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Abstract
The rapid spread of misinformation on social media across languages presents a major challenge for fact-checking
efforts. Social media posts are often noisy, informal, and unstructured, with irrelevant content, making it difficult
to extract concise, verifiable claims. To address this, the CLEF 2025 CheckThat! Shared Task on Multilingual
Claim Extraction and Normalization focuses on transforming social media posts into normalized claims, short,
clear and check-worthy statements that capture the essence of potentially misleading content. In this paper, we
investigate several approaches to this task, including parameter-efficient fine-tuning, prompting large language
models (LLMs), and an ensemble of methods. We evaluate our approaches in two settings: monolingual, where we
are provided with training and validation data, and the zero-shot setting, where no training data is available for
the target language. Our approaches achieved first place in 6 out of 13 languages in the monolingual setting and
ranked second or third in the remaining languages. In the zero-shot setting, we achieved the highest performance
across all seven languages, demonstrating strong generalization to unseen languages.

Keywords
Fact-Checking, Claim Normalization, Claim Extraction, Multilingual NLP

1. Introduction

The proliferation of false and misleading information online has emerged as a pressing global concern.
Social media platforms, due to their rapid dissemination and high popularity, have become a fertile
ground for the spread of misinformation. From public health mis- and disinformation to political
propaganda, unverified and often harmful content can quickly gain traction, influencing public opinions
in significant ways. Moreover, misinformation generated by LLMs poses an additional risk to society,
as they are able to generate convincing texts that can be potentially misused to spread mis- and
disinformation [1, 2].

In response, automated fact-checking has become a vital tool in the fight against mis- and disinfor-
mation. However, an issue arises from the ability to extract and represent claims from noisy, informal
and contextually ambiguous social media posts. They often lack clarity, use slang, and subjective or
emotional language, which makes it difficult for the automated tools, but also for fact-checkers, to
focus on the most important statements contained within the posts. This necessitates an intermediate
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step – claim normalization – where unstructured and noisy social media posts are transformed into
clear, concise, and verifiable claims. This process is crucial for extracting meaningful information from
unstructured and cluttered posts, enabling more accurate and scalable fact-checking.

The global nature of false information highlights the importance of developing methods that are robust
across languages. Deploying a unified approach for content moderation in multiple languages is not
only more cost-effective, particularly for media organizations and journalists with limited computational
resources, but also facilitates the identification and matching of related claims across different countries.
In addition, the tools that are limited to a single language are insufficient in addressing the full scale
of false information, making multilingual claim normalization essential for comprehensive fact-
checking. To address these challenges, the CLEF 2025 Shared Task on Multilingual Claim Extraction and
Normalization [3, 4, 5] focuses on simplifying and restructuring social media content by generating
normalized claims. For instance, below is an example of a short social media post with the corresponding
normalized claim:

Post: "A 40-ton truck lifted by 2,000 drones https://t.co/lyBi5JNJ7X A 40-ton truck lifted by 2,000
drones https://t.co/lyBi5JNJ7X A 40-ton truck lifted by 2,000 drones https://t.co/lyBi5JNJ7X
None."

Normalized Claim: "Thousands of drones lift a truck."

The shared task is organized into two settings: monolingual and zero-shot. The monolingual setting
covers 13 languages, including both high and low-resource ones: English, German, French, Spanish,
Portuguese, Hindi, Marathi, Punjabi, Tamil, Arabic, Thai, Indonesian, and Polish. This setting contains
training, development and test data and thus enables model fine-tuning and language-specific evaluation
when models are trained and tested on the data in the same language. Zero-shot is a more challenging
setting that includes only the test data in 7 unseen languages — Dutch, Romanian, Bengali, Telugu,
Korean, Greek, and Czech. The goal of this setting is to assess the generalization capabilities of LLMs
without any language-specific training data.

We address the shared task by exploring various multilingual LLM-based approaches: zero-shot and
few-shot prompting, LoRA adapters, and ensembling methods.2 Based on the experimental results and
our submissions to the shared task, we found that the best-performing approach largely depends on the
language, the multilingual support of the LLM, and the amount of available data for fine-tuning and
few-shot prompting. In the zero-shot setting, the best scores were achieved either with prompting a
large multilingual Gemma3 27B model, or by using an ensemble of methods as described in Section
3.2.4 that combines the outputs of different approaches by selecting the most representative samples.
In the monolingual setting, the best scores were obtained either with adapter-based fine-tuning (for 4
languages), few-shot prompting (3 languages), or with ensembling (6 languages). The ensemble method
proved to be an overall very successful strategy for selecting the most appropriate normalized claims in
our experiments.

2. Related Work

Multilingual Fact-Checking. Fact-checking is a multi-step process, typically involving claim de-
tection, claim-matching, evidence retrieval and claim verification [6]. In multilingual contexts, the
pipeline faces additional challenges due to the linguistic diversity and varying resource availability
across languages. Previous work aimed to address this issue by extending the fact-checking datasets
beyond English, with additional languages. Chang et al. [7] introduced a multilingual version of the
FEVER dataset [8], a dataset constructed using machine translation into five additional languages. Other
popular multilingual datasets include X-Fact [9] or MultiClaim [10], which focused on more diverse
languages, including low-resource ones.

2Our code is available at: https://github.com/tanikina/clef2-normalization
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Existing research for multilingual approaches mostly focused on two directions: (1) translating data
into English and using monolingual models [11]; or (2) directly using multilingual models on the data,
whether by fine-tuning or by developing novel approaches for multilingual fact-checking [12, 13].
Recent studies have explored the use of LLMs in multilingual fact-checking. Singhal et al. [14] evaluated
the multilingual capabilities of LLMs across five diverse languages using various techniques. However,
challenges remain, and performance on the low-resource languages is still suboptimal [15].

Verified Claim Retrieval. Verified claim retrieval, also known as claim-matching [16] or previously
fact-checked claim retrieval [10], is one of the important tasks within the fact-checking process [17].
While the primary goal of verified claim retrieval is to determine whether a given claim has already
been fact-checked based on a set of previously verified claims, there are also auxiliary tasks designed to
enhance the performance on this task [18].

Since the spread of false information is a global phenomenon, it is necessary to check the fact-checked
claims across languages and not only in English. Therefore, the first multilingual datasets for claim-
matching were developed [16, 19]. Pikuliak et al. [10] introduced the largest multilingual dataset, which
includes fact-checks in 39 languages and social media posts in 27 languages.

The most common approach for verified claim retrieval includes using text embedding models
(TEMs) [20, 10, 21] or BM25 [22, 10] for the identification of similar claims based on a given input.
However, since the multilingual datasets mostly contain social media posts, the retrieval phase faces
several challenges. One of the main problems is that some social media posts are long, especially those
from Facebook, which makes the retrieval using semantic similarity more challenging. Furthermore,
social media posts can contain information unnecessary for the retrieval and fact verification, which
can impact the performance for particular tasks.

Claim Normalization. Claim normalization, a task related to verified claim retrieval, aims to trans-
form complex, unstructured and noisy claims or social media posts into concise, standalone and verifiable
statements. This process enhances the efficiency of fact-checking by facilitating better verified claim
retrieval, evidence retrieval and verification. Sundriyal et al. [3] defined the claim normalization as the
task of simplifying the claim made in a social media post in a concise form.

Sundriyal et al. [18] introduced the claim normalization task, which focuses on decomposing complex
and noisy social media posts into more straightforward and understandable forms, termed as normalized
claims. They proposed CACN, a novel approach that leverages the chain-of-thought and few-shot
demonstrations to produce normalized claims. Their experiments demonstrated that CACN outperforms
several baselines. However, they limit their experiments to English social media posts and English
fact-checking data only.

Ni et al. [23] addressed challenges in factual claim detection, including inconsistent definitions. In their
work, they aimed to standardize the definition of factual claims to avoid misconceptions. The authors
defined the factual claim as a statement that contains objectively verifiable facts without subjective
opinions. In some of our approaches, we build upon this definition and use it as a characteristic of the
normalized claims.

