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Background: Neuroimaging methods have been proved insightful in program-comprehension research. A key problem
is that different baselines have been used in different experiments. A baseline is a task during which the “normal” brain
activation is captured as a reference compared to the task of interest. Unfortunately, the influence of the choice of the baseline
is still unclear.
Aims: We investigate whether and to what extent the selected baseline influences the results of neuroimaging experiments
on program comprehension. This helps to understand the trade-offs in baseline selection with the ultimate goal of making the
baseline selection informed and transparent.
Method: We have conducted a pre-registered program-comprehension study with 20 participants using multiple baselines
(i.e., reading, calculations, problem solving, and cross-fixation). We monitored brain activation with a 64-channel electroen-
cephalography (EEG) device. We compared how the different baselines affect the results regarding brain activation of program
comprehension.
Results and Implications: We found significant differences in mental load across baselines suggesting that selecting a
suitable baseline is critical. Our results show that a standard problem-solving task, operationalized by the Raven-Progressive
Matrices, is a well-suited default baseline for program-comprehension studies. Our results highlight the need for carefully
designing and selecting a baseline in program-comprehension studies.

CCS Concepts: • General and reference→ Empirical studies; • Human-centered computing→ Empirical studies in
HCI .

Additional Key Words and Phrases: Program comprehension, EEG, eye-tracking

1 INTRODUCTION
In the past decades, a growing number of studies on program comprehension have been conducted [71]. Clearly,
the more we know about the cognitive processes involved in program comprehension, supporting tools and

Authors’ addresses: Annabelle Bergum, bergum@cs.uni-saarland.de, Saarland University, Saarland Informatics Campus, Graduate School
of Computer Science, Germany; Norman Peitek, peitek@cs.uni-saarland.de, Saarland University, Saarland Informatics Campus, Germany;
Maurice Rekrut, maurice.rekrut@dfki.de, German Research Center for Artificial Intelligence, Saarland Informatics Campus, Germany; Janet
Siegmund, janet.siegmund@informatik.tu-chemnitz.de, Chemnitz University of Technology, Germany; Sven Apel, apel@cs.uni-saarland.de,
Saarland University, Saarland Informatics Campus, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7392/2025/6-ART
https://doi.org/10.1145/3744739

ACM Trans. Softw. Eng. Methodol.

 

https://orcid.org/0000-0002-9953-4904
https://orcid.org/0000-0001-7828-4558
https://orcid.org/0000-0002-5829-5409
https://orcid.org/0000-0002-9574-3020
https://orcid.org/0000-0003-3687-2233
https://orcid.org/0000-0002-9953-4904
https://orcid.org/0000-0001-7828-4558
https://orcid.org/0000-0002-5829-5409
https://orcid.org/0000-0002-9574-3020
https://orcid.org/0000-0002-9574-3020
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.1145/3744739
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3744739&domain=pdf&date_stamp=2025-06-17


2 • Annabelle Bergum, Norman Peitek, Maurice Rekrut, Janet Siegmund, and Sven Apel

education of programmers can benefit, thereby improving productivity. A novel, growing set of studies use
neuroimaging methods to locate and analyze activated brain areas and to measure the mental load during
program comprehension [69]. These methods contribute to an objective measurement of how programmers
understand source code. They offer an opportunity to create, test, and refine theories of program comprehension
by obtaining insights into the cognitive processes [65], which led to several neuroimaging studies in software
engineering [19, 31, 32, 43, 66]. Neuroimaging methods observe brain activation during a task of interest—
comprehending source code, in our case. The challenge is that, typically, also nonspecific brain activation (e.g.,
associated with visual perception) occurs during the task of interest. Thus, the brain activation of a task cannot
be analyzed directly, but is typically evaluated with respect to a selected baseline, as illustrated in Figure 1: By
observing the difference in brain activation between a task ( ) and a baseline ( ), the task-specific brain
activation ( ) is extracted [44].
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Fig. 1. Visualization of how the mental load ( ) is computed from raw data ( ) with respect to a baseline ( ).

Needless to say, a suitable baseline is key to obtain comparable and valid experiment results. In functional
magnetic resonance imaging (fMRI) experiments, the baseline is usually called contrast condition, whereas in EEG
experiments, the term baseline is used. As our study provides insights for all neuroimaging methods, we will use
the overarching term baseline throughout the paper.

As an example for the effect the choice of the baseline may have, consider the following two studies aiming at
investigating which cognitive processes are involved in program comprehension, but using different baselines:
Siegmund and others contrasted program comprehension with syntax error localization [63], whereas Ivanova
and others contrasted program comprehension with the equivalent task, describing the code in natural language,
using prose comprehension [32]. In these studies, the individual baselines were tailored to the respective study,
while specific adjustments to a study increase internal validity but decrease the generalizability, as reflected in
the different results. While Siegmund and others found language-related brain areas to be active during program
comprehension [63], Ivanova and others observed that the multi-demand system is largely active during program
comprehension [32]. The two studies differ in several factors, including the programming language, code snippet
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selection, participant experience, but they also use different baselines. This makes a synthesis of the results
inconceivable. Basically, we cannot pin down whether the differing results are due to the difference in selected
baselines or other factors. In a growing field with a rising number of studies, this becomes increasingly problematic.
We must understand the effect of baselines to obtain comparable study results and to design follow-up measures
and experiments.

In this paper, we address this challenge by analyzing the influence of common baselines used in this area,
and we provide insights into selecting a suitable baseline for a program-comprehension experiment. This way,
we empower researchers to make an informed decision when planning experiments so that the methodological
standard improves and results become more comparable. To this end, we have conducted a preregistered program-
comprehension study with four baselines. We monitored the participants’ brain activation with a 64-channel
electroencephalography (EEG) device. We selected three baselines common in neuroimaging studies covering
core competencies of program comprehension: reading a natural language text, calculating the value of an
arithmetic expression, and problem solving as operationalized by the Raven-Progressive Matrices. Additionally,
we include the current standard, that is, cross-fixation. In our analysis, we computed the mental load and the
activation distribution over the brain during program comprehension with respect to the different baselines.
This enables us to infer whether the choice of baseline influences the results. To obtain a detailed understanding
of the baselines regarding their cognitive demands, we analyzed their differences and similarities to program
comprehension based on the mental load, the activation distribution of the brain, and the reading strategy.
Our results suggest problem solving as operationalized by Raven-Progressive Matrices is a well-suited default
baseline for future program-comprehension studies, and study-specific needs require a targeted baseline choice
(as discussed in Section 5.2).

In summary, we make the following contributions:
• A preregistered empirical study that examines the influence of four distinct baselines on the results of

program-comprehension experiments;
• An analysis of differences and similarities in cognitive demands between program comprehension and

the four baselines;
• A proposal of a standard problem-solving task operationalized by the Raven-Progressive Matrices, which

is unrelated to programming, as a well-suited baseline for program-comprehension studies;
• A guideline for selecting suitable baselines for neuroimaging studies in the context of programming and

related activities;
• A replication package with the complete study setup, data-analysis scripts, data, and the preregistration

form, see Section 8.

