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Abstract. Emotion recognition is one of the crucial research fields for
advancing affective computing. Automatic prediction using deep learn-
ing models shows poor performance while predicting valence/polarity
for spoken utterances. In this paper, we investigate the effectiveness of
emotion representations from a recent weakly supervised multilingual
large automatic speech recognition (ASR) model along with two other
self-supervised pre-trained general purpose foundation models for dimen-
sional emotion recognition tasks from speech. We also propose a fusion
architecture and demonstrate that the proposed method can achieve sig-
nificantly better results compared to a state-of-the-art baseline. More-
over, we train our model with additional pairwise rank loss to further
improve the prediction reliability. We further attempt to explain the
prediction results using post-hoc occlusion methods demonstrating a
strong relationship between the contextual construct of language and
valence/polarity. Finally, we perform a comprehensive exploration of the
data and labels and identify instances of verbal irony causal for individ-
ual prediction failure.
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1 Introduction

Emotion has traditionally been interpreted into the concept of sentiment, i.e. an
attitude or perception held towards a particular object in the NLP community,
and the concepts of arousal and valence in terms of emotion, i.e. a more general
instantaneous characteristic of a person’s feeling [1]. Further, evidence suggests
that sentiment annotations can be decomposed into two components: intensity
and polarity in the NLP community [2], which roughly correspond to the con-
cepts of arousal and valence as defined in the speech community, here further
referred to as Speech Emotion Recognition (SER) [1]. Though these dimensions
of sentiment and emotion are not fundamentally the same they are certainly
co-related and overlapping.
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Speech is a fundamental medium of human-to-human communication and we
humans have an innate ability to detect a speaker’s emotion through the linguis-
tic and paralinguistic cues in speech. That allows us to construct or modify our
responses accordingly. The growing prevalence of speech devices, such as voice
assistants interacting with users, necessitates automated and precise emotion de-
tection by machines, emphasizing the importance of emotion recognition (ER)
as a critical research area contributing to the overall goal of improving affec-
tive computing. Research on ER techniques has mainly relied on two conceptual
emotion representation models: categorical and dimensional. Methods related
to the categorical concept define the task of ER as a multi-class classification
problem and categorize the speech with labels like ”angry”, ”sad”, etc. In con-
trast, methods based on the dimensional model attempt to regress the values of
emotion-defining dimensions in a continuous range, such as ”arousal/intensity”
and ”valence/polarity” [3].

Early SER methods extracted several low-level acoustic descriptors (LLD),
such as pitch [4], loudness [5], root mean square (RMS) energy [6], zero cross-
ing rate (ZCR), duration as well as spectral features like spectral kurtosis [7],
spectral flux [3, 8], etc, from the speech stimuli to categorize them into several
discrete classes. The classification algorithms mostly involved the Gaussian Mix-
ture Model (GMM) [9], Hidden Markov Model (HMM) [10, 11], Support Vector
Machine (SVM) [9], etc. Other researchers have shown that several speech signal
representations, such as the Mel Frequency Cepstrum Coefficient (MFCC) [9],
Linear Prediction Cepstrum Coefficient (LPCC) [12], and Log Frequency Power
Coefficients (LFPC) [10], perform well to encode emotional cues from speech sig-
nals and successfully aid in identification. Later, numerous researchers began to
adapt artificial neural networks (ANN) [13], convolution neural networks (CNN)
[14, 15], or long-short-term memory (LSTM)-based [16, 17] recurrent networks
to solve the SER task. In addition to the ways to accurately classify speech in
discrete emotion categories, numerous efforts were made to predict or regress
emotion dimensions [18, 19, 20, 21] such as arousal/intensity, valence/polarity,
and dominance. [18] uses several LLDs and MFCCs as input features and tries
to regress the value of arousal, valence, and dominance in a multi-task learn-
ing scenario and compares it with single-task learning. These methods are often
criticized for poor valence prediction performance [22].