In addition, Metropolitansky and Larson [24] proposed a framework for evaluating claim extrac-
tion in the context of fact-checking. They introduced Claimify, an LLM-based claim extraction and
demonstrated that it outperforms existing methods under their evaluation framework. While the claim
normalization and claim extraction are different tasks, both aim to produce concise and verifiable claims.
While normalization simplifies and clarifies existing claims from a given text, extraction identifies such
claims from a broader context and usually decontextualizes them for further verification. Despite the
differences, both share the goal of generating clear claims suitable for automated fact-checking.



Table 1
Dataset statistics for the claim normalization task.

Language Arabic Bengali Czech German Greek English French Hindi Korean Marathi
(ara) (ben) (ces) (deu) (ell) (eng) (fra) (hin) (kor) (mar)

Train 470 0 0 386 0 11374 1174 1081 0 137
Dev 118 0 0 101 0 1171 147 50 0 50
Test 100 81 123 100 156 1285 148 100 274 100

Language Indonesian Dutch Punjabi Polish Portugese Romanian Spanish Tamil Telugu Thai
(msa) (nld) (pan) (pol) (por) (ron) (spa) (tam) (tel) (tha)

Train 540 0 445 163 1735 0 3458 102 0 244
Dev 137 0 50 41 223 0 439 50 0 61
Test 100 177 100 100 225 141 439 100 116 100

3. Methodology

3.1. Dataset

The dataset for the CheckThat 2025 task of extracting and normalizing social media posts includes
20 languages from diverse language families and scripts [3]. Table 1 presents the statistics for each
language. The task provides the data in two settings: monolingual and zero-shot. In the monolingual
setting, the data contain all three splits – train, development and test, while in the zero-shot setting, only
the test split is provided. Importantly, the shared task data are imbalanced, even when training splits
are available, their size substantially differs between the languages: from 102 samples in Tamil to 11374
samples in English (see Table 1).

Data Collection. The data are sourced from the Google Fact-check Explorer API3 and are extracted
from the Claim Review Schema4. The Claim Review Schema contains the fact-checked claims paired
with the posts they address through the corresponding fact-check. Finally, the data for the task consists
of pairs of social media posts and fact-checked claims, which serve as the normalized claims for the
specific post [3].

Data Pre-Processing. We found that for some languages in the monolingual setting, there was a
substantial overlap between the samples in the training and development data (see Figure 1 for the
claim overlap and Figure 12 in the Appendix for the post overlap). Therefore, we applied some pre-
processing and filtered out all exact duplicates, ensuring that the training and development data are
non-overlapping. We also found that some posts and claims have mixed languages, e.g., the post can
be in Hindi but its normalized claim is in English. Even when languages are the same, some claims
in the training data have very low similarity to the corresponding gold posts. This can happen, e.g.,
when the post is referring to some image or video, but those are not provided together with the textual
inputs, and therefore it is impossible for the model to generate correct claims for such cases. We used
SentenceTransformers5 [25] to measure the similarity between the claims and posts and filtered out all
cases with a similarity score less than 0.05. For language detection, we employed the fasttext-langdetect
library [26] and discarded the cases where either the post or the gold claim was in English while the
expected target was another language. The statistics regarding the filtered training data can be found
in Table 2.

Moreover, we experimented with additional filtering and normalization methods. We tested on
the development set whether we can improve the results by removing excessive punctuation and
normalizing the hashtags and URLs, i.e., extracting meaningful tokens from them, such as converting
#MasksDoNotWork into masks do not work, or https://www.technocracy.news/blaylock-face-masks-pose-
serious-risks-to-the-healthy/ into https://www.technocracy.news/ blaylock face masks pose serious risks

3https://toolbox.google.com/factcheck/apis
4https://schema.org/ClaimReview
5https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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Figure 1: Claim overlap between the gold train and development data.

Table 2
Number of the filtered out samples per language. Numbers in bold indicate significant overlaps (more than 5%).

ara deu eng fra hi mr msa pa pol por spa ta tha

Original train 470 386 11374 1174 1081 137 540 445 163 1735 3458 102 244
Filtered train 462 337 9342 1132 1048 128 520 423 151 1551 3288 101 241
% Filtered out 1.70 12.69 17.87 3.58 3.05 6.57 3.70 4.94 7.36 10.61 4.92 0.98 1.23

to the healthy. We also tried removing repeated text sequences in posts (see example in Section 1).
However, cleaning the data in this way and using the “normalized posts” for prompting did not result
in any substantial improvement of the final performance. Therefore, we only performed de-duplication
and similarity filtering as described above and did not modify the original posts.

3.2. Experimental Setup

To perform the normalization of the social media posts, we experimented with various strategies
and LLMs. Specifically, we focused on model fine-tuning with LoRA adapters and the prompting
experiments. For evaluating the performance of the proposed methods, we leveraged the METEOR
Score. We evaluated the final performance using the development sets for particular languages in the
monolingual setting. In addition, we provide the results on test sets from the submitted results for both
monolingual and zero-shot settings.

In this section, we describe the models used in our experiments (Section 3.2.1), fine-tuning of selected
LLMs (Section 3.2.2) and prompting experiments with various scenarios (Section 3.2.3).

3.2.1. Models

For our experiments and the proposed methods, we selected multiple LLMs, which are detailed in
Table 3. Specifically, we focused on multilingual LLMs with various model sizes ranging from 8B to
405B and compared their efficiency in generating normalized claims.

In total, we employed 9 LLMs in various experiments, especially focusing on parameter-efficient
fine-tuning and prompting. Most of these LLMs were used primarily for prompting experiments across
all languages or particular experiments for the Polish language. Additionally, Gemma3 4B, Gemma3
27B, and Qwen3 14B were fine-tuned using LoRA adapters to further tailor their performance to the
claim normalization task.



Table 3
A list of LLMs used in our experiments with the indicator, which approaches were employed, whether fine-tuning
the LoRA adapter or prompting techniques.

Model # Params # Langs Citation LoRA Prompting

Llama3.1 Instruct 405 B 8 Grattafiori et al. [27] ✓
Llama3.1 Nemotron Ultra 253 B 8 Bercovich et al. [28] ✓
Qwen2.5 Instruct 72 B 29 Yang et al. [29] ✓
Llama3.3 Instruct 70 B 8 Grattafiori et al. [27] ✓
Qwen3 32 B 100+ Yang et al. [30] ✓
Gemma3 IT 27 B 140+ Team et al. [31] ✓ ✓
Qwen3 14 B 100+ Yang et al. [30] ✓
Bielik Instuct v2.3 11 B 1 Ociepa et al. [32] ✓
Qwen3 8 B 100+ Yang et al. [30] ✓

3.2.2. Parameter-Efficient Fine-Tuning

For the monolingual setting, we fine-tuned LoRA adapters [33] for the Qwen3 14B model6 using the
Unsloth library7. In addition, we experimented with fine-tuning Gemma3 4B and Gemma3 27B. However,
based on the performance on the development set, we chose Qwen3 14B for the shared task submission.
We also experimented with both short and verbose task descriptions as additional input to the model
and found that the verbose version results in better METEOR scores. This verbose version provides a
detailed task description and the definition of the normalized claim with the criteria based on [18], we
used this version for all adapter-based submissions. More details regarding the adapter fine-tuning,
including the hyperparameter values, can be found in Appendix B.

We also checked whether the generated claim is a valid text, because sometimes LLM generates a
long string of repeated characters or tokens. To avoid such nonsensical outputs, we checked whether
the output claim contained less than three different tokens or less than five different characters and
repeated generation if this was the case. We also set a constraint that the output should not contain
http because this is an indicator that some URLs were copied from the post, which typically results in
badly normalized claims.

3.2.3. Prompting Experiments

In this section, we describe several experiments for the monolingual and zero-shot settings across
languages. We divided these experiments into two categories: (1) monolingual and zero-shot experiments,
where we experimented with LLMs across all 20 languages within the shared task; and (2) Polish
experiments, in which we experimented with LLMs particularly only for the Polish language and also
with one Polish LLM – Bielik Instruct v2.3.

Furthermore, we performed additional prompting experiments using Direct and Summarization based
normalization techniques for both monolingual and zero-shot settings across languages, see section C.3
in the Appendix.

