
Scaling Probabilistic Circuits via Data Partitioning

Jonas Seng1 Florian P. Busch1,2 Pooja Prasad4 Devendra S. Dhami4 Martin Mundt5 Kristian Kersting1,2,3

1Computer Science Department, TU Darmstadt
2Hessian Center for AI (hessian.AI)

3German Research Center for AI (DFKI)
4 Department of Mathematics and Computer Science, Eindhoven University of Technology

5 Department of Mathematics and Computer Science, University of Bremen

Abstract

Probabilistic circuits (PCs) enable us to learn joint
distributions over a set of random variables and to
perform various probabilistic queries in a tractable
fashion. Though the tractability property allows
PCs to scale beyond non-tractable models such as
Bayesian Networks, scaling training and inference
of PCs to larger, real-world datasets remains chal-
lenging. To remedy the situation, we show how
PCs can be learned across multiple machines by re-
cursively partitioning a distributed dataset, thereby
unveiling a deep connection between PCs and fed-
erated learning (FL). This leads to federated cir-
cuits (FCs)—a novel and flexible federated learn-
ing (FL) framework that (1) allows one to scale
PCs on distributed learning environments (2) train
PCs faster and (3) unifies for the first time horizon-
tal, vertical, and hybrid FL in one framework by
re-framing FL as a density estimation problem over
distributed datasets. We demonstrate FC’s capabil-
ity to scale PCs on various large-scale datasets.
Also, we show FC’s versatility in handling hor-
izontal, vertical, and hybrid FL within a unified
framework on multiple classification tasks.

1 INTRODUCTION

Probabilistic Circuits (PCs) are a family of models
that provide tractable inference for various probabilistic
queries [Poon and Domingos, 2011, Choi et al., 2020]. This
is achieved by representing a joint distribution by a com-
putation graph on which certain structural properties are
imposed. While PCs offer significant computational advan-
tages over traditional probabilistic models such as Bayesian
networks [Pearl, 1985], further performance gains can be re-
alized by optimizing the compactness of PC representations
and tailoring them to specific hardware architectures [Pe-

harz et al., 2020a, Liu et al., 2024]. However, another natural
way to scale up PCs by distributing the model over multiple
machines is so far underexplored. While models like neural
networks can be partitioned over multiple machines with
relatively low efforts, partitioning PCs is more challenging
as they come with certain structural constraints to ensure the
validity of the represented joint distribution. Interestingly,
we find an inherent connection between the structure of PCs
and the paradigm of federated learning (FL). In PCs, sum
nodes combine probability distributions over the same set
of variables via a mixture. This resembles the horizontal
FL setting [Konečnỳ et al., 2016, Li et al., 2020], where
all clients hold the same features but different samples. In
contrast, the case of vertical FL [Yang et al., 2019, Wu et al.,
2020] in which the same samples are shared, but features
are split across clients, can be linked to the product nodes
used in PCs, which combine distributions of a disjoint set
of variables. Consequently, the hybrid FL [Zhang et al.,
2020] setting, where both samples and features are sepa-
rated across clients, can be represented by a combination of
sum and product nodes. Thus, PCs are well positioned to
connect all three FL settings in a unified way – an endeavor
considered hard to achieve in the FL community [Li et al.,
2023a, Wen et al., 2023].

As a result of this connection, we introduce federated cir-
cuits (FCs), a novel FL framework that re-frames FL as a
density estimation problem over a set of datasets distributed
over multiple machines (subsequently called clients). FCs
naturally handle all three FL settings and, therefore, pro-
vide a flexible way of scaling up PCs by learning a joint
distribution over a dataset arbitrarily partitioned across a
set of clients (see Fig. 1 for an illustration). Imposing the
same structural properties as for PCs, FCs achieve tractable
computation of probabilistic queries like marginalization
and conditioning across multiple machines. Based on this,
we propose a highly communication-efficient learning algo-
rithm that leverages the semi-ring structure within the design
of FCs. Our experimental evaluation shows that FCs outper-
form EiNets [Peharz et al., 2020a] and PyJuice [Liu et al.,

ar
X

iv
:2

50
3.

08
14

1v
1

 [
cs

.L
G

]
 1

1
M

ar
 2

02
5

mailto:<jonas.seng@tu-darmstadt.de>?Subject=Federated Circuits

+

+

Figure 1: Scaling PCs via Federated Circuits. We scale PCs by splitting a dataset D into a set of n partitions {Pi}ni=1 s.t.
D =

⋃n
i=1 Pi. Each partition is assigned to a client (i.e., machine) cj , and the resulting federated circuit (FC) is learned

jointly by a set of clients. As a novel framework for federated learning (FL), FCs can perform horizontal FL (samples are
split across clients), vertical FL (features are split across clients), and hybrid FL (mix of horizontal and vertical).

2024] on large-scale density estimation tasks, demonstrating
the benefits of scaling up PCs. Additionally, FCs outperform
or achieve competing results on various classification tasks
in all federated settings compared to state-of-the-art neural
network-based and tree-based methods, demonstrating its
effectiveness in FL. We make the following contributions:
(1) We introduce FCs, a communication-efficient and scal-
able FL framework unifying horizontal, vertical, and hybrid
FL by mapping the semantics of PCs to FL. (2) We practi-
cally instantiate FCs to FedPCs and demonstrate how the
FC framework can be leveraged to scale up PCs to large real-
world datasets. (3) We propose a one-pass training scheme
for FedPCs that is compatible with a broad set of learning
algorithms. (4) We provide extensive experiments demon-
strating the effectiveness of our approach for learning large-
scale PCs and performing FL. We consider classification
and density estimation on tabular and image data.

We proceed as follows: After touching upon re-
lated work, we provide the probabilistic view on FL
and introduce FCs. Before concluding, we present
our extensive experimental evaluation of FedPCs. Our
code is publicly available at https://github.com/
J0nasSeng/federated-spn.git.

2 PRELIMINARIES AND RELATED
WORK

In the following, we briefly introduce PCs and FL and give
an overview of relevant related work.

Probabilistic Circuits. PCs encode a probability distribu-
tion as a computation graph that allows for tractable infer-
ence of a wide range of queries such as conditioning and
marginalization. Peharz et al. [2015b] define a PC over ran-
dom variables X as a tuple (G, ϕ) where G = (V,E) is a
rooted, Directed Acyclic Graph (DAG) and ϕ : V → 2X is
the scope function assigning a subset of random variables

to each node in G. For each internal node N of G, the scope
is defined as ϕ(N) = ∪N′∈ch(N)ϕ(N

′). Each leaf node L
computes a distribution/density over its scope. All internal
nodes of G are either a sum node S or a product node P
where each sum node computes a convex combination of its
children, i.e. S =

∑
N∈ch(S) wS,NN, and each product node

computes a product of its children, i.e. P =
∏

N∈ch(P) N.
To ensure tractability, a PC must be decomposable. De-
composability requires that for all P ∈ V it holds that
ϕ(N) ∩ ϕ(N′) = ∅ where N,N′ ∈ ch(P). To further ensure
that a PC represents a valid distribution, smoothness must
hold, i.e., for each sum S ∈ V it holds that ϕ(N) = ϕ(N′)
where N,N′ ∈ ch(S) [Poon and Domingos, 2011, Peharz
et al., 2015a, Sánchez-Cauce et al., 2021].