In recent years, in comparison to task-specific training, fine-tuning large self-
supervised (SSL) foundation models on downstream tasks has resulted in con-
siderable performance improvements in several audio-specific tasks [23, 24], in-
cluding SER [1]. [25] fine-tuned Wav2vec 2.0 [26] and HuBERT [27] models on
SER task and compared their performance for categorical emotion recognition.
In contrast to categorical emotion prediction, [28] fine-tuned Wav2vec 2.0/Hu-
BERT for arousal, valence, and dominance regression tasks and archives state-
of-the-art results. The authors demonstrate that the representations learned by
these SSL models considerably enhance valence predictions. Similar findings can
be observed in the work by [1] where they compare a CNN model to these
transformer-based general-purpose self-supervised models, demonstrating that
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the latter significantly outperforms the task-specific CNN model. The authors
argue that the information acquired from linguistic cues, i.e. the content of the
speech, is appropriate for predicting valence, but paralinguistic cues are better
suited for predicting arousal.

In connection with the findings of these studies: 1) We explore the efficacy
of speech representations, learned by a state-of-the-art weakly supervised mul-
tilingual large ASR model and two other recently proposed pre-trained general-
purpose SSL foundation speech encoders, by assessing their ability to predict
arousal/intensity and valence/polarity accurately. We train individual regres-
sors using these speech representations. We propose to train these SER models
using a pairwise rank loss to guarantee that they can accurately predict valence
and arousal scores by learning from comparing two utterances. 2) We intro-
duce a novel late fusion architecture combining representations acquired from
all three supervised ASR and self-supervised models. This architecture explores
the synergies and complementarity between representations extracted from su-
pervised ASR and SSL models in SER tasks. The evaluation results show that
the proposed fusion method improves the valence/polarity and arousal/intensity
prediction tasks by nearly 19.3% and 2.6% respectively, over the baseline. 3) We
investigate the limitations and challenges of such methods involving represen-
tations from foundation models for the SER task by assessing the sanctity of
the SER annotations and analyzing their efficacy while detecting verbal irony.
4) Finally, we explain the prediction results using frequency band occlusion and
n-gram-based temporal parts-of-speech occlusion in a model-agnostic manner,
demonstrating a strong relationship between these models’ prior knowledge of
contextual language semantics and the final emotion prediction.

2 Method

In this section, we describe the overall architecture of our proposed method along
with the different loss functions required for training the models.

2.1 Architecture

Figure 1 depicts a schematic diagram of our proposed architecture. The three
speech encoders used in the proposed method are Whisper [29], WavLM [30]
and W2v-BERT2.0 [31]. The speech encodings from different transformer layers
are passed through a Time and layer-wise Transformer (TL-Tr) layer as pro-
posed in [32] to generate layer-wise and time-wise attention-weighted average
speech embeddings before passing it on to a regression head. Finally, a regres-
sion head, comprising feed-forward layers, gives predictions for arousal/intensity
and valence/polarity. The proposed fusion model relies on the late fusion of
speech encoding obtained from three pre-trained transformer-based large model
encoders.
Whisper: [29] proposed a general-purpose end-to-end ASR model that was
trained with 680,000 hours of multilingual speech data in a multitask supervision



4 Arnab Das, Carlos Franzreb, Tim Polzehl, and Sebastian Möller

W
hisper

W
avLM

W
2VBER

T

TL-Tr
Network

TL-Tr
Network

TL-Tr
Network

R
egrassion
H
ead

R
egrassion
H
ead

R
egrassion
H
ead

Val./Pol.

Arou./Int.

Val./Pol.

Arou./Int.

Val./Pol.

Arou./Int.

Val./Pol.

Arou./Int.

Encoders Phase I Phase II

Concat

Regression
Head

Fig. 1: Schematic diagram of the proposed method. The blue modules are fixed
and the red-bordered boxes are trainable. Val./Pol. refers to valence/polarity
and Arou./Int. refers to arousal/intensity.

setting including speech recognition, speech translation, language identification,
etc. The encoder module contains 24 transformer layers. We choose the medium-
sized model, which encodes each frame with an embedding of length 1024.

WavLM: A self-supervised approach for extracting universal speech representa-
tions is proposed in [30]. The model is available in a variety of configurations, and
we choose the large version, which is trained on 96,000 hours of speech data. The
encoder consists of 24 transformer layers as well with 1024-dimensional hidden
states.