Monolingual and Zero-Shot Experiments. Given that the claim normalization task also includes
zero-shot setting, where the training and development data are not available, we experimented with
various prompting techniques to address this limitation. Specifically, we experimented with: (1)
zero-shot prompting; (2) few-shot prompting with a varied number of demonstrations; (3) translated
zero-shot prompting; and (4) translated few-shot prompting. In addition, for the few-shot prompting
and translated few-shot prompting, we experimented with using the filtered and unfiltered data for
selecting demonstrations for the prompt. In our experiments with LLMs, we set do_sample=False to
enforce greedy decoding, ensuring deterministic output by selecting the most probable next token.

6https://huggingface.co/unsloth/Qwen3-14B
7https://github.com/unslothai/unsloth
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In Zero-Shot prompting, we provide LLMs with the task description and the main characteristics
that the normalized claims should fulfill. In this scenario, we rely on the LLM’s understanding of the
task based on the given instructions in English without any previous examples (see Figure 7). For the
Translated Zero-Shot prompting, we utilized Google Translate for translating the English prompt
into particular languages for both monolingual and zero-shot settings.

The characteristics of the normalized claim can be complex to comprehend, and there are variances
across languages in what the normalized claims look like. Therefore, we employed the Few-Shot
prompting, in which we extended the zero-shot prompting by providing demonstrations from the
training data, while the instruction is in English (see Figure 8). In the Translated Few-Shot prompting,
we translated the instruction into particular languages, while the demonstrations are kept in the original
languages as sampled from the training set.

To select few-shot demonstrations, we utilized the semantic similarity between posts using the
GTE-Multilingual-Base8 [34] embedding model, which supports more than 70 languages. We
calculated the similarity between the analyzed social media post and the posts that are contained in the
training data and selected the top K as demonstrations. We experimented with prompts containing 1,
2, 5 and 10 demonstrations. For few-shot prompting, we selected the most similar samples across all
languages and not only from the particular language. Given the fact that there are languages for which
we do not have any training data, we decided to select samples from the combined training set of all
languages.

Few-shot experiments were done in two variants: filtered and unfiltered. In the filtered scenario,
we used the filtered training data for selecting demonstrations, in which we removed the posts that
were included in various splits for a particular language and not only in the training set as described
in Section 3.1. For the unfiltered scenario, we employed original training sets and especially the
combination of all training data for the sample selection process.

Polish Experiments. In our additional experiments, we specifically focused on Polish, a low-resource
language, which consists of a total of 304 samples. The limited size of this dataset motivated a more
comprehensive analysis of the application of various LLMs and diverse prompts to achieve performance
comparable to that of models for high-resource languages, such as English and French. Specifically,
we selected Polish over other low-resource languages, such as Tamil or Marathi, to focus on Latin-
script languages and reduce variability from different writing systems. Polish also represents the
unrepresented Slavic language family in multilingual NLP, allowing us to address this gap. Furthermore,
having a native Polish speaker among the authors enabled more accurate evaluation and interpretation
of LLM outputs.

For experiments with the Polish language, we employed three LLMs, especially the Bielik v2.3 –
Polish model and multilingual Llama3.1 Nemotron Ultra and Llama3.1 405B. For these LLMs,
we leveraged two prompting strategies: (1) Chain-of-Thought (CoT) and (2) Few-Shot prompting.

The CoT prompt in Polish was developed with the assistance of the Llama3.1 405B model and
relevant research papers, especially by Sundriyal et al. [18] and Sundriyal et al. [3]. We instructed
the Llama3.1 405B model to generate a CoT prompt based on the description of the task and the
normalized claim. We refer to this prompting strategy as Polish-CoT, which is shown along with the
English translation in Figure 9 in the Appendix. These experiments with Polish-CoT were done only
for Bielik v2.3.

The second set of experiments investigated the effectiveness of a few-shot strategy, specifically using
3, 10, and 20-shot prompting. For few-shot prompting, we selected demonstrations from the unfiltered
training set based on a cosine similarity using the paraphrase-multilingual-MiniLM-L12-v2
model. An example of a system prompt and a few-shot prompt used can be found in Figure 10 and
Figure 11 in the Appendix.

8https://huggingface.co/Alibaba-NLP/gte-multilingual-base
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3.2.4. Ensemble of Methods

For method ensembling, we first collected the data from the five top-performing generation strategies
(the exact setting depends on the language, and may include few-shot prompting with different models
and fine-tuned LoRA adapters). Second, we compute a centroid (averaged) embedding for each nor-
malized claim based on the sentences encoded with paraphrase-multilingual-MiniLM-L12-v2
model. Third, we computed the similarity score between all claims generated by the top-5 methods
for the same post and their centroid embedding, and selected as the final output the claim that has
the highest similarity to the centroid. The idea behind this approach is to leverage the “wisdom of the
crowd” and find the most common representation of the generated claims. LLM outputs may differ in
quality depending on the input, for instance, sometimes the claim is generated in the wrong language
or includes some hallucinated content, but if in 4 out of 5 cases the generated claim uses the correct
target language and references the same core content, this issue will be self-corrected by automatically
picking the most representative sample with the embedding closest to the centroid.

4. Evaluation

In this section, we present our findings on parameter-efficient fine-tuning and LLM prompting for
the claim normalization task. We begin with the results from the monolingual setting (Section 4.1),
including observations from LoRA fine-tuning (Section 4.1.1) and evaluations of various prompting
techniques (Section 4.1.2). Additionally, we report the final results from the shared task submission
platform (Section 4.2), covering both the monolingual and zero-shot settings. This includes ranking of
our methods and the identification of the best-performing approaches for specific languages on the test
set.

4.1. Monolingual Settings

In the monolingual setting, we evaluate our approaches by training and testing on the data from the
same languages. This allows us to focus on language-specific performance and assess the effectiveness
of parameter-efficient fine-tuning and prompting methods. Since ground truth labels for the test set are
unavailable, we report the final performance of our approaches based on the development set.

4.1.1. Parameter-Efficient Fine-Tuning Results

Based on the initial prompting results, we found that the multilingual Gemma3 27B model achieves
good results for many languages in the monolingual setting. Therefore, we focused on that model when
doing experiments with LoRA adapters (see Table 4), but replaced Gemma3 27B with Qwen3 14B for
the final submission, because Qwen3 outperformed Gemma3 and showed the best average performance
in our later experiments with prompting (see Section 4.1.2 for more detail). We did not repeat the same
experiments with Qwen3 due to the lack of time and computational resources, and directly fine-tuned
the adapters on the de-duplicated training set prepared according to Section 3.1.

Given that the shared task data are imbalanced (see Table 1), we experimented with different ways
of augmenting and balancing the data to mitigate this issue. For instance, LoRA-translated in Table 4
relies on data augmentation via translation from English into the target languages. We used the Google
Translate API and selected the posts with less than 1500 characters as source data. The translated posts
and normalized claims were then combined with the original samples and used for fine-tuning the
adapters (see Appendix B for the fine-tuning details). We also experimented with filtering out “bad
translations” by applying a set of heuristics (LoRA-translated-v2 in Table 4). In this setting, we ensure
that both social media posts and claims share the same target language, and the cosine similarity between
each translated post and the corresponding gold claim is above the median computed on the train data for
each language using Sentence Transformer model paraphrase-multilingual-MiniLM-L12-v2.

To mitigate the imbalance without adding new data points, we also considered the setting, where we
fine-tune a single adapter on the mixed data from different languages, LoRA-all-balanced in Table 4, but



all post-claim pairs are subsampled to 500 per language to ensure equal representation and diversity.
Since the gains in performance were marginal, we did not repeat these experiments for Qwen3 14B
and used the original, non-translated data, training a separate adapter for each language.

Table 4
Fine-tuning results for Gemma3 27B evaluated on the official development set. The first row shows the zero-shot
prompting results for comparison.

