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Abstract

Most state-of-the-art large language models
(LLMs) are trained mainly on English data,
limiting their effectiveness on non-English, es-
pecially low-resource, languages. This study
investigates whether language adapters can fa-
cilitate cross-lingual transfer in English-centric
LLMs. We train language adapters for 13 lan-
guages using Llama 2 (7B) and Llama 3.1 (8B)
as base models, and evaluate their effectiveness
on two downstream tasks (MLQA and SIB-
200) using either task adapters or in-context
learning. Our results reveal that language
adapters improve performance for languages
not seen during pre-training, but provide negli-
gible benefit for seen languages. These findings
highlight the limitations of language adapters
as a general solution for multilingual adaptation
in English-centric LLMs.

1 Introduction

Most state-of-the-art LLMs are English-centric
(Touvron et al., 2023; Jiang et al., 2023). To il-
lustrate, in Llama 2 (Touvron et al., 2023), English
constitutes 90% of the pre-training data. Despite
this data imbalance, recent English-centric LLMs
exhibit some multilingual capabilities (Kew et al.,
2024; Ye et al., 2023). However, these capabilities
are inconsistent across languages and tasks, with
low-resource languages being particularly affected
(Razumovskaia et al., 2024).

To endow LLMs with more profound multilin-
gual capabilities, cross-lingual transfer (XLT) has
emerged as a prevalent paradigm, aiming to trans-
fer task-specific knowledge from a high-resource
source language to a lower-resource target lan-
guage, thereby alleviating the constraint of having
supervised task data (Philippy et al., 2023).

As LLMs grow larger and full fine-tuning be-
comes less feasible, parameter-efficient fine-tuning
(PEFT) methods have been explored for XLT

(Houlsby et al., 2019; Hu et al., 2021). One com-

Figure 1: To evaluate cross-lingual transfer, language
adapters (for 13 languages) and task adapters (for 3 high-
resource source languages) are trained on top of a frozen
English-centric LLM. Task adapters are evaluated on all
languages of interest on two selected tasks.

mon setup for enhancing XLT abilities is to combine
small language and task adaptation modules, as in-
troduced by Pfeiffer et al. (2020b). The authors
propose language adapters (LAs) and task adapters
(TAs), parameter-efficient modules that are trained
on top of a frozen base LLM and capture language-
and task-specific representations, respectively.

While LAs have been extensively evaluated
for small-scale multilingual LLMs (Pfeiffer et al.,
2020b; Parović et al., 2022; Rathore et al., 2023;
Yong et al., 2023), there is only a paucity of work
that assesses its applicability to large-scale English-
centric LLMs (Lin et al., 2024; Razumovskaia et al.,
2024). Our work closes this gap by making the fol-
lowing contributions:

1. We evaluate in a systematic manner whether
LAs help enhance XLT abilities of English-
centric LLMs across 13 linguistically diverse
languages and two tasks (one QA and one
NLU task) to inspect the impact of typological
relatedness and task-related intricacies.

2. We conduct a detailed analysis of the variables
critical for successful XLT in English-centric
LLMs by comparing different task adaptation
methods (TAs vs. in-context learning (ICL))
and base LLMs (Llama 2 vs. Llama 3.1).



Our main findings on English-centric LLMs un-
cover that (1) surprisingly, LAs are beneficial ex-
clusively for languages that are unseen during
pretraining, while (2) they are at best redundant
for rarely seen languages; and (3) that - in contrast
to previous findings on multilingual models - the
typological relatedness of languages for language
transfer has only a minimal effect1.

2 Related Work

Language Adapters. LAs represent a parameter-
efficient and modular method for language adap-
tation (Poth et al., 2023). They are added to a
frozen base LLM and typically trained on mono-
lingual, unsupervised data using a language model-
ing objective in order to learn language-specific
representations (Pfeiffer et al., 2020a). In gen-
eral, any adapter architecture can be utilized for
LA training: Prior work on small-scale, multilin-
gual base LLMs has primarily employed bottleneck
adapters (Houlsby et al., 2019) for LA training
(Pfeiffer et al., 2020b; Parović et al., 2022; Faisal
and Anastasopoulos, 2022; Yong et al., 2023; Gur-
gurov et al., 2024). They observed enhanced XLT,
particularly for lower-resource languages. How-
ever, Kunz and Holmström (2024) find that the
effect of LAs varies considerably across target lan-
guages and omitting LAs is beneficial in some
cases. More recent work that employs large-scale,
English-centric base LLMs prefers LoRA adapters
(Hu et al., 2021) for LA training (Lin et al., 2024;
Razumovskaia et al., 2024), arguably due to the in-
ference latency that bottleneck adapters introduce,
which LoRA helps mitigate by merging its weights
with the base LLM’s weights (Hu et al., 2021). An
alternative strand of work made use of other PEFT
methods such as soft prompts for XLT (Philippy
et al., 2024; Vykopal et al., 2025)

Cross-lingual transfer in English-centric LLMs.
Previous work evaluating XLT in English-centric
LLMs can be roughly divided into two approaches:
one-stage XLT, which omits LAs entirely and ap-
plies task adaptation only, and and two-stage XLT,
in which LAs are trained prior to task adaptation.

One-stage XLT. Three task adaptation methods
can be distinguished: In (1), single-task TAs are
trained followed by an ICL2 evaluation at inference.

1Code is available at: https://github.com/jusc1612/
lang_adapters_for_eng_llms

2Following Li (2023), ICL encompasses any learning with-
out parameter updates, including zero-shot evaluation.

Ye et al. (2023) show that minimal pre-training
data for a given target language suffices to enable
successful zero-shot XLT. In (2), ICL is applied
exclusively. Asai et al. (2024) and Ahuja et al.
(2024) establish XLT ICL benchmarks, revealing
that English-centric LLMs perform well in high-
resource languages but struggle with low-resource
languages. Finally, in (3), multi-task instruction
tuning (IT) is employed to fine-tune a base LLM,
followed by ICL at inference. Previous work finds
that multilingual IT with only a few languages
(Aggarwal et al., 2024; Kew et al., 2024; Chen
et al., 2024), or even monolingual IT in English
(Chirkova and Nikoulina, 2024), suffices to elicit
robust XLT abilities. In this study, we omit multi-
task IT and focus on a comparison between single-
task TAs and ICL.

Two-stage XLT. Lin et al. (2024) train a sin-
gle LA covering 534 languages. They report per-
formance gains for languages with low-resource
scripts while performance drops for high-resource
languages. Razumovskaia et al. (2024) train
language-specific LAs and emphasize that perfor-
mance improvements over setups without LAs are
limited to NLG tasks. Kunz (2025) conducts a
case study on Icelandic summarization, comparing
several PEFT methods for language adaptation. It
is shown that LoRAs situated in the feed-forward
layers and bottleneck adapters yield the largest per-
formance improvements.

3 Experimental Setup

Unlike most previous work that assessed the XLT

abilities of English-centric LLMs, we begin by
adapting the XLT setup as commonly employed for
multilingual LLMs, i.e., we train LAs and TAs. Fig-
ure 1 illustrates our training and evaluation pipeline,
including the selected languages and tasks. Subse-
quently, we study the effect of the task adaptation
method and the base LLM, resulting in four differ-
ent XLT configurations.