2 METHODOLOGICAL CONSIDERATIONS FOR NEUROIMAGING STUDIES IN SOFTWARE
ENGINEERING

Empirical experiments play a pivotal role in software-engineering research [70]. To ensure robust and reliable
results across research teams, standards on how to properly design and conduct software-engineering experiments
have been adopted and refined for two decades. For example, Kitchenham and others proposed a set of general
experiment guidelines specifically for the field of software engineering, which includes experiment design,
analysis, and reporting [37]. Based on this seminal work, more detailed guidelines on how to report the results of
experiments have been proposed [34, 36]. More recently, researchers have reflected on the crucial role of specific
properties of experiment designs, such as the inherent trade-off between internal and external validity [67].
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2.1 Specifics of Neuroimaging Studies
With the advent of neuroimaging studies in software-engineering research, existing experiment guidelines must
be refined further, because neuroimaging methods require a special experiment design regarding tasks and
baselines. In particular, in neuroimaging experiments, we cannot directly assess the relevant brain activation
during a task (i.e., a block of time in the experiment). Instead, we have to contrast the differences in brain
activation between two tasks. We write “A > B” to indicate that we take task A, the cognitive process of interest
(e.g., program comprehension), and subtract the brain activation that occurred in task B, the baseline (cf. Figure 1).
If we obtain a positive value, the brain activation of the investigated cognitive process A is higher than that of the
baseline B; if we obtain a negative value, it is lower in task A than in baseline B [39].

Finding a suitable baseline for a given task has been a widely debated topic in the general neuroscience
literature [21]. While there is no universally suitable baseline, neuroscience researchers concluded that the
baseline itself must be well understood. A commonly used baseline for neuroimaging experiments is cross-
fixation [9, 49]. In a cross-fixation task, a participant is instructed to relax while focusing on a cross on a display
to reduce muscle movements. Despite the popularity of cross-fixation, there are concerns about its suitability:
Participants often state after an experiment session that “task-unrelated thoughts” appeared, so the relax time
during cross-fixation does not imply neural inactivity [9]. That is, we do not know what these “task-unrelated
thoughts” were, so it is unclear what cognitive processes took place. Furthermore, the cross-fixation can trigger
different brain activation depending on the experiment [68].

2.2 Variety and Suitability of Baselines in Software-Engineering Research
So far, neuroimaging studies in software engineering have used cross-fixation and, in addition, a substantial
variety of further baselines, which we summarize along with their investigated tasks in Table 1. Even with a
comparable operationalization of program comprehension across studies, the resulting brain activation might be
completely different depending on the used baselines, as comparing the studies of Siegmund and others [63]
and Ivanova and others suggests [32]. Another striking example is contrasting program comprehension with
two different baselines in a single experiment: syntax error localization and an attention task [57]. Despite
both analyzing brain-activation data on program comprehension, it reveals entirely different brain-activation
patterns due to the use of different baselines (as illustrated in Figure 2) [51]. So, to understand the consequences
of the baseline selection for experiment results and conclusions, we must not only understand the task itself, but
also the baseline and its effect when contrasting it with the task. Furthermore, the differences may vary across
individual participants, as participants’ processing of tasks in such experiments can differ at different times across
participants.

Selecting a suitable baseline is of particular importance for program comprehension studies. Program compre-
hension is a complex cognitive process involving multiple core competencies, including memory retrieval, logical
reasoning, and language processing [63]. To unravel their roles, the ideal baseline is as close to the investigated
task as possible, without capturing its “essence” [30].

A prototypical baseline for a neuroscience study in a block design (i.e., complex tasks that last, at least,
10 seconds) is either a different task with the same stimulus or the same task with a different stimulus [30]. The
challenge in program comprehension is that it is an ensemble of different cognitive processes leading to high
cognitive complexity. Depending on the focus of the major underlying cognitive process, there are different
interpretations of what a suitable baseline for program comprehension is. For example, if we would contrast
program comprehension with a simple working memory task, we would still observe high activation in the visual
cortex (among other activations), which would not be considered essential of program comprehension. In essence,
it is still unclear what a suitable baseline for program comprehension is and researchers must be careful when
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Table 1. Overview of the variation of investigated tasks and baseline task(s) of neuroimaging studies in software engineering.
Cross-fixation is part of all studies and is not included.

Study Task under investigation Baseline task(s)

Siegmund et al. [63] Program comprehension Syntax error localization
Siegmund et al. [66] Program comprehension Syntax error localization
Floyd et al. [19] Program comprehension Code review, prose review
Ivanova et al. [32] Program comprehension Prose comprehension
Peitek et al. [52] Program comprehension Bracket localization
Duraes et al. [16] Bug localization Program comprehension
Castelhano et al. [12] Bug localization Program comprehension
Huang et al. [29] Data manipulation Mental rotation
Krueger et al. [39] Code writing Prose writing
Hishikawa et al. [25] Code execution, code completion, bug finding Word counting
Ikutani et al. [31] Code categorization —
Huang et al. [28] Code review —

(a) Program Comprehension > Syntax (b) Program Comprehension > Attention

Fig. 2. Brain-activation example illustrating the influence of different baselines [51]. On the left (a), the brain activation
of program comprehension was investigated with respect to a baseline of finding syntax errors, and on the right (b), with
respect to a baseline of an attention task. Clearly, the resulting activated brain areas, highlighted in orange, are different,
despite investigating the same cognitive process.

choosing the baseline of an experiment. But, there is no research that has investigated the effect of the baseline
selection in program comprehension experiments, despite it being critically important.

2.3 Specificity and Generalizability during Baseline Selection: A Fundamental Trade-Off
Fundamentally, there is a trade-off between the specific needs of a particular experiment and the goal of generating
knowledge in scientific research. As described above, neuroimaging experiments of program comprehension
require carefully designed experiments, including the selection of a baseline, to address their specific research
questions. For example, a study on comprehension of a visual programming language likely requires a contrast
task that induces similar visual attention. This specialization is essential to collect insightful empirical data and
draw meaningful conclusions. However, this specialization limits the generalizability of the results. When all
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conducted experiments are custom-tailored, this severely limits how we can integrate and synthesize the results
to the existing body of knowledge. This is problematic, as such synthesis is the core of science, rather than simply
collecting individual results. Clearly, generalizing from individual neuroimaging experiments is crucial to fully
unravel the cognitive processes of program comprehension.

Our research community must therefore aim at a balance between specificity and generalizability of designing
neuroimaging experiments of program comprehension. While the customization of experiments to their specific
needs is fully justified, we must also keep the needs of our broader scientific goals in sight. Our paper contributes
to this goal by increasing our understanding of the effect of baselines in program-comprehension experiments,
which is crucial for methodologically sound experiments.

3 STUDY METHODOLOGY
In this section, we describe our study design.

3.1 Research Goals
We formulate our research goal guided by the Goal-Question-Metric approach presented by Basili [5]. Our goal is
to analyze the influence of the baseline and its similarity to program comprehension for the purpose of evaluation
and identification of a suitable baseline. This endeavor is implemented with respect to program comprehension
from the point of view of the programmer in the context of empirical software engineering. Our study addresses
three research questions.

3.1.1 Influence of Baseline Selection (RQ1). Numerous studies have aimed at answering questions about program
comprehension using neuroimaging methods, often using different baselines, ranging from cross-fixation to
reading prose (cf. Section 2.2 and Table 1). Understanding how different baselines affect results is necessary to
create consistent studies that generate comparable results of brain-activation analysis.

RQ1 To what extent does the baseline selection influence the results of brain-activation analysis?

The first neuroimaging studies on program comprehension have adapted experiment designs from neuroscience,
but in different ways [19, 31, 63]. This led to a variety of task designs and baselines (cf. Table 1). If the choice of a
baseline makes indeed a substantial difference, researchers are made aware of this. An answer to this research
question would highlight the importance of an informed choice of the baseline and set a more solid foundation
for future studies of program comprehension.

