 (h) Pattern 4 (i) Pattern 5 

Fig. 2. Sample (out of 18.000) of one randomly selected perturbation generated by 
LIME for each background, ground truth (green), and detections by the underlying 
model (red). 

remaining backgrounds have very poor average results, despite some acceptable 
results for some specific classes. 

Figure 2 shows the same image, with a color defect, and one randomly selected 
perturbation for each background. The ground truth is shown in green (when 
visible) and the detections of the underlying model are shown in red. Pattern 
2, depicted in (f), was the background that achieved the best results for this 
specific use-case, out of the 9 tested. 

5 Discussion and Conclusions 

One key contribution of this paper is to show that explainability methods based 
on image permutations may be inadequate for the manufacturing domain, as the 
black superpixels introduced in the images are often mistaken by the underly-
ing model and detected as defects. This negatively impacts the quality of the 
generated explanations. 

Intuition could lead to assume that choosing a background that is not visu-
ally similar to the defects being detected would solve this problem. The second 
contribution of this paper is to show that this is not the case, as Figs. 1 and 
2 show. This is due to the fact that Deep Learning models construct unique 
internal representations of the objects, which may be very different from our 
own representations. This work also shows how the performance of Deep Learn-
ing models can change dramatically and unpredictably when new artifacts are 
introduced in the images. This lack of transparency and predictability highlights 
the need for approaches such as the proposed one.
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Finally, it should be highlighted that the main contribution of this paper 
is not the identification of the best background for this particular use-case, but 
rather the methodology followed to do it, since each problem and model is differ-
ent. While some particular backgrounds may be generally better across different 
problems/domains, this remains to be studied. 

Current work covers two aspects. On the one hand, we are developing objec-
tive metrics for evaluating the quality of explanations. This will allow to assess 
two different aspects separately: the quality of the model and the quality of the 
generated explanations. On the other hand, we are including permuted images 
together with the original training data when training models, so that they nat-
urally learn to ignore the permuted superpixels. The methodology proposed in 
this paper is used to decide which background to use in each problem prior to 
the training, minimizing the necessary training data. 

The approach described in this paper is thus one step forward towards the 
inclusion of more human-centric and transparent approaches in industrial AI 
applications, in which human oversight for end-users and developers is seen as 
fundamental. 
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Abstract. The advent of Federated Learning (FL) has brought about 
a revolutionary change in the field of machine learning, enabling the 
decentralised training of models across a multitude of devices while 
simultaneously maintaining the confidentiality of the data. In contrast 
to conventional centralized methodologies, FL maintains the localisa-
tion of data, with only model updates being shared. This methodology 
enhances model generalisation and stability without compromising data 
sovereignty. A variety of machine learning techniques, including support 
vector machines (SVMs) and decision trees, can be effectively utilised 
within the context of FL frameworks. SVMs offer efficient solutions for 
classification tasks with minimal computational overhead, while decision 
trees provide interpretable models for both classification and regression. 
This paper explores the application of these methods in FL settings, 
highlighting their advantages and potential use cases in diverse indus-
tries, particularly in manufacturing. Furthermore, it discusses the inte-
gration of reinforcement learning with FL, emphasising its potential for 
enhancing intelligent and adaptable decentralised systems. 

Keywords: Federated Learning · Machine Learning Algorithms · 
Privacy-preserving Techniques 

1 Introduction 

Federated Learning (FL) represents a paradigm shift in machine learning by 
facilitating a decentralized learning approach [ 21]. Unlike traditional centralized 
learning models, where data is consolidated on a single server for training [ 6, 15], 
FL enables model training across multiple decentralized devices or nodes while 
keeping all the training data localized. One of the primary objectives of FL is 
to utilize a broad, heterogeneous database without the need to share sensitive 
or proprietary information [ 16]. This method ensures that only model updates, 
such as network weights, are shared between nodes, rather than raw data like 
sensor data or images [ 12]. Such an approach preserves data privacy and ben-
efits all participants by combining the advantages of data sovereignty with the 
c© The Author(s) 2025 
K. Alexopoulos et al. (Eds.): ESAIM 2024, LNME, pp. 271–278, 2025. 
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collaborative power of model training, thereby enhancing model generalizability 
and stability [ 30]. 