3.1 Models

The open-weights LLMs Llama 2 7B (Touvron
et al., 2023) and its successor Llama 3.1 8B (Dubey
et al., 2024) are selected as base LLMs. Both mod-
els are decoder-only, autoregressive LLMs. Despite
the limited non-English pre-training data (2% in
Llama 2 and 5% in Llama 3.13), the models have
demonstrated certain XLT abilities when fine-tuned

3See Appendix B for a detailed language distribution.

https://github.com/jusc1612/lang_adapters_for_eng_llms
https://github.com/jusc1612/lang_adapters_for_eng_llms


for specific tasks (Ye et al., 2023) or evaluated us-
ing ICL (Asai et al., 2024; Ahuja et al., 2024).

3.2 Adapter Method

In this study, we use bottleneck adapters4 as pro-
posed by Pfeiffer et al. (2020b) to train LAs and
TAs (see Appendix A for details). This method
injects trainable adapter layers into the frozen base
LLM, consisting of a down- and an up-projection
which are situated after the feed-forward block of
each transformer layer. Crucially, this architec-
ture allows composition, i.e., multiple bottleneck
adapters can be easily stacked on top of each other.

3.3 Data

Language Data Following previous work (Pfeif-
fer et al., 2022; Kunz, 2025), this work trains LAs
on monolingual, unlabeled data extracted from CC-
100, a multilingual, web-crawled corpus created by
Conneau et al. (2020) for XLM-R pre-training. All
LAs are trained on the first 200k5 CC-100 samples
of the respective language. While not explicitly
stated, it is likely that CC-100 was seen during
Llama 2 and 3.1 pre-training. Thus, the models
are not necessarily trained on new data but rather
primed towards the respective target languages.

Task Data We evaluate the effect of LAs based
on model performance on one Question Answering
(QA) and one NLU downstream task. For QA, we
use MLQA-en (T) (henceforth MLQA), an extrac-
tive QA dataset from the Aya Collection (Singh
et al., 2024), that extends the English subset of
MLQA (Lewis et al., 2020) with translations into
100 languages. F1 as implemented for SQuAD (Ra-
jpurkar et al., 2018) is used as evaluation metric.

For NLU, SIB-200 (Adelani et al., 2024) is se-
lected, a topic classification dataset with seven la-
bels. Exact Match (EM) is used as evaluation met-
ric.6 These datasets were chosen primarily for their
extensive language coverage and availability of par-
allel data. Given the use of autoregressive LLMs,
both tasks - though not inherently generative - are
framed as generation problems; that is, we generate
targets (see Appendix D for task templates).

4In preliminary experiments, we observed that prompt
tuning (Lester et al., 2021) and LoRA (Hu et al., 2021) under-
perform.

5Doubling the number of LA training samples to 400k did
not yield any performance gains.

6We cut off generations after the first word to account for
verbose model outputs.

3.4 Languages
The set of languages comprises 13 Latin-script lan-
guages from three language groups. We exam-
ine seven Germanic languages (English, German,
Dutch, Swedish, Danish, Icelandic, Afrikaans),
four Romance languages (Spanish, Portuguese,
Catalan, Galician), and two Finno-Ugric languages
(Finnish, Hungarian). In each XLT setup, one lan-
guage is selected as the source language, with the
remaining ones as target languages.

All experiments use English, German, and Span-
ish as source languages. English serves as a ref-
erence, given its frequent use as source language
(Pfeiffer et al., 2020b; Parović et al., 2022). Due to
data availability and based on the assumption that
higher-resource languages transfer more effectively
than lower-resource languages (Senel et al., 2024),
German and Spanish are chosen as non-English
source languages. Each source language is evalu-
ated on all 13 target languages.

3.5 Training and Evaluation Settings
To assess the effectiveness of LAs, we essentially
compare two XLT setups:

(1) noLA employs one-stage XLT, i.e., omits LAs
entirely and relies only on task adaptation.
Thus, this setup relies on cross-lingual rep-
resentations that emerge during pre-training.

(2) LA employs two-stage XLT, i.e., trains LAs
prior to task adaptation. Thus, this setup relies
on strengthening cross-lingual representations
after pre-training through LAs.

We hypothesize that if LAs show a positive ef-
fect, LA should outperform noLA which serves
as a baseline. Both XLT settings are evaluated in
four configurations, each defined by a distinct base
LLM/task adaptation method pair:

Llama-2/TA We adapt the MAD-X framework
(Pfeiffer et al., 2020b) to English-centric LLMs
(see Appendix E for a detailed walk-through ex-
ample): As for the LA setup, language-specific
LAs for all relevant languages are trained on top of
frozen Llama 2. Next, a TA in the selected source
language is trained on top of the frozen source
LA. At inference, XLT is evaluated zero-shot by
replacing the source LA with the target LA while
retaining the source TA. As for the noLA setup,
only a TA is trained in the source language, then
evaluated zero-shot in the target languages.



Llama-2/ICL We keep Llama 2 and modify the
task adaptation method: Instead of TAs, we use
ICL and craft a prompt, consisting of five and ten
randomly sampled source language demonstrations
for MLQA and SIB-200, respectively,7 followed by
the test instance in the respective target language
(see Appendix D.2 for the full prompt templates).
Hence, we reduce the required computational cost,
as only LAs need to be trained. We also address
issues that may arise from stacking adapters.

Llama-3.1/TA We modify the base LLM and re-
place Llama 2 by Llama 3.1, potentially benefiting
from more multilingual pre-training corpora. We
train TAs for task adaptation. LAs and TAs are
trained similar to Llama-2/TA.

Llama-3.1/ICL We keep Llama 3.1 as base
LLM and employ ICL for task adaptation, using
the same approach as with Llama-2/ICL.

4 Results and Analysis

In the following section, the findings of the four
configurations are presented and discussed. Full
scores are reported in Tables 4 to 11 in Appendix
F. We use italic en, de, es to denote the source
language of a specific configuration, i.e., ‘with en’
means ‘with English as source language’.

4.1 General Findings

LAs do not consistently enhance XLT across target
languages and tasks; they are often redundant or
harm performance. Tables 4 and 5 demonstrate that
even for the source languages themselves, noLA
outperforms or is on par with LA. This aligns with
prior work (Kunz and Holmström, 2024; Oji and
Kunz, 2025), which reports inconsistencies across
languages and tasks in multilingual LLMs, as well
as performance degradation with LAs.

As a topic classification task, SIB-200 requires
less language-specific knowledge than the extrac-
tive QA task MLQA, where more fine-grained lan-
guage understanding is necessary. This is reflected
in Figures 2 and 3 which show that models gen-
erally achieve substantially better performance on
SIB-200 than on MLQA with a less pronounced
gap between English and non-English languages.

Regarding target-language related differences,
Figures 2 and 3 show that Finnish, Hungarian
and Icelandic (summarized as IsFiHu) perform

7First experiments revealed that for SIB-200, five demon-
strations result in an overreliance on the label geography.

the worst across tasks. We attribute the poor per-
formance of IsFiHu to a misaligned vocabulary.
Due to their typological distance from English, lan-
guages like IsFiHu may lack language-specific to-
kens in the English-centric vocabulary. This leads
to a less efficient tokenization8 which in turn results
in a suboptimal flow of input through the model
and a decreased downstream task performance as
similarly shown by Ali et al. (2024).