Operationalization. To answer RQ1, we conduct an EEG study on program comprehension. Our choice of EEG
is motivated by the fact that, with EEG, we can observe brain activity with a high temporal resolution [44].
This strength made EEG a standard measurement method of brain activation in assessing mental load [3]. We
selected four different baselines: First, we include cross-fixation (CrossFix) as standard of neuroimaging studies
and all neuroimaging studies of program comprehension, making sure we can produce comparable results.
The other three baselines capture proclaimed core competencies of programmers: natural-language reading
(Read), basic arithmetic calculations (Math), and problem solving operationalized by the Raven-Progressive
Matrices (ProbSolv). These core competencies are also often the focus of studies that evaluate how these core
competencies affect programming skill (acquisition) [2, 59]. Thus, the selection of baselines, while not complete,
can be related to a wide agreed-upon understanding of program comprehension. To measure brain activation, we
compute the mental load from the EEG signal (cf. Section 3.3.2). We chose mental load because it is an objective
measure of the cognitive demands of a task, making it also the focus of many studies that investigate cognitive
processes [3, 20, 26, 47, 72].
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This operationalization allows us to test for significant differences between the obtained results on brain
activation for program comprehensionwhen using different baselines.The insights fromRQ1 lay the foundation for
a methodological standard for future studies and aim at facilitating comparability across program-comprehension
studies.

3.1.2 Cognitive Demands and Reading Strategy (RQ2). Having evaluated to what extent different baselines affect
experiment results, we dive deeper into how these baselines are different or similar in their cognitive demands to
program comprehension. Our second research question is:

RQ2
What differences and similarities in reading strategy and brain activation occur between program
comprehension and the four baselines?

Reading strategy refers to a participant’s chosen sequence of visual attention, as it forms the basis for subsequent
cognitive processes during a task. Thus, answering this research question helps us to better understand the nature
of the different baselines and disentangle the role of related cognitive processes on program comprehension,
which is important to make informed decisions when designing neuroimaging experiments, providing further
insights into the methodology for our field.

Operationalization. To answer RQ2, we use a triangulation approach with the following aspects: First, we
measure the mental load (cf. Section 3.3.2) of the different baselines in comparison to program comprehension.
Second, we compare the four baselines in terms of activated brain areas, using topoplots, to show the spatial
distribution of brain activation. Understanding where the brain activation occurs during the baseline tasks allows
us to localize the source of mental load. Third, we investigate the reading strategy for each baseline in comparison
with program comprehension. For this purpose, we use eye tracking, because eye movements differ depending
on the reading strategy [7, 11]. This allows us to investigate our results from multiple angles and thus obtain
more robust results. For example, a simple memory task is sufficient to induce high cognitive load, but would not
be a well-suited contrast to program comprehension as its cognitive demands are entirely different. Thus, we also
evaluate the similarity of the tasks by comparing participants’ eye movements in addition to the mental load and
its spatial distribution over the brain.

3.1.3 Toward a Default Baseline (RQ3). Based on the results of RQ1 and RQ2, we search for a candidate for
a well-suited “default” baseline for future program-comprehension studies. This is important, because, as the
neuroimaging research branch in software engineering evolves, it spreads out to address more specific questions.
Recently, researchers started to investigate program comprehension in more detail, for example, cognitive differ-
ences between experts and novices [31, 41, 53], the influence of code structures on top-down comprehension [66],
or the visual presentation of source code [32]. The trend of evaluating the differences between very similar tasks
(e.g., program comprehension of pretty-printed and disrupted code layout) leads to the observed difference in
brain activation being small, likely too small, without a suitable baseline [66].

We illustrate this effect in Figure 3, where a well-suited baseline is closer to the mental load of program
comprehension and thus helps to clearly reveal the differences between the two tasks. On a high level, we
search for a default baseline providing a strong contrast in a general setting. More specifically, understanding the
influence of the baseline also helps to choose the optimal one when the specific research goals require a custom-
tailored baseline. Hence, we need a baseline that is as close as possible to the act of program comprehension to
carve out the relative differences between potentially very similar program-comprehension tasks. This way, we
can conduct studies to reliably pinpoint even small effects, such as the choice of identifiers [56] or indentation
styles [6]. Thus, we formulate our third research question:
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Fig. 3. Hypothetical example of two different baselines ( ) and their effect on the results of an experiment ( and
). baseline 2, which is closer to the two investigated tasks in terms of mental load amplifies their differences during the

analysis and is a better suited baseline as it allows to differentiate small effects.

RQ3
Which baseline results in the best contrast and therefore qualifies as a well-suited default baseline
for program-comprehension studies?

Operationalization. For RQ3, we combine our findings from RQ1 and RQ2. On the one hand, we identify which
baseline results in the most pronounced contrast between baseline and program comprehension. On the other
hand, we investigate the cognitive demands for each baseline in terms of brain activation and reading strategy.
In this study, we subtract the average mental load of the baseline task from the subsequent task, as presented
in Figure 3. Ultimately, a suitable baseline yields only a small difference in brain activity when contrasted with
program comprehension and also is similar in its cognitive demands.

3.2 Study Design and Conduct
To answer our research questions, we have conducted an EEG study, which we describe next. All materials,
including snippets, tasks, and the experiment script, are available in an replication package (cf. Section 8).

3.2.1 Baseline Selection. When selecting the types of tasks for the baselines, we approached the choice from
two angles. As the first study of its kind, we focused on non-programming tasks used in neuroscience studies to
assess whether different baselines influence results. In a first step, since there is no comprehensive decomposition
of the cognitive processes underlying program comprehension, we relied on our experience and insights from
educational research [1, 17, 63]. We broke down program comprehension into several cognitive sub-processes:
reading, calculating, abstracting, as these are plausible fundamental basics to understand program code according
to the current understanding of the state of the art. Each of these cognitive processes is essential for program
comprehension, and omitting even one of these would hinder understanding. However, these skills alone do not
guarantee success in programming. There are many people who have mastered these three skills and are still
unable to successfully program.

Neuroimaging studies have strict time constraints, which limits the number of baseline tasks that we can
include in this experiment. In a second step, we reviewed fMRI studies on the described cognitive processes
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to compare activated brain areas to those of program comprehension, as reported in the literature [55, 63, 66].
Activating the same brain areas indicates that the tasks share similar or the same processes at a neurological
level, making them ideal baseline task candidates. In our analysis, we use Brodmann areas (BAs) as fundamental
insights, which serve as an anatomical classification system in fMRI experiments. The entire brain is split into
Brodmann areas based on cytoarchitectonic differences, which suggest that they serve different functional brain
processes [10]. In what follows, we review a representative subset of the relevant literature.

While fMRI studies on program comprehension are still fairly novel, there is still a good understanding
which brain areas are relevant: BA 6, 21, 40, 44, and 47 are part of the brain network activated during program
comprehension [55, 63, 66]. Price [60], Hagoort [22], and Hagoort and Indefrey [23] pinpoint the brain areas
relevant to natural language processing to BA 6, 44, 45, and 47, which generally strongly overlap with the activated
brain areas during program comprehension. In the area of mathematics, there is a lack of studies reporting
detailed activation results in terms of Brodmann areas. Most notably, Newman and others [49] work with two
different baselines (i.e., cross-fixation and verbalization of equation in every day context). They reported an
activation in the BA 6, 7, and 40 (for cross-fixation) and 13, 32, and 40 (for verbalization). While not all, some
of these brain areas are also activated during program comprehension. Finally, the term working memory has
different interpretations in different fields. Here, we follow the review of Baddley [4], in which working memory
is described as temporal memory with the ability to process data, which resembles the use in programming
contexts, such that working memory allows persons to complete more complex tasks. According to Baddley,
the central processing is supported by two components: First, the visuospatial sketchpad of activated BA 6, 19,
40, and 47, second, and the phonological loop of activated BA 40 and 44. These brain areas also show a partial
overlap with the activation during program comprehension. Note that none of these sets of activated brain areas
related to our candidates of related cognitive process are exhaustive. Nevertheless, they demonstrate that the
intuitive skills necessary for program comprehension are also evident in the brain activation. Based on these
considerations, we decided on using natural-language reading (Read), basic arithmetic calculations (Math), and
problem solving (ProbSolv) as baseline tasks, contrasting program comprehension.