Approach ara deu eng fra hi mr msa pa pol por spa ta tha

Zero-shot 0.305 0.161 0.244 0.265 0.224 0.275 0.219 0.311 0.194 0.294 0.268 0.340 0.054
LoRA-target 0.361 0.298 0.658 0.439 0.290 0.311 0.599 0.352 0.267 0.509 0.518 0.450 0.217
LoRA-all-balanced 0.390 0.293 N/A 0.454 0.285 0.287 0.570 0.309 0.265 0.510 0.531 0.438 0.213
LoRA-translated 0.379 0.302 N/A 0.430 0.254 0.297 0.551 0.290 0.236 0.497 0.509 0.332 0.175
LoRA-translated-v2 0.369 0.280 N/A 0.420 0.283 0.286 0.623 0.313 0.315 0.504 0.535 0.457 0.198

Figure 2: Adapter tuning vs. few-shot prompting for Qwen3 on the development set (based on the filtered data).

The results in Table 4 (based on the development data) indicate that the basic LoRA adapter
separately fine-tuned on each target language (LoRA-target) already achieves the optimal
performance for English, Hindi, Marathi, Punjabi and Thai. Using a single adapter fine-tuned on the
mixture of different languages with roughly equal representation (LoRA-balanced) results in small
improvements for Arabic, French, and Portuguese, and using translated data without any additional
filtering (LoRA-translated) is slightly beneficial only for German. Note that filtering out bad examples
from the training set and ensuring high similarity between the translated claims and posts that have
the correct target language (LoRA-translated-v2) is beneficial for some languages and namely leads to
small improvements for Indonesian, Polish, Spanish, and Tamil. However, due to the fact that fine-tuning
adapters on a large amount of translated data is computationally expensive and brings only marginal
gains, we decided to fine-tune the Qwen3 adapters only on the original data for each language. The
final results, including the fine-tuned adapters and the ensemble method, are discussed in more detail
in Section 4.2.

The comparison between the fine-tuned LoRA adapters with Qwen3 14B and the few-shot prompting
of Qwen3 32B (best strategy according to Table 5 with filtered data) is shown in Figure 2.9 The results
indicate that for some languages (e.g. German, Polish, Arabic) the difference in performance is
negligible, while for others (e.g. Indonesian and English) adapters substantially outperform few-shot
prompting. Although the amount of training data has some impact on the downstream performance (as
indicated by much better performance on the English data), the pattern is not consistent. For instance,
Portuguese has more than 1500 samples in the training set, but few-shot prompting outperforms adapters,
while Tamil has only 100 samples, but adapters achieve the best METEOR score (+10.8% compared to
the few-shot prompting).

Overall, high-resource languages with a significant amount of training data (English, Spanish,
Portuguese, and French) demonstrate relatively good performance (0.44-0.65), and when high-
or mid-resource languages have comparatively less data (<500 for German and Arabic), they tend to
underperform (0.30-0.36). As for the low-resource languages, adapters work well for Tamil and Punjabi
9We did not fine-tune adapters for Qwen3 32B because of the limited computational resources at the time of the submission.



Table 5
LLM performance in the monolingual setting on the development set. En indicates prompts written in English,
while Og refers to prompts translated into the target language (e.g., Arabic prompts for the ara language). The Fil.
column specifies the few-shot prompting setup: ✓denotes that filtered data was used to sample demonstrations,
whereas an empty cell indicates the use of unfiltered data. Best results for each language are in bold and
second-best are underlined.

Model Technique Vs. Fil. ara deu eng fra hi mr msa pa pol por spa ta tha Avg.

Qwen3
(8B)

Zero-Shot En 0.361 0.142 0.248 0.253 0.251 0.260 0.199 0.318 0.181 0.275 0.258 0.412 0.060 0.247
Zero-Shot Og 0.270 0.143 0.248 0.260 0.211 0.217 0.218 0.284 0.176 0.276 0.270 0.333 0.024 0.225
10-Shot En 0.355 0.241 0.550 0.373 0.234 0.309 0.361 0.341 0.237 0.460 0.428 0.390 0.192 0.344
10-Shot En ✓ 0.342 0.244 0.432 0.375 0.264 0.333 0.345 0.331 0.224 0.463 0.445 0.412 0.175 0.337
10-Shot Og 0.377 0.248 0.550 0.377 0.219 0.303 0.386 0.361 0.262 0.494 0.423 0.350 0.166 0.347
10-Shot Og ✓ 0.367 0.228 0.432 0.380 0.255 0.313 0.366 0.351 0.235 0.466 0.408 0.365 0.139 0.331

Gemma3
(27B)

Zero-Shot En 0.305 0.161 0.244 0.265 0.224 0.275 0.219 0.311 0.194 0.294 0.268 0.340 0.054 0.243
Zero-Shot Og 0.315 0.159 0.244 0.262 0.239 0.149 0.219 0.251 0.189 0.283 0.271 0.294 0.045 0.225
10-Shot En 0.312 0.280 0.479 0.371 0.231 0.308 0.404 0.310 0.236 0.472 0.428 0.349 0.222 0.339
10-Shot En ✓ 0.306 0.261 0.357 0.368 0.226 0.327 0.364 0.314 0.241 0.468 0.413 0.348 0.196 0.322
10-Shot Og 0.316 0.292 0.479 0.387 0.249 0.295 0.429 0.331 0.229 0.506 0.454 0.387 0.283 0.357
10-Shot Og ✓ 0.316 0.268 0.357 0.384 0.258 0.265 0.414 0.326 0.225 0.473 0.427 0.376 0.208 0.330

Qwen3
(32B)

Zero-Shot En 0.376 0.154 0.258 0.276 0.275 0.320 0.220 0.342 0.218 0.323 0.283 0.351 0.054 0.265
Zero-Shot Og 0.284 0.173 0.258 0.271 0.220 0.215 0.217 0.262 0.194 0.295 0.282 0.206 0.037 0.224
10-Shot En 0.348 0.271 0.587 0.409 0.293 0.324 0.420 0.350 0.224 0.536 0.485 0.416 0.211 0.375
10-Shot En ✓ 0.367 0.303 0.432 0.413 0.258 0.334 0.403 0.319 0.265 0.537 0.474 0.342 0.152 0.354
10-Shot Og 0.330 0.278 0.585 0.411 0.271 0.248 0.441 0.329 0.231 0.551 0.478 0.345 0.190 0.360
10-Shot Og ✓ 0.366 0.328 0.432 0.419 0.264 0.245 0.399 0.326 0.284 0.549 0.461 0.326 0.152 0.350

Llama3.3
(70B)

Zero-Shot En 0.358 0.141 0.248 0.249 0.242 0.285 0.188 0.337 0.205 0.295 0.273 0.337 0.059 0.247
Zero-Shot Og 0.312 0.163 0.248 0.267 0.226 0.139 0.210 0.182 0.212 0.280 0.267 0.333 0.056 0.223
10-Shot En 0.249 0.242 0.481 0.349 0.196 0.331 0.365 0.333 0.254 0.476 0.432 0.370 0.170 0.327
10-Shot En ✓ 0.218 0.229 0.372 0.345 0.206 0.341 0.353 0.326 0.220 0.447 0.405 0.290 0.150 0.300
10-Shot Og 0.300 0.272 0.481 0.395 0.227 0.215 0.467 0.105 0.292 0.494 0.447 0.191 0.189 0.314
10-Shot Og ✓ 0.313 0.271 0.372 0.361 0.221 0.213 0.436 0.137 0.278 0.481 0.439 0.221 0.167 0.301

Qwen2.5
(72B)

Zero-Shot En 0.344 0.134 0.247 0.261 0.226 0.312 0.203 0.318 0.164 0.274 0.253 0.302 0.074 0.240
Zero-Shot Og 0.302 0.160 0.246 0.274 0.227 0.193 0.212 0.248 0.175 0.289 0.289 0.277 0.032 0.225
10-Shot En 0.335 0.266 0.514 0.379 0.176 0.313 0.356 0.270 0.284 0.521 0.460 0.329 0.260 0.343
10-Shot En ✓ 0.317 0.241 0.398 0.362 0.208 0.308 0.343 0.334 0.248 0.485 0.438 0.344 0.194 0.325
10-Shot Og 0.321 0.269 0.514 0.400 0.225 0.276 0.427 0.251 0.261 0.525 0.486 0.386 0.276 0.355
10-Shot Og ✓ 0.343 0.254 0.398 0.399 0.219 0.262 0.404 0.275 0.232 0.494 0.461 0.339 0.211 0.330

but achieve slightly worse results for Marathi. Both methods obtain almost identical scores for Polish
that has a very small amount of training data (only 151 samples after filtering). On average, languages
with non-Latin script (Arabic, Hindi, Marathi, Punjabi, Tamil, and Thai) obtain lower scores than the
ones with Latin script (0.33 vs. 0.47).

