
ENABLING GENERIC ROBOT SKILL IMPLEMENTATION USING
OBJECT ORIENTED PROGRAMMING

A PREPRINT

Abdullah Farrukh
Innovative Fabric Systems

German Research Institute for Artificial Intelligence
Trippstadterstrasse 122, Kaiserslautern 67663

abdullah.farrukh@dfki.de

Achim Wagner
Innovative Fabric Systems

German Research Institute for Artificial Intelligence
Trippstadterstrasse 122, Kaiserslautern 67663

achim.wagner@dfki.de

Martin Ruskowski
Innovative Fabric Systems

German Research Institute for Artificial Intelligence
Trippstadterstrasse 122, Kaiserslautern 67663

martin.ruskowski@dfki.de

September 2, 2025

ABSTRACT

Enabling Generic Robot Skill Implementation Using Object Oriented Programming

Keywords object-oriented programming · robot skills · interoperability

1 Introduction

Developing robotic algorithms and integrating a robotic subsystem into a larger system can be a difficult task. Particularly
in small and medium-sized enterprises (SMEs) where robotics expertise is lacking, implementing, maintaining and
developing robotic systems can be a challenge. As a result, many companies rely on external expertise through system
integrators, which, in some cases, can lead to vendor lock-in and external dependency. In the academic research on
intelligent manufacturing systems, robots play a critical role in the design of robust autonomous systems. Similar
challenges are faced by researchers who want to use robotic systems as a component in a larger smart system, without
having to deal with the complexity and vastness of the robot interfaces in detail. In this paper, we propose a software
framework that reduces the effort required to deploy a working robotic system. The focus is solely on providing a
concept for simplifying the different interfaces of a modern robot system and using an abstraction layer for different
manufacturers and models. The Python programming language is used to implement a prototype of the concept. The
target system is a bin-picking cell containing a Yaskawa Motoman GP4.

2 Related Work

Similar approaches have been pursued, implemented and adopted successfully in the past. The Robot Operating System
(ROS) [1] and its real-time successor ROS2 [2] are widely known in the robotics community as the go-to frameworks for
developing robot applications, especially in the research domain. Although the use of ROS has increased the modularity
and usability of robot software, it still requires framework-specific knowledge to enable the user to develop custom
applications. The Robotics Library is a C++ framework that uses an objectoriented software architecture to enable the
development of robot applications [3]. The authors provide a complete set of tools in a platform-independent library,
ranging from numerical methods to path planning. The authors provide a custom implementation of the hardware
abstraction layer for robots as well as other devices such as sensors, grippers and more. The Open Robotics and

ar
X

iv
:2

50
8.

10
49

7v
1 

 [
cs

.R
O

] 
 1

4 
A

ug
 2

02
5

https://arxiv.org/abs/2508.10497v1


Enabling Generic Robot Skill Implementation Using Object Oriented Programming A PREPRINT

Animation Virtual Environment (OpenRAVE) is another powerful framework for developing robotic applications [4].
Similar to ROS, OpenRAVE has a modular structure and is extensible and can be used together with ROS and Player [5],
another robot software framework. At the time of writing, OpenRAVE provides a C++ and a Python API. In industry,
the Standard Robot Command Interface (SRCI) is an emerging framework for controlling industrial robots using
programmable logic controllers (PLCs) [6]. Based on a server-client architecture, the aim is to enable hardware-agnostic
application design, similar to the approaches mentioned above. The PLCOpen open standard is another approachto
create reusable application code in the industries [7]. Our approach focuses on non-domain users and uses pre-existing
hardware abstractions to build an application layer on top of them. In addition, the aforementioned approaches do not
fully consider the current and future requirements in the field of Industry 4.0 that enable a fully autonomous robotic
system, which we aim to address.

3 Methodology

In this work, we aim to create a framework to reduce the time it takes to deploy robotic applications in research.
To do this, we first collect requirements for the various robotic systems used in our research department. This
includes information about robot manufacturers and models, required control interfaces and middleware, and types of
applications, e.g. pick and place tasks. Additional requirements are added to comply with Industry 4.0 concepts such
as the Asset Administration Shell (AAS) and a standardised control interface using Open Platform Communications
Unified Architecture (OPC UA) [8] [9]. AAS technology is used to describe the configuration of the robot system in a
standardised and interoperable way. This configuration is used as input to automate the setup of the robot system. After
collecting the requirements, a software architecture is modelled using a class diagram and the basic rules and concepts
of object-oriented programming are applied [10] [11]. The modelled software architectureis then implemented using
the Python programming language and tested on a bin-picking cell. As robotic systems can take different forms, this
paper focuses only on 6 degrees of freedom (DOF) industrial robot arms.