3.2.2 Task Selection. Next, we present our operationalization of the four baseline tasks as well as program
comprehension. We explain the selected tasks in detail next and provide an overview in Table 2 as well as an
illustration in Figure 4.

Table 2. Task Overview

Abbreviation Task Skill Example

ProgCompr Comprehend the functionality of a method
without helpful naming Program comprehension Figure 4(a)

ProbSolv Completing a Raven-Progressive-Matrix [61] Instance of problem solving Figure 4(b)

Read Read a text about a searched term and
determine the term Natural-language reading Figure 4(c)

Math Calculating the sum of 7 single-digit
numbers (∈ / ) Arithmetic calculation Figure 4(d)

CrossFix Looking at a fixation cross Relax Figure 4(e)

Program comprehension (ProgCompr). To operationalize program comprehension, we ask participants to
comprehend code snippets in accordance with the state of the art in this area (see Table 1). Since we investigate
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(b) PROBSOLV (c) READ

(d) MATH (e) CROSSFIX

(a) PROGCOMPR

Fig. 4. Illustration of the program-comprehension task (a) and the four baseline tasks (b) to (e). All baselines and program
comprehension tasks are available in the replication package.

the methodology of studies in this area, we must use a comparable comprehension task, which pre-defines
the snippet complexity. Similar to prior studies, the snippets do not contain any beacons (i.e., variable names
or method names hinting at the implemented functionality) to enforce bottom-up comprehension [58], which
controls for confounding factors, such as domain knowledge or mental shortcuts [19, 52, 63, 66]. We selected
Java as programming language due to its widespread use. In our study, we first show a snippet, and on a second
page, a sample input with four possible outputs, one being correct. This way, we split program comprehension
into two steps, so participants focus on comprehension first, not on computing an output or possibly switching
between these two.

Natural-language reading (Read). During program comprehension, a programmer must also read and under-
stand natural language, for example, the keywords for and return. In our study, we operationalize reading as in
typical language studies by showing short texts about a specific term (e.g., sun) without using this term. In a
second step, participants have to choose the term described in the text from four options.

Problem solving (ProbSolv). Problem solving is considered one important aspect of program comprehension.
We operationalize problem solving with the well-established non-verbal Raven-Progressive Matrices test [61].
This is based on a general understanding of problem solving, which is not specific to programming, but includes
deriving hypotheses and verifying them, and then applying the best hypothesis again. This high-level view covers
a broad range of problem-solving applications. In a Raven-Progressive Matrix, the lower right corner misses one
picture, and the participants need to select the missing picture from a set of four options presented on the next
page.

Arithmetic calculation (Math). So far, the baselines covered natural-language processing and problem solving.
The mathematical component of program comprehension is still missing. For mathematical calculation, we show
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participants a chain of numbers with addition and subtraction operations, which they must mentally calculate. In
a second step, participants must select the result from four options.

Cross-fixation (CrossFix). Finally, we included cross-fixation, since it is an established baseline [30]. It has no
subsequent question, since participants are asked to relax and do nothing. However, this task as baseline has
been critiqued, because uncontrollable, confounding “task-unrelated thoughts” can appear during this task, so
the task does not imply neural inactivity (cf. Section 2.1).

3.2.3 Pilot Study. To evaluate whether the tasks that we selected are suitable for our study, we conducted an
online pilot study. The tasks of the pilot study had to be completed by the participants (i) within a reasonable time
and (ii) with a high rate of correct answers: If completed too fast, we obtain insufficient or low-quality data for
this condition1; if too slow, we lose valuable time in the experiment. A high rate of correct answers is important,
so that we can be sure the intended cognitive process actually takes place.

Most of the 120 participants were university students that were selected for the pilot study with an intermediate
level of programming experience (cf. Table 3) [15, 46]. The demographics and programming experience of
the participants were self-reported, and the correctness and the response time of the baseline and program-
comprehension tasks were recorded. Based on these data, we selected the final set of tasks for each baseline and
program comprehension for the actual EEG study (see Section 3.2.4).

Table 3. Demographics of the pilot study

Demographics/Experience measures # / Mean ± SD

Participants 120
Age (in years) 23.7 ± 3.42
Years at university 3.58 ± 2.88
Years of programming 5.54 ± 3.72
Years of Java programming 3.21 ± 3.04

For each baseline, we chose the 7 tasks with the highest correctness rate and a mean response time between
10 and 60 seconds. We planned with 28 baseline tasks and 28 program-comprehension tasks with an expected
overall time of 55 minutes (based on our pilot study). For program comprehension, we needed 28 tasks. From the
pilot study, we were able to include 13 program-comprehension tasks and 7 simplified tasks, as their original
version had a too high average response time or a too low correctness rate. Additionally, we added 8 new tasks
from other studies on program comprehension2 to meet the number of required program-comprehension tasks.
We provide all data, including answer times, correctness values, and criteria, in the replication package.

3.2.4 Experiment Plan. Having selected the tasks for the baselines and program comprehension, we could
conduct the actual study. We display the tasks one after another, starting with a baseline task, followed by a
program-comprehension task, and so on, with small rest periods without a task in between (cf. Figure 5). These
rest periods are necessary to let the activation return to a pre-task level. One hour is the usual time limit to avoid
fatigue effects in neuroimaging experiments [19, 52, 53, 66]. We pseudo-randomize the task order, minimizing
biases of learning effects and missing data. The ordering of the baselines stays the same within a participant, but
is pseudo-randomized between participants. After one-third and two-thirds of the overall tasks, we encourage
participants to take a longer break (5 minutes). We end the experiment after a maximum of 60 minutes. The
1because the EEG analysis used in the main study needs a few seconds of data to compute the mental load
2based on https://www.tu-chemnitz.de/informatik/ST/CodeWebsite/
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CrossFix baseline is set to 20 seconds. The rest periods are set to 10 seconds between baseline and program
comprehension and 20 seconds between program comprehension and baseline. From our experience, break times
can be perceived as more annoying than relaxing for some participants, so we give participants the option to
continue after the minimum break necessary for high data quality (i.e., 50% of the scheduled time). We set a
maximum time for the baseline tasks of 180 seconds for the question and 60 seconds for the answer (but they
were never exceeded in the experiment).

Sign

consent

form

Setup EEG and 

eye-tracker Training 

examples
Tasks

Pre-questionnaire

Post-

questionnaire

Baseline
RestAnswer Input Answer Rest

Baseline
RestAnswer Input Answer Rest

Baseline Rest Input Answer Rest

Baseline
RestAnswer Input Answer Rest

Fig. 5. Overview of the study and the task order. The order of the baselines (Math, ProbSolv, CrossFix, Read) was randomized
across participants.

We use the questionnaire of Peitek and others [53] to collect demographic data and assess programming
experience (which is based on a validated questionnaire by Siegmund and others [64]). We include the demo-
graphics and programming-experience questionnaire, as well as the post-questionnaire in the replication package,
see Section 8. Our study was approved by the ethical review board of the faculty of Mathematics and Computer
Science at Saarland University (Application number: 22-06-4).