The introduction of Federated Averaging (FedAvg) by McMahan et al. [ 21] 
established a structured approach for applying FL through an iterative process. 
Initially, a central server initializes a global model and distributes it to all par-
ticipating devices or nodes. Each node then independently trains the model on 
its own local dataset. After local training, nodes send their model updates, such 
as weights, back to the central server. The server aggregates these updates, typi-
cally by averaging, to update the global model. The updated global model is then 
sent back to the nodes. This process, known as a communication round, repeats 
until the model reaches the desired level of accuracy or meets other convergence 
criteria (see Fig. 1). This iterative cycle leverages distributed data sources while 
maintaining the privacy and security of the data handled by each node. 

Fig. 1. This illustration depicts the federated learning process where a global model is 
distributed to multiple clients. Each client independently trains the model on their local 
data without exchanging data with other clients. The locally trained models’ updates 
are sent back to a central server, which computes the aggregated update, typically 
through averaging. [ 18] 

2 Machine Learning Methods in Federated Settings 

While neural networks are known for their ability to handle complex and high-
dimensional data, they are not always the most efficient or necessary approach 
for every problem. This is particularly true in FL settings, where the primary 
objective is to perform decentralized machine learning effectively and efficiently.
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Neural networks, especially deep learning models, are resource-intensive in terms 
of both computational power and data requirements [ 9]. Their high dimension-
ality increases communication overhead, potentially leading to inefficiencies and 
delays in the FL process [ 32]. 

Moreover, many real-world problems do not require the extensive modeling 
power of neural networks. Simpler approaches, such as Support Vector Machines 
(SVMs) or tree-based models, can often achieve comparable or sufficient accu-
racy with significantly less computational overhead and complexity [ 2]. SVMs 
are particularly well-suited for scenarios where the margin of separation and 
generalization to unseen data are more critical than capturing complex data 
patterns. 

2.1 Support Vector Machines 

SVM are a class of supervised learning algorithms used for classification and 
regression tasks. They are based on the concept of finding a hyperplane that 
best separates the data points of different classes in a high-dimensional space 
[ 26]. The main idea is to maximize the margin, which is the distance between the 
hyperplane and the closest data points from each class, known as support vec-
tors. This margin maximization leads to better generalization and robustness of 
the classifier. SVMs can handle both linear and non-linear classification by using 
kernel functions, such as polynomial, radial basis, and sigmoid function, to map 
the input data into higher-dimensional spaces where it becomes linearly separa-
ble [ 17]. The theoretical foundations of SVMs are rooted in statistical learning 
theory, particularly in the concept of Structural Risk Minimization, which aims 
to find a balance between model complexity and fitting the training data to min-
imize the generalization error [ 29]. In a federated setting, the solution calculated 
by SVM must accommodate not only one dataset, but multiple subsets as acces-
sible per client. This may result in a slightly different angle of the hyperplane, 
as illustrated in Fig. 2. 

The applications of SVM in manufacturing are numerous and diverse. The fol-
lowing are a few illustrative examples: In [ 1], SVMs are used to diagnose mechan-
ical faults in motors by analyzing vibration signals collected from accelerome-
ters. The SVMs classify the transformed vibration data to identify specific issues 
such as unbalance, misalignment, and mechanical looseness. In [ 28], SVMs pre-
dict anomalies within the manufacturing process. Upon detecting an anomaly, 
the system dynamically reconfigures itself to mitigate the issue, rerouting jobs 
to different machines or adjusting processing paths to maintain optimal opera-
tion and prevent overloading any single machine. In [ 19], SVMs are employed to 
predict manufacturing lead times. The model categorizes the total manufactur-
ing time of products into different duration ranges, using production and work 
order data that undergo preprocessing and feature selection to enhance model 
performance. 