4.2 Llama-2/TA

Figure 4: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Llama-2/TA. Positive scores mean LA is superior.

MLQA. As Figure 4 illustrates, target languages
unseen during Llama 2 pre-training (i.e., Afrikaans,
Galician and Icelandic) benefit most from the us-
age of LAs. Regarding seen languages, LAs do
not reveal a discernible pattern. As Figure 4 shows,
with en and de, LAs tend to show negligible or
detrimental effects (with LAen: -0.04 for Swedish,
Catalan and Danish compared to noLAen). All
non-English seen target languages are rarely seen,
thus, possess minimal pre-training data compared
to English. We hypothesize that LAs might in-
terfere with language-specific representations, ex-
isting in the base LLM for the respective target
language, resulting in reduced downstream task
performance. For unseen languages, this interfer-
ence is reduced, which facilitates learning more
meaningful language-specific representations.

As for the impact of the source language, we
find that en and de generally yield similar results
while es falls behind. German can be leveraged ef-
fectively as a source language despite constituting
only 0.17% of Llama 2’s pre-training data. Notably,
as Table 4 shows, performance drops drastically for
English as target language when transferring from
German or Spanish under both noLA and LA. We
conjecture that training TAs reinforces a source
language bias, and that using non-English source
languages introduces noise, as all training data is
translated from English, leading to lower-quality
data and hindering generalization to English.

8Indicated by higher fertility (token/word ratio) scores in
Table 3 in Appendix C.



Figure 2: MLQA F1 scores for all target languages averaged across the three source languages en, de, es for all
configurations over five random seeds. Error bars show the standard deviation.

SIB-200. Figure 18 illustrates that the benefit of
LAs vanishes for SIB-200. This aligns with previ-
ous work (Kew et al., 2024; Razumovskaia et al.,
2024). A topic classification task such as SIB-200
probably requires less language-specific knowledge
and rather relies on high-level, language-agnostic
semantic features that are already well-encoded in
the base LLM. Adding LAs may disrupt existing
task-relevant features.

We notice other differences to MLQA: LAs are
less harmful for de (−0.04) and es (−0.02) than
for en (−0.09)9. We assume that while source
languages with a weaker pre-training bias are ben-
eficial, they cannot fully mitigate the disruptions
induced by the LAs. As for English as target lan-
guage, in both LA and noLA, de and es are com-
petitive with en, suggesting effective cross-lingual
generalization to English on SIB-200.

4.3 Llama-2/ICL

Figure 5: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Llama-2/ICL. Positive scores mean LA is superior.

MLQA. Figure 2 illustrates that performance
generally drops only moderately when using ICL

9All numbers are averaged over five random seeds.

instead of TAs. This suggests robust ICL capa-
bilities of the base LLM for even more complex
tasks. Similar to Llama-2/TA, with Llama-2/ICL,
LAs are most effective for the unseen languages
Afrikaans, Galician and Icelandic across source
languages (see Figure 5). en and de yield absolute
performance gains of +0.08 and +0.06 on average
over the noLA setup, respectively.

Regarding seen languages, Figure 5 shows
mostly minimal performance differences between
LA and noLA across source languages. Consider-
ing that ICL disentangles the LA effect from the
task adaptation stage as the latter does not involve
any parameter updates, results with ICL indicate
that LAs may rather add redundant than interfering
representations, as observed for Llama-2/TA.

SIB-200. Unlike Llama-2/TA, Figure 19 shows
that LA consistently outperforms noLA with ICL.
However, Figure 3 illustrates that a single TA, a
computationally cheaper setup, suffices to surpass
LA with ICL across target languages, again mak-
ing LAs an inefficient choice. Similar to MLQA,
LAs provoke particularly pronounced performance
improvements for unseen languages.

In line with Llama-2/TA, in any Llama-2/ICL
setting examined, de and es considerably out-
perform en, suggesting that the heavy English
pre-training bias may hinder the transfer of task-
relevant knowledge stored in pre-trained represen-
tations.



Figure 3: SIB-200 EM scores for all target languages averaged across the three source languages en, de, es for all
configurations over five random seeds. Error bars show the standard deviation.

4.4 Llama-3.1/TA

Figure 6: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Llama-3.1/TA. Positive scores mean LA is superior.

MLQA. Figure 2 shows that Llama-3.1/TA sur-
passes Llama-2/TA. When comparing the overall
best scores across configurations, there is no lan-
guage where Llama 2 surpasses Llama 3.1. How-
ever, performance gains are only marginally across
most non-English target languages, highlighting
that simply switching to a stronger, more multilin-
gual base LLM does not bridge the performance
gap in English-centric LLMs.

Figure 6 shows that the positive effect of LAs
for unseen languages vanishes with Llama 3.1.
Moreover, across source languages, for unseen lan-
guages, Llama 3.1 under noLA is on par with or
outperforms Llama 2 under LA. Considering the
amplified pre-training data size in Llama 3.1 (15T
tokens vs. 2T tokens in Llama 2), we hypothe-
size that previously unseen languages Afrikaans,
Galician and Icelandic in Llama 2 effectively turn
into rarely seen languages in Llama 3.1 and benefit
from larger language-specific pre-training corpora.
Thus, LAs for these languages may be prone to
the same interference as discussed for seen lan-

guages in Llama 2. These findings further suggest
that adding language-specific representations dur-
ing pre-training may be more effective for XLT than
after pre-training through LAs, as highlighted by
Pfeiffer et al. (2022).

Regarding seen languages, LAs with Llama 3.1
induce more severe deterioration than with Llama
2. While more language-specific pre-training data
seems to be generally beneficial for XLT in the
noLA setup, stacking LAs in the target language
and a TA trained in the source language may be
more susceptible to interference.

SIB-200. As Table 9 shows, performance with
Llama-3.1/TA is similar across source languages
and within each source language, only marginal
differences exist between noLA and LA. This is
dissimilar to findings with Llama-2/TA where de
and es outperformed en and LAs produced perfor-
mance deterioration across the board.

Table 9 shows that es yields the best EM scores
across target languages in both XLT setups. LA
outperforms noLA only marginally, with a maxi-
mum absolute performance improvement of +0.03
for Galician. Considering the generally high per-
formance on SIB-200 (with es: avg. of 0.81 across
target languages for both XLT setups), we do not as-
sume that LAs add meaningful, language-specific
representations, leading to better performance.



4.5 Llama-3.1/ICL

Figure 7: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Llama-3.1/ICL. Positive scores mean LA is superior.

MLQA. Similar to Llama 2, where ICL resulted
in only modest performance degradation compared
to TAs, Figure 2 shows that Llama-3.1/ICL is
largely competitive with Llama-3.1/TA across tar-
get languages, highlighting the strong ICL capabil-
ities of Llama models. Moreover, the competitive
results suggest that using Llama 3.1 - a more mul-
tilingual base LLM of similar size - without any
parameter updates constitutes a more effective XLT

setting than using Llama 2 with LAs (and TAs).
In general, we find Llama-3.1/ICL to align

with observations made for Llama-3.1/TA and
Llama-2/ICL: Regarding the former, Figure 7 il-
lustrates that with Llama-3.1/ICL, the positive im-
pact of LAs for unseen languages vanishes. Re-
garding the latter, Figure 7 shows that performance
differences between LA and noLA are minimal,
reinforcing the hypothesis that a bare LA (without
a TA stacked on top of it) adds redundant rather
than interfering representations.