Several works have tackled the goal of scaling PCs. Peharz
et al. [2020b] have shown that learned PC structures can
be replaced by large, random structures to scale to larger
problems. Changes in the model layout, such as paralleliz-
able layers via einsum-operations [Peharz et al., 2020a] and
a reduction in IO operations [Liu et al., 2024], were also
shown to reduce the speed of computation drastically. Liu
et al. [2022] improved the performance of PCs by latent vari-
able distillation using deep generative models for additional
supervision during learning.

Federated Learning. In federated learning (FL), a set of
data owners (or clients) aim to collaboratively learn an ML
model without sharing their data. One distinguishes between
horizontal, vertical, and hybrid FL depending on how data
is partitioned. In horizontal FL, a dataset D ∈ Rn×d is
partitioned such that each client holds the same d features
but different, non-overlapping sets of samples. In vertical
FL, D is partitioned such that each client holds the same
n samples but different, non-overlapping subsets of the d
features. Hybrid FL describes a combination of horizontal
and vertical FL where clients can hold both different (but
possibly overlapping) sets of samples and features [Wen
et al., 2023, Li et al., 2023a].

https://github.com/J0nasSeng/federated-spn.git
https://github.com/J0nasSeng/federated-spn.git

For all three FL settings, specifically tailored methods have
been proposed to enable collaborative learning of models.
The most common scheme in horizontal FL is to average
the models of all clients regularly during training [McMa-
han et al., 2016, Karimireddy et al., 2020a,b, Sahu et al.,
2018]. However, model averaging requires each client to
share the same model structure. In vertical FL, clients hold
different feature sets; thus, there is no guarantee that the
model structure can be shared among clients. In these cases,
tree-based and neural models are the predominant choice
and are typically learned by sharing data statistics or feature
representations among clients [Kourtellis et al., 2016, Cheng
et al., 2021, Vepakomma et al., 2018, Ceballos et al., 2020,
Chen et al., 2020, Liu et al., 2019]. Similar to tree-based
vertical FL, tree-based hybrid FL approaches share data
statistics (such as histograms) or model properties (such
as split rules) among clients [Li et al., 2023b, 2024]. How-
ever, tree-based approaches often require complex training
procedures.

3 FEDERATED CIRCUITS

This work aims to scale up PCs by splitting data and the
model across multiple machines, thus harnessing the avail-
ability of compute clusters to train PCs in a federated fash-
ion. In the following, we present an elegant and effective
way to achieve that using our novel federated learning frame-
work called federated circuits (FCs) that unifies horizontal,
vertical, and hybrid FL.

3.1 PROBLEM STATEMENT & MODELING
ASSUMPTIONS

Given a dataset D and a set of clients C where each c ∈ C
holds a partition Dc of D; we aim to learn the joint distri-
bution p(X) over random variables X (i.e., the features of
D). The partitioning of D is not further specified. Hence,
each client might only hold a subset of random variables
Xc ⊆ X with support Xc. This can be interpreted as each
c ∈ C holding a dataset Dc ∼ pc where pc is a joint distri-
bution over Xc which is related to p(X). We introduce two
critical modeling assumptions relevant for learning a joint
distribution p(X) from a dataset D partitioned across a set
of machines.

Assumption 1 (Mixture Marginals). There exists a joint
distribution p such that the relation

∫
X\XS

p(x) =∑
l∈L q(L = l) · pS(x|L = l) holds for all x ∈ X . Here,

XS ⊆ X is a subset of the union of client random variables
X = ∪c∈CXc. Further, X =×c∈C Xc is the support of X,
each pS is defined over XS ⊆ X and q is a prior over a
latent L.

To illustrate, consider a subset of variables XS ⊆ X shared
among all clients and its complement XS− = X \ XS .

Assumption 1 ensures that the marginal
∫
XS−

p(X) is rep-
resentable as a mixture of all client distributions pc(XS)
over XS . If Assumption 1 would not hold, the information
stored on the clients’ data partitions would not be sufficient
to learn p(X).

A key assumption in FL is that data cannot be exchanged
among clients. However, dependencies among variables re-
siding on different clients might still exist. To enable learn-
ing these “hidden" dependencies while keeping data private,
we make the following assumption:

Assumption 2 (Cluster Independence). Given disjoint sets
of random variables X1, · · · ,Xn and a joint distribution
p(X1, · · · ,Xn), assume that a latent L can be introduced
s.t. the joint can be represented as p(X1, · · · ,Xn) =∑

l q(L = l)
∏n

i=1 p(Xi|L = l) where q is a prior dis-
tribution over the latent L.

Note that independence is only assumed within clusters in
the data. Thus, the latent variable (which can be thought of
as "cluster selectors“) allows capturing dependencies among
variables residing on different clients. Distributions of the
form in Assumption 2 are strictly more expressive than the
product distribution and allow more complex modeling.

Further, we want to emphasize that Assumptions 1 and 2
are common throughout PC literature. Assumption 1 forms
the basis of the validity of marginalization, and Assump-
tion 2 plays a crucial role in constructing structure learning
algorithms for PCs. For more details, refer to App. A.

3.2 BRIDGING PROBABILISTIC CIRCUITS AND
FEDERATED LEARNING

We now illustrate an inherent connection between PC se-
mantics and FL, allowing us to scale PCs on large datasets
by partitioning the data over a set of clients.

Sum Nodes and Horizontal FL. In horizontal FL, each
client is assumed to hold the same set of features, i.e.,
Xc = Xc′ for all c, c′ ∈ C. However, each client holds dif-
ferent samples. Prominent horizontal FL methods aggregate
the model parameters of locally learned models regularly
during training. However, the horizontal FL setting also pre-
cisely corresponds to the interpretation of sum nodes in PCs:
A sum node splits a dataset into multiple disjoint clusters.
This results in a mixture distribution representing the data
that is learned from the disjoint clusters. Thus, instead of ag-
gregating model parameters, we aggregate the distributions
learned by each client on its data partition.

Definition 1 (Horizontal FL). Assume a set of samples
Dc ∼ pc on each client c ∈ C, a joint distribution p adher-
ing to Assumption 1 and that Xc = Xc′ for all c, c′ ∈ C s.t.
c ̸= c′. We define horizontal FL as fitting a mixture distribu-
tion p̂ =

∑
c∈C q(c) · p̂c such that d(p̂, p) and d(pc, p̂c) are

minimal for all c ∈ C where d is a distance metric and p̂c
local distribution estimates.

This view on horizontal FL has an appealing positive side ef-
fect: Aggregating model parameters can lead to divergence
during training if the client’s data distributions significantly
differ. Since we aggregate distributions in mixtures, we nat-
urally can handle heterogeneous client distributions. Also,
since clients can train models independently, the communi-
cation cost of the training is minimized.

Product Nodes & Vertical FL. In vertical FL, each client
is assumed to hold a disjoint set of features, i.e., Xc ∩
Xc′ = ∅ for all c, c′ ∈ C. In contrast to horizontal FL,
all clients hold different features belonging to the same
sample instances. As in horizontal FL, there is a semantic
connection between vertical FL and PCs. Product nodes in
PCs compute a product distribution defined on a disjoint set
of random variables. Thus, a product node separates the data
along the feature dimension, corresponding to the vertical
FL setting. However, a product node assumes the random
variables of the child distributions to be independent of
each other. Obviously, this is an unrealistic assumption for
vertical FL, where features held by different clients might
be statistically dependent. Assumption 2 can be exploited
to capture such dependencies, and a mixture of products of
independent clusters can be formed. See Sec. 3.3 for details.