A summary of the applications of SVM as referenced in the literature is pre-
sented herewith [ 22, 25]. By analyzing historical data, SVM models can identify 
the relationships between various input parameters and quality metrics, thereby
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Fig. 2. Illustration of SVM Classifiers. The subfigures show a linear SVM classifier 
with a straight decision boundary and support vectors along the margins. The SVM 
aims to maximize the margin between the two classes, represented by red squares and 
blue circles. 

enabling the prediction of product quality during production. By accurately cat-
egorizing products, SVMs assist in maintaining consistent quality standards and 
in the identification of batches that meet or fail to meet the required specifica-
tions. SVMs are also employed for the optimization of manufacturing processes, 
whereby the optimal settings for various machine parameters that result in the 
highest product quality are identified. Fault diagnosis, as previously mentioned, 
is also a key application area. By classifying the condition of machines as normal 
or faulty, SVMs enable the implementation of predictive maintenance strategies, 
which serve to reduce downtime and prevent catastrophic failures. This process 
entails training SVM models on historical data to ascertain the impact of varying 
parameter settings on the output quality. Manufacturers can subsequently utilize 
these models to simulate diverse scenarios and identify the optimal combination 
of parameters. To illustrate, in a machining process, SVMs can optimize cutting 
speed, feed rate, and tool geometry to minimize surface roughness and maximize 
material removal rate. This optimization not only enhances product quality but 
also improves process efficiency and reduces costs. 

The aforementioned applications can be addressed and extended with FL, 
as the benefits are consistent across the board: It enhances SVM-based solu-
tions by improving generalization by aggregating model updates from different 
units, creating a model that better predicts faults across different machines and 
environments. It enables scalable training across distributed locations, efficiently 
handling large datasets and allowing local models to quickly detect faults and 
take corrective action, reducing latency compared to centralized approaches. In 
addition, FL facilitates continuous learning, where local models are updated 
with new vibration data and these updates are periodically aggregated to refine 
the global model, ensuring that the system is always up-to-date with the latest 
patterns.
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2.2 Decision Trees and Random Forrest 

A Decision Tree (DT) is a widely used method in machine learning and data anal-
ysis for classification and regression tasks [ 5]. It operates by recursively splitting 
a dataset into subsets based on the most significant attribute, creating a tree-like 
structure where each internal node represents a test on an attribute, each branch 
corresponds to the test’s outcome, and each leaf node signifies a final decision 
or prediction [ 24]. The selection of the best attribute to split on is typically 
determined by metrics such as Gini impurity, entropy, or information gain. They 
have also been employed to summarize associative classification rules, providing 
a more readable and compact classification mode [ 4]. They are valued for their 
simplicity, interpretability, and ability to handle both numerical and categorical 
data. However, they are prone to overfitting and can be unstable with small data 
variations. When employed in an ensemble, as is the case with random forest, 
the disadvantage of overfitting is mitigated [ 31]. 

In addition to similar areas of application as mentioned for SVM [ 23], DT 
can be used for decision support, e.g. for spare part configuration [ 3] as they are  
additionally better to interpret. [ 11] trained an incremental decision tree in a 
federated manner. For this they utilize ’Very Fast Decision Tree’ (VFDT) as pro-
posed in [ 7] and trained it in a vertical FL setting. [ 27] proposed a subtree-based 
horizontal FL method that accelerates model convergence and reduces commu-
nication costs while maintaining accuracy. Their FS-Boost approach learns one 
level of the tree at a time. 

