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ABSTRACT

In the past, continual learning (CL) was mostly concerned with the problem of catastrophic forget-
ting in neural networks, that arises when incrementally learning a sequence of tasks. Current CL
methods function within the confines of limited data access, without any restrictions imposed on
computational resources. However, in real-world scenarios, the latter takes precedence as deployed
systems are often computationally constrained. A major drawback of most CL methods is the need
to retrain the entire model for each new task. The computational demands of retraining large models
can be prohibitive, limiting the applicability of CL in environments with limited resources. Through
CLoRA, we explore the applicability of Low-Rank Adaptation (LoRA), a parameter-efficient fine-
tuning method for class-incremental semantic segmentation. CLoRA leverages a small set of param-
eters of the model and uses the same set for learning across all tasks. Results demonstrate the effi-
cacy of CLoRA, achieving performance on par with and exceeding the baseline methods. We further
evaluate CLoRA using NetScore, underscoring the need to factor in resource efficiency and evaluate
CL methods beyond task performance. CLoRA significantly reduces the hardware requirements for
training, making it well-suited for CL in resource-constrained environments after deployment.

1 INTRODUCTION

While neural networks have demonstrated remarkable performance in deep learning across various domains, their
rigid structure is prohibitive in adapting to new tasks. Typically, neural networks are trained on a fixed dataset,
but real-world scenarios are non-stationary (Hadsell et al., 2020) where data drift occurs, which can impact model
performance (Ditzler et al., 2015), and objectives may change over time, such as the introduction of new classes or
tasks (Hadsell et al., 2020). Fine-tuning or transfer learning on the new data would lead to catastrophic forgetting
(Kirkpatrick et al., 2017), causing the network to perform poorly on the previously learned tasks, this stems from
the inherent plasticity of neural networks where previously learned information is overwritten during the learning of
new tasks. Incrementally learning results in the stability-plasticity dilemma (Mermillod et al., 2013), where networks
with higher stability are restrictive in learning new tasks, and higher plasticity tend to overwrite previously learned
information. A straightforward solution to prevent forgetting is to retrain the model with all encountered data, but
this requires significant computational resources (Trinci et al., 2024), training time, storage, and may not always be
feasible due to data unavailability (Lesort et al., 2020). In contrast to traditional machine learning, where models are
trained in isolation and fixed, continual learning (CL) is a dynamic learning paradigm that more accurately mirrors the
non-stationary nature of the real world. Continual learning involves incrementally learning a sequence of tasks (Kalb
et al., 2021), while minimizing catastrophic forgetting on previous tasks under restricted or no access to previously
encountered data. Each task can represent a change either in the input or output distribution resulting in two main
incremental-learning settings. In domain-incremental learning, a task represents a change in the input distribution,
such as different image sources. This can also be extended to learning modalities in the case of modality-incremental
learning (Hegde et al., 2025). Class-incremental learning represents a shift in the output distribution by incorporating
novel, previously unseen classes, and extends to learning evolving classes in CLEO (Muralidhara et al., 2024). CL
therefore focuses on efficiently adapting an existing model to new tasks, circumventing the need for retraining from
scratch. However, most CL methods other than those based on transfer-learning are designed under the assumption
of having access to offline resources (Prabhu et al., 2023), overlooking computational constraints of deployed systems
which could be prohibitive in updating large networks. In this work, we address both storage and computational
constraints and present an approach that adheres to the original constraint of restricted data access, while being able
to operate under resource constrained environments, without compromising on the choice of networks.
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Figure 1: Comparison of resource efficiency of CLoRA against full fine-tuning, under identical conditions.

Parameter-efficient fine-tuning (PEFT) methods were developed for adapting Large Language Models (LLMs) to spe-
cific downstream tasks (Houlsby et al., 2019). PEFT methods significantly reduce the number of trainable parameters
while still achieving performance on-par with full fine-tuning. PEFT offers several advantages over full fine-tuning,
such as reducing hardware requirements, and avoiding overfitting on the fine-tuned dataset (Xu et al., 2023). PEFT
with CL (PECL) minimizes the number of trainable parameters updated during adaptation, thus allowing for more
efficient usage of computational resources, which is crucial in scenarios where resources are limited. (Yuan & Zhao,
2023) note that within current CL. methods for semantic segmentation, those utilizing stronger backbones consistently
achieve superior performance across both old and new classes. PECL facilitates leveraging the capabilities of ex-
tremely large models, even within constrained environments. In this work, we introduce Continual Learning with Low
Rank-Adaptation (CLoRA), the first PECL method that uses LoRA (Hu et al., 2021) for class-incremental semantic
segmentation, which forms our primary contribution. A key strength of CLoRA lies in its modular compatibility, since
it is agnostic to the regularization strategy used to mitigate forgetting, making it a lightweight, resource-efficient exten-
sion to existing CL methods. We validate this versatility through extensive experiments using several baselines such
as MiB (Cermelli et al., 2020), RCIL (Zhang et al., 2022), SATS (Qiu et al., 2023), and SSUL (Cha et al., 2021) across
different segmentation networks. CLoRA offers resource efficiency advantages over traditional CL, as illustrated in
Fig. 1 and detailed under Sec. 4.5, in which we show that CLoRA requires less hardware resources while achieving
comparable or superior segmentation results to our baselines.

2 BACKGROUND

Continual learning encompasses methods for enabling a system to incrementally learn new information, while re-
taining previously learned knowledge. These methods can be categorized into three main categories: Architecture-,
replay-, and regularization-based approaches. Additionally, there are hybrid approaches that integrate a combination
of these methods. A more detailed review and survey of these approaches is presented by Wang et al. (2024).

