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Abstract

Brain-Computer Interfaces (BCIs) can decode imagined speech from neural activity. However, these systems typically require
extensive training sessions where participants imaginedly repeat words, leading to mental fatigue and difficulties identifying the
onset of words, especially when imagining sequences of words. This paper addresses these challenges by transferring a classifier
trained in overt speech data to covert speech classification. We used electroencephalogram (EEG) features derived from the
Hilbert envelope and temporal fine structure, and used them to train a bidirectional long-short-term memory (BiLSTM) model for
classification. Our method reduces the burden of extensive training and achieves state-of-the-art classification accuracy: 86.44%
for overt speech and 79.82% for covert speech using the overt speech classifier.
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I. INTRODUCTION

Covert (or silent) speech refers to speech that is produced without any audible sound [[1]], [2]. Various approaches have been
proposed to measure covert speech, including electrical activity of articulatory muscles or ultrasound-based lipreading [3l],
[4]. A more natural approach is to measure the neural correlates of speech directly from brain activity, using Brain-Computer
Interfacing (BCI) technology in the so-called speech imagery or imaginary speech BClIs [3], [6]], [7].

Since speech is generated in the brain before it is articulated [8]], decoding it directly from brain signals bypasses the need
for muscle movements. This makes the process silent and imperceptible to others. In essence, imagined speech BCIs aim to
interpret words or phonemes from brain activity alone, without any audible sound or physical movement involved. Although
invasive methods such as electrocorticography (ECoG) have yielded promising results [9]], [10], noninvasive approaches such
as electroencephalography (EEG) have also shown potential in decoding imagined speech [L1l], [12]. However, these results
are often confined to controlled lab environments and require extensive and exhausting training sessions.

A major challenge in imagined speech BClIs is the tedious and error-prone training process, in which participants silently
repeat words, leading to potential data mislabeling due to unverified output and variability in speech onset, offset, and speed.
We propose a transfer learning approach to address these challenges by training a classifier on EEG data recorded during overt
speech and applying it to EEG data of the same person silently repeating the words. This method not only reduces the mental
and physical demands of training, but also enhances productivity by allowing simultaneous interaction and classifier training.

We used the data recorded during a previous study [13] in which participants navigated a virtual robot through a maze using
both overt and imagined speech to apply a set of feature extraction methods (described later) and transferred a classifier
from overt to imagined speech data, drawing inspiration from related work, which we discuss in the next section. Our research
shows promise for developing BCI systems that can accurately decode covert speech using brain signals. This could enable
truly usable applications in speech communication for people with disabilities or new communication tools.

II. RELATED WORK

Garcia-Salinas et al. [14] recorded EEG data from 27 participants while they silently spoke five words (SELECT, RIGHT,
LEFT, DOWN, and UP). A Naive Bayes classifier trained on a subset of words and tested on all five achieved 68.93% accuracy.
Lee et al. [15] investigated common spatial and temporal features between overt and imagined speech from seven participants
and 12 words, achieving a 59.9% accuracy for overt speech and 16.2% for imagined speech, both above chance levels. They
suggested potential for imagined speech classification based on overt speech features but did not attempt a direct transfer.
Watanabe et al. [16]] examined whether EEG acquired during speech perception and imagination shared a signature envelope
with EEG from overt speech. Their study, involving 18 participants and three words, showed that classifiers trained on imagined
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speech EEG envelopes could achieve 38.5% accuracy when tested on overt speech envelopes. These findings reinforce the
similarity between the two paradigms.

Komeiji et al. [17] developed a Transformer-based model that decoded sentences from covert speech using ECoG signals.
They outperformed a BiLSTM model in both overt and covert speech tasks. Interestingly, training the model on overt speech
achieved similar performance for decoding covert speech compared to training on covert speech itself. This is a significant
finding, as it bypasses the difficulty of collecting covert speech data. Surprisingly, to the best of our knowledge, no research
has yet attempted a direct transfer of a classifier from overt to imagined speech. Our work therefore addresses this longstanding
research gap, offering a more productive training process while maintaining high accuracy.

III. METHODOLOGY

Our goal is to apply transfer learning by using a model trained on overtly spoken EEG data and transferring it to classify
covert (inner/imagined) speech EEG data. We used the dataset of Rekrut et al. [[13] which acquired overt and covert speech
EEG data with a game-like setup as described below.