2.3 Reinforcement Learning 

In distributed and decentralized systems, FL combined with reinforcement 
learning (FDRL) leverages the strengths of both methodologies to tackle com-
plex, distributed learning tasks, such as in robotics. This powerful combina-
tion ensures data privacy while enabling seamless knowledge transfer between 
entities, thereby enhancing overall system intelligence and adaptability. FDRL 
frameworks, like FDRL, facilitate secure information sharing to build high-
quality models while maintaining privacy protections [ 33]. Techniques such as 
reward shaping improve training efficiency and policy quality without compro-
mising client confidentiality [ 14]. Furthermore, frameworks like Lifelong Feder-
ated Reinforcement Learning (LFRL) enhance robot navigation by fusing and 
transferring prior knowledge, allowing robots to quickly adapt to new envi-
ronments [ 20]. This collaborative approach also supports multi-robot systems, 
enabling efficient task scheduling and improved learning performance across var-
ious applications [ 8, 13]. In a modular factory setup, where each robot module is 
independent, as exemplified by the configuration depicted in [ 10], each module 
can be regarded as a FL client and train on their own objects when separated. 
However, upon connection, they share their updates and form a new global 
model. The potential for transferring learned skills across different entities using 
FDRL remains an open question, highlighting the need for further research in 
this area.
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3 Conclusion and Outlook 

This paper demonstrates the extensive potential applications of Federated Learn-
ing (FL) in manufacturing, with significant opportunities yet to be fully explored. 
Our exploration highlights numerous applications for Support Vector Machines 
(SVM) in areas such as defect detection, quality prediction, and parameter opti-
mization. Additionally, Federated Distributed Reinforcement Learning shows 
considerable promise within robotics, particularly for path planning and grasp 
optimization. Our findings reveal that FL extends beyond neural networks, 
effectively incorporating a variety of machine learning methods. By combining 
different machine learning techniques with FL, robust, scalable, and privacy-
preserving data analysis can be achieved. Each method offers specific strengths 
and alternatives that are computationally less demanding and more suited to 
particular types of data or tasks. The increasing awareness and concern over 
personal data usage, coupled with the enforcement of stringent data protec-
tion laws worldwide, underscore the necessity of privacy-preserving methods. By 
adhering to principles of data minimization and locality, FL aligns well with 
regulatory requirements and public sentiment, making it an indispensable tool 
in our data-driven world. 

Future work will build on these findings, focusing on the combination of FL 
and SVM for planning optimization, and FL and Reinforcement Learning for 
robotics applications such as path planning and grasp optimization. This study 
underscores the versatility and potential of FL across a wide array of applica-
tions, paving the way for its broader adoption and integration into modern manu-
facturing environments. The continuous evolution of FL methodologies promises 
to further enhance data-driven decision-making processes while ensuring privacy 
and regulatory compliance. 
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Abstract. Ethics has become an increasingly important topic within the devel-
opment of Artificial Intelligence systems. The anticipated European AI act has a 
strong foundation in 7 ethical values of the Assessment List for Trustworthy Arti-
ficial Intelligence (ALTAI): human agency and oversight, technical robustness and 
safety, privacy and data governance, transparency, diversity, non-discrimination 
and fairness, environmental and societal wellbeing, and accountability. In addi-
tion, data management and privacy are other important aspects of responsible AI: 
from development towards implementation. In many research fields, a form of 
ethical management or review is common practice. However, in the field of AI 
and manufacturing this is relatively new. 

Within the EU project: Artificial Intelligence in Manufacturing for Sustain-
ability at SMEs (AIRISE), AI experts will support SMEs active in manufacturing, 
in the uptake of AI by conducting tailor-made experiments. One requirement for 
these experiments is the management of ethics, data and privacy. At the same time, 
AIRISE will also deliver this as a service to SMEs. Ethics management allows for 
reflection on business processes, safe working and possible improvements. 

This work presents our way of service delivery, tutoring, training modules and 
review procedure, based on the ALTAI principles, GDPR and FAIR principles. 
Our work lays the foundations for compliance to multiple EU legislations such as 
the AI act and GDPR, delivered in a user-friendly service. In the nearby future, 
we anticipate optimizing our ethics, privacy and data management services by 
developing digital tooling. Furthermore, we will thematically analyze the obtained 
data and identify which ethical issues are important for SMEs and manufacturing. 
With this knowledge, we aim to further support manufacturing SMEs in their 
business. 
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1 Introduction 

1.1 Responsible Data Use in AI 

In 2020, the EU has developed a European strategy for data in which they aim to cre-
ate a single market for data that will ensure Europe’s global competitiveness and data 
sovereignty [1]. Ethics in AI, responsible data management are important topics and 
broadly discussed in this context. Within Horizon Europe projects, the EU commission 
lays emphasis on responsible data use in the ethics appraisal [2] or additional ethical 
work packages. Beneficiaries need to comply to relevant legislations, field and codes of 
conduct. 