3.2.5 Experiment Execution and Data Collection. Overall, the experiment lasted around 2 hours for each partici-
pant. We welcomed the participants, and they signed the consent forms. Then, they completed the demographics
and programming-experience questionnaires and clicked through the instructional presentation while the EEG
was placed on their head, which usually takes 30 min. The participants were encouraged by the instructor to ask
clarification questions. After that, we calibrated the eye-tracker, and subsequently, the tasks started. At the end of
the experiment, we removed the EEG cap and the participants answered the questions of the post-questionnaire
in a semi-structured interview. Finally, we paid a compensation of 10 euros. No participant reported discomfort.

The EEG lab is located in a room with reduced light and minimal distractions, such as external noise or mobile
devices. Participants sat in a comfortable chair minimizing unnecessary muscle movement to avoid noise and
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artifacts in the EEG signal. We recorded the EEG signals using LiveAmp 643, a 64-channel EEG system. We used
a sampling rate of 500 Hz and the international 10–20 system of electrode placement [33], to cover the entire
scalp and obtain spatial information from the brain recordings. We used the Tobii Pro Fusion eye-tracker4 with a
sampling rate of 250 Hz, attached to the screen to answer RQ2. We presented the stimuli with a PsychoPy script
(version v.2021.2.3 [50], also available in the replication package).

3.2.6 Participants. We recruited participants at Saarland University via e-mail lists and online bulletin boards.
We asked for basic knowledge of Java or a related programming language, such as C#, since the code snippets did
not use any advanced Java-specific constructs.

We provide an overview of our participants’ demographics in Table 4, which is in line with other neuroimaging
studies. Our participant sample consists of largely university students with an intermediate level of programming
experience [15, 46]. Overall, we invited 23 participants. We excluded the data of one because of unreadable data
files due to a technical error. We also excluded two complete participant data sets due to their behavioral data
consisting of a majority of tasks being classified as outliers (cf. Section 3.3.1), leaving us with 20 participants in
the analyzed data set.

Table 4. Overview of participant demographics of our EEG study and a subset of (4 out of 49) measures from our programming-
experience questionnaire.

Demographics/Experience measures # / Mean ± SD

Number of (included) participants 20
Female 5
Male 15
Age (in years) 23.7 ± 2.56
Years of learning programming 5.4 ± 3.36
Years of professional programming 2.0 ± 0.92
Years of Java programming 2.9 ± 3.23
Number of known programming languages 5.1 ± 1.39

3.3 Analysis Protocol
Next, we describe the protocol of analyzing the collected data. We largely reuse the processing pipeline of Peitek
and others [53]. The results are presented in Section 4.

3.3.1 Outlier Removal. We start the analysis by removing outliers in task completion time. Specifically, we
exclude all data points5 where the response option “Skip” was selected, the response time was outside 1.5 times
the interquartile range, or a response time faster than 3 seconds, which is the minimum time to calculate the
mental load. This way, data points where participants did not thoroughly attempt to solve the task were removed.
This led to the removal of more than half of the initial data points for two (slow) participants, so we excluded
their entire data sets from the study.

In total, we obtained 17 usable data sets. Since we aimed at 20 participants, as this is a common participant
number in our field [69], we invited 3 additional participants.

3Brain Products GmbH, https://brainvision.com/products/liveamp-64/
4Tobii AB, https://www.tobiipro.com/product-listing/fusion/
5A data point here is a tuple of the response times of a participant for a baseline task and the following program-comprehension task.
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We further excluded 75 data points: 33 skipped or not completed, 41 with a response time lying outside the
≥ 1.5 interquartile range, and one with a response time ≤ 3B . This leaves us with 20 participants with a total of
485 data points.

3.3.2 EEG Data.

Data Cleaning. As a standard procedure in this area, we removed noise from the EEG data—particularly motion
artifacts—using Hamming-filtered finite impulse response (FIR) filters. Then, we removed power line noise using
a notch filter with a lower cutoff frequency of 49 and an upper cutoff frequency of 51 Hertz. Additionally, for
more robust performance in subsequent analysis, high-frequency noise was removed using a bandpass filter in
the range of 4 to 200 Hertz [62].

For one participant, three channels (23, 24, 56) were probably broken, because the values of these three channels
were extremely high. Since we did not observe such high values for any other channels for any other participants,
we excluded the three channels from the analysis of this participant. Given the type of experiment, which requires
participants to observe different parts of the screen, it is impossible to avoid eye movements and other muscle
activities. To avoid bias during the interpretation of the EEG signal, we used blind source separation to reduce such
artifacts via an automated implementation of independent component analysis (ICA) of the EEGLAB toolbox [14]6
(again following Peitek and others [53]).

Mental Load. We based our assessment of mental load on a spectral analysis, using the different frequency
bands of the EEG signal. For robustness, we calculate the mental load using two different approaches, following
Peitek and others [53]: the theta/alpha power ratio and the relative power analysis.

For the first approach, we calculate mental load as theta/alpha power ratio, according to Holm and others [26]
and Kartali and others [35]. We use a sliding window of 3 seconds and a shift of 0.1 seconds. We average the
power spectral density to obtain the mean power for each frequency band of interest. The measure of mental
load is calculated by dividing the mean theta value by the mean alpha value within a window. This way, we
can observe the time course of mental load during a task. For calculating the specific mental load of program
comprehension (cf. Figure 1), we subtract the average mental load of the baseline task from the mental load of
the subsequent program-comprehension task [44].

The second approach to measure the mental load is relative power analysis per band and per channel along
the alpha (8–12Hz), beta (12–30Hz), gamma (30–45Hz), and theta (4–8Hz) bands, following Lee and others [41].
This approach is sensitive to the spatial location of brain activation by taking the channel of the electrode into
account. The resulting topoplots provide us with a coarse-grained map of brain activation, indicating the possible
sources of mental load, as we discussed in Section 3.1.2.

Statistical Significance Testing: Program Comprehension. Since the base activation of the brain shifts throughout
the experiment [42], program comprehension is only evaluated with respect to its directly preceding baseline task
(not, for example, with respect to a baseline task from 20 minutes ago). This leads to grouping all brain activation
measurements during program comprehension by the preceding baseline, such that in ProgCompr>Read only
all ProgCompr tasks that had a preceding Read task are considered.

To ensure that this grouping does not influence the program-comprehension task, we tested for significant
differences in mental load between program-comprehension tasks (ProgCompr after Math vs. ProgCompr after
Read vs. ProgCompr after ProbSolv vs. ProgCompr after CrossFix). Since the mental-load data were not nor-
mally distributed (Shapiro-Wilk test: p ≤ 0.03), we tested for statistical significance with a Kruskal-Wallis test [40].
It revealed no significant differences (? = 0.569), indicating that the four groups of program-comprehension tasks
did not show significant differences in mental load (which is good, as they are the same task).

6version 2021.1, https://sccn.ucsd.edu/eeglab/
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Statistical Significance Testing: Between Baselines. To evaluate whether there are significant differences between
the mental load of different baselines, we also used a Kruskal-Wallis. If significant, we conducted a post-hoc
pair-wise comparison with a Mann-Whitney U test [45] with the standard p < 0.05 criteria, completed with
Benjamini-Hochberg false discovery rate [8] to correct multiple testing. We calculated the effect size using Cliff’s
delta [13].