Definition 2 (Vertical FL). Assume a set of samples Dc ∼
pc on each data owner c ∈ C, the existence of a joint
distribution p adhering to Assumptions 1 and 2 and that
Xc ∩Xc′ = ∅ holds for all c, c′ ∈ C s.t. c ̸= c′. We define
vertical FL as estimating a joint distribution p̂ s.t. d(p, p̂) is
minimal and

∫
X\Xc

p̂(x) = p̂c(x) for all x ∈ X where d is
a distance metric and p̂c are estimates of client distributions.

PCs & Hybrid FL. Given Defs. 1 and 2, hybrid FL is a
combination of both. In terms of PC semantics, this amounts
to building a hierarchy of fusing marginals and learning
mixtures. Provided with these probabilistic semantics, we
can now formally bridge PCs and FL. In the following,
we distinguish between clients C and servers S and define
the set of machines participating in training as N = C ∪
S. Bringing everything together and abstracting from the
probabilistic interpretation, we define federated circuits
(FCs) as follows.

Definition 3 (Federated Circuits). A federated circuit (FC)
is a tuple (G, ψG , ω) where G = (V,E) is a rooted, Directed
Acyclic Graph (DAG), ψG : V → N assigns each N ∈ V
to a client/server n ∈ N based on the structure of G and
ω : V → O assigns an operation o ∈ O to each node
N ∈ V where o : dom(ch(N)) → dom(N) computes the
value of N given the values of the children of N.

FCs extend the definition of PCs in the sense that FCs rep-
resent a computational graph G = (V,E) distributed over

multiple machines where arbitrary operations can be per-
formed in each node N ∈ V . Note that through G, FCs also
define the structure of a communication network among
participating machines. Also, FCs are not restricted to the
probabilistic interpretation presented above. For example,
parameterizing leaves by decision trees and introducing a
node N that performs averaging yields a bagging model.

3.3 FEDERATED PROBABILISTIC CIRCUITS

Let us now dive deeper into the probabilistic interpretation
of FCs. To that end, we present a concrete instantiation of
FCs leveraging Probabilistic Circuits (PCs) as leaf models,
resulting in federated PCs (FedPCs). Following the proba-
bilistic interpretation from Sec. 3.2, we align the PC struc-
ture with the communication network structure to form a
federated PC.

Definition 4 (Federated PC). A Federated PC (FedPC) is a
FC where each leaf node C is a density estimator and each
node N s.t. ch(N) ̸= ∅ is either a sum node (S) or a product
node (P).

Note that only the client nodes C hold a dataset and we
only demand the clients to be parameterized by a density
estimator. In order for FedPCs to be computationally effi-
cient, these density estimators should be tractable. In the
following, we parameterize the leaf nodes C as PCs.

The assignment function ψ transforms the PC’s computation
graph into a distributed computation graph, thus inducing a
communication network. This establishes a direct correspon-
dence between PC semantics (computation graph) and the
communication network structure in FedPCs. Inference is
performed as usual in PCs by propagating likelihood values
from the leaf nodes to the root node. The only difference
is that the result of a node N has to be sent to its parent(s)
pa(N) over the communication network if ψ(N) ̸= ψ(N′)
holds for N′ ∈ pa(N).

Training FedPCs requires adapting the regular training pro-
cedure for PCs because in FL, clients cannot access other
clients’ data. For example, training with Expectation Max-
imization (EM) requires access to the same samples for
all clients, which is incompatible with horizontal and hy-
brid FL. Similarly, LearnSPN Gens and Domingos [2013]
requires access to all features due to independence tests per-
formed during training. To solve this, we propose a one-pass
training procedure for FedPCs.

One-Pass Training. Our one-pass learning algorithm learns
the structure and parameters of FedPCs such that local mod-
els can be trained independently (Algo. 1, Fig. 2). Before
training, all clients c ∈ C share their set of uniquely identifi-
able features/random variables Xc with a server, resulting in
the feature set indicator matrix M|C|×|X| (Lines 1-2). Fea-
ture identifiers can be names of features such as “account

Algorithm 1: One-Pass Training
Data: Clients C, features X, cluster size K, FedPC
Result: Trained fedPC

1 Set M = 0|C|×|X| and map = [];
2 Mi,j = 1 if X(j) on client i;
3 for j,u in enum. of distinct columns U do
4 S(j) = {i : i ∈ {1, . . . , |X| ∧ all(u == M:,i)}};
5 OS(j) = argwhere(u == 1);
6 map.append(S(j), OS(j));
7 sums = [];
8 for S(j), OS(j) in map do
9 if |OS(j) | > 1 then

10 s = fedPC.add_sum(S(j), OS(j));
11 sums.add(s)
12 else
13 client_clusters = cluster_local_data(OS(j) , K);
14 products = fedPC.add_products(P);
15 for prod in products do
16 prod.children.add(sums);
17 for client, clusters in client_clusters do
18 prod.children.add_rand_subset(clusters);
19 fedPC.add_mixture_over_products(products);
20 fedPC.train_clients();
21 fedPC.infer_weights();
22 return fedPC

balance" and must correspond to the same random variable
on all clients (thus uniquely identifiable). Then, the server
divides the joint feature space X into disjoint subspaces
S(j). For this, we consider the set of distinct column vectors
U of M where we denote distinct vectors as u. Since each
column of M indicates the set of clients a feature resides
on, we can use each u ∈ U to compute a set of features
that are shared across the same set of clients. This results in
|U| distinct feature sets, denoted {S(1), . . . ,S(|U|)}. Each
OS(j) denotes the set of clients that hold the features in S(j).
(Lines 3-7). This procedure is illustrated in Fig. 2 (top).

Afterward, the FedPC structure is constructed as shown in
Fig. 2 (bottom): First, we build a mixture (sum node) for
each subspace S(j) where |OS(j) | > 1, i.e., more than one
client holds S(j) (Lines 9-12). This enables each client to
learn a PC over S(j) independently. After that,|OS(j) | = 1
holds for all remaining S(j). Also, the scope of the sums
nodes introduced in the FedPC share no features with any
of the remaining S(j) since the server divided the feature
space into disjoint subspaces. Therefore, we introduce P
product nodes to construct the remaining part of the FedPC.
To this end, we divide the data of all subspaces S(j) where
|OS(j) | = 1 holds into K clusters (Line 14). Each client
learns a dedicated PC for each cluster. To ensure that the
FedPC spans the entire feature space of the clients, the chil-
dren of product nodes are set as follows: Each sum node

introduced in the FedPC becomes a child of each product
node. Additionally, for each S(j) where |OS(j) | = 1 holds,
we randomly select a PC learned over one of the K clusters
s.t. the scope of each product node spans X, and each PC
representing a cluster is the child of at least one product
node. Then, we build a mixture over all product nodes using
a sum node (Lines 15-20). Note that we seek to construct
product nodes over independent clusters, which aligns with
the maximum entropy principle (see App. B.1 for details).
Once the FedPC is constructed, all client-sided PCs are
learned. Since clients learn their PCs independently, each
client can use an arbitrary learning algorithm (even different
ones). As a last step, the network-sided parameters, i.e., the
weights of network-sided sum nodes, of the FedPC are in-
ferred (Line 21-22). For each sum node S, the weight w(i)

S

associated with the i-th child (i.e., distribution) of S is set to
ρ(Ni)∑
i ρ(Ni)

. Here, ρ(Ni) =
∑

C∈ch(Ni)
|DC| where DC is the

dataset used to train the leaf C. Hence, the network-sided
weights can be inferred without any forward or backward
pass. Note that this approach reduces horizontal FL to learn-
ing a mixture of the client’s data distributions and vertical
FL to learning a mixture over P product nodes.