2.1 CONTINUAL SEMANTIC SEGMENTATION

MiB (Cermelli et al., 2020) proposes a novel distillation loss to account for background shift in incremental segmenta-
tion by comparing the background class prediction by the old model with background and new class predictions by the
new model. PLOP (Douillard et al., 2021) addresses the background shift by using pseudo-labels for the background
pixels predicted by the previous task model. SATS (Qiu et al., 2023) uses self-attention maps from transformers and
class-specific region pooling is used for between and within class knowledge distillation. RCIL (Zhang et al., 2022)
maintains two branches during training, one branch is frozen after initial training and preserves the knowledge of old
classes, whereas the other branch is trainable and is used for learning new tasks. REMINDER (Phan et al., 2022)
uses a class-similarity based distillation, to distill knowledge from a previous model with classes similar to the new
classes. AWT (Goswami et al., 2023) addresses background shift through classifier initialization by identifying the
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most relevant weights from the previous background for the new classes. EWF (Xiao et al., 2023) merges the trained
models of previous and current tasks, weighted by a merging factor. SSUL-M (Cha et al., 2021) addresses background
shift by introducing an unknown class that separates the future classes from the background and uses pseudo-labeling
for previous classes. ALIFE (Oh et al., 2022) stores feature representations extracted from previous models for replay
instead of explicitly storing images from previous tasks. RECALL (Maracani et al., 2021) uses a generic generative
model or web-crawler for generating/retrieving images of previous classes and pseudo-labeling. DiffusePast (Chen
et al., 2023) addresses issues with GAN-generated images, and uses a stable diffusion model for generating accurate
images. In this work, we focus on class-incremental learning with knowledge distillation.

2.2 TRANSFER-LEARNING-BASED CONTINUAL LEARNING

Transfer-learning-based CL methods leverage large pretrained networks for feature extraction and only train the clas-
sifier for incrementally learning new classes. Typically, these methods use a pretrained network, that is either frozen
directly or after training for the initial task. By forgoing full network retraining, this approach addresses the computa-
tional constraints in continual learning. Pelosin (2022) proposes a straightforward approach that extracts features and
stores class prototypes for a prototype-based classification. FeTrIL (Petit et al., 2023) uses a pseudo feature generator
to represent past classes through geometric translations of new class features and old class prototypes. A linear clas-
sifier is then jointly trained on new classes and old classes. Adapt and Merge (APER) (Zhou et al., 2024) adapts the
pretrained model to incremental data using PEFT to bridge the domain gap. Subsequently, it aggregates the adapted
and pretrained model embeddings and freezes them for incremental tasks. RanPAC (McDonnell et al., 2024) uses
random projection layers to map the features extracted from the pretrained network into a higher-dimensional space,
increasing class separation. FeCAM (Goswami et al., 2024) highlights the shortcomings of Euclidean distance based
prototype classification in incremental learning and proposes using a Bayesian classifier.

2.3 PARAMETER EFFICIENT CONTINUAL LEARNING

There are several parameter-efficient fine-tuning (PEFT) methods (Xu et al., 2023) like: Additive fine-tuning, which
introduces additional parameters through adapters (Riicklé et al., 2021; Liu et al., 2022) or prompts (Lester et al.,
2021; Li & Liang, 2021); partial fine-tuning (Zaken et al., 2021; Zhao et al., 2020; Guo et al., 2020) where a subset
of pretrained parameters are selected; reparametrized fine-tuning (Hu et al., 2021; Valipour et al., 2022; Dettmers
et al., 2024) which uses low-rank transformation to reduce the number of trainable parameters. The utilization of
PEFT in continual learning is gaining traction, leading to the development of computationally efficient approaches, we
refer to as parameter-efficient continual learning (PECL). Hyder et al. (2022) propose a dynamically growing network
with incremental rank updates, where for each task, a new trainable rank-1 matrix is added while the previous low-
rank matrices are frozen. During inference, it requires the task-ID for selecting the appropriate weights. Continual
learning with low rank adaptation (CoLoR) (Wistuba et al., 2023) uses LoRA for training expert models and k-means
clustering for storing k cluster centers for each dataset. During inference, the task-ID is inferred by determining
the nearest cluster center and the corresponding expert model is selected. This additional step incurs an additional
computational overhead during both training and inference. Chitale et al. (2023) use LoRA to train expert models
for each task, and then merges them using task arithmetic (Ilharco et al., 2023). It requires fine-tuning on a small
subset of data gathered from each class across all tasks, similar to a rehearsal-based approach. LAE (Gao et al., 2023)
framework consists of three stages: Learning new tasks by leveraging pretrained models with an online PEFT module,
accumulating task-specific knowledge into an offline PEFT module, and ensembling during inference using the online
and offline modules. Orthogonal low-rank adaptation (Wang et al., 2023) incrementally adds LoRA for each task and
ensures orthogonality between the current and previous modules to mitigate interference between tasks and minimize
forgetting. We present a PECL method, that leverages a single LoRA module for learning across all tasks. We discuss
the challenges of using task-specific modules for segmentation in Sec. 3.2.

3 CLORA: CONTINUAL LOW-RANK ADAPTATION

Continual learning involves learning a sequence of tasks 7' = {to, %1, ..., ¢, }, where each task is associated with
task-specific data (X¢,Y;). Depending upon the incremental setting, either the distribution of X; or Y; varies across
tasks. In class-incremental learning, the input distribution remains consistent and in each task, subsets C; C C' of
non-overlapping classes C; N C; = 0,7 # j are introduced. These subsets compose the totality of classes C' =
CoUCy U...UCh.
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Figure 2: Conflicting predictions from task-specific modules on the PASCAL VOC (Everingham et al., 2010) dataset
using the 75-5 setting, in which the two modules have conflicting predictions.