W2v-BERT 2.0: The SeamlessM4T framework [31] proposes a large self -
supervised encoder architecture with 24 Conformer layers [33] pre-trained using
a combination of contrastive learning and masked prediction learning techniques
utilizing 1,000,000 hours of audio data in 143 languages. Similar to Whisper and
WavLM, the hidden dimension is also 1024.

TL-Tr: In different encoder layers, these large foundation models encode vari-
ous acoustic and linguistic information, as well as non-trivial semantic language
information [34]. SSL-based SER approaches [1, 28] frequently use the encod-
ing from the final encoder layer, ignoring any relevant information from earlier
layers. Furthermore, they employ average pooling across all temporal frames,
which means giving equal weight to all temporal segments, which may not be
appropriate for the specific task. We adapt the TL-Tr layer proposed in [32],
which uses a combination of temporal and layer-wise transformer blocks in tan-
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dem to provide higher attention weights to sample specific important segments
and layers before applying average pooling over temporal sequences and layers,
respectively.
The TL-Tr layer outputs a 1024 dimensional embedding from the entire utterance
which is passed through the regression head layer to generate final predictions.

2.2 Two-phase training

Our proposed framework is trained in two phases as shown in Figure 1. In phase I,
individual regressors based on the three different encoders are trained separately.
Unlike [1], the weights of the pre-trained encoders remain fixed during training
and we only train the TL-Tr layer along with the regression head. To enable
the model to learn from comparison, we propose to apply the pairwise rank loss
in addition to regression loss. We create a dynamic pair for each sample, by
randomly shuffling the batch. Then, the model is trained by optimizing the joint
loss Ltotal, which is a combination of L1 losses and rank loss Lrank, as depicted
in Eqn. 1, where β is a hyperparameter.

Ltotal = β ∗ (Lval + Larou) + (1− β) ∗ Lrank (1)

The model predicts arousal/intensity and valence/polarity for a pair of samples
x1 and x2, with Lval1 and Lval2 representing the L1 loss for valence/polarity
predictions (vx1, vx2) and Larou1 and Larou2 for arousal/intensity predictions
(ax1, ax2). Then Lval and Larou are just the additive loss for valence/polarity
and arousal/intensity respectively for the pair of samples as depicted in Eqn. 2.

Lval = Lval1 + Lval2

Larou = Larou1 + Larou2

(2)

We implement the pair-wise rank loss as described in [35] and [36], where Lrank

is the sum of valence rank loss Lv rank and arousal rank loss La rank.

Prval =
evx1−vx2

1 + evx1−vx2

Lv rank = −α ∗ ln(Prval)

− (1− α) ∗ ln(1− Prval)

(3)

The valence/polarity predictions are first mapped to a probability measure Prval
using a logistic transformation as depicted in Eqn. 3. Afterward, valence/polarity
rank loss Lv rank is computed as a negative log-likelihood loss where α depicts
the soft ground truth rank label, such that α ∈ {0, 0.5, 1} depending on the value
of valence/polarity ground truth of the pair. Pair-wise arousal/intensity rank loss
La rank is also calculated similarly, by replacing the valence/polarity predictions
with arousal/intensity predictions in Eqn. 3. The model learns to predict the
arousal/intensity and valence/polarity by optimizing L1 losses, at the same time
it acquires a comparative knowledge of the predictions by optimizing the rank
losses.



6 Arnab Das, Carlos Franzreb, Tim Polzehl, and Sebastian Möller

Model Valence/Polarity Arousal/Intensity

W2V-L-Robust [1]
53.86 64.73

(52.97↔54.71) (63.96↔65.5)

Whisper
65.36 64.82

(64.64↔66.05) (64.04↔65.56)

WavLM
58.96 65.07

(58.16↔59.75) (64.35↔65.71)

W2V-BERT 2.0
49.72 65.13

(48.85↔50.61) (64.31↔65.9)

Model Fusion
64.25 66.42

(63.51↔ 65.01) (65.66↔ 67.13)

Table 1: Evaluation results based on speaker-independent overall CCC (multi-
plied by 100) value on MSP-Podcast version 1.11 test set 1 along with bootstrap
95% confidence interval values. Best scores in bold, second underlined.