4.1.2. Prompting Experiments

In addition to LoRA adapters, we employed various strategies for instructing LLMs with a specific focus
on evaluating the results of the proposed approaches in the zero-shot setting, where we are not provided
with the training and development sets.

Zero and Few-Shot Prompting. For the comprehensive evaluation of various settings across
languages in the monolingual settings, we evaluated the zero-shot and few-shot prompting along with
the translated version. The overall results are shown in Table 5, where we provide the results across 13
languages, five LLMs and in six settings. In addition, we compare the prompts written in English versus
those written in the target language to measure the impact of the instruction language on the model’s
performance.

Across all models, we observe a consistent improvement when moving from zero-shot to few-shot
prompting. The best average performance in the monolingual setting is achieved by Qwen3
32B in the 10-shot setting with the English instruction and when using unfiltered data for selecting
samples. In addition, Gemma 3 27B performed comparably well when using 10-shot prompting with
the instruction in the target language without unfiltered data.

In zero-shot prompting, the prompts written in English consistently outperformed those in
the target language, which can be caused by the fact that since LLMs are trained on a variety of



Table 6
LLM performance on the Polish language. The best results on the test set were achieved by Llama3.1 405B
using 20 samples in the prompt.

Model Prompt Type Dev Set Test Set

Bielik Instuct v2.3
Polish-CoT 0.198 N/A
3-shot 0.282 0.297

Llama3.1 Nemotron Ultra
3-shot 0.254 N/A
10-shot 0.296 0.347

Llama3.1 405B
10-shot 0.271 0.393
20-shot N/A 0.396

languages, English still presents the major part of the pre-training, and therefore, the LLM can still better
process input when using English instruction instead of translated instructions. However, in a few-shot
prompting, prompts in the target language (Og) outperformed those in English across most languages,
specifically for Gemma3 and Qwen2.5 models, suggesting that aligning the instruction language with
the input language and demonstrations helps the model better contextualize the task.

High-resource Western European languages, such as Spanish, English, French, Portuguese, demon-
strated consistently strong performance, with English and Portuguese achieving the highest scores,
both exceeding 0.55. In addition, as can be expected, English showed the strongest performance
across many LLMs, particularly using the 10-shot setting. Notably, Qwen3 32B reaches the highest
score of 0.59, indicating the model’s strong performance in English.

Languages with non-Latin scripts, such as Arabic, Thai, Tamil, Hindi, Marathi, and Punjabi, showed
more variable performance. Among them, Arabic and Tamil performed the best with Qwen3 mod-
els (whether 8B or 32B). On the other hand, Thai achieved relatively low performance, especially using
zero-shot prompting, with a maximum 0.07 METEOR score. However, by providing demonstrations,
the performance increased to more than 0.28.

Surprisingly, the German language exhibited very low performance across LLMs, particularly using
zero-shot prompting. This outcome may be attributed to issues with data quality, as our manual
inspection revealed several issues. In some cases, the normalized claims associated with social media
posts were written in a different language, or the key information from the normalized claim was absent
from the post. Such discrepancies likely hinder the model’s ability to generate appropriate claims,
especially without additional context. Moreover, many normalized claims referenced images or videos
that were not included in the input. As a result, LLMs were not able to recognize or indicate that certain
claims were grounded in visual evidence.

Prompting Results for Polish. For the Polish language, we conducted a separate set of experiments
and evaluated it on the development set, where the samples from the unfiltered training set were
employed as demonstrations for few-shot prompting. In addition, we provide the results on the
test set obtained from the submission site, where both training and development sets were used for
demonstration selection.

The results from Table 6 indicate that the optimal performance for Polish on the development dataset
was achieved using the Llama3.1 Nemotron Ultra model with a 10-shot learning approach. In
contrast, the best results on the test dataset were obtained using the Llama3.1 405B model with a
20-shot learning approach.

4.2. Final Results

Table 7 presents the final evaluation results of our proposed approaches on the official test set for the
shared task, covering both monolingual and zero-shot settings. Our approaches performed competitively
across a wide range of languages, achieving the first rank in 13 out of the 20 evaluated languages.



Table 7
Final evaluation results on the official test set for both monolingual and zero-shot (indicated as 𝑧𝑒𝑟𝑜) settings.

Language Arabic German English French Hindi Marathi Indonesian Punjabi Polish Portuguese
(ara) (deu) (eng) (fra) (hi) (mr) (msa) (pa) (pol) (por)

Best Score 0.504 0.386 0.457 0.527 0.328 0.389 0.565 0.331 0.407 0.577
Our Score 0.504 0.347 0.457 0.470 0.328 0.389 0.502 0.331 0.396 0.574
Δ (Ours vs Best) 0 -0.039 0 -0.057 0 0 -0.063 0 -0.011 -0.003
Our Strategy Ensemble Qwen3-32b Ensemble Qwen3𝐿𝑜𝑅𝐴 Ensemble Qwen3𝐿𝑜𝑅𝐴 Qwen3𝐿𝑜𝑅𝐴 Qwen3-8b Llama3.1 Ensemble
Our Rank 1 2 1 2 1 1 2 1 2 2

Language Spanish Tamil Thai Bengali𝑧𝑒𝑟𝑜 Czech𝑧𝑒𝑟𝑜 Greek𝑧𝑒𝑟𝑜 Korean𝑧𝑒𝑟𝑜 Dutch𝑧𝑒𝑟𝑜 Romanian𝑧𝑒𝑟𝑜 Telugu𝑧𝑒𝑟𝑜

(spa) (ta) (tha) (ben) (ces) (ell) (kor) (ndl) (ron) (te)

Best Score 0.608 0.632 0.586 0.378 0.252 0.262 0.134 0.200 0.295 0.526
Our Score 0.554 0.632 0.300 0.378 0.252 0.262 0.134 0.200 0.295 0.526
Δ (Ours vs Best) -0.054 0 -0.286 0 0 0 0 0 0 0
Our Strategy Ensemble Qwen3𝐿𝑜𝑅𝐴 Ensemble Ensemble Gemma3 Ensemble Gemma3 Ensemble Ensemble Ensemble
Our Rank 2 1 3 1 1 1 1 1 1 1

In the monolingual setting, we achieved the top score in six languages, especially Arabic, English,
Hindi, Marathi, Punjabi and Tamil. Notably, from our proposed approaches, the ensemble methods
performed the best for six languages, while fine-tuned LoRA adapters for Qwen3 model achieved
superior performance on four languages. Fine-tuned Qwen3 demonstrated strong performance
in low-resource scenarios like Marathi, Indonesian or Tamil. In addition, prompting techniques with
Qwen3 shown to be effective for German and Punjabi.

In the zero-shot setting, our methods obtained the highest score in all seven languages. This
demonstrated the generalization capabilities of our approaches even in the absence of training data for
the target languages. Here, the use of Gemma3 and the ensemble of methods were crucial for achieving
the best performance.

The largest gap between our score and the overall best score occurred for Thai, where our ensemble
of methods scored 0.30 against the best of 0.59, placing us third. This suggests a potential area for
improvement that involves exploring further prompting strategies and model adaptation in syntactically
diverse languages.

5. Discussion

Our Main Findings. Our experiments show that LLMs are capable of performing the task of claim
normalization for a variety of languages even when no or only few samples are available. However,
different models may generate claims of different quality for the same post. Therefore, it is important to
further “normalize” and post-process generated claims by using the ensemble method to find the most
representative sample for each claim. This method resulted in the best score for 5 out of 7 languages in
the zero-shot setting of the shared task, and it was the best strategy for almost half of the languages in
the monolingual setting.

Overall, LLMs like Gemma3 and Qwen3 demonstrate strong multilingual capabilities. Gemma3 turned
out to be the strongest model for Czech and Korean in the zero-shot setting, while Qwen3 showed better
performance in the monolingual setting. Models of larger sizes (e.g., 32 B for Qwen and 27 B for Gemma)
are generally better at claim normalization, but for some configurations and languages smaller models
perform on-par or even outperform the larger ones. Additionally, we found that extra pre-processing
and cleaning of the data does not substantially improve the scores, and our best results, depending on
the language, were achieved with a few-shot prompting or fine-tuning with the original data.