3.1 Low-RANK ADAPTATION (LORA)

Low-rank adaptation (LoRA) (Hu et al., 2021) is a parameter-efficient fine-tuning method that uses reparameterization
for adapting pretrained models to downstream tasks. LoRA uses low-rank transformation to significantly reduce the
number of trainable parameters and the computational requirements while still achieving performance on par with
full fine-tuning. For a pretrained network with weights W € R9** LoRA fine-tunes a very small subset of weights
AW, represented using two low-rank matrices, A € R?*" and B € R"**, where 7 is the rank of the matrix and
r < min(d, k). A is initialized using random Gaussian distribution, and B is initialized as a zero matrix. The rank r
is a hyperparameter that determines the number of trainable parameters. The two low-rank matrices are substituted in
place of the original weights W in each layer of a transformer, and only these low-rank matrices, which are typically
a fraction of the original weights, are trainable. Furthermore, LoRA is applied only to the query and value projection
layers, which contributes to further reducing the number of trainable parameters. Additionally, LoRA also drastically
reduces the storage footprint, allowing to store modules for each task and switching only the task-specific LoORA
modules, while the pretrained weights remain constant. During training, the pretrained weights are frozen and only
the LoRA weights are updated. The forward pass is modified and the output A is calculated as

h=W(x)+ AW (z) = W(z) + BA(x) (1)

Unlike other PEFT methods such as adapters, which add inference overhead, LoRA avoids inference latency by
merging the LoRA modules with the pretrained weights. The weights are updated as W' =W + BA.

3.2 CHALLENGES IN CLASS-INCREMENTAL SEMANTIC SEGMENTATION

Current PECL methods for image classification (Hyder et al., 2022; Wistuba et al., 2023) mostly leverage individual,
task-specific LORA modules for incrementally learning new tasks. This approach holds significant appeal, achieving
performance on par with full fine-tuning while entirely mitigating catastrophic forgetting as it avoids overwriting
of information. Furthermore, it demonstrates storage efficiency compared to methods using dynamically expanding
networks (Rusu et al., 2016), with LoRA modules consuming only a fraction of the memory required for storing
complete models. While these factors make using task-specific LORA modules a compelling choice, its application to
class-incremental semantic segmentation presents several challenges. Unlike class-incremental classification, where
images typically have a single label, and the task-ID can be used to select the expert model trained on that specific class
for inference, task-ID inference in class-incremental segmentation is not straightforward as the tasks are not mutually
exclusive. In segmentation, images are typically annotated with multiple classes, which may span across different
tasks in a class-incremental setting, and the final prediction may require combining predictions of classes learned
across different tasks, with task-specific LORA modules. A potential solution is to use all task-specific modules during
inference and merge their results (see appendix for details). However, with this approach the inference time increases
proportionally with number of tasks, making it ineffective. Furthermore, merging task-wise predictions is particularly
challenging due to background shift in incremental segmentation, where the background class is a catch-all class that
encompasses all previously seen and potential future classes. During incremental learning, only the current task classes
are annotated, and the remaining classes are labeled as the background class. This results in the task-specific modules
being unaware of past and future classes. Consequently, the definition of the background changes across tasks, leading
to inconsistent predictions of the background by the individual modules. Due to the isolated nature of task-specific
modules, they are not aware of classes learned in other tasks through different modules. As a consequence, they
make predictions based only on the subset of classes they have encountered. This can lead to conflicting predictions
for visually similar classes, with different modules predicting different classes for the same pixel. Resolving these
discrepancies and determining the correct prediction poses a significant challenge.
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Figure 3: Continual Learning with Low-Rank Adaptation (CLoRA). (a) CLoRA uses low-rank adaptation for
parameter-efficient fine-tuning of Vision Transformers in resource-constrained environments. The decoder under-
goes fine-tuning while all other weights remain frozen. (b) Training: The encoder using LoRA is initialized for the
initial task and trained. For the subsequent tasks, the same LoRA weights and decoder are updated using knowledge
distillation. (c) Inference: After learning all tasks, the LoRA weights are merged with the frozen weights. This ap-
proach mitigates additional inference time and parameters and facilitates inference without task-ID.

Figure 2 illustrates this challenge using the /5-5 setting in PASCAL VOC. For the class cow which was learned in
task O, the task 1 module mistakenly predicts the class as sheep. This error arises because the two classes are visually
similar, and during task 1, the module has not seen images of cow to discriminate between cow and sheep.

3.3 PROPOSED APPROACH

Considering the limitations associated with dynamically growing task-specific modules for incremental learning in
semantic segmentation, we introduce CLoRA. CLoRA leverages a single LoORA module to incrementally learn tasks
with knowledge distillation. This approach addresses the aforementioned limitations and presents several advantages:
Unlike methods that add new LoRA modules for each task, CLoORA maintains a consistent network architecture
size throughout the learning process. Utilizing a single LoRA module across all tasks results in a task-agnostic
model, circumventing the challenges related to task-ID inference and conflicting predictions typically associated with
employing multiple LoORA modules. Additionally, as CLoRA does not necessitate inference and merging of multiple
tasks, the inference time remains constant.

An overview of CLoRA is presented in Fig. 3. For the first task, the LoRA module is initialized, and the en-
coder weights are substituted with LoRA, by freezing the encoder and training only the LoRA weights similar to
PEFT. The decoder, which constitutes a very small portion of the network undergoes full fine-tuning. Subsequently,
when new tasks are introduced incrementally, the same trained LoRA weights from the previous task are reused
and updated. To preserve knowledge from previous tasks and mitigate catastrophic forgetting, distillation is used.
Specifically, we utilize the knowledge distillation loss proposed by MiB (Cermelli et al., 2020). However, it is
feasible to integrate other regularization approaches with minimal adjustments, as shown in our experiments (Tab. 4
and Sec. 4.4.1).