In Phase II, we concatenate the outputs of the TL-Tr layers connected to all
three encoders and train a single regression head jointly with the TL-Tr layers
as shown in Figure 1, producing a late fusion setup.

3 Experiments and ER Results

This section covers the specifics of the conducted experiments, the dataset that
was utilized, and the outcomes of the tests.

3.1 Dataset and training details

We train and evaluate our model on the emotional podcast utterances from the
MSP-Podcast corpus [37] version 1.11. The corpus comes with pre-defined train,
development, and several test partitions. The train partition contains 84,030 seg-
ments from 1409 different speakers and the development set comprises 19,815 ut-
terances from 454 speakers. We use the test1 (largest) partition as the evaluation
set consists of 30,647 samples from 237 speakers. The length of the utterances
varies from around 1.9 seconds to almost 11.9 seconds. For training, we pad all
the samples to 12 seconds and sample them at 16 kHz frequency. In the corpus,
ground truth for valence/polarity and arousal/intensity are provided in a range
of 1-7, we normalize them to a range of 0-1 both for training and inference. We
train the models with an H100 GPU of 80GB memory, using a batch size of
64. For model training, Adam optimizer [38] is used with a fixed learning rate
of 1e−4. For phase II training, we lower the learning rate to 5e−5. For evalu-
ation, we use the concordance correlation coefficient (CCC) metric [39] similar
to [1] separately for valence/polarity and arousal/intensity, which measures the
amount of agreement between the predicted values and the ground truth. Each
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model is trained for 50 epochs and we choose the best model with the lowest
valence CCC loss on the development set. We also perform hyperparameter tun-
ing on the development set and empirically choose β = 0.6. For evaluation, we
calculate the overall CCC on the entire test set. The code is available online 3.

3.2 ER model results

The results of our experiments are summarized in Table 1. We present over-
all speaker-independent CCC values (multiplied by 100 for readability) along
with a 95% confidence interval (CI) measured by randomly choosing 1000 boot-
straps with 50% test samples each. The baseline model based on the W2v-Large-
Robust encoder achieves CCC values of 53.86 and 64.73 for valence/polarity
and arousal/intensity prediction, respectively, similar to the results reported in
[1]. Using our suggested strategy, the weakly supervised Whisper ASR-based
model achieves a CCC score of 65.36 for valence/polarity prediction which sig-
nificantly outperforms the baseline (p < 0.05 for paired t-test based on boot-
strapped CCC values) and 64.82 for arousal/intensity prediction. WavLM and
W2v-BERT-based models perform similarly to the Whisper-based model in
terms of arousal/intensity prediction, with CCC values of 65.07 and 65.13, re-
spectively, although with an overlapping CI with the baseline model. For va-
lence/polarity prediction, the WavLM-based model obtains a CCC value of
58.96, however, the W2v-BERT-based model only achieves a value of 49.72,
which is lower than the baseline model.

Our proposed fusion framework significantly outperforms the baseline frame-
work described by [1] for both valence/polarity and arousal/intensity predictions
(completely non-overlapping CI and p < 0.05 for paired t-test based on boot-
strapped CCC values for both valence/polarity and arousal/intensity). It obtains
a CCC value of 66.42 for arousal/intensity prediction, which is higher than the
baseline. Similarly, also for valence/polarity prediction, the fusion model sur-
passes the baseline significantly by attaining a CCC value of 64.25, though it
is somewhat similar to the supervised Whisper ASR-based model as the CIs
overlap.