3.4 ANALYSIS OF COMMUNICATION
EFFICIENCY

As a key requirement for efficient training when learning
models at scale on partitioned data, we now analyze the
communication efficiency of FedPCs.

Horizontal FL. Assume a client set C where each client
holds a model with M parameters. Further, assume models
are aggregated K times during training (K communication
rounds). Then, model aggregation-based algorithms like Fe-
dAvg commonly used in horizontal FL send O(M · |C| ·K)
messages over the network as each client sendsM model pa-
rameters to a server in each communication round. Training
FedPCs with one-pass training, in contrast, only requires
O(|C| · (M + 1)) messages over the network as models
are learned locally and independently, followed by setting
the parameters (O(|C|) messages) of the sum nodes and
aggregating the model on the server (O(M |C|) messages).

Vertical FL. In vertical settings, SplitNN-like architectures
are commonly used. Assume training a SplitNN architecture
for E epochs that output a feature vector of size F for each
sample of a dataset with S samples, vertically distributed
over clients C. The training requires sending O(E · |C| · F ·
S) messages over the network. In contrast, with one-pass
training of FedPCs, each client learns a dedicated PC with
M parameters for each of the K clusters that are learned.
The last layer of the FedPC is a mixture of P products of
clusters. The mixture parameters are set after training each
client’s model. Aggregating the learned models and setting
the network-sided mixture parameters requires O(K ·M ·
|C|+P) messages to be sent. If (K ·M + P

|C|) < (E ·F ·S)

++ +

+
+

+

+

Figure 2: One-Pass Training Visualized. (Top) First, the matrix M is initialized, representing which features are held by
which client. Feature subsets are constructed by considering distinct column vectors u of M that represent the same set
of clients. This forms a mapping indicating which features are modeled as a mixture over clients. (Bottom) This mapping
is utilized by forming mixtures over different clients sharing the same feature set via sum nodes. Features that are not
shared over multiple clients will be clustered into K clusters (here K = 2). The FedPC is formed by creating product nodes
containing all sum nodes from the previous steps and at least one of the K clusters. Lastly, the root node is inserted.

holds, training FedPCs is more communication efficient than
training SplitNN-like architectures. In practice, this is likely
to hold: The number of clusters is usually smaller than 100
while feature vectors can have hundreds of dimensions (i.e.,
F > 100). Further, models should have fewer parameters
than samples in the dataset to ensure generalization (i.e.,
M < S). P can be set to an arbitrary value, depending
on |C| and the data. App. C provides more details and an
intuition on communication costs.

Hybrid FL. In hybrid FL, FedPCs are trained on several
subspaces: Some exist on all or a subset of clients (denoted
asRs) and some are only available on one client (denoted as
Rd). Further denote communication costs of FedPCs in hor-
izontal FL and vertical FL as Ch and Cv , respectively. Since
the training procedure in hybrid cases essentially performs
horizontal FL on shared feature spaces and vertical FL on
disjoint feature spaces, O(|Rs| · Ch + |Rv| · Cv) messages
are sent over the network during training.

4 EXPERIMENTS

Our empirical evaluation corroborates that FedPCs can be
leveraged to scale up PCs effectively via data and model
partitioning. By performing horizontal, vertical and hybrid
FL in one unified framework, we obtain high-performing
models with the same or improved performance compared
to prominent FL baselines.

We aim to answer the following questions: (Q1) Can Fed-
PCs decrease the required training time and successfully
learn a joint distribution over distributed data? (Q2) Do Fed-
PCs effectively scale up PCs, thus yielding more expressive
models? (Q3) How do FCs with different parameterizations

perform on classification tasks compared to existing FL
methods? (Q4) How does our one-pass learning algorithm
compare to training with the EM algorithm?

Experimental Setup. To see if FedPCs, an instantiation
of FCs, successfully scale up PCs, we follow Liu et al.
[2024] and perform density estimation on three large-scale,
high-resolution image datasets: Imagenet, Imagenet32 (both
1.2M samples), and CelebA (200K samples). The datasets
were partitioned over 2-16 clients horizontally. We com-
pared FedPCs to EiNets and Pyjuice and ran all methods
with 5 different seeds.

To evaluate FCs in FL scenarios, we selected three tabular
datasets that cover various application domains and data
regimes present in the real world: one credit fraud dataset
(∼ 300K samples), a medical dataset (breast cancer de-
tection; < 1000 samples), and the popular Income dataset
(> 1M samples). The selected datasets for FL cover low-
data, medium-data, and large-data regimes (see App. D for
more details). Both balanced (breast cancer) and imbalanced
(income, credit) datasets are included in our evaluation. We
selected tabular datasets as they are well suited to inves-
tigate FCs in horizontal, vertical, and hybrid settings and
represent various real-world applications. We compare FCs
to multiple strong and widely used baselines. As a neural
network architecture parameterization, we use TabNet [Arik
and Pfister, 2020] which is tailored to tabular datasets. We
train the networks with the widely used FedAvg (horizontal
FL) and SplitNN (vertical FL) frameworks. Additionally,
we compare FCs to FedTree [Li et al., 2023b] since tree
models excel at tabular datasets. For details, see App. D.

(Q1) FedPCs learn joint distributions over partitioned
data in less time. First, we validate that FedPCs correctly

Log-Likelihood Relative Runtime
cent. horizontal vertical hybrid cent. horizontal vertical hybrid

MNIST 3352±3.5 3350±3.2 3351±3.8 3349±3.7 1.0 0.07±0.01 0.13±0.01 0.13±0.02

Income −11.5±0.1 −11.4±3.5 −11.9±3.3 −12.0±1.5 1.0 0.17±0.02 0.236±0.01 0.21±0.02

Cancer −38.9±0.3 −38.5±1.1 −38.6±0.5 −38.7±1.5 1.0 0.21±0.07 0.35±0.05 0.35±0.1

Credit −12.8±1.0 −13.1±0.5 −12.5±2.3 −12.5±1.3 1.0 0.42±0.05 0.31±0.09 0.40±0.13

Table 1: FedPCs speed up training while retaining model performance. We trained PCs in a centralized setting (cent.)
and in all FL settings (using FedPCs) on different datasets and the same structure learning algorithm. We find that FedPCs
tremendously speed up training while there is no reduction in log-likelihood. This demonstrates that PCs can be learned in
federated settings (for MNIST, log densities are reported). We report relative runtime where centralized runtime is 1.0.

64x64x3 RVs 32x32x3 RVs
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
R

un
tim

es

Einet
PyJuice
FedPC (2 cl.)
FedPC (4 cl.)
FedPC (8 cl.)
FedPC (16 cl.)

Figure 3: FedPCs speed up training on large-scale image
data (64x64 and 32x32 RGB images) due to parallel training
on separate data partitions.