The European AI-act is one of the first legislations in the world to regulate the use of 
Artificial Intelligence. The legislation will be stepwise implemented, in the upcoming 
years from 2024 onwards [3]. The fundament of the legislation is predicated upon 7 
ethical principles noted in the Assessment List for Trustworthy Artificial Intelligence 
(ALTAI) for self-assessment, formulated by the high-level expert group on artificial 
intelligence [4]. The principles are: human agency and oversight, technical robustness 
and safety, privacy and data governance, transparency, diversity, non-discrimination and 
fairness, environmental and societal wellbeing, and accountability. These principles are 
key in the EU ethics appraisal schemes for AI research [2]. In terms of privacy, the EU 
has multiple legislations, the most familiar one is the General Data Protection Regulation 
(GDPR). The GDPR includes rules to pursue the protection of personal data. One of 
the GDPR requirements when using personal data for developing new technologies is 
a Data Protection Privacy Assessment (DPIA) for high-risk personal data in which an 
assessment of all privacy risks and mitigation are formulated. The European union also 
supports the principles: Findable, Accessible, Interoperable and Reusable (FAIR) as 
a framework for data management plans [5]. This allows a concrete project plan for 
the use of data in research projects. These conditions are extremely important for AI 
development. 

1.2 AI in Manufacturing 

AI ethics in manufacturing is a relatively new field, but will likely be very important due to 
the uptake of AI technologies in manufacturing processes. The field is evolving as stake-
holders recognize the importance of ethical considerations in AI deployment. Brintrup 
et al., 2023 [6] produced a list of trustworthy AI, challenges and risks in manufactur-
ing and how they are presented throughout the life-cycle. In addition, manufacturing 
companies who are providers of high-risk AI systems will need to implement quality 
management systems and perform appropriate risk management strategies to fulfill the 
upcoming AI act requirements [7]. Currently AI act standards are being created by stan-
dardization body Cen-Cenelec [8], in the meantime implementing AI ethical principles 
will serve as a strong fundament for the next steps in compliance. Large-scale com-
panies might be better equipped for compliance in comparison to SMEs due to fewer 
resources and expertise. Therefore, the project Artificial Intelligence in Manufacturing 
for Sustainability (AIRISE) [9] focusses on aiding SMEs.
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1.3 AIRISE Project 

In the AIRISE project, a consortium of European partners will provide consultancy to 
implement AI solutions for SMEs in manufacturing by doing tailor made experiments. 
These services aim to improve business processes in the field of design and engineer-
ing, process monitoring and control, manufacturing operations, production and supply 
chains. In order to perform these experiments in an ethical responsible way, the man-
agement of ethics, data and privacy is key. At the same time, AIRISE will also deliver 
this as a service to SMEs as the fundament to be compliant with AI-act requirements. In 
addition, ethics management allows for reflection on business processes, how personal 
data is being dealt with, safe working and location of data storage. 

Therefore, in this paper we aim to present our way of service delivery, tutoring, 
training modules and review procedure for SMEs within the EU project AIRISE, based 
on the ALTAI principles, GDPR and FAIR principles for SMEs as a basis for compliance 
and good responsible data practices. Furthermore, our approach needs to be user-friendly, 
easy to understand and simple to implement. 

2 Method  

2.1 The Ethics Data and Privacy Advisory Committee 

To ensure compliance with the ethics requirements throughout the project, a governance 
structure has been put in place: project Ethical & Data privacy Advisory Committee. 
This committee has been established immediately after the start of the project. Their 
tasks are twofold: 1) co set-up and or approve the set-up of the ethics manual and 2) 
ensure compliance of the experiments throughout the project. 

