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Abstract—With the evolution of Vehicle-to-Everything (V2X)
technology and increased deployment of 5G networks and edge
computing, Predictive Quality of Service (PQoS) is seen as an en-
abler for resilient and adaptive V2X communication systems. PQoS
incorporates data-driven techniques, such as Machine Learning
(ML), to forecast/predict Key Performing Indicators (KPIs) such as
throughput, latency, etc. In this paper, we aim to predict downlink
throughput in an urban environment using the Berlin V2X cellular
dataset. We select features from the ego and lead vehicles to train
different ML models to help improve the predicted throughput
for the ego vehicle. We identify these features based on an in-
depth exploratory data analysis. Results show an improvement in
model performance when adding features from the lead vehicle.
Moreover, we show that the improvement in model performance
is model-agnostic.
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I. INTRODUCTION

The evolution of V2X technology and increasing integration
with autonomous vehicles, as part of Connected, Cooperative
and Automated Mobility (CCAM), holds the potential to not
only optimize traffic flows and improve road users’ safety,
but also reduce emissions and help meet the climate action
targets. The autonomous car of today is equipped with a suite
of sensors, including but not limited to lidar, camera, GPS, and
V2X, which is seen as an extended sensor. V2X encompasses a
vehicle communicating not only with other vehicles (V2V), but
also pedestrians (V2P), networks (V2N), roadside infrastructure
(V2I), amongst others. V2X can provide timely and crucial
data about traffic information, road conditions and pedestrian
movement to the vehicle, thus, enabling informed decisions by
either the driver or the self-driving systems. Several V2X ap-
plications like tele-operated driving, high-density platooning, as
well as infotainment applications such as video streaming, have
diverse and (often) stringent network requirements with respect
to throughput, latency, etc. that demands a certain Quality of
Service (QoS) level and availability from the communications
network.

By predicting QoS and providing in-advance notifications,
PQoS emphasizes safety of road users, reliability in information
exchange, end-user experience and satisfaction. Furthermore,
PQoS can provide context awareness to applications depending
on the driving conditions and users’ needs. This can regulate

application-specific survival time and ensures that the service
is either continued or gracefully degraded [1]. For example, in
high latency scenarios, autonomous vehicles can be proactive
by either decelerating, changing lanes or handover control to
the driver to avoid an accident.

Predicting QoS is indeed a complex task, further exacerbated
by the high relative vehicle speeds, vehicle density (based on
time of the day) and channel conditions (based on region - rural,
urban and highway) prevalent in V2X scenarios. As part of Net-
work Data Analytics Function (NWDAF), 3GPP Release 16 [2]
introduced an in-advance, subscribe/request-based notification
system to notify V2X applications of estimated or expected
change in QoS, with the possibility to switch to an Alternative
QoS Profile (AQP) when QoS degrades. However, this does not
ensure service continuity, as the application is notified once the
change occurs.

QoS can be predicted either on the User Equipment (UE)-
side [3]–[7], or the network-side [8], or a combined ap-
proach [9]. Majority of the research for PQoS includes pre-
diction by training models on historical data of the UE, i.e.,
ego vehicle itself (henceforth, vehicle and device will be used
interchangeably). However, authors in [10] proposed a device-
to-device (D2D) coverage prediction framework to predict QoS
by using the received signal strength measurements from the
lead device. Initial findings in [11] indicate that the data from the
lead vehicle holds the potential to improve the PQoS of the ego
vehicle. Authors in [12] highlight a new set of features from the
lead vehicle and network operator to improve the performance
of a Random Forest (RF) model to predict both uplink and
downlink throughput of the ego vehicle and over different
prediction horizons. A similar study [13] shows improvement
throughput prediction of the XGBoost regressor by selecting a
different combination of features from the lead vehicle and the
network operator and over different time horizons. In this paper,
we intend to build upon the insights of [12] and [13], both of
which have conducted their studies using a dataset collected in
a highway environment. However, unlike [12] [13], we aim to
focus on improving QoS by means of instantaneous downlink
throughput prediction in urban environments, i.e., focusing on
the ego vehicle’s current state or in the very near future, by
using both current (temporally-aligned) and historical (spatially-



TABLE I: Berlin V2X Cellular Dataset - Overview

Direction Downlink Uplink
Operator IDs 1 2 1 2
Device IDs pc1, pc4 pc2, pc3 pc1, pc4 pc2, pc3
Target Datarate [kBit/s] 400 350,000 400 350,000 400 75,000 400 75,000
Measurement ID 3, 4 0, 1, 2, 14, 15, 16 1, 2, 14 0, 3, 4, 15, 16 8, 9, 10 5, 6, 7, 11, 12, 13 8, 9, 10 5, 6, 7, 11, 12, 13

aligned) data from the lead device. Furthermore, we train 3
different types of ML models. In this regard, we pose the
following research questions, the answers to which form the
basis of our contributions:

• Can the data from the lead vehicle improve the PQoS of
the ego vehicle in an urban setting?