Limitations & Challenges. The shared task presents several challenges and limitations. The provided
dataset is unbalanced, and for some languages, there are thousands of examples (English, Spanish) while
for others, it is only a few hundreds (Polish, Marathi, Tamil). Languages have different scripts, and some
of them are very low-resource (e.g., Bengali, Punjabi, and Telugu).

A key limitation concerns the post and claim overlap across the dataset splits. While we identified and
addressed the problem of overlapping claims and posts between the original training and development



data, the potential overlap between the training and testing data has not been analyzed. This makes the
fine-tuning and few-shot prompting somewhat unreliable unless all overlapping instances are removed.
This issue introduces an evaluation bias, especially in monolingual settings, where the models may
appear to perform better due to memorization rather than generalization.

The input lengths can vary significantly, and some posts are very long and exceed the context window
of LLMs, requiring truncation (posts can be up to 31843 characters and 5020 tokens in the English
training set). Posts often include a lot of repetition along with excessive punctuation, emojis, URLs,
hashtags, and ungrammatical sentences. Some gold posts and claims also appear in different languages,
adding complexity to both fine-tuning and the interpretation of demonstrations. A number of claims
also reference external media, such as videos or images, which are not included in the input, and this
leads to potential loss of context and incorrectly or incompletely generated claims.

In addition, some social media posts include language that can be offensive, and LLMs refuse to
generate any normalized claims based on such content, e.g., “I understand you’ve expressed strong
negative feelings and used offensive language towards Greta Thunberg. I want to be clear that I cannot
and will not generate responses that include hate speech, insults, or profanity. My purpose is to be helpful
and harmless, and that includes respecting individuals regardless of differing opinions.” Although the
models were instructed to act as fact-checkers or experts in detecting misinformation, they still refused
to generate normalized claims in certain cases. This behaviour, however, also demonstrates their ability
to refuse potentially harmful content and further spread misinformation.

Furthermore, understanding certain claims may require world knowledge or familiarity with specific
events. The lack of context is an important limitation of the shared task data because some of the posts
cannot be normalized without access to the conversational threads and additional media accompanying
the post. E.g., it is not possible to infer “girl” in the gold normalized claim “Girl from Ethiopia’s Mursi
tribe” based solely on “Mursi tribe Ethiopia Africa Mursi tribe Ethiopia Africa Mursi tribe Ethiopia Africa
None”. Therefore, gold annotations are not always a realistic goal for the generated output, and having
such examples in the gold data may encourage model hallucinations.

Future Work. In the future, researchers can consider experimenting with different approaches to
data augmentation. For instance, LLMs can be leveraged to generate more samples (post-claim pairs)
for underrepresented languages, and such data could then be further used for adapter fine-tuning. In
addition, we see the potential in refining model predictions by applying self-revision, and the ensemble
method that proved to be successful in our experiments could be applied to the outputs of the same
model (i.e., one could do self-ensemble and find the most representative claims among all generated
variants). Although both self-ensemble and self-revision increase inference time, they have the potential
to improve the quality of generated data and avoid outliers, which is very important for low-resource
scenarios.

Another direction to pursue is to test different ways of integrating additional constraints in the prompt
and performing checks after the generation (e.g., ensuring that both the post and its normalized claim
have the same language, and their similarity score is above the threshold derived based on the training
data). We used some of the constraints when generating claims with adapters, but not in the prompting
experiments. One could also benchmark additional multilingual models (e.g., Aya-100 [35]) and use
soft prompts instead of adapters for parameter-efficient fine-tuning. Furthermore, the integration of
dynamic selection of in-context demonstrations without relying on a fixed number of samples (top K)
can be investigated in future work. This is especially important for the languages that do not have much
data that can be used as demonstrations. The selection of the demonstrations based on the similarity
threshold can help to eliminate those examples that could potentially harm the performance.

In addition, future work could explore the impact of using normalized claims on other fact-checking
tasks, such as claim-matching, evidence retrieval, or fact verification. There are already efforts to
evaluate the impact of claim decomposition on the fact-checking performance [36]. However, the effect
of normalized claims on the performance of particular tasks has not been analyzed. Claims normalization
may help reduce noise and ambiguity, potentially leading to improved model performance on these



tasks. Especially, in claim-matching, normalized claims can enhance the identification of whether a
given claim was previously fact-checked, since normalized claims more closely resemble the statements
with which they are being compared in this task, e.g., when using semantic similarity. A comparative
analysis between using raw social media posts and their corresponding normalized claims would
provide valuable insights into the benefits and limitations of normalization. Moreover, it would be
interesting to conduct a feasibility analysis in real time settings by integrating multilingual LLM-based
claim normalization in fact-checking workflows and see how this approach can be scaled.

6. Conclusion

In this paper, we presented our approaches to multilingual claim normalization in the context of the
CLEF 2025 CheckThat! shared task. By combining parameter-efficient fine-tuning, prompting strategies,
and ensemble methods, we addressed the challenges posed by noisy, informal, and multilingual social
media content. Our methods demonstrated strong performance across both monolingual and zero-shot
settings, achieving first place in 6 out of 13 monolingual languages and top scores in all 7 zero-shot
languages.

We found that the effectiveness of each approach varied by language and resource availability. LoRA-
based fine-tuning proved effective for low-resource scenarios, while few-shot prompting with models
like Qwen3 32B yielded the best results in high-resource settings. The ensemble method, leveraging
outputs from multiple strategies, emerged as a robust solution for selecting representative normalized
claims, especially in zero-shot scenarios. Our findings highlight the potential of multilingual LLMs for
claim normalization and their adaptability across diverse languages.
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You are a fact-checking expert
Create a normalized claim from the unstructured post.

Now process this post:
{post}

Figure 3: Zero-shot prompt for Direct and Summarization-based normalization based experiments for the
monolingual setting.

linear scheduler work well for the normalized claim generation, thus we re-used these hyperperameters
for training adapters in all languages. We use 𝑟 = 32 and 𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 = 32 with 𝑙𝑜𝑟𝑎_𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0,
and train the adapters for 3 epochs to avoid overfitting. At inference time we set 𝑚𝑎𝑥_𝑛𝑒𝑤_𝑡𝑜𝑘𝑒𝑛𝑠
to 256, and generate the claims with the following hyperparameters: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7, 𝑡𝑜𝑝_𝑝 =
0.8, 𝑡𝑜𝑝_𝑘 = 20.

C. Prompting Experiments

C.1. Prompt Templates

In this section, we present the system and prompt templates used for specific prompting experiments.
Figure 4 and Figure 5 illustrate the prompt templates for the Direct Normalization and Summarization-
Based Normalization approaches, respectively. Each template includes two demonstration examples.
The prompt design emphasizes key aspects such as maintaining focus on important points, eliminating
redundancy, ensuring objectivity in claims, and using clear, simple language. In the zero-shot approach
for monolingual experiments, we assign a fact-checker role to LLMs and prompt it to generate a nor-
malized claim from an unstructured input post, see Figure 3 for the prompt template. For the zero-shot
experiments we use the direct normalization prompt without any demonstrations from train set.

For the zero-shot and few-shot prompting experiments, described in Section 3.2.3, we used the system
prompt shown in Figure 6. Our zero-shot prompt is shown in Figure 7, while the extended version for
the few-shot prompting is illustrated in Figure 8. In few-shot prompting, we replace {examples} with
a list of social media posts along with the normalized claims. The number of demonstrations depends
on the setting and whether we used 1, 2, 5 or 10-shot prompting.

Figure 10 and Figure 11 show, respectively, the system prompt and user prompt for few-shot prompting
experiments for the Polish language.

C.2. Post Overlap in Development Data

Figure 12 presents the overlap between the gold training and developing data.