The committee comprises of a representative of each project partner, and will be 
supervised by an expert Ethics Advisory team from the ethics lead project partner. The 
lead has a team of experts consisting of an: ethics project leader, data steward, attorney

Fig. 1. Governance structure Ethics Data and Privacy Advisory Committee.
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in privacy and AI and project assistant. This team took the lead on preparing the material 
for the procedures on data management, privacy and ethics. They have provided it to the 
board members for reviewing, technical input and or writing the material. Ultimately, the 
board approved the final material, and was then named the ethics manual. The members 
of the board were not necessarily ethics or data experts. They had to be able to review the 
material or consult an ethics/data expert in their organization for review. The structure 
of the committee is summarized in Fig. 1.

3 Results 

3.1 The Ethics Manual 

The Ethics manual identifies the key ethical and legal topics and the procedures for data 
collection, storage, protection, retention, transfer, destruction, or re-use for the partners 
and the customers, as well as details on data safety procedures and informed consent. 
The relevant ethical aspects stated in this document are mainly related to the ethical 
and safe conduct of AIRISE experiments with participants and the proper use of the 
collected data. It is intended to be used by the project partners and participating SMEs 
as a general guideline for AI implementation for all experiments. In addition to the 
background information, the manual includes work templates for the SMEs to fill in for 
their experiment. It will be shared with participants taking part in the training sessions. 
The users of the manual are meant to benefit from clarified procedures for data collection, 
storage, protection, retention, transfer, destruction, or re-use; details on data safety and 
informed consent procedures. 

Content of the Ethics manual 

Chapter 1 introduces the purpose. 
Chapter 2 states how to use the manual and the templates in relation to the intended 
audience of the current document items. 
Chapter 3 summarizes the legal and ethical framework used in the creation of the man-
ual: for privacy GDPR and e-Privacy are discussed, ENISA legislation for cybersecurity. 
Regarding IP rights, it is mandatory for third parties to adhere to contractual agreements. 
Following the Open Data Directive, all results deriving from EU grants must be published 
in open access and the FAIR principles must be complied with. Finally, AIRISE will 
comply with the highest standards of research ethics and integrity, following the Euro-
pean Code of Conduct for Research Integrity (ALLEA) and the European Commission’s 
ethics guidelines. 
Chapter 4 includes a detailed explanation of the ALTAI ethics requirements 
Chapter 5 provides an explanation of the AIRISE Data Management Plan with leading 
FAIR principles 
Chapter 6 summarizes the rules related to data Privacy and the use of a Privacy Impact 
Assessment in particular. 

Appendices contain the templates described in the manual 

– The Ethics checklist & risk analysis template, is conceived to be filled in at the start 
(after 1 month) when the intended use of the experiment is known, halfway, and right
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before the end of each experiment, before implementation. Not all questions in the 
ethics checklist are relevant for all experiments; participants should fill in as much 
as possible, all that is applicable. During the start of the experiment, some questions 
might be premature; in that case the intention should be filled in, and the document 
will updated at a later stage during implementation. The checklist comprises of the 
7 ALTAI principles, which we aimed to make explainable for manufacturing. Firstly 
we provide definition of the principle, then the question to be answered and thirdly 
the explanation of the question, to make it tangible. An example of the principle of 
Human agency and oversight is given in the Fig. 2. 

Fig. 2. Example of Human agency and oversight in the Ethics checklist 

In addition, a standard risk analysis needs to be filled for the ethical principle of 
technical robustness and safety to account for: design and technical faults, possible 
misuse etc. Moreover, SMEs are welcome to identify other risks they deem relevant in 
their experiment. For each risk, an appropriate mitigation action needs to be formulated. 

– The Research Data Management (RDM) checklist is designed to be used before 
the start of each experiment, in order to check if each item is present. 

In case personal research data is required in the experiment, the following also apply 

– Privacy Impact Assessment should be filled in before the start of the experiment. 
– Informed Consent Form. In case personal data is collected from participants, this 

needs to be filled-in with the participant. A copy must be filed and given to the 
participant of which the data is collected. All information that is relevant to the 
project and the particular data collection must be filled out. 