• Can the historical data, i.e., temporal difference between
the lead and ego vehicle at the same geo-coordinate be
utilized to improve the PQoS of the ego vehicle?

• How does feature engineering the datasets, i.e., introducing
relative features impact the model performance?

• If the selection of features from the lead vehicles shows an
improvement in model performance, is it model-agnostic?

We are using the Berlin V2X dataset [14], primarily, as the
dataset includes vehicles driving in close proximity in an urban
setting. Moreover, it is publicly available ensuring reproducibil-
ity of results. At the time of writing this paper, this dataset has
been previously used to predict downlink throughput by training
a Light Gradient Boosting Machine (LightGBM) model on one
operator’s data and evaluating on another operator’s data [15];
identifying nodal points in V2X networks by predicting data
rate [16]; and handling concept drifts when predicting QoS in
resource-constrained V2X environments [17].

The rest of the paper is organized as follows. Section II
provides an in-depth correlation analysis of the different features
of both the ego and lead device. The correlation analysis helps
select features for training the ML models described in Section
III. Section IV delivers answers to the aforementioned research
questions and lastly, Section V concludes the paper and provides
insights into future research directions.

II. EXPLORATORY DATA ANALYSIS

The Berlin V2X dataset captures cellular data transmission
in both directions - uplink and downlink. A brief overview
is provided in Table I. For our analysis below, we focus on
Measurement IDs 0 to 11 to avoid cross-operator influence
(Measurement IDs 12 to 16 includes 2 devices per run, each
with a different operator ID). The driving pattern ensures that
for every operator, each of these measurement IDs includes a
lead device and an ego device. For each device, the dataset
is grouped using measurement ID to ensure homogeneity w.r.t.
device IDs, target datarate, operator ID and direction of data
transmission. Furthermore, we limit our findings to the higher
target datarate in downlink (termed as scenario A3D) for a single
operator (ID-1), however, the same methodology can be easily
extended to any combination of operator, direction and target
datarate.

A. Correlation - ego device

By analysing the correlation values between the target vari-
able, i.e., datarate of the ego vehicle, and the features of the

ego vehicle, we aim to identify the key features from the ego
device to train the ML models.

Autocorrelation - Features with a strong autocorrelation
are more likely to be predictable as it indicates a temporal
relationship. Autocorrelation of the target variable helps identify
if the lagged values of the target variable itself can be included
as a predictor. Figure 1 show the autocorrelation for the datarate
for a lag up to 120 seconds. The autocorrelation in the figures
shows in both measurements a different decline rate, passing
0.5 at a lag of around 80 seconds for ID 0 and 30 seconds
for ID 1. This indicates that autocorrelation is initially high,
suggesting strong short-term dependencies, but then decreases,
implying that the influence of past values diminishes over time.
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Fig. 1: Autocorrelation of the datarate for the measurement IDs
0 (left) and 1 (right)

Cross-correlation - It provides insight into the relationship
between the target variable and the different features of the ego
vehicle. Figure 2 show the cross-correlation between the datarate
and the most important features in the downlink for operator 1.
The analysis indicates the transport block size (TB_size) has the
highest correlation to the datarate. Furthermore, network KPIs
such as Reference Signal Received Power (RSRP) and Signal-
to-Noise Ratio (SNR) show relatively high correlation, making
them promising input features for the prediction models.

B. Correlation - ego and lead devices

To help identify the features of the lead device that could im-
prove the throughput prediction for the ego device, we perform
correlation analysis by aligning the devices both temporally and
spatially, as follows:
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Fig. 2: Features of the ego vehicle with the highest cross-
correlation with the datarate.