During incremental training, knowledge distillation loss is used to transfer knowledge from the previous task
model, acting as the teacher f;_; to the student model f; being trained on the current task ¢t. However, in
class-incremental semantic segmentation, this approach faces the background shift problem. For the current task ¢
with the set of classes (Y, the teacher model, trained on previous tasks, may have learned the current task classes
as background in the earlier class set Cp.;—1. As a result, during distillation, there is a mismatch: the teacher
predicts background class for pixels belonging to new classes, while the student correctly predicts them to the actual
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Table 1: Results on PASCAL VOC (Everingham et al., 2010) dataset after learning all tasks.

Method 15-5 15-1 53 10-1

0-15 | 16-20 | All FS 0-15 | 16-20 | All FS 0-5 6-20 All FS 0-10 | 11-20 | All FS
FT 05.89 | 40.47 | 14.12 | -67.57 || 04.56 | 01.52 | 03.84 | -77.85 || 12.05 | 05.66 | 07.49 | -74.20 || 06.45 | 01.12 | 03.91 | -77.78
CLoRA (FT) || 04.69 | 43.47 | 13.94 | -68.72 || 04.44 | 02.11 | 03.88 | -78.78 || 11.78 | 07.00 | 08.37 | -74.29 || 06.38 | 01.21 | 03.92 | -78.74
T 82.53 | 79.02 | 81.69 | 0.00 82.53 | 79.02 | 81.69 | 0.00 80.27 | 82.26 | 81.69 | 0.00 81.57 | 81.83 | 81.69 | 0.00
CLoRA (JT) 83.52 | 79.89 | 82.66 | 0.00 83.52 | 79.89 | 82.66 | 0.00 81.13 | 83.27 | 82.66 | 0.00 83.02 | 82.26 | 82.26 | 0.00
MiB 77.52 | 49.73 | 7091 | -10.78 || 75.22 | 19.47 | 61.95 | -19.74 || 63.23 | 42.18 | 48.19 | -33.50 || 26.47 | 19.70 | 23.24 | -58.45
MiB (TL) 21.03 | 04.62 | 17.12 | -64.57 || 17.76 | 03.15 | 14.28 | -67.41 || 15.21 | 04.32 | 07.43 | -74.26 || 00.00 | 03.43 | 01.63 | -80.06
CLoRA Reinit || 71.14 | 52.58 | 66.34 | -16.32 || 80.82 | 31.47 | 69.07 | -13.59 || 62.68 | 45.06 | 50.09 | -32.56 || 22.66 | 23.17 | 22.90 | -59.76
CLoRA 74.17 | 56.57 | 70.39 | -12.27 || 81.29 | 34.41 | 70.13 | -12.53 || 69.92 | 45.50 | 52.47 | -30.19 || 31.38 | 29.22 | 30.35 | -52.31

classes in C;. This mismatch affects the balance between stability and plasticity, limiting the model’s ability to
adapt to new classes. Addressing this limitation, MiB (Cermelli et al., 2020) introduces a novel distillation strategy
by aggregating the student logits for the new classes with the background logits before applying knowledge distillation.

Through knowledge distillation, we can utilize the same LoRA weights across tasks, and ensure the LoRA
module is aware of classes learned across different tasks and avoids conflicting predictions. Finally, after learning all
tasks, the LoRA weights can be merged back into the encoder to update the original weights. This approach helps
avoid additional inference overhead such as additional computation (Hyder et al., 2022), determining task-ID and
selecting task-experts (Wistuba et al., 2023), or merging of multiple task outputs.

4 EXPERIMENTS AND RESULTS

In this section we discuss the datasets used to evaluate CLoRA, implementation details, and comparison baselines. We
outline the task settings for each dataset and report their results (visualizations in the appendix). All reported results
are evaluated in terms of mean Intersection over Union (mloU). To assess the extent of forgetting, we include the
forget score (FS), by comparing the model’s performance after learning all tasks with the corresponding joint training
(JT) baseline, which is used to approximate the upper bound. We highlight the efficacy of CLoRA against a frozen
encoder, explore the influence of varying ranks, and reinitializing the LoRA module after each task. We demonstrate
that CLoRA can be extended to integrate with other networks and approaches. Additionally, we quantify the resource
efficiency of CLoRA using NetScore (Wong, 2019).

4.1 DATASETS

* PASCAL VOC part of the Visual Object Classes Challenge (Everingham et al., 2010) contains images and
annotations for 21 classes such as animals, person, vehicles and household items, including the background.

* ADE20K (Zhou et al., 2017) consists of over 25k images for training and 2k images for testing. The dataset
covers 150 classes, allowing to design CL tasks with sizable number of classes being added in each increment.

* Cityscapes (Cordts et al., 2016) comprises urban environment images, with 2975 for training and 500 for
validation. It includes dense annotations for 19 classes, posing challenges for segmentation tasks.

4.2 BASELINES AND IMPLEMENTATION

To evaluate the efficacy of CLoRA, a PECL method, we compare it against full fine-tuning. Full fine-tuning refers
to the standard training where the entire model with all the parameters are retrained for each task. These approaches
include the continual learning baselines of fine-tuning and joint training. Fine-tuning (FT) involves incrementally
learning new tasks with the trained model, without any explicit intervention to mitigate catastrophic forgetting. Joint
training (JT) or offline training uses all the data to train the model in a single step. Since there is no incremental
learning, it circumvents forgetting and forms the upper bound for comparison. Primarily , we compare against
Modeling the Background (MiB) (Cermelli et al., 2020), which uses full fine-tuning and highlight the efficacy of
CLoRA, utilizing the same knowledge distillation loss. We further include comparison with SATS (Qiu et al., 2023),
SSUL (Cha et al., 2021) and RCIL Zhang et al. (2022) to demonstrate the versatility of CLoRA.
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Table 2: Results on ADE20K (Zhou et al., 2017) dataset after learning all tasks.