C.3. Additional Results

Few-Shot Prompting. Table 8 presents the results for varying numbers of demonstrations for the
few-shot prompting. In this scenario, we employed instructions written in the English language. Overall,
both Qwen3 models consistently outperformed the Gemma3 model using few-shot prompting.
The best averaged performance was achieved by Qwen3 32B with 10-shot using unfiltered data. This
demonstrated that Qwen3 are better equipped to handle the demonstrations and they also show stronger
multilingual capabilities.

Increasing the number of demonstrations in the prompt generally improves performance,
particularly for large models. For example Qwen3 32B improved from 0.315 1-shot, unfiltered) to 0.375
(10-shot, unfiltered). Moreover, using unfiltered data often led to better results on average.

Similarly to the results using zero-shot and 10-shot prompting, Latin-script Indo-European lan-
guages yielded the highest scores, reflecting both their prevalence in pre-training data and linguistic



Create a best normalized claim from the unstructured data.
Follow these guidelines:

1. Focus on the main message — Extract only the most important factual statement from the post.
2. Remove redundancy — Ignore repetition, extraneous details, and any irrelevant content (hashtags, usernames, etc.).
3. Keep it objective — Avoid opinions, judgments, or speculation.
4. Use simple language— Rephrase complex or convoluted sentences into clear, direct statements.
5. Formatting — Use ONLY this format: Normalized Claim: [your claim here]

Example 1:
Post: 'Lieutenant Retired General Asif Mumtaz appointed as Chairman Pakistan Medical Commission PMC Lieutenant Retired General
Asif Mumtaz appointed as Chairman Pakistan Medical Commission PMC Lieutenant Retired General Asif Mumtaz appointed as
Chairman Pakistan Medical Commission PMC None.'
Normalized Claim: 'Pakistani government appoints former army general to head medical regulatory body.'

Example 2:
Post: A priceless clip of 1970 of Bruce Lee playing Table Tennis with his Nan-chak !! His focus on speed A priceless clip of 1970 of
Bruce Lee playing Table Tennis with his Nan-chak !! His focus on speed A priceless clip of 1970 of Bruce Lee playing Table Tennis with
his Nan-chak !! His focus on speed None
Normalized Claim: Late actor and martial artist Bruce Lee playing table tennis with a set of nunchucks.

Now process this claim:
{post}

Figure 4: Prompt template for the Direct Normalization Approach.

Create a summary from the unstructured data in the form of a normalized claim.
Follow these guidelines:

1. Focus on the main message — Extract only the most important factual statement from the post.
2. Remove redundancy— Ignore repetition, extraneous details, and any irrelevant content (hashtags, usernames, etc.).
3. Keep it objective — Avoid opinions, judgments, or speculation.
4. Use simple language— Rephrase complex or convoluted sentences into clear, direct statements.
5. Formatting — Use ONLY this format: Normalized Claim: [your claim here]

Example 1:
Post: 'Lieutenant Retired General Asif Mumtaz appointed as Chairman Pakistan Medical Commission PMC Lieutenant Retired General
Asif Mumtaz appointed as Chairman Pakistan Medical Commission PMC Lieutenant Retired General Asif Mumtaz appointed as
Chairman Pakistan Medical Commission PMC None.'
Normalized Claim: 'Pakistani government appoints former army general to head medical regulatory body.'

Example 2:
Post: A priceless clip of 1970 of Bruce Lee playing Table Tennis with his Nan-chak !! His focus on speed A priceless clip of 1970 of
Bruce Lee playing Table Tennis with his Nan-chak !! His focus on speed A priceless clip of 1970 of Bruce Lee playing Table Tennis with
his Nan-chak !! His focus on speed None
Normalized Claim: Late actor and martial artist Bruce Lee playing table tennis with a set of nunchucks.

Now process this claim:
{post}

Figure 5: Prompt template for the Summarization-Based Normalization.

You are an expert in misinformation detection and fact-checking. Your task is to identify the central claim in the given post while
preserving its original language.

Figure 6: System prompt used for zero-shot and few-shot prompting experiments.

similarity to English. In contrast, languages using non-Latin scripts showed lower performance, high-
lighting the challenges in multilingual generalization for underrepresented scripts. However, there are
some exceptions, such as Indonesian and Tamil, where the best performance was over 0.42.

Direct and Summarization-Based Normalization Methods. As additional experiments for the
monolingual setting, we experimented with three different approaches: two few-shot prompting methods
and zero-shot prompting. In the first approach (hereafter referred to as Direct Normalization Approach),



You are an expert in misinformation detection and fact-checking. Your task is to identify the central claim in the given post while
preserving its original language.

The central claim should meet the following criteria:
- **Verifiable**: It must be a factual assertion that can be checked against evidence.
- **Concise**: It should be a single, clear sentence that captures the main claim of the post.
- **Socially impactful**: It should be a statement that could influence public opinion, health, or policy.
- **Free from rhetorical elements**: Do not include opinions, rhetorical questions, or unnecessary context.
- **Preserve Original Language**: The output should be in the same language as the input post.

Output only the central claim without additional explanation or formatting.

Post: {post}

Normalized claim:

Figure 7: Zero-Shot prompt used for monolingual and zero-shot settings across 5 LLMs.

You are an expert in misinformation detection and fact-checking. Your task is to identify the central claim in the given post while
preserving its original language.

The central claim should meet the following criteria:
- **Verifiable**: It must be a factual assertion that can be checked against evidence.
- **Concise**: It should be a single, clear sentence that captures the main claim of the post.
- **Socially impactful**: It should be a statement that could influence public opinion, health, or policy.
- **Free from rhetorical elements**: Do not include opinions, rhetorical questions, or unnecessary context.
- **Preserve Original Language**: The output should be in the same language as the input post.

Output only the central claim without additional explanation or formatting.

Examples: {examples}

Post: {post}

Normalized claim:

Figure 8: Few-Shot prompt used for monolingual and zero-shot settings across 5 LLMs.

we instructed LLMs to generate the most accurate normalized claims directly from unstructured data.
The prompt template used for Direct Normalization is illustrated in Figure 4. In the second method
(Summarization-Based Normalization), we summarized the unstructured data into a normalized claim,
as shown in the prompt template in Figure 5. For both approaches, we included two demonstrations
that were randomly selected from the training set as references and evaluated the performance on the
development set. In the zero-shot approach for the monolingual experiments, where the LLMs rely solely
on their pre-trained knowledge, we provided instructions without including any training examples.
For the monolingual experiments for each language, we used the instruction in the specific language by
translating the prompt into that language using the Google Translate API.

In the zero-shot setting with 7 languages, we relied on the direct normalization approach, as it
produced the best results in the monolingual experiments. In this case, however, we instructed LLMs
using prompts written entirely in English, without any translated prompts or demonstrations. This
setup evaluates the model’s ability to generalize across languages using its pre-trained multilingual
capabilities.

For these experiments, we selected three LLMs, specifically Llama4 Scout [38], Llama3.3
Instruct 70B [27] and Mistral Saba [39]. Additionally, for running the experiments, we used the
Groq API [40], configured with a maximum output limit of 80 tokens and a temperature setting of 0.3.

Table 9 presents the results for Mistral Saba, Llama 3.3 Instruct, and Llama 4 Scout
in the monolingual setting on the development set, using zero-shot, direct and summarization-based
normalization approaches. Among these, the direct normalization approach with Mistral Saba



Post: {post}
Krok 1: Przeanalizuj treść tekstu i zidentyfikuj kluczowe informacje. Krok 2: Określ główny wątek lub temat tekstu. Krok 3: Zidentyfikuj
najważniejsze słowa i frazy w tekście. Krok 4: Określ relacje między kluczowymi informacjami. Krok 5: Zidentyfikuj główny problem lub
wyzwanie opisane w tekście. Krok 6: Określ, kto lub co jest głównym podmiotem tekstu. Krok 7: Zidentyfikuj najważniejsze skutki lub
konsekwencje opisane w tekście. Krok 8: Określ, jaki jest główny cel lub zamierzenie tekstu. Krok 9: Zidentyfikuj najważniejsze słowa i
frazy, które mogą być użyte w twierdzeniu znormalizowanym. Krok 10: Stwórz twierdzenie znormalizowane, które podsumowuje treść
tekstu w sposób zwięzły i precyzyjny.
Odpowiedź: (twierdzenie znormalizowane, nie dłuższe niż 9 wyrazów)
Wyświetl tylko odpowiedź !!!
Nie wyświetlaj żadnych komentarzy ani uwag !!!