3.3 Discussion of ER model results

The results shown in Table 1 are consistent with findings from the SER literature.
The Whisper ASR-based model has the highest CCC (65.36) for valence/polarity
prediction, indicating that models with prior knowledge of speech recognition,
speech translation, or language processing perform better than general-purpose
models, as valence/polarity is heavily influenced by linguistic semantics [1]. On
the other hand, general-purpose self-supervised models are not better at pre-
dicting valence/polarity than the ASR-based model indicating that they com-
paratively lack linguistic semantic information in their encoding. However, the
other two models based on the general purpose representation extracted from

3 https://github.com/arnabdas8901/MSPPodcast ContinuousEmotionRecognition
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the WavLM and W2v-BERT 2.0, are as good as (overlapping CI) the Whisper-
based model in terms of CCC values for arousal/intensity prediction. Our pro-
posed fusion model combines the benefits of both paradigms, supervised ASR
and general-purpose SSL. It achieves the highest overall CCC value (66.42) for
arousal/intensity prediction, with results significantly higher than both the base-
line and the whisper-based model. Similarly, the valence/polarity prediction per-
formance (64.25) is also comparable with Whisper and significantly higher(non-
overlapping CI and p < 0.05) than the WavLM and W2v-BERT-based models.
The results also highlight that the latest foundation models are better in SER
tasks than relatively older large models as both Whisper and WavLM-based
models show improved performance compared to the W2V-Large-Robust model
proposed as part of the baseline.

4 Post-Hoc Data Exploration

In order to gain more insights into the nature and quality of the data, as well
as in order to provide explanations of model behavior we further extend our
experiments to post-hoc analyses and visualizations.

4.1 Annotation inconsistency

Based on the results presented in Table 1, further investigation reveals that the
dataset contains a lot of inconsistent annotation both for arousal/intensity and
valence/polarity ratings and for primary emotion categories even after consider-
ing aleatoric uncertainty for annotations.

Fig. 2: Inconsistent emotion annotations with primary and secondary emotion
labels are contradictory, while arousal/intensity and valence/polarity ratings in-
dicate more towards neutral. A listening test reveals that the utterance is not
sad at all.

Figure 2 shows an example in which a sample is annotated by 10 annotators
where most of the annotators have indicated mutually contradictory emotions
like “Sad” and “Happy” at the same time. Upon listening, it is clear that the
utterance is not sad at all as someone is welcoming guest hosts in a show with the
spoken content as “we’ve got some really great guest hosts, if you hate me, you’ll
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love them”. The ground truth emotion category is provided as “Sad” considering
majority voting. In another example, a lady can be heard giving a eulogy with
the message: “rest in peace. he was a great coach. he was one of my favorite
coaches. again, got me into basketball. it’s got me wanting to play basketball”.
The sample’s primary emotion is provided as angry, with the highest possible
arousal/intensity ground truth rating of 1. A hearing test reveals that the ground
truth rating is incorrect. Such inconsistencies in the training set may prevent
the model from reaching its full potential, and the existence of such examples
in the test set may imply an incorrect assessment result. To check whether the
annotations are correct, a simple solution could be to inspect a subset of samples
manually in both the training and development splits, where the trained model
makes high prediction errors.

Dimensions with phrase ”fu**ing” & val. > 0.5 others

Valence/Polarity 20.19 64.35
Arousal/Intensity 53.57 66.41

Table 2: Comparative valence/polarity evaluation result (CCC×100) for samples’
group containing a slang word ”fu**ing” and high valence/polarity in to other
samples

4.2 Verbal irony

We also conducted a post-hoc root cause analysis of the results for utterances
in which our suggested model did not perform well and discovered some in-
triguing findings. The dataset comprises podcast talks, where slang phrases like
“fu**ing” 4 are often used. Native speakers frequently use such slang phrases
to express verbal irony, which occurs when the content of a speech is negative
but the overall sentiment or emotion is positive, or vice versa. For example, the
test set contains a sample, whose content is “seth mcfarland’s voice is fu**ing
amazing”, having a ground truth valence/polarity rating of 0.7, but our model
predicts the valence/polarity as 0.35. To further analyze the influence of verbal
irony in valence/polarity prediction, we divide the test samples into two cate-
gories: samples containing the word “fu**ing” with a valence/polarity ground
truth > 0.5 and other samples. The evaluation results are presented in Table
2. The results reveal that for the group of samples containing verbal irony, the
valence/polarity prediction performance declines dramatically to a CCC value
of 20.19, but for the others, it remains as high as 64.35. In contrast, the decrease
in arousal/polarity prediction performance is not as drastic.