SIB-200. Similar to MLQA, high performance
across target languages with Llama-3.1/ICL on
SIB-200 (see Figure 3) suggests that Llama 3.1 can
be leveraged more effectively for XLT using ICL
than Llama 2.

While with Llama-2/ICL, de and es substan-
tially outperform en, Table 11 shows that all three
languages can be used effectively as source lan-
guages for XLT on SIB-200, with de and es showing
only slight advantages. Moreover, Figure 21 shows
that with Llama-3.1/ICL, noLA consistently out-
performs LA across the board, supporting our hy-
pothesis that LAs may disrupt task-relevant fea-
tures for SIB-200. We leave it to future work
to investigate why LAs appear beneficial with
Llama-3.1/TA while harming performance with
Llama-3.1/ICL.

5 Qualitative Analysis

Based on the four configurations, we conduct a
qualitative analysis using Logit Lens (nostalge-

braist, 2020) to analyze intermediate model rep-
resentations and assess the representation shifts
induced by LAs.

Method. We use Logit Lens (nostalgebraist,
2020), a technique from the field of mechanistic in-
terpretability to interpret the behavior of LLMs by
examining intermediate hidden states in relation to
the output vocabulary. In transformer-based LLMs,
hidden states of the final layer are mapped to logits
by applying the unembedding matrix (followed by
the softmax) to yield the token distribution for the
prediction of the next token. Logit Lens employs
the same unembedding matrix to project the hidden
states of intermediate layers into the space of the
output vocabulary. Thus, Logit Lens allows for a
direct comparison between prematurely decoded
tokens and the predicted tokens at the final layer,
thereby providing insights into how predictions
evolve across input positions and layers. Similar
to prior work that applies Logit Lens to Llama 2
(Wendler et al., 2024; Zhang et al., 2024a), we con-
jecture that intermediate layers are dominated by
English tokens.

Setup. Logit Lens10 is used to investigate
whether LAs introduce shifts in the next-token dis-
tributions. Given the observed interferences with
Llama-2/TA, we focus on Llama-2/ICL for Logit
Lens experiments. Again, we use 5 and 10 source
language demonstrations for MLQA and SIB-200,
respectively. We aim for test instances with single-
token, language-specific targets, given that Logit
Lens visualizes only the first token of the output
by default and to assess the promotion of language-
specific tokens through LAs, respectively.11

We select German and Icelandic as target lan-
guages to represent the two extremes of LA impact,
with LAs being consistently redundant for German
and beneficial for Icelandic. We discuss all exam-
ples with English as source language (with en). As
LAs showed larger effects on MLQA, we focus on
MLQA and present Logit Lens visualizations for
SIB-200 in Appendix G.2.

MLQA. Figures 8 to 11 show the Logit Lens
visualizations for German and Icelandic with en
under LA and noLA. The Figures show the final
five input positions from layer 16 onward.12 The

10Using the implementation of the Tuned Lens library.
11See Appendix D.2 for the full examples.
12Earlier layers mostly contain tokens without meaningful

signal.

https://github.com/AlignmentResearch/tuned-lens


Figure 8: Logit Lens for MLQA test instance with En-
glish as source and German as target language. Target:
sieben (seven). Base LLM: Llama 2. Setup: LA.

Figure 9: Logit Lens for MLQA test instance with En-
glish as source and German as target language. Target:
sieben (seven). Base LLM: Llama 2. Setup: noLA.

token in the upper-right corner corresponds to the
token being predicted, i.e., the target.13

Regarding German, LAs had no impact on
MLQA. This is reflected in the Logit Lens anal-
ysis by negligible differences between LA (Figure
8) and noLA (Figure 9) across layers and posi-
tions, suggesting that next-token distributions are
mainly preserved. Moreover, in both XLT setups,
intermediate layers at the final position are domi-
nated by English tokens. This aligns with findings
by Wendler et al. (2024) and Zhang et al. (2024a),
who made the identical observation for Chinese.

Regarding Icelandic, Figures 10 and 11 show
that differences in the next-token distributions be-
tween LA and noLA are most salient at the final
position. While similar to German, LA ranks the
English variant of the correct token highest in inter-
mediate layers, noLA fails to extract the target.14

13Note that the underscore represents a whitespace. Models
often predicted the digit 7 with a leading whitespace instead
of the written-out variant.

14Tokens like _Sand and _Jason occur in the instance’s
passage and denote names.

Figure 10: Logit Lens for MLQA test instance with En-
glish as source and Icelandic as target language. Target:
sjö (seven). Base LLM: Llama 2. Setup: LA.

Figure 11: Logit Lens for MLQA test instance with En-
glish as source and Icelandic as target language. Target:
sjö (seven). Base LLM: Llama 2. Setup: noLA.

Thus, LAs may assist in steering the base LLM to-
wards the correct token by upweighing contextually
related English tokens.

If these observations can be verified to be a trend
among more German and Icelandic MLQA test
instances, Logit Lens provides valuable insights
into why performance for German is unchanged
and improved for Icelandic, and further strengthens
the hypothesis that LAs provoke only marginal
transformations to the base LLM.

SIB-200. As Figures 22 to 25 illustrate, the cor-
rect label politics emerges in intermediate layers
and is predicted confidently in both XLT setups
across target languages. This suggests that for SIB-
200, ten task demonstrations suffice to elicit robust
ICL abilities and establish a solid understanding
useful for XLT. Furthermore, negligible differences
between LA and noLA next-token distributions
highlight that LAs are at best redundant for SIB-
200 across target languages.



6 Main Take-Aways

We draw on the findings from the four evaluated
LA-based configurations and the qualitative analy-
sis, and summarize them as follows.

LAs are beneficial for unseen languages on
tasks requiring more language-specific knowl-
edge. Unseen languages (Afrikaans, Galician and
Icelandic in Llama 2) evaluated on MLQA are the
only languages that consistently benefit from the
usage of LAs. This is corroborated by configura-
tions with ICL which disentangle the effect of the
LA from the task adaptation stage more explicitly.

LAs are at best redundant for rarely seen
languages and tasks requiring less language-
specific knowledge. Across configurations,
noLA is competitive with or surpasses LA for
most task-language-combinations. Configurations
with Llama 3.1 as base LLM substantiate this
finding, as the positive effect of LAs vanishes
entirely; attributed to previously unseen languages
in Llama 2 turning into rarely seen languages
in Llama 3.1. Hence, in most cases, adding
language-specific representations during pre-
training appears performance-wise more effective
and computationally more efficient than after
pre-training via LAs.

The impact of the typological relatedness be-
tween source and target language is minimal.
Rather, the source language bias and task-specific
requirements are found to be critical for the source
language choice. English as source language con-
sistently yields the best performance across target
languages on the QA task, whereas German and
Spanish are superior on the NLU task.

LAs and XLT to underrepresented target lan-
guages are constrained by the inherent English
bias of the base LLM. While the competitive re-
sults of the XLT setup without LAs across configu-
rations suggest that English-centric representations
are able to generalize across non-English target lan-
guages, this generalization is severely limited, as
evidenced by the performance gap between English
and non-English languages on the QA task. Prelim-
inary analyses using the Logit Lens, based on a lim-
ited number of test instances and languages, further
suggest that LAs, as implemented in our work, may
not be able to induce profound language-specific
transformations and mitigate the strong English
bias of the base LLM.