CelebA Imagenet32 Imagenet
EiNet -3.42 ± 0.06 -3.71 ± 0.04 -3.73 ± 0.04

PyJuice -2.98 ± 0.02 -3.60 ± 0.01 -3.43 ± 0.02

FedPC (2 cl.) -2.87 ± 0.05 -2.66 ± 0.02 -3.12 ± 0.02

FedPC (4 cl.) -2.84 ± 0.05 -2.56 ± 0.03 -3.01 ± 0.03

FedPC (8 cl.) -2.76 ± 0.04 -2.50 ± 0.03 -2.97 ± 0.02

FedPC (16 cl.) -2.68 ± 0.03 -2.45 ± 0.04 -2.90 ± 0.03

Table 2: FedPCs outperform EiNets and PyJuice on den-
sity estimation tasks. FedPCs achieve better results on
density estimation tasks on tCelebA, Imagenet32, and Ima-
genet because they can learn large models distributed across
multiple machines. Results reported in nats (higher is better).
Best in bold, 2nd best underlined.

and efficiently perform density estimation on partitioned
datasets distributed over multiple clients. To this end, mul-
tiple datasets were distributed over a set of clients corre-
sponding to horizontal (5 clients), vertical (2 clients), and
hybrid FL (2 clients). To demonstrate that FedPCs are also
robust against label shifts, a common regime in FL, each
client received data from only a subset of classes in the
horizontal case, and local PCs were learned over the client
samples. In the vertical case, we split data s.t. feature spaces
of clients are disjoint, but each client holds the same sam-
ples. In hybrid settings, data was distributed s.t. both feature-
and sample-spaces among clients have overlaps (but no full
overlap). For all tabular datasets, the leaves of the FedPC
were parameterized with MSPNs [Molina et al., 2018], a
member of the PC model family capable of performing den-
sity estimation on mixed data domains (i.e., continuous and
discrete random variables). We chose MSPNs as the cen-
tralized models, which were learned using LEARNSPN, a
recursive greedy structure learning algorithm for SPNs Gens
and Domingos [2013]. For MNIST, EiNets with Gaussian
densities were used as PC instantiations in all settings. Note
that FedPCs were chosen to approximately match the size of
centralized models, i.e., no model upscaling was performed.

Tab. 1 compares log-likelihoods and relative runtime of cen-
tralized PC training on the full datasets with log-likelihood
scores and relative runtimes achieved by FedPC in different
FL settings. FedPCs achieve the same log-likelihoods as cen-

tralized PCs on tabular datasets while being tremendously
faster in training. Hence, we answer (Q1) affirmatively.

(Q2) FedPCs effectively scale up PCs. To examine whether
FedPCs can be leveraged to scale up PCs effectively, we
trained an EiNet, PyJuice, and FedPC on CelebA, Ima-
genet32, and Imagenet. All models used the Poon-Domingos
(PD) architecture. FedPCs were parameterized with EiNets,
and data was distributed among 2, 4, 8, and 16 clients. The
FedPC model and baseline models (EiNets and PyJuice)
were selected to ensure that each fits within a single GPU
(see App. D for system details). Einets and FedPCs were pa-
rameterized with Gaussian leave distributions, while PyJuice
models were parameterized with Categorical distributions.
The parameterizations were chosen based on empirical ob-
servations; for Einets and FedPCs, Gaussians worked best,
while PyJuice Categoricals worked best.

For FedPC training, the images were distributed horizon-
tally at random, s.t. each client holds approximately equally
large subsets. The leaves and all baselines were trained with
EM. In Tab. 2, we show nats normalized over samples and
dimensions achieved by EiNets, PyJuice, and FedPC on the
test set. It can be seen that with an increasing number of
participating clients and, thus, a larger model, the density
estimation performance also increases on all three datasets.
We posit that this is because larger models exhibit higher
expressivity, allowing them to capture statistical character-

Figure 4: FCs are competitive to prominent FL methods in all settings. FCs achieve competitive performance on various
classification tasks compared to prominent horizontal/vertical FL baselines. FCs also handle the more challenging setting of
hybrid FL without performance drops. We reported the F1 score (higher is better).

istics of the data better than smaller models. Also, higher
nats scores achieved on the test set by larger models indicate
that no overfitting appeared due to more model parameters.
However, note that more exhaustive scaling will likely lead
to overfitting. Finding the optimal model size/number of
clients in a principled way is beyond the scope of this work
and is left for future endeavors. Besides better modeling
performance, a larger number of clients reduces training
time significantly (see Fig. 3). FedPCs thus efficiently scale
tractable probabilistic models to large datasets.

(Q3) FCs achieve state of the art classification results in
FL. FCs can be parameterized with different models in the
leaves. We examine two parameterizations to solve a feder-
ated classification task on three tabular datasets. First, we
use the FedPC (FC [PC]) from (Q1), which can be used to
solve discriminative tasks leveraging tractable computation
of conditionals in PCs. The second FC parameterization we
examine is decision trees (FC [DT]), representing an instan-
tiation of a bagging model. To see how FCs perform in fed-
erated classification tasks, we compare FCs to well-known
methods for horizontal FL and vertical FL. The experiments
were conducted on tabular datasets covering various real-
world application domains and distribution properties. We
employ TabNet and FedTree as strong baselines. In the hori-
zontal FL setting, TabNet was trained using FedAvg; in the
vertical FL setting, it was trained in a SplitNN fashion [Ce-
ballos et al., 2020]. The results were compared against our
one-pass training. FCs yield comparable or even better re-
sults than the selected baselines on all datasets (see Fig 4;
App. E) while being significantly more flexible compared
to the baselines.

(Q4) One-pass training retains performance. To see how
the proposed one-pass training compares to training PCs
with standard optimization algorithms such as EM, we de-
fine an FL setup where data exchange is allowed. This is
necessary as we have to train the PC and FedPC architecture
with EM to compare to our one-pass procedure. We used
RAT-SPNs [Peharz et al., 2020b] as leaf parameterizations
of the FedPC. Then, we trained a FedPC using standard EM

EM one-pass
Synth. Data −53.6 ±1.3 −53.2 ±1.2

Income −18.5 ±0.1 −18.0 ±0.5

Breast-Cancer −52.3 ±0.2 −55.7 ±0.2

Credit −26.7 ±1.2 −28.3 ±0.4

Table 3: One-pass training retains performance. We
trained the same FedPC architecture on various datasets
using EM and one-pass training in a vertical setting. The
average log-likelihood value of the hold-out test set across
10 runs is reported.

(i.e., data exchange was allowed) and another FedPC with
the same FedPC architecture on a vertically split dataset
using our one-pass procedure. We report the final average
log-likelihood of the test dataset, both for EM training and
one-pass training (see Tab. 3). It can be seen that there is
no significant decrease in log-likelihood in any case. Hence,
our results indicate that one-pass training is preferable since
it yields comparable model performance while being more
communication efficient.

5 CONCLUSION

In this work, we introduced federated circuits that hinge on
an inherent connection between PCs and FL. We demon-
strated that both the training speed and expressivity of PCs
can be increased by learning PCs on scale across partitioned
data. Since our framework allows for the integration of vari-
ous types of density estimators, other models and advances
of PCs and other fields can be integrated seamlessly, main-
taining the relevance of the federated approach for scaling.

Limitations and Future Work. While our experiments
showed that scaling PCs can considerably improve training
speed and performance, scaling to such large-scale models
requires sufficient computational resources. For future work,
investigating other parametrizations for FCs beyond PCs
is promising. Additionally, it is interesting how the proba-
bilistic framework for hybrid FL could also benefit more
traditional FL applications, apart from scaling PCs.