4 The characters “**” are introduced to maintain the decorum of the paper, not
present in actual dataset
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Fig. 3: Impact of critical frequency pass-bands on arousal/intensity prediction.
Only the bands mentioned in the x-axis ticks are passed and other frequencies
are suppressed. All refers to no suppression, passing all frequencies. GT refers
to ground truth annotation.

4.3 Occlusion-based explainability

In addition to improving model performance, explainability of model behavior
becomes crucial for SER tasks, as it does for other tasks. Concurrent work on
explaining audio classification explored backpropagation-based [40] approaches
or used LIME (surrogate linear models) for explaining phoneme recognition
[41]. [42] used input perturbation techniques to measure the contribution of
word-level content paralinguistic features, resulting in more plausible explana-
tions. Saliency-based approaches are frequently criticized, because the attribu-
tion maps generated by these methods are unreliable and do not provide a gen-
uine assessment of model behavior [43]. Patch-based occlusion methods, which
are used in the image domain [44], are similarly unsuitable for the audio do-
main, because audio representation differs from pixelated picture representa-
tions. Hence, we tailor the occlusion sensitivity analysis to suit the bimodal
properties (linguistic and paralinguistic) of speech data.

We investigate changes in model prediction utilizing spectral and tempo-
ral occlusion on our proposed fusion model. First, we examine the sensitivity
of arousal/intensity regression by just filtering the stimuli over the critical fre-
quency bands [45] and their combinations. We accomplish this on a sample with
a valence/polarity ground truth of 0 and an arousal/intensity ground truth of
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Fig. 4: Low valence/polarity prediction explainability using 4-gram part of speech
occlusion. GT refers to ground truth annotation and Pred refers to overall model
prediction without any occlusion.

1, iteratively passing it through critical bandpass filters as a pre-processing step
before capturing the model’s reaction. The findings are depicted in Figure 3. The
results reveal that the arousal/intensity value decreases as we move through ex-
tremely low or very high-frequency bands of the spectrum. When all frequencies
are fed into the model, the arousal/intensity value is most accurately predicted.
Since the occlusion-based method is sample-specific, the contribution of each
frequency band may vary for different samples depending on the paralinguistic
factors (crying, laughing, or yelling) that are present.

As part of temporal occlusion, we also use a 4-gram-based part of speech
occlusion to better understand the language reliance on the valence/polarity
predictions as well as contextual awareness. The MSP-Podcast dataset used in
our experiment includes textual transcriptions and a text grid file for each audio,
which provides the start and end times for each spoken word. For our 4-gram-
based occlusion method, we used the start time of the first word and the end time
of the last word in a 4-gram. We then zeroed out the actual audio within these
selected timestamps to create an occluded version of the audio. This occluded
audio is subsequently passed through our arousal/valence prediction pipeline.
This process is repeated for all the 4-grams, with only the section belonging to
each specific 4-gram being occluded in each iteration. We used a sample from
test set 1 with the content “the army was basically killing everybody who wasn’t
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Fig. 5: High valence/polarity prediction explainability using 4-gram part of
speech occlusion. GT refers to ground truth annotation and Pred refers to over-
all model prediction without any occlusion.

Fig. 6: Valence/polarity prediction explainability using 1-gram part of speech
occlusion. GT refers to ground truth annotation.
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in the safe zones, and that is an aspect that is terrifying” having a ground truth
valence/polarity rating of 0.2. Before handing input to the model, we mask 4-
gram phrases by sliding a word each time. The result is illustrated in Figure
4. The outcome demonstrates that, in the absence of any occlusion, the overall
valence/polarity prediction and the ground truth are equal. However, when the
4-gram phrases containing the word killing are suppressed the valence score
increases towards the neutral valence/polarity score. Additionally, when the last
4-gram phrase containing the word terrifying is suppressed the prediction goes
even further up towards neutral with a score of 0.3. On the contrary, in the
middle part of the utterance when the 4-grams with a positive word safe is
suppressed, the valence/polarity prediction goes further negative to 0.18.