English Translation:
Post: {post}
Step 1: Analyse the text content and identify key information. Step 2: Determine the main thread or topic of the text. Step 3: Identify the
most important words and phrases in the text. Step 4: Determine the relationships between key information. Step 5: Identify the main
problem or challenge described in the text. Step 6: Determine who or what is the main subject of the text. Step 7: Identify the most
important effects or consequences described in the text. Step 8: Determine what is the main goal or intention of the text. Step 9:
Identify the most important words and phrases that can be used in a normalized statement. Step 10: Create a normalized statement
that summarizes the text content in a concise and precise manner.
Answer: (normalized statement, no longer than 9 words)
Display only the answer !!!
Do not display any comments or hints !!!

Figure 9: Polish-CoT, original prompt in Polish and translation into English.

Your task is to simplify a noisy, unstructured social media post into a concise form while preserving the core assertion. You will be given
a post and you need to generate a normalized claim. Please respond with the normalized claim.
The normalised claim must contain a maximum of 10 words or fewer. The normalised claim must be in the Polish language only.

Figure 10: System prompt for few-shot prompting experiments for Polish. The model was asked to limit the
answer up to 10 words, as based on the statistic analysis the average normalized claim for Polish dataset contains
about 10 words.

Shot 1: Post: Example 1
Normalized Claim: Example 1
Shot 2: Post: Example 2
Normalized Claim: Example 2
Shot 3: Post: Example 3
Normalized Claim: Example 3
Your Task: Given a noisy, unstructured social media post, simplify it into a concise form while preserving the core assertion.
Please respond with the normalized claim for the following post: {post}
do not display any comments

Figure 11: User prompt for few-shot prompting experiments for Polish.

achieves the highest average score on the development set. The lowest average score is observed with
Mistral Saba using the zero-shot approach. The difference between the highest and lowest average
score is 0.083. We observe that, all three models perform better than zero-shot setting with direct and
summarization-based normalization.



Figure 12: Post overlap between the gold train and development data.

Table 8
LLM performance in the monolingual setting on the development set using various numbers of demonstrations
within the prompt. The Fil. column specifies the few-shot prompting setup: ✓denotes that filtered data was
used to sample demonstrations, whereas an empty cell indicates the use of unfiltered data. Best results for each
language are in bold and the second-best are underlined.

Model # of Shots Fil. ara deu eng fra hi mr msa pa pol por spa ta tha Avg.

Qwen3
(8B)

1-shot 0.367 0.253 0.491 0.326 0.235 0.283 0.348 0.312 0.209 0.423 0.410 0.413 0.161 0.325
1-shot ✓ 0.366 0.232 0.373 0.331 0.229 0.319 0.348 0.312 0.198 0.425 0.407 0.424 0.161 0.317
2-shot 0.341 0.237 0.551 0.340 0.255 0.302 0.344 0.311 0.234 0.435 0.415 0.430 0.156 0.335
2-shot ✓ 0.333 0.209 0.405 0.339 0.254 0.325 0.341 0.324 0.216 0.458 0.425 0.393 0.185 0.324
5-shot 0.340 0.230 0.563 0.345 0.247 0.353 0.351 0.329 0.222 0.473 0.425 0.397 0.184 0.343
5-shot ✓ 0.345 0.259 0.420 0.351 0.266 0.307 0.336 0.319 0.220 0.462 0.437 0.388 0.204 0.332
10-shot 0.355 0.241 0.550 0.373 0.234 0.309 0.361 0.341 0.237 0.460 0.428 0.390 0.192 0.344
10-shot ✓ 0.342 0.244 0.432 0.375 0.264 0.333 0.345 0.331 0.224 0.463 0.445 0.412 0.175 0.337

Gemma3
(27B)

1-shot 0.261 0.203 0.318 0.303 0.224 0.274 0.265 0.185 0.213 0.368 0.331 0.341 0.164 0.266
1-shot ✓ 0.272 0.220 0.285 0.304 0.209 0.288 0.264 0.182 0.221 0.373 0.330 0.341 0.142 0.264
2-shot 0.282 0.229 0.397 0.305 0.217 0.283 0.296 0.261 0.232 0.379 0.364 0.384 0.187 0.294
2-shot ✓ 0.268 0.227 0.322 0.326 0.234 0.303 0.280 0.226 0.231 0.412 0.354 0.389 0.124 0.284
5-shot 0.288 0.241 0.460 0.348 0.227 0.312 0.341 0.266 0.283 0.442 0.396 0.327 0.197 0.318
5-shot ✓ 0.303 0.252 0.340 0.350 0.217 0.308 0.352 0.345 0.237 0.463 0.381 0.340 0.207 0.315
10-shot 0.312 0.280 0.479 0.371 0.231 0.308 0.404 0.310 0.236 0.472 0.428 0.349 0.222 0.339
10-shot ✓ 0.306 0.261 0.357 0.368 0.226 0.327 0.364 0.314 0.241 0.468 0.413 0.348 0.196 0.322

Qwen3
(32B)

1-shot 0.301 0.241 0.531 0.377 0.216 0.307 0.321 0.275 0.229 0.426 0.412 0.339 0.116 0.315
1-shot ✓ 0.302 0.263 0.402 0.384 0.225 0.311 0.321 0.274 0.222 0.437 0.407 0.338 0.122 0.308
2-shot 0.344 0.255 0.541 0.366 0.236 0.325 0.335 0.284 0.248 0.470 0.426 0.370 0.141 0.334
2-shot ✓ 0.346 0.250 0.412 0.357 0.240 0.335 0.330 0.284 0.231 0.483 0.424 0.409 0.125 0.325
5-shot 0.358 0.267 0.570 0.379 0.257 0.349 0.387 0.311 0.267 0.515 0.454 0.410 0.190 0.363
5-shot ✓ 0.349 0.280 0.423 0.381 0.239 0.336 0.360 0.345 0.230 0.511 0.463 0.350 0.173 0.341
10-shot 0.348 0.271 0.587 0.409 0.293 0.324 0.420 0.350 0.224 0.536 0.485 0.416 0.211 0.375
10-shot ✓ 0.367 0.303 0.432 0.413 0.258 0.334 0.403 0.319 0.265 0.537 0.474 0.342 0.152 0.354

Table 9
Monolingual results on development set across three models (Mistral Saba, Llama3.3 Instruct, and
Llama4 Scout), with average score across 13 languages.

Model Approach ara deu eng fra hi mr msa pa pol por spa ta tha Avg.

Mistral Saba
Zero-shot 0.253 0.115 0.199 0.228 0.135 0.108 0.166 0.188 0.141 0.225 0.207 0.257 0.113 0.179
Direct𝑁𝑜𝑟 0.347 0.210 0.293 0.295 0.228 0.152 0.258 0.294 0.269 0.290 0.294 0.321 0.160 0.262
Summarization𝑁𝑜𝑟 0.341 0.218 0.298 0.289 0.215 0.157 0.252 0.298 0.253 0.296 0.295 0.339 0.139 0.260

Llama3.3 Instruct
Zero-shot 0.284 0.166 0.238 0.259 0.175 0.116 0.210 0.135 0.180 0.264 0.238 0.112 0.109 0.191
Direct𝑁𝑜𝑟 0.333 0.229 0.286 0.322 0.253 0.172 0.281 0.183 0.246 0.328 0.304 0.172 0.136 0.250
Summarization𝑁𝑜𝑟 0.341 0.242 0.289 0.324 0.252 0.182 0.273 0.183 0.250 0.327 0.307 0.157 0.154 0.252

Llama4 Scout
Zero-shot 0.132 0.121 0.199 0.258 0.171 0.119 0.184 0.154 0.165 0.243 0.254 0.260 0.150 0.199
Direct𝑁𝑜𝑟 0.350 0.230 0.283 0.296 0.250 0.143 0.286 0.228 0.266 0.286 0.299 0.246 0.190 0.257
Summarization𝑁𝑜𝑟 0.341 0.218 0.270 0.289 0.265 0.132 0.263 0.223 0.275 0.309 0.310 0.248 0.173 0.255
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