Method 100-50 50-50 25-25 100-10
0-100 | 101-150 | All FS 0-50 | 51-150 | All FS 0-25 | 26-150 | All FS 0-100 | 101-150 | All FS
FT 00.09 10.55 | 03.58 | -40.68 || 00.01 | 06.47 | 04.31 | -39.95 || 00.00 | 03.47 | 02.89 | -41.37 || 00.00 | 00.20 | 00.06 | -44.20
CLoRA (FT) || 00.00 | 21.69 | 07.23 | -34.12 || 00.00 | 09.60 | 06.40 | -34.95 || 00.00 | 04.94 | 04.12 | -37.23 || 00.00 | 01.75 | 00.58 | -40.77
T 49.53 3373 | 4426 | 0.00 | 57.38 | 37.71 | 44.26 | 0.00 67.40 | 39.64 | 4426 | 0.00 49.53 3373 | 44.26 | 0.00
CLoRA (JT) | 48.85 2635 | 41.35 | 0.00 | 56.83 | 33.61 | 41.35 | 0.00 66.35 | 3635 | 41.35 | 0.00 48.85 2635 | 41.35 | 0.00
MiB 46.63 | 20.80 | 38.02 | -06.24 || 50.12 | 21.27 | 30.89 | -13.37 || 62.33 | 27.25 | 33.09 | -11.17 || 42.17 | 08.22 | 30.85 | -13.41
CLoRA 4443 | 2552 | 3813 | -03.22 | 49.05 | 25.85 | 33.58 | -07.77 || 61.02 | 30.06 | 35.22 | -06.13 || 39.27 13.47 | 30.67 | -10.68

Table 3: Results on Cityscapes (Cordts et al., 2016) dataset after learning all tasks.

Method 14-5 14-1 7-3 10-1
1-14 | 15-19 | All FS 1-14 | 15-19 | All FS 1-7 8-19 All FS 1-10 | 11-19 | All FS
FT 00.00 | 00.13 | 00.03 | -59.35 || 00.00 | 00.00 | 00.00 | -59.38 || 00.00 | 02.25 | 01.42 | -57.96 || 00.00 | 03.18 | 01.51 | -57.87
CLoRA (FT) || 00.00 | 24.78 | 06.52 | -54.25 || 00.00 | 03.31 | 00.87 | -59.90 || 00.00 | 07.54 | 04.76 | -56.01 || 00.00 | 00.01 | 00.00 | -60.77
JT 61.83 | 52.52 | 59.38 | 0.00 61.83 | 52.52 | 59.38 | 0.00 58.07 | 60.14 | 59.38 | 0.00 59.35 | 59.71 | 59.38 | 0.00
CLoRA (JT) | 61.41 | 58.99 | 60.77 | 0.00 60.41 | 58.99 | 60.77 | 0.00 56.34 | 63.35 | 60.77 | 0.00 57.87 | 63.98 | 60.77 | 0.00
MiB 59.73 | 08.93 | 46.36 | -13.02 || 60.20 | 07.47 | 46.32 | -13.06 || 49.26 | 27.61 | 35.58 | -23.80 || 55.44 | 30.41 | 43.59 | -15.79
CLoRA 60.78 | 36.14 | 54.30 | -06.47 || 61.57 | 13.01 | 48.79 | -11.98 || 55.80 | 43.73 | 48.21 | -12.56 || 56.36 | 23.86 | 40.96 | -19.81

The segmentation network consists of a Vision Transformer (ViT) (Dosovitskiy et al., 2021) as the encoder,
and we use the corresponding LoRA implementation by Zhang & Liu (2023). The decoder and the classifier consist of
a single convolutional layer, and we use the CL framework by Cermelli et al. (2020). For training the full fine-tuning
models we use the default hyperparameters defined by Cermelli et al. (2020). For training with CLoRA, we use a
batch size of 6 with a higher learning rate of 0.04 for the initial task, and for subsequent tasks we use a learning rate
of 0.001 for smaller increments of single classes and 0.005 for all other increments. We use a rank = 32 for LoRA,
which amounts to 1.04% of the total trainable parameters of the model. LoRA is applied only to the encoder, while
the decoder and the classifiers are fine-tuned. We study the effect of rank r on the performance of the model and
determine r = 32 is sufficient for almost all experiments. All models are trained for 30 epochs on each task and
are evaluated using mean IoU. We present results on both the initial and incremental tasks to analyze the approach’s
balance between learning and retaining information.

4.3 TASK SETTINGS AND EVALUATION

We present results from various CL tasks across three datasets. In class-incremental learning, the tasks follow the
format init-inc, where init is number of classes learned initially and the ¢nc is number of classes learned in each
increment. The steps are repeated until all classes are learned.

4.3.1 PASCAL VOC

We present four CL experiments using the 21 classes in PASCAL, with different sequence lengths: 15-5 (2 steps), 15-1
(6 steps), 5-3 (6 steps), and /0-1 (11 steps). The results from these experiments are presented in Tab. 1, and we observe
that for most tasks except 15-5, CLoRA surpasses MiB. CLoRA demonstrates greater effectiveness in longer and more
challenging sequences of tasks, as observed in /5-1, 5-3, and 10-1. Notably, CLoRA is more adept in learning new
tasks across all experiments, despite MiB achieving slightly better overall results in the /5-5 setting. In the remaining
experiments, CLoRA significantly outperforms MiB in retaining previous knowledge.

4.3.2 ADE20K

Leveraging the large number of classes in the ADE, we design four experiments where each step introduces a sig-
nificant number of new classes. These include 700-50 (2 steps), 50-50 (3 steps), 25-25 (6 steps), 100-10 (6 steps).
The results are presented in Tab. 2, in both the 7/00-50 and 100-10 settings, the results achieved by MiB and CLoRA
are relatively similar, with CLoRA achieving slightly better performance in the /00-50 setting and MiB in the /00-10
setting. In the remaining 50-50 and 25-25 settings, CLoRA outperforms MiB by a significant margin. Once again,
the effectiveness of CLoRA in learning new classes is evident across all experiments. However, with joint training,
CLoRA underperforms compared to full fine-tuning, possibly due to the dataset’s large size. This is further illustrated
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Table 4: Results on PASCAL VOC (Everingham et al., 2010) dataset after learning all tasks using SegFormer (Xie
et al., 2021). * indicates rank = 20.