ACKNOWLEDGEMENTS

This work is supported by the Hessian Ministry of Higher
Education, Research, Science and the Arts (HMWK;
projects “The Third Wave of AI”). Further, this work
was supported from the National High-Performance Com-
puting project for Computational Engineering Sciences
(NHR4CES).

The Eindhoven University of Technology authors received
support from their Department of Mathematics and Com-
puter Science and the Eindhoven Artificial Intelligence Sys-
tems Institute.

References

Sercan O. Arik and Tomas Pfister. Tabnet: Attentive inter-
pretable tabular learning, 2020.

Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek
Singh, Alberto Roman, Praneeth Vepakomma, and
Ramesh Raskar. Splitnn-driven vertical partitioning.
CoRR, abs/2008.04137, 2020.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. VAFL:
a method of vertical asynchronous federated learning.
CoRR, abs/2007.06081, 2020.

K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos,
and Q. Yang. Secureboost: A lossless federated learning
framework. IEEE Intelligent Systems, 36:87–98, 2021.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. 2020.

Robert Gens and Pedro Domingos. Learning the structure
of sum-product networks. In Proceedings of the 30th In-
ternational Conference on Machine Learning, volume 28,
pages 873–880. PMLR, 2013.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale,
Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Mime: Mimicking cen-
tralized stochastic algorithms in federated learning. arXiv
preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. SCAFFOLD: Stochastic controlled averaging
for federated learning. In Proceedings of the 37th In-
ternational Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages
5132–5143. PMLR, 2020b.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communica-
tion efficiency. arXiv preprint arXiv:1610.05492, 2016.

Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert
Bifet, and Arinto Murdopo. Vht: Vertical hoeffding tree.
In 2016 IEEE International Conference on Big Data (Big
Data), 2016.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang,
Yuan Li, Xu Liu, and Bingsheng He. A survey on feder-
ated learning systems: Vision, hype and reality for data
privacy and protection. IEEE Transactions on Knowledge
and Data Engineering, 35:3347–3366, 2023a.

Qinbin Li, Zhaomin Wu, Yanzheng Cai, Ching Man Yung,
Tianyuan Fu, Bingsheng He, et al. Fedtree: A federated
learning system for trees. Proceedings of Machine Learn-
ing and Systems, 5, 2023b.

Qinbin Li, Chulin Xie, Xiaojun Xu, Xiaoyuan Liu,
Ce Zhang, Bo Li, Bingsheng He, and Dawn Song. Effec-
tive and efficient federated tree learning on hybrid data.
In The Twelfth International Conference on Learning
Representations, 2024.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia
Smith. Federated learning: Challenges, methods, and
future directions. IEEE signal processing magazine, 37
(3):50–60, 2020.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scal-
ing up probabilistic circuits by latent variable distillation.
In The Eleventh International Conference on Learning
Representations, 2022.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling
tractable probabilistic circuits: A systems perspective,
2024.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng,
Tianjian Chen, Mingyi Hong, and Qiang Yang. A commu-
nication efficient vertical federated learning framework.
CoRR, abs/1912.11187, 2019.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and
Blaise Agüera y Arcas. Federated learning of deep net-
works using model averaging. CoRR, abs/1602.05629,
2016.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sri-
raam Natarajan, Floriana Esposito, and Kristian Kersting.
Mixed sum-product networks: A deep architecture for
hybrid domains. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), 2018.

Judea Pearl. Bayesian networks: A model of self-activated
memory for evidential reasoning. In Proceedings of the
7th conference of the Cognitive Science Society, Univer-
sity of California, Irvine, CA, USA, pages 15–17, 1985.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro Domingos. On theoretical properties of sum-
product networks. In Artificial Intelligence and Statistics,
pages 744–752. PMLR, 2015a.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and
Pedro Domingos. On Theoretical Properties of Sum-
Product Networks. In Guy Lebanon and S. V. N. Vish-
wanathan, editors, Proceedings of the Eighteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 38, pages 744–752. PMLR, 2015b.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van Den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilis-
tic circuits. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pages
7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Uncertainty in Artificial Intelligence, pages
334–344. PMLR, 2020b.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. page 337–346. AUAI Press,
2011.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,
Ameet Talwalkar, and Virginia Smith. On the conver-
gence of federated optimization in heterogeneous net-
works. CoRR, abs/1812.06127, 2018.

Raquel Sánchez-Cauce, Iago París, and Francisco Javier
Díez. Sum-product networks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(7):3821–3839, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and
Ramesh Raskar. Split learning for health: Distributed
deep learning without sharing raw patient data. arXiv
preprint arXiv:1812.00564, 2018.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui
Cai, and Wensheng Zhang. A survey on federated learn-
ing: challenges and applications. Int. J. Mach. Learn. &
Cyber., pages 513—-535, 2023.

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen,
and Beng Chin Ooi. Privacy preserving vertical fed-
erated learning for tree-based models. arXiv preprint
arXiv:2008.06170, 2020.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–19, 2019.

Xinwei Zhang, Wotao Yin, Mingyi Hong, and Tianyi Chen.
Hybrid federated learning: Algorithms and implementa-
tion. CoRR, abs/2012.12420, 2020.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon
Amos. Collapsed variational inference for sum-product
networks. In International Conference on Machine Learn-
ing (ICML), volume 48, pages 1310–1318, 2016.

A DISCUSSION ON ASSUMPTIONS

As a preliminary to FCs, we introduced two assumptions that allowed us to construct the FC framework. Here, we provide
some more background on these assumptions. For clarity, let us state the assumptions again.

Assumption 1 (Mixture Marginals). There exists a joint distribution p such that the relation
∫
X\XS

p(x) =
∑

l∈L q(L =

l) · pS(x|L = l) holds for all x ∈ X . Here, XS ⊆ X is a subset of the union of client random variables X = ∪c∈CXc.
Further, X =×c∈C Xc is the support of X, each pS is defined over XS ⊆ X and q is a prior over a latent L.

Assumption 2 (Cluster Independence). Given disjoint sets of random variables X1, · · · ,Xn and a joint distribution
p(X1, · · · ,Xn), assume that a latent L can be introduced s.t. the joint can be represented as p(X1, · · · ,Xn) =

∑
l q(L =

l)
∏n

i=1 p(Xi|L = l) where q is a prior distribution over the latent L.

As discussed in the main paper, Assumption 1 ensures that the data that resides on all participating clients is sufficient to
learn p(X), at least in the limit of infinite samples available. However, this only covers the federated learning perspective of
this assumption. There is also a PC perspective on this assumption. For this, let us introduce the induced tree representation
of PCs from [Zhao et al., 2016]:

Definition 5. Induced Trees [Zhao et al., 2016]. Given a complete and decomposable PC s over X = {X1, . . . , Xn},
T = (TV , TE) is called an induced tree PC from s if

1. N ∈ TV where N is the root of s.

2. for all sum nodes S ∈ TV , exactly one child of S in s is in TV , and the corresponding edge is in TE .

3. for all product node P ∈ TV , all children of P in s are in TV , and the corresponding edges in TE .

We can use Def. 5 to represent decomposable and complete PCs as mixtures [Zhao et al., 2016].