0.0 0.2 0.4 0.6 0.8 1.0
Correlation Coefficient

ping_ms
datarate

jitter
Latitude

Longitude
Altitude

speed_kmh
Traffic Distance

PCell_RSRP_1
PCell_RSRP_2

PCell_RSRP_max
PCell_RSRQ_1
PCell_RSRQ_2

PCell_RSRQ_max
PCell_RSSI_1
PCell_RSSI_2

PCell_RSSI_max
PCell_SNR_1
PCell_SNR_2

PCell_E-ARFCN
PCell_Downlink_Num_RBs

PCell_Downlink_TB_Size
PCell_Downlink_Average_MCS

PCell_Uplink_Num_RBs
PCell_Uplink_TB_Size

PCell_Uplink_Tx_Power_(dBm)
PCell_Downlink_frequency

PCell_Uplink_frequency
PCell_freq_MHz

Fig. 3: Correlation between the same features of the lead and
ego vehicles.

Temporally Aligned The devices are aligned in time in
the dataset, and are directly used to evaluate the correlative
measures with ever changing distances between the vehicles.

1) Same Features: We aim to evaluate the features of the ego
vehicle for statistical similarity against the same features
of the lead vehicles (see Figure 3). The high correlation
values of the geo-coordinates clearly indicate that the
vehicles travel the same route (which is the case here).
Network KPIs such as RSRP, Reference Signal Received
Quality (RSRQ) and Receive Signal Strength Indicator
(RSSI) show medium to high correlation between the two
devices indicating that the vehicles share more or less
similar network conditions, i.e., signal fading, channel
response, or congestion.

2) Different Features: The datarate of the ego device is
correlated to the features of the lead device. Figure 4
illustrates these correlative patterns in the downlink di-
rection. Here, medium to high measures are observed
for the known signal strength indicators. However, a low

correlation between the lead and ego vehicle’s datarate
can be observed.

Fig. 4: Correlation between the datarate of the ego vehicle and
features of the lead vehicle.

Spatially Aligned Devices are spatially aligned to understand
the correlation between current values of features of the ego
device and historical values of features of lead device at
(approximately) the same geo-coordinate. Practically, this can
provide an crucial insight into the relevancy of lead vehicle’s
historical data to be stored. To align the devices spatially,
the geodesic distance between the devices is computed. For
each geo-coordinate of the ego device, the closest location
pairs - {ego, lead} are extracted that fall within a distance
threshold of 0-20 m between the devices. This operation is
performed for increasing time offsets - in minute increments
(i.e., 0 − 1, 1 − 2, · · · ). For each time offset range the data of
the lead device is filtered, of which only the geo-coordinates
within the threshold distance to the ego device are considered.

1) Same Features - An equal-weighted average of the pair-
wise feature correlation (between lead and ego devices)
across all measurement IDs is shown in Figure 5 . This is
achieved by computing correlation for every measurement
ID individually and then averaging to get the weighted
average. The pair-wise features, especially the signal
strength indicators, exhibit medium to generally, high
correlation values indicating that the environment impacts
both devices similarly, i.e., signal strength fluctuations due
to obstacles. This is true for both time offset ranges, i.e.,
0-1 and 1-2 mins, with correlation increasing as more
historical data from the lead vehicle becomes available,
i.e., data with a larger temporal gap with the ego vehicle.
This trend cannot be mapped any further due to lack of
sufficient data points for larger time offset ranges, i.e.,
2-3, 3-4 mins, and so on.
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Fig. 5: Pair-wise correlation values for spatially aligned ego and
lead vehicles. The colour bar depicts the correlation coefficient.

2) Different Features - Correlation analysis between datarate
of the ego vehicle and all features of the lead vehicle
shows no features with medium to high correlation, apart
from geo-coordinates, traffic conditions and weather data.

III. MACHINE LEARNING MODELS

This section provides a concise overview of the dataset
preparation and the criteria for model selection. Based on the
correlation analysis, we devise the following datasets:

• EGF - only features from the ego device (baseline)
• EGLT - features from EGF and features from the lead

device when temporally aligned
• EGLS - features from EGF and features from the lead

device when spatially aligned
For these datasets, we define the selected features and the ML
models used below.

A. Feature Engineering

The in-depth correlation analysis yields a multitude of fea-
tures of interest for each dataset. Features relating to weather
and traffic conditions are dropped, because they have a lower
sampling rate. Even though certain features of the lead vehicle
do not show direct correlation with the datarate of the ego ve-
hicle, these features have high correlations with their respective
pairs (i.e., same feature from ego vehicle).

To avoid model overfitting, similar and highly collinear fea-
tures are removed, for example, we retain PCell_RSRP_max and
drop its highly correlating (> 0.7) counterparts PCell_RSRP_1
and PCell_RSRP_2. Furthermore, to provide spatio-temporal
context to the models, we devise delta_t, delta_s and delta_v
which represent the difference in time, distance and speed
between the ego and the lead vehicles. Due to the introduction
of delta_s the geo-coordinates were dropped from the features.
Note that delta_t is not used for the EGLT scenario as the
two vehicles are temporally aligned. Table II shows the features
selected for each scenario (feature names are taken directly from
the dataset).