A. Experimental design and procedure

1) Participants: Fifteen healthy, right-handed subjects (11 male, 4 female, average age 26.8 years) participated in the study.
All participants were fluent in English. The study was approved by the Ethical Review Board of the Faculty of Mathematics
and Computer Science at Saarland University.

2) Design: EEG data was recorded from participants while they interacted with a virtual robot using both overt (spoken
aloud) and covert (imagined) speech. The participants viewed a bird’s-eye view of the robot positioned at the center of the
screen. The robot was controlled using five different command words: LEFT, RIGHT, UP, PICK, and PUSH. The experiment
was divided into four sessions: two for overt speech and two for covert speech. Each session consisted of eight levels. In
each level, each of the five command words was performed five times in random order, resulting in 200 trials per session (8
levels x 5 words x 5 repetitions). The sessions alternated between overt and covert conditions, to avoid recording data in
large blocks, which could have led to classifying random brain states instead of actual cognitive processes. Fig. 1| illustrates

the experimental paradigm.
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Fig. 1. Protocol for collecting imagined speech data [18]. A spacebar press triggers the interaction during overt speech, while imagined speech interactions
occur in separate sessions.

3) Procedure: To allow participants to navigate the game at their own pace, we used the spacebar as the game controller
(decision phase). Pressing that key caused a black screen to appear for two seconds, during which participants focused on
which command they had to think (preparation phase), and when a white cross appeared in the middle of the screen for two
additional seconds, as a cue, participants would produce the imagined speech (interaction phase). A two-second rest period
followed, and the process was then repeated. In each level, the robot randomly presented the five action words. In the overt
session, participants spoke the command aloud. In the covert session, they silently repeated the word in their mind without
moving their mouth or muscles. Each command word was repeated 80 times in both the covert and overt speech sessions,
resulting in 400 repetitions for each condition and a total of 800 repetitions overall.



4) Data collection: EEG data were collected in a controlled environment, with participants seated in comfortable armchairs
to minimize unnecessary movements. EEG signals were recorded using a wireless 64-channel EEG system (Brain Products
Live Amp 64) at a sampling rate of 500 Hz, following the 10-20 international EEG system. The robotic experimental paradigm
was executed on the same Windows PC used for EEG recording, allowing for the synchronization of game events (such as
spacebar presses and fixation crosses) with the EEG data. The recorded data were stored on the PC for subsequent offline
analysis.

B. Data preprocessing and feature extraction

The EEG data were stored separately for each participant and individually preprocessed for each session. A 50 Hz notch
filter was first applied to remove powerline interference. Subsequently, a 4th-order Butterworth Finite Impulse Response (FIR)
filter with a passband of 0.5 to 80 Hz was used to filter the data. To eliminate artifacts related to eye blinks, muscles, and
movement-related activities, independent component analysis (ICA) [19] was applied to the filtered EEG data. The EEG signal
was then segmented into two-second epochs corresponding to the speech production phase, with a 100 ms pre-stimulus window
for baseline correction. The mean signal from this 100 ms pre-stimulus window was subtracted from the corresponding epoch
to minimize baseline drift and improve signal consistency. Finally, individual trials were labeled as covert or overt speech for
modeling.

The EEG data during speech reflect the brain’s neural response to motor articulation and cognitive processes. To extract
meaningful features from EEG signals for the classification of overt and imagined speech, we employed the Hilbert Envelope
(ENV) and Temporal Fine Structure (TFS) [20], [21] as key representations of EEG data. These features capture amplitude
variations (using ENV, which are essential for speech-related activity) and phase information (using TFS, which is crucial for
modeling neural dynamics during speech). Compared to alternative features [22] such as wavelet-based features [23]], [24],
common spatial patterns [5], and Riemannian geometry-based features [25], these representations provide enhanced capability
for detecting subtle patterns in brain activity associated with speech tasks.

The Hilbert Envelope is the magnitude of an analytic signal a(t), in our case EEG, and represents the slow-varying amplitude
of that signal over time. It is computed as:

ENV(a(t)) = [[a(®)ll = Va(t)? + H{a(t)}? (1

where the original EEG signal a(t) acts as the real part, and the Hilbert-transformed signal #{a(t)} acts as the imaginary
part. 7{-} denotes the Hilbert transform operation.