Proposition 1 (Induced Tree Representation). Let τs be the total number of induced trees in s. Then the output at the root of
s can be written as

∑τs
t=1

∏
(k,j)∈TtE

wkj

∏n
i=1 pt(Xi = xi), where Tt is the t-th unique induced tree of s and pt(Xi) is a

univariate distribution over Xi in Tt as a leaf node.

Using Prop. 1, we see that any decomposable and smooth PC can be represented as a mixture without any hierarchy, i.e.,
we can collapse the PC structure into a structure of depth one. Since marginalizing over a decomposable and smooth PC
yields another decomposable and smooth PC again, and since the marginalized PC can be represented as an induced tree,
Assumption 1 is a standard assumption in the PC literature.

Also, Assumption 2 can be viewed from a PC perspective. In popular structure learning algorithms such as LearnSPN Gens
and Domingos [2013], a PC is learned by alternating data clustering with testing for independent subsets of features. Thus,
the ultimate goal of algorithms like LearnSPN is to find clusters in which subsets of random variables are considered
independent in order to maximize log-likelihood. Therefore, Assumption 2 is closely related to LearnSPN and, thus, a
common assumption in PC modeling.

B PROOFS

In this section we give full proofs for our propositions in the paper.

B.1 FEDPCS AND PRINCIPLE OF MAXIMUM ENTROPY

Assumption 2 aligns with the principle of maximum entropy: we aim to find the joint distribution with maximum entropy
within clusters while allowing for dependencies among clients’ random variables and ensuring the marginals for each client
are preserved. Although multiple joint distributions can preserve the marginals, non-maximal entropy solutions introduce
additional assumptions or prior knowledge, limiting flexibility. By assuming independence of all variables within a cluster,
we efficiently construct the maximum entropy distribution via a mixture of product distributions. For independent variables,
the product distribution maximizes entropy, as can be shown by leveraging the joint and conditional differential entropy.
Given random variables X = X1, . . . , Xn and a density p defined over support X = X1 × · · · × Xn, the joint differential
entropy is defined as:

h(X) =

∫
X
p(x1, . . . , xn) logp(x1, . . . , xn) (1)

The conditional differential entropy for two sets of random variables X and Y and a joint distribution p(X,Y) defined over
support X × Y is defined analogously:

h(X|Y) =

∫
X ,Y

p(x,y) logp(x|y) (2)

Given two sets of random variables X, Y with densities p(X) and p(Y) and support X , Y respectively, the joint p(X,Y) =
p(X) · p(Y) is the maximum entropy distribution if X and Y are mutually independent.

Proof. We consider the two cases that X and Y are mutually independent and that they are not mutually independent.
The joint entropy can be written as h(X,Y) = h(X|Y) + h(Y). In the case of mutual independence, this reduces to
h(X,Y) = h(X) + h(Y). Hence it has to be shown that h(X|Y) < h(X) holds if X and Y are not mutually independent:

h(X|Y) < h(X)

≡−
∫
X ,Y

p(x,y)logp(x|y) < −
∫
X ,Y

p(x,y)logp(x)

≡−
(∫

X ,Y
p(x,y)logp(x|y)−

∫
X ,Y

p(x,y)logp(x)
)
< 0

≡−
(∫

X ,Y
p(x,y)log

p(x|y)
p(x)

)
< 0

Since X ⊥⊥ Y holds where ⊥⊥ means mutual independence, p(x|y)
p(x) ̸= 1 at least for some x,y. Since the mutual independence

I(X,Y) =
∫
X ,Y p(x,y)log p(x,y)

p(x)·p(y) can be represented as I(X,Y) = h(X) − h(X|Y), I(X,Y) ≥ 0 holds and

−
(∫

X ,Y p(x,y)logp(x|y)
p(x)

)
= h(X|Y)− h(X) it follows that h(X) > h(X|Y).

C COMMUNICATION EFFICIENCY

Communication efficiency is a critical property when it comes to learning models across multiple machines, as it is done in
FL. Here, in addition to our theoretical results, we more intuitively provide further details on the communication efficiency
of FCs. For that, we plot the communication cost in Megabytes (MB) required to train a FedPC vs. FedAvg/SplitNN in
horizontal/vertical FL settings with datasets of different sizes (1M and 100M samples). Regardless of the number of samples
in the dataset, FedPCs are more communication efficient compared to our baselines in both horizontal and vertical settings
(see Fig. 5).

0 2000 4000 6000 8000 10000
Number Clients

5

0

5

10

15

20

25

Co
mm
un
ic
at
io
n
Lo
ad
 (
MB
)
(l
og
-s
ca
le
)

Communication Cost w.r.t. Number of Clients

100M samples; 50M param.
1M samples; 0.5M param.
FedPC vertical
FedPC horizontal
FedAvg horizontal
SplitNN vertical

Figure 5: FedPCs are communication-efficient. We compare communication cost in Megabytes (MB) sent over the network
during one full training of a model (0.5M/50M parameters) on a dataset (1M/100M samples) using results from Section 3.4.
Results are shown on log-scale. It can be seen that FedPCs significantly reduce communication cost of training.

D EXPERIMENTAL DETAILS

D.1 DATASETS

The following describes the datasets used in our experiments. If not stated differently, the datasets were distributed across
clients as follows:

In horizontal cases, we either split samples randomly across clients (done for all binary classification tasks) or we distribute
a subset of the dataset corresponding to a certain label (e.g. the 0 in MNIST) to one client.

In vertical cases, we split tabular datasets randomly along the feature-dimension, i.e. each client gets all samples but a
random subset of features assigned. For image data, we split the images into non-overlapping patches which were then
distributed to the clients.

In hybrid cases, we split tabular datasets along both, the feature and the sample-dimension. We do this s.t. at least two clients
have at least one randomly chosen feature in commeon (but hold different samples thereof). For image data, we split images
into overlapping patches, sample a subset of the dataset and assign the resulting subsets to clients.

Income Dataset. We used the Income dataset from https://www.kaggle.com/datasets/wenruliu/
adult-income-dataset. This dataset represents a binary classification problem with 14 features and approximate
450K samples in the train and 900 samples in the test set. We encoded discrete variables to numerical values using TargetEn-
coder from sklearn. Additionally, missing values were imputed using the median of the corresponding feature. Further we
standardized all features.

Breast Cancer Dataset. We used the Breast Cancer dataset from https://www.kaggle.com/datasets/uciml/
breast-cancer-wisconsin-data. It represents a binary classification problem with 31 features and 570 samples.
We split the dataset into 450 training samples and 120 test samples. We standardized all features for training.

Credit Dataset. We used the Give Me Some Credit dataset from https://www.kaggle.com/c/

https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/c/GiveMeSomeCredit

GiveMeSomeCredit. The dataset represents a binary classification task with 10 features, 1.5M training sam-
ples and 100K test samples. We encoded discrete variables to numerical values using TargetEncoder from sklearn.
Additionally, missing values were imputed using the median of the corresponding feature. Further we standardized all
features.

MNIST. We used the MNIST dataset provided by pytorch. It contains 70K hand-written digits between 0 and 9 as 28x28
images (60K train, 10K test). We standardized all features as preprocessing.

Imagenet/Imagenet32. We used the Imagenet dataset provided by pytorch. It consists of about 1.2M images showing
objects of 1000 classes. The images come in different resolutions; we resized each image to 64x64 (Imagenet) and 32x32
(Imagenet32) pixels, applied center cropping, and standardized all features as preprocessing. We distributed samples
randomly across clients as a simple dataset partioning.