3.3.3 Eye-Tracking Data. We qualitatively analyze the eye-tracking data for RQ2 in terms of gaze patterns and
frequently fixated areas in the stimuli [27]. We preprocess the eye-tracking data by identifying fixations and
saccades from the raw stream of coordinates. To this end, we use I2CM, a noise-robust algorithm [24] for fixation
classification. We plot the fixations and saccades as scan paths to visualize participants’ reading strategy [27].

4 RESULTS
After applying the analysis protocol to our data, we can answer our three research questions in this section.

4.1 RQ1: Influence of Baseline Selection
We calculated the mental load with respect to each baseline (ProgCompr>Read, etc.). The data are not normally
distributed (Shapiro-Wilk:, > 0.93, ? < 0.031 for each). A Kruskal-Wallis test showed significant differences
(- 2 = 20.90, ? ≤ 0.001). The pair-wise Mann-Whitney-U tests revealed that some pairs differ significantly
(see Table 5) after applying the Benjamini-Hochberg procedure to adjust the false discovery rate (FDR). We
visualize the mental load over time in Figure 6, which shows differences in mental load based on the selected
baseline. There is a strong contrast between ProgCompr analyzed with respect to CrossFix ( ), on the one
hand, and ProgCompr analyzed with respect to ProbSolv ( ), on the other, such that the differences in mental
load significantly affect the analysis.

Table 5. RQ1: Significant differences in mental load when contrasting program comprehension with the four baselines. We
analyzed the baselines pairwise. Significant results are marked in bold.

Pairwise Different Baselines Mann-Whitney U FDR Cliff’s delta

ProgCompr > CrossFix vs. ProgCompr > Math 0.027 0.040 −0.163 (small)
ProgCompr > CrossFix vs. ProgCompr > Read 0.002 0.004 0.231 (small)
ProgCompr > CrossFix vs. ProgCompr > ProbSolv <0.001 <0.001 −0.323 (small)
ProgCompr > Math vs. ProgCompr > Read 0.300 0.300 —
ProgCompr > Math vs. ProgCompr > ProbSolv 0.019 0.039 0.177 (small)
ProgCompr > Read vs. ProgCompr > ProbSolv 0.103 0.124 —

Thus, we answer our first research question:

RQ1
The choice of the baseline has a statistically significant influence on the results of the brain-
activation analysis of program comprehension.

4.2 RQ2: Cognitive Demands and Reading Strategy
For a more comprehensive understanding of the similarities and differences of the cognitive demands of the
baselines to program comprehension, we first describe the three aspects (mental load, reading strategy, brain
activation) of the triangulation individually before combining them into one view.
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Fig. 6. RQ2: Average of the mental load of all baselines and program comprehension over time. The data are plotted until
>50% of the participants have completed the task, to ensure that the average remains meaningful. Thus, the individual lines
are of different lengths, which represent their mean answer time. On the right side, their overall means are shown, for a
better comparison.

Mental Load. Considering the mean mental load over time, shown in Figure 6, we find that Math ( ) was
demanding only for a short amount of time. For ProbSolv ( ), Read ( ), and ProgCompr ( ), we
observed a longer demand on mental load, but Read and CrossFix ( ) stayed on a lower level. Overall, the
mental load of ProbSolv most closely resembles the mental load of program comprehension. This is backed up
by statistical tests: Since the data are not normally distributed (Shapiro-Wilk:, > 0.88, p ≤ 0.001), we applied a
Kruskal-Wallis test. We found significant differences between the tasks (- 2 = 28.80, p 0.00 ≤ 0.05). A post-hoc
Mann-Whitney U test found statistical significant differences for ProgCompr vs. Math, Read and CrossFix (each:
* ≥ 8033, p < 0.014, adjusted p with FDR < 0.034). The effect sizes are small (Cliff’s delta: 0.19, 0.19, and 0.25,
respectively), though. There is no statistical significant difference, with only a negligible effect size between
ProgCompr vs. ProbSolv.

Reading Strategy. Regarding the reading strategy, we analyzed the scan paths obtained from the eye-tracking
data. We show examples of scan paths across the baselines and program comprehension in Figure 7.7

The example in Figure 7 is representative of a general pattern: Math and Read both show a linear reading
strategy from left to right, top to bottom, with only a few fixations on previously seen parts. The number of
fixations is fairly equally spread across the stimuli. ProbSolv and ProgCompr are both non-linear: participants
are first overviewing the stimuli and then quickly focus on relevant points of interest. For both tasks, there are
many refixations on previously seen parts. Since participants focus on specific parts, the fixations are not equally
distributed over the stimuli, but clustered in certain areas of interest.

In general, the eye-tracking data point to problem solving as operationalized by the Raven-Progressive Matrices
as being most similar to program comprehension in terms of reading strategy.

Brain Activation. In terms of activated brain areas, we analyze the topoplots in Figure 8. Across all program
comprehension tasks (A), we find largely comparable brain activation across the entire brain, indicating that, at a
more detailed level, the effect of the preceding baseline task on the activation of program comprehension cannot
be observed (which is as expected). However, when we analyze the activation of program comprehension with
7We omit CrossFix here, as it does not trigger a reading strategy.
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Fig. 7. RQ2: Representative scan-path examples of a participant across three baselines (Math, Read, ProbSolv) and Prog-
Compr. Math and Read show a linear reading strategy. ProbSolv and ProgCompr show a non-linear reading strategy.

respect to the different baselines (B), differences in reading strategy are also visible in the brain activation: In
CrossFix and Math, the activation in the front of the brain, mainly caused by eye movement, is showing red
topoplot areas. That is, the eye-movement-induced activation was not sufficiently canceled out, whereas it is
almost completely canceled out in Read and ProbSolv.

Overall, we answer our second research question by triangulating all three findings, where ProbSolv always
is most similar to program comprehension:

RQ2

Problem solving as operationalized by the Raven-Progressive Matrices most closely resembles
program comprehension considering all three aspects (mental load, reading strategy, and brain
activation). Reading, calculation, and cross-fixation are substantially different from program
comprehension in terms of their cognitive demands.

4.3 RQ3: Toward a Default Baseline
Based on the insights of RQ2, problem solving seems well-suited as a default baseline for program-comprehension
studies. To be a good fit, it must also show an average mental load close to the average mental load of program
comprehension, which would allow us to have a more detailed view of program comprehension (cf. Figure 3).
In Figure 6, we visualize the mental load of the four baselines and the averaged mental load of program com-
prehension. Program comprehension and problem solving (ProbSolv) both trigger a comparably high mental
load (≥ 1.8) compared to the other baselines (≤ 1.6). Since the observed mental load of ProbSolv is closest to
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Fig. 8. RQ2: Topoplots for program comprehension contrasted with all four baselines. A: Average of all frequency bands for
ProgCompr grouped by the preceding baseline. B: Average of all frequency bands for ProgCompr contrasted with the four
baselines. The yellow to red areas are activated and the blue areas are deactivated.

the mental load of program comprehension, it qualifies as a candidate for a suitable default baseline for future
studies in this area.

RQ3
Problem solving (ProbSolv) appears to be a well-suited default baseline for program-
comprehension studies.

4.4 Exploration of Post-Questionnaire Data
To obtain a comprehensive picture of the selected tasks and their relation to program comprehension, we interpret
the participants’ feedback and comments directly following the EEG study. This helps us to better differentiate
our findings on how and why these tasks evoke different mental work load and different reading strategies. The
post-questionnaire data are available in the replication package.