The Hilbert transform of a signal in the time domain is defined as the convolution of a(t) with —, which can be expressed
as:

a(t) = H{a(t)} = ~ wa(t) = - / alr) o, @)
Tt T) ot —T
This envelope captures the amplitude modulation of the EEG signal, reflecting the overall energy changes that occur during
speech production.
The Temporal Fine Structure, on the other hand, captures the rapid oscillations within the signal and is related to the phase
information of the analytic signal. It is computed by normalizing the original EEG signal with its envelope:

oy
ENV(a(t))
The fine temporal details of the EEG signal are said to carry information about the neural dynamics underlying speech [26],
[27]].

The ENV and TFS features are extracted from the EEG data for each trial. Each EEG segment has an original dimension
of 1000x64. After applying the ENV and TFS, each EEG segment is transformed into two feature segments of the same
dimension. These segments are then concatenated horizontally, resulting in a new dimension of 1000x 128.

TFS(a(t)) = (3)

C. Dataset splits and model description

We train subject-specific models using LSTM, Gated Recurrent Unit (GRU), BiLSTM, and Bidirectional GRU (BiGRU)
architectures to classify EEG data. Each subject provided 400 EEG segments for covert speech and 400 segments for overt
speech. We rely on transfer learning, where models are initially trained on overt speech EEG data. The BILSTM model, which
achieved the best performance, is then used for transfer learning. The LSTM layers of the BILSTM model are frozen, and the
fully connected layer is fine-tuned using 15%, 20%, 25% and 30% of the EEG features of covert speech to create a covert
speech classification model.

The BiLSTM model begins with a sequence input layer, accepting an input size of (B, 1000, 128), where B represents the
batch size (we used B = 32), 1000 is the number of time steps, and 128 is the number of features. The model is trained
with Adam optimizer using a learning rate 1 = 0.0001 and decay rates 5; = 0.9, 82 = 0.999. The loss function is categorical
entropy. Table [l shows the details of the model architecture.



TABLE I
MODEL CONFIGURATION OF BILSTM MODEL.

Layer Type Learnable hyperparams Remarks
Input None Shape: (B, 1000, 128)
BIiLSTM 1 Input weights: 4x128x512 Hidden units: 512
Recurrent weights: 4x512x512  State fn: tanh
Bias: 4x512 Gate fn: sigmoid
Dropout rate: 0.3
BiLSTM 2 Input weights: 4x1024x256 Hidden units: 256
Recurrent weights: 4x256x256  State fn: tanh
Bias: 4x256 Gate fn: sigmoid
Dropout rate: 0.2
Fully Conn.  Weights: 256x5 Size: 5
Bias: 5x1
Output None Softmax. Size: 5

IV. RESULTS AND DISCUSSION
A. Covert-Overt EEG decoding

Previous work [16]], [28], [29] revealed spatio-temporal dynamics and waveform synchronization between covert and overt
speech EEG data. This foundation guided our feature extraction, using ENV and TFS to analyze such a waveform synchro-
nization. Fig. [2] shows the average Hilbert envelope and temporal fine structure for covert and overt speech commands of
participant 10 (command: RIGHT). The ENV and TFS of the EEG data for overt and covert speech show structural similarities.
The max. correlation coefficients between the EEG envelopes of covert and overt speech for commands are 0.5234 for UP,
0.6412 for LEFT, 0.6607 for RIGHT, 0.4791 for PICK, and 0.5624 for PUSH, indicating varying degrees of similarity in the
envelopes of amplitude of the EEG signals.
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Fig. 2. ENV and TFS of the speech command RIGHT.

B. Classification results

The ENV and TFS features are combined as input to the models to learn the underlying EEG patterns during different
speech tasks. Four different subject-specific classification models were trained on the overt speech EEG data using a five-fold
cross-validation approach. Among these, the BiLSTM model (average accuracy of 86.44%) outperformed the others, making
it the preferred model for transfer learning to covert EEG classification. The BiLSTM’s superior performance is attributed to
its ability to process EEG data bidirectionally, effectively capturing both forward and backward temporal dependencies while



leveraging the non-stationary and dynamic statistical characteristics of EEG signals to decode speech-related neural activity.
Table [ summarizes the results.