In case personal data needs to be transferred within the project, one of the following data 
sharing agreement will be put in place 

– Data Sharing Agreement: agreement explaining the rights of two or more Parties 
that are using the data each one for their own purposes, separately. 

– Data Processing Agreement: agreement explaining the rights of two (or more) Par-
ties in which one of the Parties is the Data Controller and the other Party is Data
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Processor – when one Party is using the data received by another one and it is using 
them only to help the first one to reach its own goal, like a service provider. 

– Joint Controller agreement: agreement that explains the rights of Parties, two or 
more, that are responsible and decide together on the purposes and means of the data. 

3.2 Review of the Documents 

This manual and accompanying templates will be mandatory used during all experiments. 
The project consultant who is assigned to an experiment will support the respective SME 
filling in these documents. In addition, the ethics project lead coordinates the distribution 
of documents and is available for content and process questions. 

All the above filled in documents will be collected in the beginning of the project and 
reviewed by a selection of members of the ethical data privacy committee and communi-
cated back to the SMEs and consultant. The ethics checklist needs to be updated during 
the project and at the end of the project, at least before implementation. These updates do 
not need to be reviewed by the committee. Instead, updates should be discussed regularly 
during project meetings between SMEs and consultants. 

3.3 Training 

A training module has been made with the fundamentals of the Ethics manual content. 
The target audience are AIRISE consultants and SMEs who are in the validation and 
pilot-experiments. During the project, case studies will be collected to serve as training 
examples. 

4 Discussion 

For this work, the basis of the ethics manual are existing legislation (GDPR), and upcom-
ing legislation (AI-act) including ethics (ALTAI) principles and principles for data man-
agement (FAIR). The main challenge lies in the implementation of the manual, making 
the principles understandable and the templates easy to fill in. Therefore, we kept the 
information in the ethics manual at a basic level and provided templates in a checklist 
form, with space for SME to comment and take notes. Furthermore, we provide contin-
uous practical training and SMEs have the opportunity to liaise with their consultant and 
the ethics project lead. It is important that filling in the ethics template, will be repeated 
during the project and at the end, before implementation of the AI-solution. Ethics, data 
management and privacy are meant to be assessed in a life-cycle approach and is aimed 
to make the project better by creating awareness of the technology and safety aspects. 
This will ultimately improve the methodology of the AI-system. 

Another point of attention is the novelty of responsible research practices amongst 
the project partners. Most of the organizations in the consortium are Research Technol-
ogy Organization (RTO). Research ethics in general is strongly associated with human-
related studies. RTOs have less extensive experience in research with humans. However, 
the ALTAI principles and the AI-act will be implemented horizontally, this includes 
the field of manufacturing. Although we expect the ethical principle: diversity, non-
discrimination and fairness to be less applicable in manufacturing as compared to a
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medical AI case, a principle as a human – in the loop could be of high importance. 
The man-machine interaction will likely come under new scrutiny in light of AI-system 
implementation. In addition, some of the ethical principles such as robustness and trans-
parency are of technical nature. It turned out very beneficial to have technical knowledge 
within the project consortium. This indicates that organizations who want to form ethics 
teams could benefit also from interdisciplinarity between AI ethics, technical experts. 
Due to the nature of these experiments, we do not expect highly sensitive personal data, 
nevertheless we wish to foresee in these scenarios by including privacy templates in 
the manual and training. Finally, SMEs who follow the FAIR principles will be able to 
properly manage their data for multiple purposes. 

The manual will be used in 75 experiments in the upcoming years. Further research 
will primarily focus on the assessment of service delivery. Iteratively, the material will 
be further improved, ultimately a digital tool could make the process more efficient. 
Second of all, we will do content analyses on the ALTAI principles to contribute to 
solutions that benefit SMEs in manufacturing. This work could lay the foundation for 
new regulatory and legal frameworks, specific for the manufacturing field. 
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