To help the models understand the dynamics between the
two vehicles, we also transform features and provide them as
alternate variants to the scenarios EGLT and EGLS:

• Difference Features - the difference captures the rel-
ative dynamics between the ego and lead vehicles
by combining the same features from the 2 vehi-
cles. For example, PCell_RSRP_max is computed as
the difference between lead_PCell_RSRP_max and
ego_PCell_RSRP_max.

• Ratio Features - this captures the proportional relationship
between the features of the 2 vehicles. For example,
PCell_RSRP_max is computed as the ratio between
lead_PCell_RSRP_max and ego_PCell_RSRP_max.

By applying difference features to EGLT and ratio features to
EGLS, the goal is to gather insights on the potential impact
of each feature engineering on model performance in different
contexts, rather than conducting a comprehensive analysis by
testing their generalizability across all datasets. Henceforth, the
transformed datasets are referenced with a suffix - EGLT-Diff
and EGLS-Ratio indicating the feature transformation used.

B. Dataset Preparation: Scaling and Splitting

After selecting, reducing and transforming the features, we
normalize the datasets using min-max scaling to a range of
0 to 1. This step is necessary because the features have
varying units and scales. Min-max scaling ensures that all
features contribute proportionally and prevents features with
larger numerical ranges from dominating the learning process.
The datasets are then split into an 80:20 ratio for training and
testing purposes. To preserve the temporal structure of the data,
no shuffling is performed during the split.

C. ML Models

The choice of ML models depends on a number of factors,
including but not limited to the nature and size of available data,
complexity of relationships between the features, task at hand
(prediction, clustering, etc.). In this study, we aim to predict the
downlink datarate of the ego vehicle, which is a multivariate
time-series regression task. Thus, we select 3 types of ML
models suited for this task - tree-based XGBoost, feedforward-
based Concurrent Neural Network (CNN), and recurrent-based
Long short-term memory (LSTM).

Data is reordered for both CNN and LSTM models with a
lookback time window of 60 timesteps, i.e., 60 timesteps are
used to predict the next value and are trained for 100 epochs.

IV. RESULTS

The models are trained and tested on all datasets for 50 runs
to reduce variability and ensure reliable performance assessment
of the models. One such run for the datasets EGF, EGLT
and EGLS-Ratio is seen in Figure 6, Figure 7 and Figure 8,
respectively. These figures yield a comparative visual inspection
of model predictions for the datasets in question. For instance, it
is evident in Figures 6 and 7, all models have similar prediction
patterns when compared to the actual values. However, Figure 8
shows that LSTM and CNN fail to capture the underlying
relationships in the EGLS-Ratio dataset. This can be attributed
to the nature of the dataset transformation, i.e., ratio, which



TABLE II: Input features and size for datasets used to train ML models

Scenario Vehicle Features Dataset Size

EGF Ego only
PCell_SNR_1, PCell_SNR_2, PCell_RSRP_max,
PCell_RSRQ_max, PCell_RSSI_max, PCell_Downlink_TB_Size,
PCell_Downlink_Num_RBs, PCell_Downlink_Average_MCS

9699

EGLT Ego and Lead
lead_datarate, PCell_Downlink_TB_Size, PCell_Downlink_Tx_Power,
PCell_Downlink_Num_RBs, PCell_Downlink_Average_MCS,
PCell_RSSI_max, delta_v, delta_s

9442

EGLS Ego and Lead
PCell_SNR_1, PCell_SNR_2, PCell_RSRP_max, PCell_RSRQ_max,
PCell_RSSI_max, PCell_Downlink_Num_RBs,
PCell_Downlink_Average_MCS, delta_v, delta_s, delta_t

6146

reduces the variability in the data. This decline in model
performance is also noted in the model performance metrics
listed in Table III.

To compare the models, we consider Mean Average Error
(MAE), Symmetric Mean Average Percentage Error (SMAPE)
and Root Mean Squared Error (RMSE) as the error metrics. We
use a modified version of SMAPE, by introducing a small ϵ
of e−8, so as to mitigate the near zero values generated in the
denominator by min-max scaling.