Method 15-5 | 1541 5-3 10-1

MiB (Cermelli et al., 2020) || 69.90 | 58.82 | 52.05 | 40.69
MiB + CLoRA 69.83 | 59.89 | 51.48 | 43.32
SATS (Qiu et al., 2023) 69.23 | 61.49 | 55.00 | 39.67
SATS + CLoRA 69.65 | 60.83 | 52.29% | 40.23*

by examining the effect of rank on learning under Sec. 4.4. With fine-tuning, we can observe complete overwriting of
information from the initial task, both with CLoRA and default fine-tuning. However, we can observe CLoRA being
able to learn new classes to a greater extent.

4.3.3 CITYSCAPES

Utilizing the Cityscapes dataset, we replicate experiments similar to those conducted with PASCAL, resulting in
the following experiments: /4-5 (2 steps), 14-1 (5 steps), 7-3 (5 steps), and 10-1 (10 steps). Unlike PASCAL, where
images typically feature atmost few classes, Cityscapes contains multiple recurring classes such as road, sky, buildings,
and vehicles, making it a much more challenging dataset. From the results presented in Tab. 3, we observe that almost
across all experiments, barring 10-1, CLoRA surpasses MiB. Notably, even with joint training, CLoRA performs better
compared to full fine-tuning. The results from the fine-tuning approach exhibit the lowest performance in Cityscapes
compared to the other two datasets. Besides completely overwriting previous task knowledge, it fails to learn new
classes. This can be attributed to the fact that the classes learned incrementally are underrepresented, and the model
lacks sufficient data to learn effectively.

4.4 ADDITIONAL EXPERIMENTS

4.4.1 EXTENDING CLORA

We demonstrate the model- and approach-agnostic nature of CLoRA, which allows for the use of any distillation
method to transfer knowledge between tasks. In this experiment, we employ the SegFormer (Xie et al., 2021) network
and MiT-B1 with MiB (Cermelli et al., 2020) and SATS (Qiu et al., 2023) to illustrate CLoRA’s adaptability. We use
rank r = 16 which corresponds to 4.91% trainable parameters. While CLoRA exhibits maximum benefit with larger
networks, this experiment highlights its suitability even for smaller networks. All previously discussed advantages of
CLoRA regarding efficiency are preserved here, albeit proportionally. We repeat all tasks from the PASCAL VOC
dataset (Everingham et al., 2010) and the results are presented in Tab. 4.

4.4.2 CLORA vSs FROZEN ENCODER

We highlight the efficacy of CLoRA, by comparing it with a frozen encoder, and only fine-tuning the decoder for CIL,
similar to transfer-learning based CL. Typically, encoders use pretrained networks on ImageNet (Deng et al., 2009)
or from SAM (Kirillov et al., 2023) in our case, which holds the capability to generalize to other datasets. We repeat
the PASCAL experiments with a frozen encoder. The results are presented in Tab. 1 as MiB (TL). The model fails to
learn adequately even for the initial task, presumably due to the domain gap between the pretrained data and the task
data, resulting in poor performance on subsequent tasks. By fine-tuning only 1% of parameters, CLoRA outperforms
significantly, surpassing even full fine-tuning which uses 100% of the parameters.

4.4.3 REINITIALIZING LORA

For the initial task, the LoRA parameters A and B for all query and value matrices in the encoder are initialized
to the default values and then updated through training. These updated LoRA weights are used when learning the
subsequent tasks, while preserving the original pretrained weights 1. In this experiment, we investigate the effects of
reinitializing the LoRA weights after each task. This involves merging LoRA with the pretrained weights after learning
each task ¢, resulting in updated weights W;. For the subsequent task, these updated weights W; are used instead of the
original weights 1V, and the LoRA weights are recreated with default values. In the seventh row of Tab. 1, we observe
that this approach does not significantly influence the performance, and even performs sub-optimally in certain cases.
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Table 5: Performance across varying ranks for joint training. Cityscapes shows a linear performance increase with
rank, PASCAL VOC results fluctuate, and ADE displays CLoRA underperforming compared to full fine-tuning.

Ranks
Dataset Baseli
arase 16 32 64 96 128 aseine
PASCAL VOC (Everingham et al., 2010) 81.50 82.66 81.53 82.85 82.03 81.69
Cityscapes (Cordts et al., 2016) 59.79 60.77 60.87 61.56 61.23 59.38
ADE20K (Zhou et al., 2017) 40.98 41.35 42.53 41.91 41.64 44.26
NetScores for PASCAL VOC Task 15-5 NetScores for PASCAL VOC Task 15-1
62.96 60.61
60
53.13 5038 5157
50 48.32
46.18
42.79 20.78 42.73
© 40 - 40.28  39.83
8 35.08
@
30 29.77
Z
23.19
20.85
20
10
o
MiB (ViT) RCIL (DeepLabV3) SSUL (DeepLabV3+) SATS (SegFormer)

H MiB+CLoRA (ViT) I RCIL+CLoRA (DeepLabV3) I SSUL+CLORA (DeepLabV3+) Emm SATS+CLoRA (SegFormer)

Figure 4: NetScore results across CL scenarios on PASCAL VOC (Everingham et al., 2010) using different baselines
and networks. CLoRA improves NetScore substantially across network sizes, enhancing resource efficiency1-10.