7 Conclusion

We comprehensively evaluated the efficacy of LAs
for XLT in English-centric LLMs on 13 languages
and 2 downstream tasks. Exploring multiple XLT

configurations with varying task adaptation meth-
ods and base LLMs, we found the effect of LAs
to be largely inconsistent across target languages
and tasks. Omitting LAs entirely and relying on a
single TA or using ICL only often yielded superior
results. A positive effect of LAs was mostly lim-
ited to unseen languages, while minimal language-
specific pre-training data tended to diminish this
effect. We conclude that LAs do not consistently
help enhance XLT and cannot fully mitigate the
evident performance gap between English and non-
English languages in English-centric LLMs.

From a broader perspective, our findings estab-
lish a solid foundation for future research to ex-
plore, in greater depth, the capabilities of LAs and
the transformations they provoke within English-
centric LLMs.

Limitations

Languages. As we rely on automatic evaluation,
data sparsity hinders the inclusion of truly low-
resource languages. We focus on mainly mid-
to high-resource languages, underrepresented in
English-centric LLMs. Future work is encouraged
to include low-resource languages that are likely
to have yet less pre-training data in the respective
base LLMs to test the hypothesis that LAs can help
enhance XLT to unseen languages in greater de-
tail. Besides, all languages examined use the Latin
script. It is, therefore, straightforward to include
non-Latin script languages in future experiments.

Tasks & Data. This study is limited to one QA
and one NLU task. Naturally, this hinders us
from asserting strong conclusions regarding XLT

in English-centric LLMs and implications for real-
world applications that rely on robust multilingual
generation capabilities. We also note that auto-
matic translations and metric flaws may confound
the results for non-English languages on MLQA.

Base LLMs. Our XLT evaluations are limited
to two Llama variants. To account for potential
Llama-specific biases and to strengthen our hypoth-
esis that LAs primarily benefit unseen languages,
a more diverse set of base LLMs is essential - ide-
ally ones for which information on the amount of
language-specific pre-training data is available.



Language Adapters. We highlight four LA-
related limitations: First, we did not conduct com-
prehensive LA hyperparameter tuning. While we
briefly explored the number of training samples by
doubling the default and the reduction factor (we
both halved and doubled the default), we did not
examine potential domain mismatches in the LA
data - a factor that may be especially important
for performance. Second, LAs, as utilized in this
study, do not operate on vocabulary level. Thus,
the English-centric vocabulary of the base LLM
remains unchanged throughout LA training, po-
tentially adversely affecting excessively tokenized
languages. Third, we restricted the evaluation of
the effect of LAs to an extrinsic evaluation based
on downstream task performance. Finally, LAs,
as trained in this work, follow a data-driven, post-
hoc approach, meaning that we rely on the ability
of the base LLM to learn language-specific repre-
sentations after pre-training by simply feeding in
unlabeled, language-specific data while freezing all
parameters of the base LLM. Hence, we do not take
into account language-specific neurons or regions
of the base LLM that may impact performance, as
shown by Tang et al., 2024; Zhang et al., 2024b,
inter alia.
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A Training Details

Hyperparameter Value

LAs

Reduction factor 16
Trainable parameters 67.1M
Batch size 4
Training steps 50k
Context length 1024

MLQA TAs

Reduction factor 16
Trainable parameters 67.1M
Dropout 0.0
Batch size 4
Training epochs 3

SIB-200 TAs

Reduction factor 32
Trainable parameters 33.6M
Dropout 0.1
Batch size 4
Training epochs 20

Table 1: Details for training LAs and TAs. These values
apply to all languages. I.e., LAs are trained on 200k
samples per language à 1024 tokens. Due to the same
hidden dimension and the same number of hidden lay-
ers, the number of trainable parameters applies to both
Llama 2 and Llama 3.1. Unspecified hyperparameters
were set to the default values as provided in the adapters
and transformers library.

B Llama 2 Language Distribution

Language Data (in %)

en 90.00
de 0.17
sv 0.15
es 0.13
nl 0.12
pt 0.09
ca 0.04
fi 0.03
hu 0.03
da 0.02
is 0.00
gl 0.00
af 0.00

Table 2: Amounts of pre-training data in Llama 2 for
languages relevant to this work. No detailed language
distribution is available for Llama 3.1.

C Fertility

Language Fertility

en 1.45
de 2.04
sv 2.21
es 1.77
nl 2.00
pt 1.92
ca 1.96
fi 3.75
hu 3.00
da 2.22
is 3.03
gl 1.97
af 2.11

Table 3: Fertility (token/word ratio) as measured on the
dev split of Flores-200 (Team et al., 2022) using the
English-centric tokenizer of Llama 2.



D Task Templates

D.1 Task Adapters

MLQA

### Human: Refer to the passage below and
then answer the question afterwards in the
same language as the passage:

Passage: {passage}

Question: {question}

### Assistant: {answer}

Figure 12: Prompt template used for MLQA during TA
training and at inference for setups using TAs.

SIB-200

Classify the following sentence into one of
the following topics:
1. science/technology
2. travel
3. politics
4. sports
5. health
6. entertainment
7. geography

Sentence: {sentence}

Topic: {topic}

Figure 13: Prompt template used for SIB-200 during
TA training and at inference for setups using TAs.

D.2 In-context Learning

MLQA

### Instruction: The task is to solve
reading comprehension problems. You will
be provided questions on a set of passages
and you will need to provide the answer
as it appears in the passage. The answer
should be in the same language as the
question and the passage. Provide nothing
else beyond the answer.

— n source language demonstrations —
### Human:
Passage: {passage}
Question: {question}

### Assistant: {answer}

### Human:
Passage: The aircraft involved in
the hijacking was a Boeing 757–222,
registration N591UA, delivered to the
airline in 1996. The airplane had a
capacity of 182 passengers; the September
11 flight carried 37 passengers and
seven crew, a load factor of 20 percent,
considerably below the 52 percent average
Tuesday load factor for Flight 93. The
seven crew members were Captain Jason Dahl,
First Officer LeRoy Homer Jr., and flight
attendants Lorraine Bay, Sandra Bradshaw,
Wanda Green, CeeCee Lyles, and Deborah
Welsh.
Question: How many crew members were there?

### Assistant: seven

Figure 14: ICL prompt template for MLQA. The string
‘- - n source language demonstrations - -’ is not part
of the prompt. This example is also the English test
instance chosen for Logit Lens experiments on MLQA.
Target is not provided. We set n = 5.



SIB-200 English

Classify the following sentence into one
of the following topics:
1. science/technology
2. travel
3. politics
4. sports
5. health
6. entertainment
7. geography

— n source language demonstrations —
Sentence: {sentence}
Topic: {topic}

Sentence: After a week of losses in the
midterm election, Bush told an audience
about the expansion of trade in Asia.
Topic: politics

Figure 15: ICL prompt template for SIB-200. The
string ‘- - n source language demonstrations - -’ is not
part of the prompt. This example is also the English test
instance chosen for Logit Lens experiments on SIB-200.
Target is not provided. We set n = 10.