4 Requirements

The requirements were gathered by analysing existing software in code repositories and conducting interviews with
users who have worked with industrial robots in the past, are currently developing robotic applications, or will be
using robots in upcoming projects. Domain experts in the field of Industry 4.0 were asked about the requirements for
a standardised control interface. In summary, the requirements collected can be grouped into three main categories:
usability, compatibility and interoperability:

i) Usability
Usability requirements address the variance in users’ robot domain knowledge. The internal research showed
that the majority of robot users do not have in-depth knowledge of robotic systems and only use them as a
subsystem or component to achieve a higher level of automation. Therefore, the framework is required to have
a user-friendly API to design the user application. It was assumed that all users of this framework would have
acquired general safety instructions for the use of a robotic system.

ii) Compatibility
Ensuring compatibility with other software modules is a key requirement of the software framework. This
functionality allows the robot system to be integrated into a larger, more complex automation system that uses
autonomous control of hardware modules through the use of multi-agent systems (MAS). At the same time,
there are requirements for high reliability and availability of the control API. In order to get a better grip on the
high variance of interfaces and middleware for different manufacturers and models, the reuse of pre-existing,
manufacturer-supplied interfaces should be used in a modular way. Existing applications in the software
repositories mainly used the Robot Operating System (ROS) framework. Other applications used proprietary
interfaces, such as Universal Robots’ Real-Time Data Exchange (RTDE). Current and future projects already
use or plan to use OPC UA interfaces, which need to be integrated into the interface layer. In addition, each
manufacturer and the interfaces available for its robot must be integrated in a modular and extensible way as a
basic requirement for the software architecture. As simulations play a key role in the development of robotic
applications, support for simulation frameworks must be considered in the design of the framework.

iii) Interoperability
With the aim of enabling non-experts to design robotic applications or to integrate robotic systems as a
subsystem, interoperability was extracted as a key requirement. To enable this, the software framework would
require a hardware and, if hardware or software constraints allow, interface-agnostic implementation of a basic
set of robot skills, with methods for adding additional, application-specific skills. If the robot application is

2



Enabling Generic Robot Skill Implementation Using Object Oriented Programming A PREPRINT

to be used as a standalone component of a system, the external control API must ensure a widely adopted
standard. In the case of integration as a component in anapplication, e.g. OPC UA server, the requirements of
”good” software engineering apply. In addition, the configuration of a robotic system must be described using
state-of-the-art semantic technology AAS to ensure a common understanding of the system. This includes
basic information about the robot (manufacturer, model, etc.), its interfaces (e.g. ROS, OPC UA, etc.) and
interface-specific information, e.g. topic names, available services, etc., which is machine and human-readable.

5 Proposed Concept of Framework

Figure 1: The proposed software framework consists of a multi-layer architecture. The lowest layer is the supported
target hardware. For this, only hardware that already has hardware and interface abstractions provided by the man-
ufacturer is chosen. The various hardware and interface abstractions are unified to enable the application layer as a
Python library. The External Control API layer provides basic monitoring and error handling functionality. All layers
are represented in a semantic description..

Considering the aforementioned requirements and existing methods, a multilayer architecture seems to be the most
promising approach. By encapsulating the hardware and its abstractions from the application and control layers, a
high reusability of the designed algorithms is guaranteed. In addition, the hardwareagnostic implementation of robot
capabilities is enabled, which further improves the reusability of robot software and reduces deployment effort. The
hardware and interface abstraction layer in our approach uses pre-existing software to control the robot system and
access its parameters. These implementations are maintained by the vendor, ensuring compatibility and long-term
support. For the robotic systems in our research department, ROS support is available in all cases. In addition, native
interfaces and OPC UA interfaces are available for most industrial robots. The challenge is to adapt the control API of
the Python library to the different manufacturers and available abstractions, which is done using Python’s extensible
module design to ensure that the applications in the application layer can run independently of the hardware.

5.1 Software Architecture & Implementation

To implement the concept using object-oriented programming, a class diagram was designed for an initial prototype for
the Python library, as shown in 2. Abstract classes are used to provide a design specification for each class, enforcing
both consistency and flexibility for specific implementations through inheritance. The RobotControl class is the main
component. It provides the structure for the control API, which is hardware independent. The Manufacturer class is
used to map hardware and interface specific processes and functionalities. Composition allows multiple interfaces to be
added to the Manufacturer class, with only one interface active at runtime. Each manufacturer can provide multiple
interfaces to control the robot system. The abstract class RobotInterface is used to implement the different interfaces
and map the control API for the target robot system to the manufacturer class. Since skills can be of different scopes and
contain different functionality, the abstract Skill class provides the basic structure for the RobotSkill class. Each defined
robot skill implements the RobotSkill class using the methods of the RobotControl class, allowing hardware-agnostic
algorithm development. In our work we have also placed an abstract class for simulation to cover some aspects of
simulations. Currently, only a lightweight Isaac SimInterface class uses this class to enable visualisation.

3



Enabling Generic Robot Skill Implementation Using Object Oriented Programming A PREPRINT

Figure 2: The class diagram represents the software architecture, which is implemented using the Python programming
language. The architecture is modular in the sense that the library can be extended and maintained independently for
each manufacturer. The mapping between the existing hardware abstraction (e.g. ROS) and the control API of the
library is implemented in the manufacturer class. The robot capabilities are implemented by hardware independent
methods defined by the abstract class RobotControl.