4.4.4 EFFECT OF LORA RANK

The rank r serves as a hyperparameter that determines the number of trainable parameters. Across nearly all experi-
ments, we observe that a rank of » = 32, which represents approximately 1% of the total parameters, is adequate for
learning all tasks. The performance across varying ranks and for offline joint training is depicted in Tab. 5 across the
three datasets. More results for incremental settings are in the appendix. We observe that for Cityscapes, the results
increase linearly with an increase in rank. For PASCAL, the results seem to be saturated, with performance fluctuating
across different ranks. Notably, in the case of offline training with ADE, CLoRA underperforms compared to full
fine-tuning. This discrepancy could be attributed to the larger size of the dataset relative to the other two datasets.

4.5 EFFICIENCY ASPECTS OF CLORA

Currently, CL methods focus on task performance and the ability to retain knowledge across tasks without forgetting.
However, there is a growing emphasis on the efficiency aspects of CL methods beyond forgetting for practical appli-
cability of CL in resource constrained environments (Harun et al., 2023; Hayes & Kanan, 2022). NetScore (Wong,
2019) provides a comprehensive metric combining performance ay, network size py, and the computational com-
plexity mp. Following previous studies (Harun et al., 2023; Hayes & Kanan, 2022; Loo et al., 2023), we also use
NetScore for a holistic and effective evaluation of CL models, emphasizing the importance of resource efficiency
alongside performance. The modified NetScore 2 for CL training is calculated as:

Qy = 20log (ﬂ) @

Py My

where ap is the final mloU after learning all tasks, py is the number of parameters in millions, and my is the
number of multiply—accumulate (MAC) operations. According to (Wong, 2019), my is measured during inference;
however, we consider it in the training phase, since the focus of CL is updating a model. We use the default values of
a = 2,8 =~ = 0.5. We evaluate the impact of CLoRA using NetScore across multiple continual learning methods
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Figure 5: Pareto Front of mloU vs. Trainable Parameters on PASCAL VOC (Everingham et al., 2010). The plots
compare the performance-efficiency trade-off for models and the corresponding CLoRA augmented methods.

(MiB (Cermelli et al., 2020), SATS (Qiu et al., 2023), SSUL (Cha et al., 2021) and RCIL (Zhang et al., 2022)) by
comparing each baseline with the corresponding CLoRA-augmented method. We demonstrate the effectiveness of
CLoRA across a wide range of networks including Vision Transformer (Dosovitskiy et al., 2021), SegFormer (Xie
et al., 2021), DeepLabV3 (Chen et al., 2017) and DeepLabV3+ (Chen et al., 2018). While certain continual learning
methods such as SSUL (Cha et al., 2021) and RCIL (Zhang et al., 2022) are inherently efficient by updating a subset of
parameters during the incremental steps, CLoRA improves the efficiency by further reducing the number of trainable
parameters. To compute NetScore, the number of parameters is averaged between the full set used in the initial step
and the reduced set used during incremental learning, providing a fair measure of resource efficiency.

Fig. 4 presents the NetScore results across different continual learning baselines and networks for two tasks from
PASCAL VOC (Everingham et al., 2010). For the larger ViT-based network, we observe a substantial increase in
the NetScore with CLoRA, highlighting its effectiveness in optimizing larger models. For the smaller networks,
which already attains a relatively high NetScore, CLoRA further provides an improvement. CLoRA consistently
demonstrates advantages across network sizes, enhancing resource efficiency without compromising performance
relative to fully trained models. We analyse the trade-off between performance and efficiency by plotting the Pareto
front of mloU vs. trainable parameters for 15-5 and 15-1 task settings on PASCAL VOC (Everingham et al., 2010).

The Pareto front in Fig. 5 highlights not just the best-performing methods, but those that offer the most favourable
balance between accuracy and efficiency. While RCIL achieves the highest mloU and appears Pareto-optimal in
the 15-5 setting, its CLoRA counterpart is dominated by more efficient alternatives such as SSUL+CLoRA and
MiB+CLoRA, rather than by RCIL itself. Notably, across all methods, the CLoRA-augmented variants consistently
improve the efficiency—performance trade-off and are never dominated by their corresponding baselines. In the
15-1 setting, both RCIL and RCIL+CLoRA are dominated, suggesting that the underlying method is the limiting
factor rather than the use of CLoRA. This reinforces that while CLORA enhances parameter efficiency, the overall
performance is still bounded by the effectiveness of the baseline method.

5 CONCLUSION

In this work, we present Continual Learning with Low-Rank Adaptation (CLoRA), a parameter-efficient continual
learning (PECL) method. CLoRA utilizes LoRA for incrementally learning new tasks, using a small fraction of pa-
rameters instead of training all the parameters. In contrast to existing PECL methods focusing on image classification
with task-specific modules, we discuss the constraints in extending it to class-incremental segmentation. Addressing
these challenges, we design CLoRA as a single module reused across all tasks and updated using knowledge dis-
tillation. We demonstrate the effectiveness of CLoRA, achieving results on-par, and surpassing the baselines where
all parameters are updated. This introduces a novel and efficient training process for continual learning with limited
resources, without sacrificing model performance. One potential limitation of CLoRA could be in handling larger
datasets, although this is less of a concern in continual learning, where increments are typically small.

10
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APPENDIX

We first detail the issues with individual, task-specific modules, i.e. merging of predictions. We assess the robustness
of a single LoORA module to handle both input and output distribution shifts. Then, we provide additional visual results
for our experiments. Lastly, we perform additional experiments with varied LoRA ranks.