E Training & Evaluation Setups

E.1 LA Setup

Figure 16: LA setup (blue and red edges indicate frozen and trainable parameters,
respectively): (1) LAs are trained for each language of interest (here: English and
Icelandic) on a frozen English-centric LLM (e.g., Llama 2 7B). (2) A TA (in this
case, for a QA task) is trained in the source language (here: English) by stacking
it on top of the frozen LA in the respective source language. (3) At inference, the
source LA is replaced by the target LA (here: Icelandic) while retaining the TA in
the source language. This setup is then evaluated zero-shot in the target language.
Own illustration.

E.2 noLA Setup

Figure 17: noLA setup (blue and red edges indicate
frozen and trainable parameters, respectively): (1) A
TA (in this case, for a QA task) is trained in the source
language (here: English) on top of the frozen English-
centric LLM. (2) At inference, the TA in the source
language is retained and evaluated zero-shot in the target
language (here: Icelandic). Own illustration.



F Scores

F.1 Llama-2/TA

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.51

(±0.02)
0.56

(±0.01)
0.32

(±0.02)
0.49

(±0.01)
0.33

(±0.01)
0.39

(±0.02)
0.53

(±0.03)
0.53

(±0.02)
0.53

(±0.01)
0.47

(±0.01)
0.46

(±0.02)
0.51

(±0.00)
0.78

(±0.00) 0.47

LAde
0.50

(±0.01)
0.54

(±0.01)
0.32

(±0.01)
0.47

(±0.01)
0.37

(±0.01)
0.42

(±0.01)
0.54

(±0.01)
0.52

(±0.00)
0.52

(±0.01)
0.47

(±0.00)
0.47

(±0.01)
0.54

(±0.00)
0.44

(±0.09) 0.47

LAes
0.45

(±0.02)
0.51

(±0.02)
0.31

(±0.02)
0.45

(±0.02)
0.34

(±0.01)
0.39

(±0.01)
0.52

(±0.01)
0.51

(±0.01)
0.48

(±0.01)
0.53

(±0.01)
0.44

(±0.01)
0.46

(±0.01)
0.43

(±0.05) 0.44

noLAen
0.49

(±0.01)
0.52

(±0.01)
0.26

(±0.01)
0.53

(±0.01)
0.34

(±0.01)
0.39

(±0.01)
0.57

(±0.01)
0.55

(±0.01)
0.55

(±0.01)
0.48

(±0.01)
0.50

(±0.01)
0.51

(±0.00)
0.78

(±0.00) 0.47

noLAde
0.40

(±0.01)
0.47

(±0.01)
0.23

(±0.00)
0.50

(±0.01)
0.37

(±0.00)
0.43

(±0.01)
0.55

(±0.01)
0.54

(±0.01)
0.47

(±0.02)
0.47

(±0.01)
0.46

(±0.00)
0.54

(±0.00)
0.38

(±0.01) 0.44

noLAes
0.38

(±0.01)
0.38

(±0.01)
0.20

(±0.01)
0.44

(±0.02)
0.31

(±0.01)
0.34

(±0.02)
0.46

(±0.02)
0.45

(±0.01)
0.45

(±0.03)
0.53

(±0.01)
0.41

(±0.03)
0.40

(±0.03)
0.32

(±0.04) 0.38

Table 4: MLQA F1 scores averaged over five random seeds for Llama 2/TA. Standard deviation in parentheses.
Bold numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores
within XLT setup between source languages (en, de, es).

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.50

(±0.17)
0.74

(±0.05)
0.55

(±0.06)
0.71

(±0.06)
0.66

(±0.10)
0.59

(±0.16)
0.66

(±0.06)
0.79

(±0.03)
0.71

(±0.10)
0.78

(±0.06)
0.68

(±0.12)
0.82

(±0.04)
0.85

(±0.02) 0.68

LAde
0.77

(±0.09)
0.81

(±0.04)
0.70

(±0.03)
0.78

(±0.06)
0.81

(±0.04)
0.82

(±0.02)
0.77

(±0.05)
0.84

(±0.06)
0.85

(±0.03)
0.81

(±0.04)
0.79

(±0.07)
0.87

(±0.01)
0.83

(±0.05) 0.80

LAes
0.74

(±0.06)
0.76

(±0.02)
0.60

(±0.11)
0.80

(±0.03)
0.69

(±0.09)
0.71

(±0.07)
0.76

(±0.09)
0.82

(±0.02)
0.82

(±0.03)
0.82

(±0.02)
0.81

(±0.04)
0.81

(±0.05)
0.82

(±0.05) 0.76

noLAen
0.72

(±0.03)
0.79

(±0.03)
0.40

(±0.07)
0.79

(±0.02)
0.68

(±0.06)
0.73

(±0.03)
0.80

(±0.03)
0.84

(±0.03)
0.80

(±0.03)
0.82

(±0.03)
0.78

(±0.02)
0.81

(±0.02)
0.86

(±0.02) 0.75

noLAde
0.83

(±0.02)
0.83

(±0.02)
0.56

(±0.04)
0.85

(±0.01)
0.81

(±0.02)
0.82

(±0.02)
0.84

(±0.02)
0.84

(±0.03)
0.86

(±0.02)
0.84

(±0.02)
0.84

(±0.02)
0.85

(±0.03)
0.86

(±0.02) 0.81

noLAes
0.74

(±0.05)
0.79

(±0.02)
0.45

(±0.05)
0.80

(±0.03)
0.73

(±0.06)
0.74

(±0.04)
0.83

(±0.03)
0.84

(±0.01)
0.81

(±0.04)
0.83

(±0.01)
0.81

(±0.03)
0.81

(±0.04)
0.85

(±0.02) 0.77

Table 5: SIB-200 EM scores averaged over five random seeds for Llama 2/TA. Standard deviation in parentheses.
Bold numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores
within XLT setup between source languages (en, de, es).



F.2 Llama-2/ICL

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.46

(±0.01)
0.47

(±0.01)
0.30

(±0.01)
0.45

(±0.01)
0.31

(±0.01)
0.33

(±0.01)
0.48

(±0.01)
0.47

(±0.01)
0.46

(±0.01)
0.40

(±0.02)
0.44

(±0.01)
0.43

(±0.01)
0.66

(±0.01) 0.42

LAde
0.43

(±0.02)
0.43

(±0.02)
0.29

(±0.01)
0.44

(±0.02)
0.30

(±0.01)
0.32

(±0.01)
0.45

(±0.02)
0.44

(±0.02)
0.45

(±0.01)
0.39

(±0.01)
0.42

(±0.01)
0.42

(±0.01)
0.58

(±0.03) 0.41

LAes
0.42

(±0.02)
0.40

(±0.04)
0.27

(±0.02)
0.41

(±0.02)
0.29

(±0.01)
0.31

(±0.02)
0.43

(±0.04)
0.43

(±0.02)
0.42

(±0.02)
0.39

(±0.02)
0.41

(±0.02)
0.39

(±0.01)
0.53

(±0.05) 0.39

noLAen
0.39

(±0.02)
0.40

(±0.02)
0.20

(±0.01)
0.44

(±0.02)
0.30

(±0.01)
0.32

(±0.01)
0.47

(±0.02)
0.46

(±0.02)
0.46

(±0.02)
0.38

(±0.02)
0.42

(±0.01)
0.42

(±0.01)
0.65

(±0.02) 0.39

noLAde
0.39

(±0.02)
0.39

(±0.03)
0.19

(±0.01)
0.42

(±0.02)
0.30

(±0.01)
0.32

(±0.01)
0.45

(±0.02)
0.45

(±0.02)
0.44

(±0.02)
0.38

(±0.01)
0.41

(±0.02)
0.42

(±0.02)
0.57

(±0.03) 0.39

noLAes
0.38

(±0.03)
0.40

(±0.03)
0.19

(±0.01)
0.42

(±0.03)
0.30

(±0.01)
0.31

(±0.01)
0.44

(±0.02)
0.43

(±0.03)
0.42

(±0.03)
0.39

(±0.03)
0.39

(±0.03)
0.38

(±0.03)
0.51

(±0.07) 0.38

Table 6: MLQA F1 scores averaged over five random seeds for Llama 2/ICL. We use 5 source language task
demonstrations, randomly sampled from the training split for each seed. Standard deviation in parentheses. Bold
numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores within
XLT setup between source languages (en, de, es).