TABLE I
CLASSIFICATION ACCURACY RESULTS, IN PERCENTAGE. FOR EACH PARTICIPANT, THE BEST RESULT IS HIGHLIGHTED IN BOLD FACE.

Overt Covert

User LSTM GRU BiLSTM BiGRU BiLSTM
Pl 70.37 63.78 75.15 64.80 58.92
P2 66.34 63.21 71.80 62.39 58.33
P3 87.00 83.50 86.30 84.50 86.21
P4 88.68 85.77 90.65 86.28 85.90
P5 85.00 7496 84.33 73.90 85.72
P6 91.00  90.32 93.07 91.17 86.20
P7 94.11 93.43 96.53 92.47 89.74
P8 84.40 80.50 88.46 81.69 79.17
P9 86.00 80.74 85.22 79.80 73.36
P10 95.32  95.00 95.00 94.37 90.81
P11 90.07 91.84 92.38 90.90 86.55
P12 86.45 84.00 90.49 85.53 83.68
P13 71.28 70.03 76.82 71.00 67.34
Pi4 79.95 83.40 84.00 82.30 85.60
P15 75.71 77.50 80.86 78.60 68.59
Avg. Accuracy (%) 83.99 81.46 86.44 81.51 79.82

For covert speech classification, the trained BiLSTM model was used with the LSTM layer weights frozen. The fully
connected layers were re-trained using 15%, 20%, 25%, and 30% of the covert EEG data. To compare the classification
accuracy of the transferred covert and standard overt speech models, 20% of the unknown covert EEG data were used to
test the accuracy of the transferred covert model, as the standard overt classifier was trained and tested with a 80:20 split.
Classification results are illustrated in Fig. [3] showing that with 25% and 30% of the covert training data, the classifier
performance did not deviate significantly (p < .05, paired ¢-test with Bonferroni correction). Furthermore, the performance of
the transferred model becomes more consistent and less variable when exposed to more training examples.

We also trained the same models shown in Table |lI| from scratch, specifically for covert speech EEG classification. Table |I1I
summarizes the results, demonstrating that transfer learning significantly improves performance. For example, while the
BiLSTM model was also the best performer when trained from scratch, it was nevertheless 20 points below the BiLSTM
trained with transfer learning.

TABLE III
COVERT SPEECH EEG CLASSIFICATION RESULTS (ACCURACY + STDEV) WITHOUT TRANSFER LEARNING.

LSTM GRU BiLSTM BiGRU
Avg. Accuracy (%) 6570 & 3.39 650 &£ 3.68 6694 + 4.65 6583 + 4.72
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Fig. 3. BiLSTM model performance with varying data splits of covert EEG data. Error bars denote SDs.

As shown in Table[[V] limited research has been conducted on the transfer of BCI models of overt speech to covert speech. Our
proposed implementation outperforms previous methods. This was possible thanks to the waveform synchronization between
overt and covert speech. Our work addresses the limitations of covert speech recording, including the challenges of data
collection and reliability (e.g., mislabeling, variability in speech onset, offset, and speed).



TABLE IV
COMPARISON AGAINST PREVIOUS WORK.

Ref. No. commands Data Classification acc.

[15] 12 EEG 16.20%
[17] 8 ECoG 46.60%
[30] 5 EEG 35.68%
[13] 5 EEG 61.78%
18] 5 EEG 69.10%
Ours 5 EEG 79.82%

C. Limitations and Future Work

Since EEG responses are highly subjective, the internal decoding of overt and covert word thoughts may vary between
individuals. This variability poses a challenge in creating “universal” models. Future work could focus on analyzing waveform
synchronization between participants to address intersubject variability and explore speaker independence.

V. CONCLUSION

Our work emphasizes the importance of two key EEG features: Hilbert envelope and temporal fine structure, in decoding
both overt and covert speech neural patterns. Our work also underscores the importance of transfer learning for accurately
classifying covert speech EEG data. We find that our BILSTM model outperforms state-of-the-art techniques, representing
significant advancements for training imagined speech BCls.
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