SMAPE =
1

n

n∑
t=1

|Ft −At|
max(ϵ, (|At|+ |Ft|)/2)

where At is the actual value, Ft is the predicted value and n is
the total number of actual values.

EGF is considered as the baseline in this study with only
features from the ego vehicle itself. It serves as a reference point,
i.e., reference error metrics for all models. When comparing
other datasets to EGF, it is evident that all error metrics are
lower, i.e., with the introduction of features from the lead
vehicle leads to improved model performance. Specifically,
EGLS performs better for all models indicating the importance
of storing spatially-aligned historical data. For instance, the
biggest improvement in MAE (37.87%), SMAPE (54.24%) and
RMSE (37.15%) can be seen with the XGBoost model in the
EGLS dataset. The transformed dataset EGLT-Diff consistently
yields lower error metrics, even lower than the original EGLT
dataset. This indicates by introducing the difference transfor-
mation helped simplify the dataset, and made it easier for the
models to capture spatio-temporal aspects of the vehicles.

When comparing the models, XGBoost outperforms CNN
and LSTM on most metrics and datasets. LSTM shows compa-
rable performance to XGBoost in some datasets, but generally,
has higher error metrics. Furthermore, LSTM shows lower
SMAPE values than CNN in some datasets as it can better
leverage the sequential nature of the datasets than CNN. Even
though CNN struggles to perform in comparison to the other
models, it still offers consistent improvement when compared
to the EGF dataset, hence, confirming that the improvement in
performance is model-agnostic.

V. CONCLUSION AND FUTURE WORK

This paper predicts the downlink throughput for the ego
device and aims to understand if the model performance can
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Fig. 6: True and predicted datarate over time for the test set for
all 3 models on the EGF dataset
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Fig. 7: True and predicted datarate over time for the test set for
all 3 models on the EGLT dataset
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Fig. 8: True and predicted datarate over time for the test set for
all 3 models on the EGLS-Ratio dataset

be improved by adding features from the lead device. To this
end, we employ the Berlin V2X dataset. The dataset is filtered
into 3 primary datasets - EGF representing features from the
ego device only, EGLT representing features from ego and
lead devices when temporally aligned and EGLS representing
features from ego and lead devices when spatially aligned.
Besides this, we transform the features of the EGLT and
EGLS datasets using differences and ratios, respectively, to help



TABLE III: ML Model Metrics

Dataset XGBoost CNN LSTM
MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE

EGF 0.0705 40.96 0.1074 0.0938 70.92 0.1378 0.0784 62.43 0.1199
EGLT 0.0721 37.78 0.1090 0.0883 59.96 0.1277 0.0772 57.28 0.1172
EGLT-Diff 0.0596 32.84 0.0756 0.0816 55.41 0.1064 0.0754 51.54 0.0977
EGLS 0.0438 18.74 0.0675 0.0794 48.49 0.1109 0.0704 47.97 0.1002
EGLS-Ratio 0.0711 29.63 0.1043 0.1568 57.07 0.1997 0.1213 48.48 0.1631

capture the underlying spatio-temporal relationships between
the 2 devices. By employing different types of ML models,
namely, XGBoost, CNN and LSTM, we show that the model
performance is improved by addition of features from the lead
device across all datasets (barring the EGLS-Ratio dataset).
Moreover, the improvement is model-agnostic, with the biggest
improvement shown in the EGLS dataset by the XGBoost model
boasting error values of MAE 0.0438 (37.87%), SMAPE 18.74
(54.24%) and RMSE 0.0675 (37.15%). As part of the future
work, we intend to improve the dataset by generating synthetic
data conforming with the available real-world measurements.
We would also fine tune the models based on the time of the day
and the area in which the devices are present. Furthermore, we
would investigate the throughput prediction and improvement
when multiple mobile network operators are present.

For successful real-world deployment, certain practical chal-
lenges must be addressed. For example, sharing of real-time
information raises privacy concerns and questions regarding dis-
semination of data, accessibility to this data and the frequency of
transmission should be addressed. Moreover, deployment of ML
algorithms in a dynamic vehicular environment raises its own set
of challenges, including but not limited to model adaptability,
computational efficiency and integration with existing vehicular
networks and systems. However, promising solutions have been
explored, like protocol designs specific for short range V2V
communication. Federated learning techniques have also been
proposed to close the data privacy gap. 5G additionally provides
resource abstractions like dedicated network slices for the
necessary low latency connectivity. This connectivity will be
augmented with other non-terrestrial formations and road side
units, such that workload can be offloaded when the need for
seamless deployment of ML algorithms arises.
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