A  MERGING TASK-SPECIFIC MODULES

Individual adapters per task are only aware of the classes they have learned. Naturally it might occur that more than
one module predicts multiple non-background classes for the same pixel. In such cases, which occur especially when
semantically and visually similar classes are learned in different tasks, the individual predictions need to be merged
before a final class is derived. Figure 6 illustrates this challenge using PASCAL VOC (Everingham et al., 2010) tasks.
In the 10-1 setting, for the class sheep learned in task 7, the previous modules that were trained on other animal
classes predict the specific animal associated with their respective tasks. This error arises because the animal classes
are visually similar, and the modules trained on earlier tasks have not encountered images of sheep to discriminate
between sheep and the animal class learned in their respective tasks. Resolving the conflict is non-trivial. A naive,
inferior solution could be achieved by concatenation of all logits. I.e. during inference, the unnormalized logits of all
task-specific classifiers are concatenated and soft-maxed. Afterwards, the most probable class is selected. However,
this has limitations, e.g. the task-wise class distributions are not calibrated (different numbers of classes per task).

B ROBUSTNESS TO DISTRIBUTION SHIFTS

This work focuses on class-incremental learning which involves sequentially learning new classes. This results in
a shift in the output distribution, while the input distribution remains constant. However, in real-world scenarios,
domain shift may occur due to varying weather, lighting, or geographical locations. Such a novel incremental setting
with both semantic shift (new classes) and domain shift (new domains) has been previously studied by Toldo et al.
(2024); Muralidhara et al. (2025). While this is not the primary focus of our work, we recognize the importance of
assessing whether our approach with CLoRA, can remain effective under such shifts. To this end, we perform an
experiment using Cityscapes (Cordts et al., 2016) as the base task (initial step), and ACDC (Sakaridis et al., 2021)
which consists of adverse domains for the incremental tasks. Both datasets share the same set of semantic classes,
which allows us to design a class-incremental learning setup while the differing visual conditions introduce an input
domain shift. We use MiB (Cermelli et al., 2020) as the baseline continual learning method and report results on
ACDC with and without CLoRA in Tab. 6. Notably, we use a single LoORA module across all tasks, without any task-
specific adaptation for different domains. Despite the additional domain gap, CLoRA exhibits the same performance
trends relative to MiB as observed in the class-incremental experiments using only Cityscapes (Cordts et al., 2016).

C ADDITIONAL VISUALIZATIONS

Figure 7 provides results of the /5-5, 15-1, 5-3 and 10-1 experiments on PASCAL VOC (Everingham et al., 2010). The
four experiments /00-50, 50-50, 25-25, and 100-10 on ADE20K (Zhou et al., 2017) are visualized in Fig. 8. Despite
its increased efficiency, CLoRA appears competitive or even more detailed, compared to previous work (Cermelli
et al., 2020), in all four experiments.

Image Task 0 Task 2 Task 3 Task 7

EEl Background N Cow Hl Dog B Horse I Sheep

Figure 6: Conflicting predictions from task-specific modules on the PASCAL VOC (Everingham et al., 2010) dataset
using the /0-1 setting, in which multiple modules have conflicting predictions.
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Table 6: Results on class-incremental learning with varying input domains using Cityscapes (Cordts et al., 2016) and
ACDC (Sakaridis et al., 2021).

14-5 14-1 7-3 10-1
1-14 | 15-19 | Al 1-14 || 15-19 | Al 1-7 8-19 All 1-10 | 11-19 | Al
MiB 48.11 | 02.08 | 36.00 | 48.31 || 04.05 | 36.66 | 42.15 | 19.89 || 28.09 | 44.09 | 18.46 | 31.95
CLoRA || 47.96 | 16.89 | 39.79 | 49.06 || 03.75 | 37.14 | 47.16 | 26.05 || 33.83 | 43.71 | 16.67 | 30.90

Method

Image GT JT CLoRA (JT) MiB CLoRA

Figure 7: Qualitative visualizations from the PASCAL VOC (Everingham et al., 2010) dataset.

D EFFECT OF LORA RANK

Table 7 presents the results for the PASCAL VOC (Everingham et al., 2010) tasks for different ranks of LoRA (Hu
et al.,, 2021). The rank is a hyperparameter that influences the number of trainable parameters. In all our main
experiments with the ViT-based network, we use a rank » = 32 which corresponds to ~1% of trainable parameters.
In Sec. 4.4.4 of the main paper, we study the influence of varying ranks in the offline setting (joint training) across
the three datasets. Here, we explore the impact of different ranks on performance in more detail in different continual
learning settings of the PASCAL VOC dataset (Everingham et al., 2010). We observe that for rank r = 64, the results
improve consistently across all tasks. For longer task sequences, such as 5-3 and /0-1, higher ranks yield better results.
However, since task sequence lengths are typically unknown and higher ranks entail greater computational costs, we
choose r = 32 as a balanced configuration for all experiments.
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Image GT JT CLoRA (JT) MiB CLoRA

Figure 8: Qualitative visualizations from the ADE20K (Zhou et al., 2017) dataset.

Table 7: Results of CLoRA on PASCAL VOC (Everingham et al., 2010) dataset with varying ranks for LoRA (Hu
et al., 2021) after learning all tasks.

15-5 15-1 5-3 10-1
0-15 | 16-20 | All 0-15 | 16-20 | All 0-5 6-20 All 0-10 | 11-20 | All
16 74.87 | 55.82 | 70.34 || 80.71 | 34.37 | 69.67 || 67.06 | 47.32 | 52.96 | 28.05 | 26.23 | 27.19
32 74.17 | 56.57 | 70.39 || 81.29 | 34.41 | 70.13 || 69.92 | 45.50 | 52.47 | 31.38 | 29.22 | 30.35
64 79.62 | 62.31 | 75.50 || 82.06 | 34.08 | 70.63 || 71.46 | 45.70 | 53.06 || 47.62 | 33.71 | 41.00
96 74.45 | 56.30 | 70.13 || 77.18 | 29.43 | 65.82 || 69.92 | 50.08 | 55.75 | 48.15 | 30.97 | 39.97
128 75.39 | 57.42 | 71.11 || 81.01 | 31.76 | 69.28 || 66.21 | 50.66 | 55.10 || 42.57 | 32.61 | 37.83

Rank
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