4.4.1 Difficulty and Similarity of Baseline Tasks and Program Comprehension. We aimed at finding a baseline task
that is as close to program comprehension as possible, without capturing its “essence” [30]. Therefore, we are
interested how participants perceived the difficulty of the baseline tasks and their similarity to program compre-
hension. It is particularly important that the baseline tasks are of similar difficulty to program comprehension
to generate sufficiently high baseline activation for comparison. Thus, in addition to the subjective rating, we
explored the open-text feedback on the perceived similarity, to not miss potentially relevant details.

Overview. Our collected subjective data, shows that many participants viewed ProbSolv as similarly to slightly
more difficult than program comprehension, whereas all other baselines were considered as (much) easier (see Fig-
ure 10), which is in line with our mental load analysis in Section 3.1.2. On a high level, participants perceived
three baseline tasks as rather similar to program comprehension, but not CrossFix (see Figure 9).
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Fig. 9. The perceived similarity of baselines
to program comprehension differs across
participants, except for the cross-fixation,
which shows a strong shift to the not similar
direction.
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Math (vs. Prog. Compr.)
Read (vs. Prog. Compr.)

ProbSolv (vs. Prog. Compr.)
CrossFix (absolute)

Math (absolute)
Read (absolute)

ProbSolv (absolute)
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very hard / considerably harder
rather hard / somewhat harder
neutral / equally as hard

rather easy / somewhat easier
very easy / considerably easier

Fig. 10. The difficulty of problem solving is mostly perceived
as equally or harder as the other baselines and program com-
prehension; the other baselines are perceived as easier than
program comprehension.

Math: Overall, participants described the arithmetic problems as easier, as they require less memorization
than program comprehension, which is consistent with the mental load analysis in Section 3.1.2. Participants
further reported that the approach and skills are different, while some participants viewed arithmetic problems
and program comprehension to be similar, since program comprehension also involves arithmetic.

Read: Furthermore, participants reported that natural language reading was easy for several reasons. First,
the correct answer was sometimes clear before the answer options or even after the first sentence, which then
led to skipping the remaining text. Second, they also described reading as more subconscious, automated, and
less reflective than program comprehension, which also aligns with our results in the mental load analysis.
They further expressed that program comprehension requires specialized knowledge and, unlike the task Read,
does not allow an educated guess. Participants also acknowledged that natural language reading and program
comprehension both require reading and that they used similar comprehension strategies to search a solution.

ProbSolv: Participants perceived problem solving as rather difficult, since the result was not clear unless the
answer options were shown; thus they had to memorize the abstracted concepts.They also expressed that difficulty
varied widely among tasks. The participants explained that both, problem solving and program comprehension,
are based on recognizing patterns, structures, and sequences. For both tasks, they used logical thinking and noted
that prior knowledge being useful. Specifically, experience with algorithms was helpful, which they did not have
for the problem-solving tasks.

CrossFix: Finally, participants perceived the cross-fixation as very different and very simple, since nothing
needed to be done. Some participants stated staying motionless was more challenging here than during cognitively
demanding tasks. Furthermore participants explained that it is difficult to relax in a study setting, and they
disliked the interruption of the workflow.

ProgCompr: Overall, the participants assessed program comprehension as more difficult than the other baseline
tasks, but overall straightforward. They mentioned the recursion and the lack of a specific input number as
difficult, as this required more memorization. They noted further that the answer was more clear compared to
the ProbSolv task, but they needed to jump back and forth more often and needed to reread parts, which was
not the case in the Read and Math tasks.

Summary. The subjective rating provided insights explaining the higher similarity of program comprehension
and problem solving. Specifically relevant appears to be the amount of information (e.g., numbers) to be kept in
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working memory and how common and, therefore, intuitively automatic the tasks are (e.g., natural language
reading vs. problem solving). Specifically, the higher working memory load of problem solving can be explained
that the participants needed to keep more in mind compared to natural language reading or during the arithmetic
problems.

The post-study feedback, providing us with an additional dimension of insights, matches our results based
on the mental load analysis and eye-tracking analysis as presented in Section 3.1.2. Overall, we conclude
that our prior finding that problem solving can serve as a reasonable default baseline is also supported by
the subjective perception of our participants.
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Math (vs. Prog. Compr.)
Read (vs. Prog. Compr.)

ProbSolv (vs. Prog. Compr.)
CrossFix (absolute)

Math (absolute)
Read (absolute)

ProbSolv (absolute)
Program Comprehension

very unenjoyable / considerably less enjoyable
rather unenjoyable / somewhat less enjoyable
neutral / equally enjoyable

rather enjoyable / somewhat enjoyable
very enjoyable / considerably more enjoyable

Fig. 11. Compared to program comprehension, the tasks appear rather unenjoyable. Especially the problem solving task
rating is shifted in the unenjoyable direction.

4.4.2 Task Enjoyment of Baseline Tasks and Program Comprehension. To collect high-quality data, one aspect is to
keep participants actively engaged throughout the experiment. We tried to create an enjoyable experience within
the constraints of our research design and assessed participants’ perceived enjoyment of all tasks. Almost all
participants rated the program-comprehension tasks as more enjoyable than any of the baselines (see Figure 11).

Based on the open text feedback we learned, that the difficulty and success of the tasks influenced participants’
enjoyment: Cognitively demanding tasks (such as problem solving or program comprehension) were perceived
as exhausting, but also as challenging providing a sense of reward when solved successfully. We recommend
including a “None of these” answer option to mitigate potential negative thoughts of participants when their
believed answer option was not a choice. We found a clear tendency for program comprehension to be the most
enjoyable task. Given that participants volunteered for a program comprehension study, this is to be expected.
Cross-fixation was viewed negatively, since it was boring and tiring to do nothing. Therefore, minimizing
downtime during the experiment is crucial for participant engagement while preserving the option to take breaks.

Challenging tasks can be enjoyable when the solution is within reach of the participants’ abilities. The
downtime can be omitted by self-regulated break durations, as the study design allows.
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4.4.3 Open-Text Feedback on Task-Unrelated Thoughts. Finally, we examined participants’ statements on their
task-unrelated thoughts. Ideally, we aim to minimize such thoughts, since mind wandering reduces data quality,
as we measure these thoughts rather than the investigated tasks.

Interestingly, participants (17/20) reported that cross-fixation triggered a large number of task-unrelated
thoughts in our experiment, considerably more than the other baselines (Math: 1/20, Read: 6/20, ProbSolv:
3/20), but in line with prior literature reporting task-unrelated thoughts [9].

Participants have task-unrelated thoughts during downtime. Thus, designing engaging (but not overwhelm-
ingly difficult) tasks and minimizing opportunities for distractions is important to collect high-quality
data.

5 DISCUSSION
Having presented our results, we now discuss their implications in two directions: the influence of the choice of
the baseline and the search for a suitable default baseline for program comprehension.

5.1 Influence of Baseline Selection (RQ1)
Neuroscience research has shown that the choice of a suitable baseline is a crucial part of the experiment
design [21]. Our study adds to this for the area of program comprehension. The results of RQ1 show that using
different baselines for program comprehension significantly influence the experiment results. Consequently, it is
imperative to carefully consider this influence as a factor when comparing and synthesizing existing research, as
two studies with different baselines will obtain different, possibly contradicting results. While our study focused
on EEG, our insights apply to all research that relies on a baseline, including program comprehension studies
using fMRI and functional near-infrared spectroscopy (fNIRS) [18], which we will discuss in more detail below.

5.2 Suitable Baseline for Studies (RQ2 and RQ3)
After showing that different baselines affect the results of program-comprehension experiments, we investigated
which baseline is the most suitable for future studies. This is necessary for a solid methodological foundation to
move toward valid and comparable studies.