D.2 DISCRETIZATION

In our experimental setup, FCs and Einets were parameterized with Gaussian leaves and fitted on RGB image data. Since
image data is discrete (takes integer values from 0-255) and Gaussians are defined over a continuous domain and thus
define a probability density rather than a probability mass function, we have to discretize the Gaussian leaves to obtain the
probability for a given image x. Therefore, we construct 255 buckets, discretizing a Gaussian with parameters µ and σ by
computing the probability mass as p(x) = Φ(

x−µ+ 1
255

σ) − Φ(x−µ
σ). The computation graph will remain fixed since the

probabilistic semantics of PCs hold for densities and probability mass functions.

D.3 TRAINING & HYPERPARAMETERS

PyJuice. For PyJuice we follow the training setup of [Liu et al., 2024] and train the models on randomly cropped 32x32
patches. For Imagenet32, this corresponds to the full image, while for CelebA and Imagenet, this corresponds to a random
32x32 block of the image. We used EM as an optimization procedure.

FCs and Einets. For FCs and Einets, we followed the setup from [Peharz et al., 2020a] and trained all models on the full
image (i.e., 32x32 for Imagenet32 and 64x64 for Celebi/Imagenet). We used EM as an optimization procedure.

We ran all experiments with 5 different seeds (0-4). The following tables show the setting of all relevant hyperparameters for
each dataset and FL setting.

FL-Setting Dataset Structure Threshold min_num_instances glueing

horizontal
Income learned 0.3 200 -
Credit learned 0.5 200 -
Cancer learned 0.4 300 -

vertical
Income learned 0.4 100 combinatorial
Credit learned 0.5 50 combinatorial
Cancer learned 0.4 300 combinatorial

hybrid
Income learned 0.4 100 combinatorial
Credit learned 0.5 50 combinatorial
Cancer learned 0.4 300 combinatorial

Table 4: Hyperparameters used in our experiments for all tabular datasets.

D.4 HARDWARE

All experiments were conducted on Nvidia DGX machines with Nvidia A100 (40GB) GPUs, AMD EPYC 7742 64-Core
Processor and 2TiB of RAM.

E FURTHER RESULTS

Here, we provide further experimental details on FCs.

https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/GiveMeSomeCredit

MNIST Imagenet32 Imagenet CelebA
num_epochs 5 10 10 10
batch_size 64 64 64 64

online_em_frequency 5 10 50 10
online_em_stepsize 0.1 0.25 0.5 0.25

Structure poon-domingos poon-domingos poon-domingos poon-domingos
pd_num_pieces 8 8 8 8

K 10 40 40 40
Leaf Distribution Gaussian Gaussian Gaussian Gaussian

min_var 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

max_var 0.25 0.25 0.25 0.25

Table 5: Hyperparameters used in our experiments for image datasets.

FL Classification Results. We compare FCs to several baselines in horizontal, vertical, and hybrid FL. In horizontal FL, we
compare against FedAvg (using TabNet [Arik and Pfister, 2020]) and FedTree [Li et al., 2023b]; in vertical FL, we compare
against SplitNN (also using TabNet) and FedTree. In hybrid FL, we compare different parameterizations of FCs (FedPCs
and FCs parameterized with decision trees). We find that FCs are competitive or outperforming the selected baselines in all
FL settings (see Tab. 6). This makes them a very flexible FL framework that still yields high-performing models.

Cancer Credit Income
Acc. F1 Acc. F1 Acc. F1

H
or

iz
on

ta
lF

L

FedAvg [TabNet] (5 cl.) 0.92± 0.03 0.92± 0.03 0.71± 0.11 0.48± 0.04 0.68± 0.06 0.51± 0.03
FedAvg [TabNet] (10 cl.) 0.92± 0.04 0.91± 0.05 0.56± 0.12 0.47± 0.06 0.64± 0.06 0.52± 0.03

FedTree (5 cl.) 0.93± 0.01 0.92± 0.01 0.91± 0.01 0.63± 0.01 0.88± 0.01 0.82± 0.02
FedTree (10 cl.) 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.69± 0.01 0.87± 0.01 0.80± 0.01
FC [PC] (5 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.02 0.68± 0.02 0.87± 0.02 0.80± 0.01

FC [PC] (10 cl.) 0.95± 0.02 0.95± 0.02 0.93± 0.01 0.66± 0.02 0.87± 0.01 0.80± 0.02
FC [DT] (5 cl.) 0.95± 0.03 0.93± 0.02 0.92± 0.01 0.67± 0.01 0.89± 0.01 0.83± 0.01

FC [DT] (10 cl.) 0.95± 0.02 0.93± 0.03 0.92± 0.01 0.97± 0.02 0.89± 0.01 0.83± 0.02
SplitNN [TabNet] - - - - - -

V
er

tic
al

FL

SplitNN [TabNet] (2 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.01 0.48± 0.01 0.56± 0.25 0.42± 0.17
SplitNN [TabNet] (3 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.01 0.48± 0.01 0.62± 0.20 0.56± 0.16

FedTree (2 cl.) 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.69± 0.02 0.87± 0.01 0.80± 0.01
FedTree (3 cl.) 0.93± 0.01 0.92± 0.01 0.92± 0.01 0.69± 0.01 0.87± 0.01 0.80± 0.01
FC [PC] (2 cl.) 0.96± 0.01 0.96± 0.01 0.92± 0.01 0.67± 0.01 0.84± 0.02 0.74± 0.01
FC [PC] (3 cl.) 0.95± 0.01 0.95± 0.01 0.92± 0.01 0.66± 0.02 0.84± 0.01 0.74± 0.01
FC [DT] (2 cl.) 0.96± 0.01 0.96± 0.02 0.93± 0.01 0.60± 0.02 0.83± 0.02 0.67± 0.02
FC [DT] (3 cl.) 0.95± 0.01 0.95± 0.03 0.93± 0.01 0.60± 0.02 0.82± 0.02 0.67± 0.02

FedAvg [TabNet] - - - - - -

H
yb

ri
d

FL

FC [PC] (2 cl.) 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.67± 0.01 0.82± 0.02 0.71± 0.01
FC [PC] (3 cl.) 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.67± 0.02 0.80± 0.01 0.70± 0.01
FC [DT] (2 cl.) 0.96± 0.01 0.96± 0.02 0.93± 0.01 0.60± 0.02 0.82± 0.02 0.66± 0.02
FC [DT] (3 cl.) 0.96± 0.01 0.96± 0.01 0.93± 0.01 0.54± 0.02 0.82± 0.02 0.66± 0.02

FedAvg [TabNet] - - - - - -
SplitNN [TabNet] - - - - - -

FedTree - - - - - -

Table 6: All Classification results of FL experiments. Here, we show the detailed performances of FC, FedAvg, and
SplitNN in all three FL settings. It can be seen that FCs, while being much more flexible than our baselines, still achieve
competitive or better results on various classification tasks.

	Introduction
	Preliminaries and Related Work
	Federated Circuits
	Problem Statement & Modeling Assumptions
	Bridging Probabilistic Circuits and Federated Learning
	Federated Probabilistic Circuits
	Analysis of Communication Efficiency

	Experiments
	Conclusion
	Discussion on Assumptions
	Proofs
	FedPCs and Principle of Maximum Entropy

	Communication Efficiency
	Experimental Details
	Datasets
	Discretization
	Training & Hyperparameters
	Hardware

	Further Results