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.62

(±0.04)
0.66

(±0.05)
0.57

(±0.04)
0.56

(±0.02)
0.48

(±0.07)
0.55

(±0.04)
0.58

(±0.07)
0.67

(±0.03)
0.61

(±0.04)
0.65

(±0.04)
0.62

(±0.05)
0.63

(±0.04)
0.72

(±0.02) 0.60

LAde
0.74

(±0.05)
0.72

(±0.05)
0.58

(±0.05)
0.66

(±0.09)
0.60

(±0.13)
0.61

(±0.09)
0.65

(±0.09)
0.75

(±0.06)
0.67

(±0.09)
0.71

(±0.05)
0.70

(±0.08)
0.76

(±0.06)
0.71

(±0.07) 0.68

LAes
0.69

(±0.07)
0.77

(±0.03)
0.59

(±0.04)
0.59

(±0.05)
0.54

(±0.13)
0.62

(±0.06)
0.70

(±0.05)
0.74

(±0.05)
0.69

(±0.08)
0.77

(±0.05)
0.69

(±0.07)
0.65

(±0.08)
0.68

(±0.07) 0.66

noLAen
0.31

(±0.09)
0.40

(±0.11)
0.27

(±0.08)
0.52

(±0.08)
0.54

(±0.07)
0.52

(±0.06)
0.47

(±0.09)
0.53

(±0.05)
0.45

(±0.09)
0.55

(±0.10)
0.53

(±0.09)
0.55

(±0.09)
0.76

(±0.05) 0.47

noLAde
0.46

(±0.13)
0.55

(±0.12)
0.33

(±0.10)
0.66

(±0.10)
0.65

(±0.11)
0.66

(±0.09)
0.61

(±0.12)
0.67

(±0.10)
0.63

(±0.10)
0.69

(±0.09)
0.68

(±0.11)
0.76

(±0.07)
0.76

(±0.06) 0.61

noLAes
0.39

(±0.17)
0.55

(±0.16)
0.30

(±0.13)
0.57

(±0.16)
0.61

(±0.13)
0.62

(±0.12)
0.61

(±0.15)
0.63

(±0.12)
0.58

(±0.14)
0.74

(±0.10)
0.61

(±0.15)
0.63

(±0.15)
0.73

(±0.09) 0.57

Table 7: SIB-200 EM scores averaged over five random seeds for Llama 2/ICL. We use 10 source language task
demonstrations, randomly sampled from the training split for each seed. Standard deviation in parentheses. Bold
numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores within
XLT setup between source languages (en, de, es).



F.3 Llama-3.1/TA

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.50

(±0.01)
0.56

(±0.04)
0.34

(±0.02)
0.48

(±0.05)
0.25

(±0.05)
0.33

(±0.05)
0.54

(±0.05)
0.54

(±0.03)
0.54

(±0.03)
0.49

(±0.02)
0.38

(±0.07)
0.51

(±0.01)
0.80

(±0.00) 0.46

LAde
0.47

(±0.03)
0.53

(±0.04)
0.35

(±0.02)
0.47

(±0.04)
0.34

(±0.02)
0.46

(±0.01)
0.51

(±0.06)
0.49

(±0.06)
0.55

(±0.01)
0.49

(±0.01)
0.44

(±0.05)
0.56

(±0.00)
0.37

(±0.11) 0.46

LAes
0.44

(±0.02)
0.52

(±0.02)
0.32

(±0.02)
0.32

(±0.05)
0.28

(±0.05)
0.39

(±0.01)
0.57

(±0.01)
0.51

(±0.01)
0.47

(±0.03)
0.56

(±0.00)
0.30

(±0.07)
0.47

(±0.03)
0.43

(±0.07) 0.42

noLAen
0.51

(±0.04)
0.56

(±0.04)
0.37

(±0.02)
0.52

(±0.03)
0.34

(±0.01)
0.42

(±0.02)
0.55

(±0.05)
0.53

(±0.05)
0.54

(±0.03)
0.47

(±0.04)
0.50

(±0.02)
0.50

(±0.03)
0.79

(±0.00) 0.48

noLAde
0.54

(±0.01)
0.57

(±0.01)
0.38

(±0.00)
0.54

(±0.01)
0.40

(±0.01)
0.48

(±0.00)
0.59

(±0.01)
0.57

(±0.01)
0.56

(±0.01)
0.50

(±0.01)
0.53

(±0.01)
0.56

(±0.01)
0.35

(±0.01) 0.50

noLAes
0.48

(±0.01)
0.51

(±0.01)
0.34

(±0.01)
0.49

(±0.01)
0.36

(±0.02)
0.42

(±0.01)
0.51

(±0.02)
0.51

(±0.00)
0.50

(±0.01)
0.56

(±0.00)
0.48

(±0.01)
0.46

(±0.01)
0.31

(±0.08) 0.45

Table 8: MLQA F1 scores averaged over five random seeds for Llama 3.1/TA. Standard deviation in parentheses.
Bold numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores
within XLT setup between source languages (en, de, es).

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.78

(±0.06)
0.81

(±0.04)
0.71

(±0.05)
0.78

(±0.05)
0.78

(±0.03)
0.80

(±0.04)
0.78

(±0.03)
0.82

(±0.03)
0.85

(±0.02)
0.85

(±0.05)
0.80

(±0.05)
0.86

(±0.02)
0.88

(±0.02) 0.80

LAde
0.80

(±0.03)
0.82

(±0.03)
0.72

(±0.05)
0.81

(±0.04)
0.78

(±0.07)
0.80

(±0.04)
0.80

(±0.05)
0.81

(±0.03)
0.82

(±0.05)
0.81

(±0.04)
0.79

(±0.04)
0.84

(±0.03)
0.80

(±0.06) 0.80

LAes
0.79

(±0.04)
0.84

(±0.02)
0.72

(±0.07)
0.77

(±0.08)
0.79

(±0.02)
0.81

(±0.03)
0.80

(±0.04)
0.85

(±0.01)
0.86

(±0.02)
0.86

(±0.02)
0.82

(±0.03)
0.86

(±0.01)
0.86

(±0.01) 0.81

noLAen
0.81

(±0.04)
0.79

(±0.05)
0.69

(±0.05)
0.82

(±0.07)
0.74

(±0.05)
0.77

(±0.05)
0.80

(±0.05)
0.82

(±0.05)
0.84

(±0.06)
0.82

(±0.05)
0.83

(±0.06)
0.80

(±0.06)
0.83

(±0.05) 0.79

noLAde
0.79

(±0.04)
0.78

(±0.05)
0.68

(±0.07)
0.81

(±0.03)
0.78

(±0.05)
0.76

(±0.07)
0.80

(±0.05)
0.80

(±0.04)
0.84

(±0.06)
0.81

(±0.07)
0.82

(±0.04)
0.83

(±0.03)
0.84

(±0.03) 0.79

noLAes
0.79

(±0.03)
0.81

(±0.01)
0.70

(±0.02)
0.82

(±0.02)
0.78

(±0.03)
0.80

(±0.01)
0.84

(±0.01)
0.83

(±0.02)
0.84

(±0.02)
0.83

(±0.03)
0.82

(±0.02)
0.83

(±0.03)
0.84

(±0.01) 0.81

Table 9: SIB-200 EM scores averaged over five random seeds for Llama 3.1/TA. Standard deviation in parentheses.
Bold numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores
within XLT setup between source languages (en, de, es).