The results of RQ2 and RQ3 suggest that problem solving in the form of a Raven-Progressive-Matrix task is
a suitable default baseline for studies of program comprehension. A triangulation with eye tracking providing
corroborating evidence, highlighting that problem solving triggers a non-linear reading behavior and a cognitive
demand similar to program comprehension. Reading and calculation trigger linear reading behavior and lower
cognitive demand and thus do not fulfill the criteria for a suitable baseline in a default case for studies on program
comprehension (without specific requirements due to the study-specific research questions, cf. Section 2.2). Finally,
our exploration of the post-questionnaire regarding the participants’ subjective views further corroborate these
findings. Specifically, they provide qualitative insights into how problem solving engages cognitive processes
that are more related to those of program comprehension than the other baselines.

Guided by these findings, future research can make an informed decision on which baseline to select. Our
proposal of problem solving as default baseline for EEG studies of program comprehension provides a common
foundation for this research area.

As mentioned above, it is important to note that our study is only the start of an empirical evaluation of
baselines. For example, the reading strategy of programmers differs depending on experience, such that novices
tend to read source code more linearly than experienced programmers [11, 54]. That is, for a study specifically
targeting novice programmers, reading or calculations could be a suitable baseline with respect to a similar
linear, left-to-right reading strategy; however, novice programmers showed higher cognitive load during program
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comprehension [53], which could disqualify less demanding baselines such as reading or calculations. This shows
how complex selecting a well-suited baseline, depending on the study demands, is. For example, other cognitive
processes of interest in software engineering (e.g., writing source code) may not be ideal for using problem
solving as baseline. Future studies must carefully consider designing and selecting the suitable baseline that
ideally fits to the research goals. In general, future research shall continue to investigate suitable baselines for
this and other specific research questions. We provide a foundation for this endeavor with our experiment design,
which is publicly available in our replication package, see Section 8.

Baseline for Other Constructs. Clearly, software-engineering studies that have special requirements regarding
the baseline will presumably not resort to our default baseline for program comprehension and shall carefully
investigate their choice of a baseline. Nevertheless, based on our provided data and experiment design, other
researchers can adapt the experimental protocol and baseline definitions for similar cognitive constructs, so that
the software engineering research community can develop and agree upon standards for researching cognitive
constructs with neuroimaging methods. We would also like to point out that it is possible to use two baselines in
an experiment. For example, researchers could design their experiment with a custom baseline for the specialized
needs for their research goals, and our general-purpose baseline of RPMs to ensure comparability to other studies.
However, this does reduce the number of possible tasks in a time-limited neuroimaging experiment.

Baseline for fMRI and fNIRS. We conducted our study with EEG, since it has several advantages over fMRI or
fNIRS beyond the lower cost and better device availability. fMRI studies limit the time of the participants in the
scanner to around 30 minutes (e.g., [63]) and require longer rest periods between tasks for the BOLD response to
return to normal. In an EEG experiment, we are not only able to shorten rest periods, but also let participants
solve tasks for around 45 minutes without running into fatigue effects. This substantial increase in the number of
tasks per participant is quite relevant, as our investigation into baselines is novel and there was no prior work we
could rely on to design a targeted experiment with only two or three baselines. We included several baselines,
which required a more time for each participant, and therefore EEG was the better choice without having to
conduct multiple fMRI experiments.

While we concentrated on EEG, many insights apply to other neuroimaging methods. fMRI and fNIRS examine
the activated brain areas in more spatial detail than EEG, and therefore have slightly different requirements that
must be considered: While our EEG data consider mental load only, fMRI and fNIRS collect three-dimensional
data of brain activation. For fMRI studies, we therefore require a baseline that is not only reliable across various
participants and a good reference point in one dimension, but also a good fit in 3-dimensional brain activation
patterns. The results of our study, specifically the spatial distribution in the topoplots and the reading strategy
based on eye tracking, indicate that ProbSolv is a suitable baseline for fMRI and fNIRS, as well. This issue requires
attention in future studies: Is the brain activation of a problem-solving task (ProbSolv) measured with fMRI or
fNIRS sufficiently similar to be used as a baseline for program comprehension? A replication study with fMRI
shall be conducted to evaluate whether we can confirm our insights. Our EEG study with its experiment design
lays the foundation for such follow-up experiments, such as a targeted fMRI study with the most promising
baseline candidates.

6 THREATS TO VALIDITY
In this section, we discuss threats to construct, internal, and external validity of our study. We minimized
potential threats to validity by carefully designing the experiment with an extensive pilot study. We have further
preregistered our study at the Open Science Foundation, which means we could not change or add research
questions with hypotheses after the data were gathered. We committed to the evaluation details before starting
data collection, to prevent post-hoc “fishing for results”.
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6.1 Construct Validity
Themental-loadmeasure may deviate from the actual mental load.Wemitigated this threat by using an established
mental-load measure for EEG [26, 35], which also has been tested specifically for use in software engineering [48].
In the same vein, our operationalization of program comprehension was inspired by similar experiments [19,
38, 53, 63]. Furthermore, we analyzed all of the baselines in a single study to avoid confounding factors such as
interpersonal variation.

6.2 Internal Validity
Regarding experiment design, we pseudo-randomized the task order to counteract learning and fatigue effects
over the time of the experiment. We minimized variance in participant instruction by showing an instructional
presentation rather than the experimenter explaining the experiment.

A substantial threat to validity arises from our selection of specific tasks for each category (e.g., which snippets
to show for program comprehension). We mitigated this threat by collecting the tasks from previous studies in
the field and by conducting a pilot study to carefully select the specific tasks.

6.3 External Validity
Our study included 20 participants, which is in line with neuroimaging experiments in software engineering [69].
Due to the repeated-measures experiment design, we collected a sufficient amount of data, increasing reliability.
Our participants reported experience measures compared with the majority of neuroimaging studies in our field.
Regarding our participant sample, our participants were intermediate programmers, and therefore the results are
neither specific to high-performing programmers nor novices. However, participants with different profiles (e.g.,
expert programmers) may experience different mental loads for different tasks. Future research shall further test
our results across a wide variety of programmers.

7 CONCLUSION
Baselines are a fundamentally important element in neuroimaging studies. In an EEG study on program com-
prehension with different baselines, we have shown that the baseline has a significant effect on the results of
neuroimaging experiments on program comprehension. Our results challenge the community to be careful when
adapting neuroimaging methods to software engineering. While promising, we are advised to properly modify
the methods for our needs. With this study, we take a crucial step in this direction by showing the importance
of the baseline and initiating a search for a suitable baseline and advocate for reporting the used baseline. In
particular, we found that problem solving in the form of a Raven-Progressive-Matrix is a suitable candidate for a
default baseline for future studies on program comprehension, if the specific research setting does not require
otherwise. Leveraging a common baseline, or adding this baseline as an additional evaluation option, will enable
us to work together towards a deeper understanding of program comprehension. Future research shall investigate
further baselines, such as related tasks to program comprehension or tasks with varying difficulty. Furthermore,
we shall test the adaption to other neuroimaging methods, for which a good starting point would be fMRI, but
also fNIRS and MEG (magnetoencephalography) are of interest. Our study lays the foundations for this endeavor.

8 DATA AVAILABILITY
Along with this submission, we provide an online repository8 (i.e., replication package, pilot-study data, scripts
for analysis protocol, and additional figures, EEG and eye tracking data) along with our preregistration on osf.io9.

8https://github.com/brains-on-code/baseline_eeg_study
9https://osf.io/eh245/?view_only=d5adb6163267436783ba9e58f9304b46
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