5.2 Results & Discussion

The prototype of the Python library was used to replace the control software of a bin-picking cell, which used software
with a near-monolithic software architecture, with just a single class to allow control via the ROS API. The existing
software was written specifically for the cell, although a ROS interface was used to control the robotic system. The
metric of lines of code (LOC) was introduced to compare the efficiency of our approach with conventional methods.
The data is only for a singular use-case and results may vary in other use-cases.

Software Architecture LoC1 - specialized code LoC - reusable code

Monolithic 56 212
Our Approach 23 434

1Lines of Code
Table 1: THE TABLE COMPARES THE NUMBER OF LINES OF CODE USED TO IMPLEMENT A BIN-
PICKING ALGORITHM AS A METRIC TO HIGHLIGHT THE ADVANTAGE OF OUR APPROACH OVER A
CONVENTIONAL, MONOLITHIC APPROACH TO PROGRAMMING ROBOT APPLICATIONS.

Table 1 summarises the number of lines of code required to implement the bin-picking algorithm. The old mono-
lithic architecture used ROS2 as middleware to control the robot system and was incompatible with other hardware
abstractions.This resulted in the specialised code also having ROS2 functionalities, making the algorithm unusable for
other interfaces. Although our approach has more lines of reusable code, it also allows the use of alternative interfaces
such as OPC UA. Also, the specialised code does not use any hardware or interface specific functionality, making
the algorithm usable with other robot systems and interfaces. In summary, the proposed framework separates the
complexity of the hardware and interfaces of robotic systems from the application layer to enable users with little
knowledge of the robotics domain to develop and deploy robotic applications. Users are still required to have a basic
knowledge of robotic systems, particularly in the area of safety. The modular design of the developed Python library
requires the integration of vendor specific implementations as separate packages, which reduces maintenance effort
and provides a clean software structure. The implementation of a basic set of robot skills was a challenge, as there
is no common understanding or definition that could have been used, other than the industrial norms and standards

4



Enabling Generic Robot Skill Implementation Using Object Oriented Programming A PREPRINT

mentioned in chapter 2. Therefore, future work needs to focus on this area. In addition, the performance in real-time
dynamic scenarios needs to be evaluated. In addition, as a prerequisite for using this library, the environment for the
specific interface must be set, e.g. ROS2 drivers.

6 Conclusion

The proposed software framework increases the efficiency of robotic application development. The most practical aspect
is the complete hardware and interface independent development of the application algorithm. In the aforementioned
bin-picking cell use case, the code developed can be reused for any robot manufacturer or model integrated into the
framework by simply adapting the configuration. Although the implementation in this paper was prototypical, no major
errors were detected during runtime for the given scenario. This is not to say that rigorous software testing is not
required to confirm this aspect. In future work, support for the simulation framework needs to be addressed. Also, the
definition of robot capabilities needs to be based on a thorough literature review.

This research has been supported by the European Union’s HORIZON Research and Innovation Action Program under
the grant agreement No 101138782, the project RAASCEMAN1 and by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) in the context of TWIN4TRUCKS2 project (13IK010F).

References

[1] Morgan Quigley. ROS: an open-source Robot Operating System. ICRA Workshop on Open Source Software,
January 2009.

[2] Steve Macenski. Robot Operating System 2: Design, Architecture, and Uses In The Wild. Sci. Robot.,
7(66):eabm6074, May 2022. arXiv:2211.07752 [cs].

[3] Markus Rickert and Andre Gaschler. Robotics library: An object-oriented approach to robot applications. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 733–740, September 2017.
ISSN: 2153-0866.

[4] Rosen Diankov and James Kuffner. OpenRAVE: A Planning Architecture for Autonomous Robotics, 2008.
[5] Toby H J Collett, Bruce A MacDonald, and Brian Gerkey. Player 2.0: Toward a Practical Robot Programming

Framework. Proceedings of the Australasian Conference on Robotics and Automation (A CRA 2005), December
2005.

[6] Profibus. SRCI - Robotics.
[7] Van Eldijk. Motion Control, April 2018.
[8] Roland Heidel. Industrie 4.0: the reference architecture model RAMI 4.0 and the Industrie 4.0 component. Beuth

Innovation. Beuth Verlag, Berlin Wien Zürich, 2019.
[9] OPC-Foundation. OPC UA - Unified Architecture.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software[Book]. Addison-Wesley Professional, October 1994. ISBN: 9780201633610.

[11] Arnd Poetzsch-Heffter. Konzepte objektorientierter Programmierung. eXamen.press. Springer, Berlin, Heidelberg,
2009. ISSN: 1614-5216.

1https://cordis.europa.eu/project/id/101138782
2https://www.twin4trucks.de/

5


	Introduction
	Related Work
	Methodology
	Requirements
	Proposed Concept of Framework
	Software Architecture & Implementation
	Results & Discussion

	Conclusion