We experimented with the same 4-gram based temporal occlusion on another
example with content “will love to hear what you all have to say about fellowship
and about prayer” having ground truth valence/polarity rating of 1 and the result
is demonstrated in Figure 5. The overall prediction without occlusion is 0.7. The
result shows that the 4-gram phrases containing the word love when suppressed
drastically change the model’s prediction and bring down the valence score (0.53
and 0.51 ) very close to the neutral scale, However, a minimal change is observed
when other 4-grams are suppressed. In contrast, when we perform the same
experiment with 1-gram-based part of speech masking, the predictions hardly
vary except for single word love, as depicted in Figure 6. This shows a strong
linguistic contextual dependency of the model’s valence/polarity prediction.

A similar experiment using temporal occlusion is also performed for arousal
or intensity prediction using a sample containing content “right. it’s almost like
a dig. person just walks” having arousal/intensity ground truth of 0.83. The
speaker can be heard laughing at the start of the utterance which constitutes
a positive arousal/intensity rating as the spoken content is otherwise not very
expressive. The result of the experiment, as depicted in Figure 7, shows that
the overall arousal/intensity prediction by the model is 0.75. However, when
the first 4-gram phrase, which overlaps with the speaker’s smiling, is suppressed
the arousal/intensity substantially comes down to 0.66. The remaining 4 grams
do not affect the model’s prediction when suppressed. This explainability re-
sult re-affirms that paralinguistic cues have a far greater role in predicting
arousal/intensity than linguistic content.

These trends regarding arousal/intensity and valence/polarity predictions
and their relation with semantic or paralinguistic aspects of the utterance are
observed in many other samples, only a few are presented in this section as
examples.

5 Conclusion

In this paper, we investigated the effectiveness of the speech representations
learned by foundation models for ER using arousal/intensity and valence/polarity
prediction tasks. The result demonstrates that representation from a large mul-
tilingual ASR model like Whisper is beneficial for valence/polarity regression as
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Fig. 7: Arousal/intensity prediction explainability using 4-gram part of speech
occlusion. GT refers to ground truth annotation and Pred refers to model pre-
diction without any occlusion.

it achieves a 17.6% higher CCC value over the baseline. On the other hand, it is
comparable to models based on representations learned by other recent general-
purpose SSL models for arousal/intensity prediction. The detailed evaluation
results also depict that our proposed fusion model can combine and comple-
ment both types of representations to accurately predict valence/polarity and
arousal/intensity as it significantly outperforms both the baseline and the ASR-
based model. However, the foundation models remain limited in their ability
to fully encode all the complexities of a spoken language, such as verbal irony.
Further research is necessary to develop foundation models for general-purpose
speech encoding that are better able to handle downstream tasks and under-
stand the complexities and minute nuances of speech. These models should be
trained with speech data that demonstrates a wider range of compound emo-
tions. We also showed that large datasets like MSP-Podcast, often used for SER
model training, contain incorrect annotations which is detrimental to model
training and evaluation. In addition, we suggest speech-appropriate occlusion-
based techniques to elucidate the model’s performance in SER tasks and offer
insights regarding the reason for the predictions in a model-agnostic way. Our
future research endeavors will expand upon explainability methodologies by pro-
ducing significance scores for distinct utterance segments that substantiate the
model’s prediction. Additionally, by incorporating a cross-attention mechanism,
we will investigate more advanced fusion techniques to capture the advantages
of different representations better. We also intend to work on integrating our va-
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lence/polarity and arousal/intensity detection model with large language mod-
els (LLMs) to identify verbal irony and other complex sentiments from spoken
speech data.
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7 Limitations

Despite the encouraging results of this study on continuous emotion prediction
using speech features from pre-trained acoustic foundation models and the MSP-
Podcast dataset, certain limitations must be recognized. The podcast recordings
that make up the MSP-Podcast dataset may display a particular range of emo-
tions and speech patterns that aren’t typical of other contexts like conversational
speech, call centers, or clinical settings. This domain exclusivity can somewhat
constrain the generalizability of our approach and make it more difficult for the
model to be applied to out-of-domain spoken content without additional train-
ing. Furthermore, continuous real-time emotion prediction requires low latency
and significant processing power, especially for deep learning models. This re-
striction could make it more difficult to implement the suggested method in
real-time applications on devices with constrained memory or computing power.
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