F.4 Llama-3.1/ICL

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.51

(±0.01)
0.54

(±0.02)
0.35

(±0.01)
0.50

(±0.01)
0.34

(±0.02)
0.40

(±0.02)
0.54

(±0.01)
0.50

(±0.02)
0.53

(±0.01)
0.46

(±0.01)
0.49

(±0.02)
0.46

(±0.02)
0.72

(±0.01) 0.47

LAde
0.50

(±0.01)
0.51

(±0.02)
0.35

(±0.01)
0.49

(±0.01)
0.35

(±0.01)
0.41

(±0.01)
0.53

(±0.01)
0.50

(±0.02)
0.53

(±0.01)
0.46

(±0.01)
0.49

(±0.02)
0.47

(±0.01)
0.62

(±0.06) 0.48

LAes
0.47

(±0.02)
0.46

(±0.07)
0.33

(±0.02)
0.45

(±0.06)
0.31

(±0.02)
0.38

(±0.03)
0.48

(±0.08)
0.46

(±0.03)
0.49

(±0.02)
0.42

(±0.09)
0.45

(±0.05)
0.41

(±0.07)
0.58

(±0.12) 0.44

noLAen
0.50

(±0.01)
0.53

(±0.02)
0.35

(±0.01)
0.49

(±0.01)
0.34

(±0.01)
0.40

(±0.01)
0.52

(±0.01)
0.50

(±0.01)
0.53

(±0.01)
0.45

(±0.02)
0.48

(±0.01)
0.46

(±0.01)
0.73

(±0.01) 0.46

noLAde
0.51

(±0.01)
0.53

(±0.02)
0.35

(±0.01)
0.49

(±0.01)
0.35

(±0.01)
0.41

(±0.01)
0.54

(±0.01)
0.51

(±0.02)
0.53

(±0.01)
0.47

(±0.01)
0.49

(±0.01)
0.48

(±0.01)
0.64

(±0.07) 0.48

noLAes
0.48

(±0.03)
0.48

(±0.06)
0.33

(±0.02)
0.46

(±0.05)
0.32

(±0.03)
0.39

(±0.02)
0.50

(±0.04)
0.48

(±0.03)
0.50

(±0.03)
0.43

(±0.06)
0.46

(±0.04)
0.43

(±0.07)
0.60

(±0.13) 0.45

Table 10: MLQA F1 scores averaged over five random seeds for Llama 3.1/ICL. We use 5 source language task
demonstrations, randomly sampled from the training split for each seed. Standard deviation in parentheses. Bold
numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores within
XLT setup between source languages (en, de, es).

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.72

(±0.02)
0.73

(±0.03)
0.63

(±0.10)
0.68

(±0.07)
0.64

(±0.07)
0.72

(±0.04)
0.72

(±0.03)
0.72

(±0.03)
0.74

(±0.03)
0.76

(±0.03)
0.75

(±0.05)
0.80

(±0.02)
0.81

(±0.03) 0.72

LAde
0.76

(±0.05)
0.76

(±0.04)
0.72

(±0.07)
0.73

(±0.06)
0.72

(±0.08)
0.77

(±0.04)
0.71

(±0.04)
0.75

(±0.06)
0.77

(±0.05)
0.77

(±0.03)
0.77

(±0.04)
0.83

(±0.03)
0.79

(±0.03) 0.75

LAes
0.76

(±0.05)
0.77

(±0.02)
0.72

(±0.07)
0.72

(±0.05)
0.70

(±0.08)
0.75

(±0.04)
0.74

(±0.04)
0.76

(±0.05)
0.77

(±0.06)
0.80

(±0.03)
0.74

(±0.04)
0.81

(±0.02)
0.78

(±0.02) 0.75

noLAen
0.76

(±0.04)
0.75

(±0.03)
0.73

(±0.05)
0.77

(±0.05)
0.76

(±0.05)
0.76

(±0.05)
0.75

(±0.03)
0.76

(±0.03)
0.77

(±0.05)
0.78

(±0.04)
0.77

(±0.04)
0.79

(±0.04)
0.80

(±0.03) 0.76

noLAde
0.78

(±0.03)
0.78

(±0.04)
0.74

(±0.05)
0.79

(±0.05)
0.79

(±0.04)
0.80

(±0.05)
0.77

(±0.04)
0.79

(±0.05)
0.79

(±0.04)
0.79

(±0.04)
0.79

(±0.05)
0.84

(±0.03)
0.78

(±0.05) 0.78

noLAes
0.79

(±0.03)
0.78

(±0.03)
0.74

(±0.03)
0.79

(±0.04)
0.78

(±0.01)
0.79

(±0.02)
0.79

(±0.03)
0.79

(±0.02)
0.80

(±0.03)
0.82

(±0.03)
0.79

(±0.03)
0.82

(±0.01)
0.78

(±0.03) 0.79

Table 11: SIB-200 EM scores averaged over five random seeds for Llama 3.1/ICL. We use 10 source language task
demonstrations, randomly sampled from the training split for each seed. Standard deviation in parentheses. Bold
numbers indicate best scores between XLT setups (LA, noLA), underscored numbers indicate best scores within
XLT setup between source languages (en, de, es).



G Additional SIB-200 Results

G.1 Heatmaps
G.1.1 Llama-2/TA

Figure 18: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Llama-2/TA. Positive scores mean LA is superior.

G.1.2 Llama-2/ICL

Figure 19: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Llama-2/ICL. Positive scores mean LA is superior.

G.1.3 Llama-3.1/TA

Figure 20: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Llama-3.1/TA. Positive scores mean LA is superior.

G.1.4 Llama-3.1/ICL

Figure 21: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Llama-3.1/ICL. Positive scores mean LA is superior.



G.2 Logit Lens Visualizations

Figure 22: Logit Lens for SIB-200 test instance with
English as source and German as target language. Base
LLM: Llama 2. Setup: LA. Target: politics.

Figure 23: Logit Lens for SIB-200 test instance with
English as source and German as target language. Base
LLM: Llama 2. Setup: noLA. Target: politics.

Figure 24: Logit Lens for SIB-200 test instance with
English as source and Icelandic as target language. Base
LLM: Llama 2. Setup: LA. Target: politics.

Figure 25: Logit Lens for SIB-200 test instance with
English as source and Icelandic as target language. Base
LLM: Llama 2. Setup: noLA. Target: politics.
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