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Abstract—Neural Architecture Search (NAS) accelerates
progress in deep learning through systematic refinement of
model architectures. The downside is increasingly large en-
ergy consumption during the search process. Surrogate-based
benchmarking mitigates the cost of full training by querying
a pre-trained surrogate to obtain an estimate for the quality
of the model. Specifically, energy-aware benchmarking aims to
make it possible for NAS to favourably trade off model energy
consumption against accuracy. Towards this end, we propose
three design principles for such energy-aware benchmarks: (i)
reliable power measurements, (ii) a wide range of GPU usage,
and (iii) holistic cost reporting. We analyse EA-HAS-Bench
based on these principles and find that the choice of GPU
measurement API has a large impact on the quality of results.
Using the Nvidia System Management Interface (SMI) on top
of its underlying library influences the sampling rate during the
initial data collection, returning faulty low-power estimations.
This results in poor correlation with accurate measurements
obtained from an external power meter. With this study, we bring
to attention several key considerations when performing energy-
aware surrogate-based benchmarking and derive first guidelines
that can help design novel benchmarks. We show a narrow
usage range of the four GPUs attached to our device, ranging
from 146 W to 305W in a single-GPU setting, and narrowing
down even further when using all four GPUs. To improve
holistic energy reporting, we propose calibration experiments
over assumptions made in popular tools, such as Code Carbon,
thus achieving reductions in the maximum inaccuracy from
10.3% to 8.9 % without and to 6.6 % with prior estimation of
the expected load on the device.

Index Terms—Neural Architecture Search, Green AutoML,
Energy reporting, Energy estimation

I. INTRODUCTION

Deep learning has accelerated progress in many machine-
solvable tasks such as image recognition [1], image segmenta-
tion [2] and natural language processing [3]. The trend away
from feature engineering towards architecture engineering
has given rise to increasingly large neural network models.
Starting from the breakthrough of AlexNet [4] at the Im-
ageNet competition in 2012, various different architectures,
including GoogLeNet [5], ResNet [6] and the Transformer
[7]]l, have introduced a plethora of ways to bundle and stack
different layers of neural networks. In contrast to these manual
engineering approaches, neural architecture search (NAS), a
research area within automated machine learning (AutoML)

[8]], aims to automate the complex process of finding best-
performing architecture for a given task [9]. NAS has con-
tributed to frontier models in image classification [10] and
natural language processing [11]].

While architectures get more refined, their energy demand
can quickly skyrocket during the long searches on large
numbers of GPUs [[12]. The increase in search cost, as well as
overall high training and inference cost, sparked research ef-
forts towards Green Al and Green AutoML [13]], [[14]]. Beside
environmental considerations, Green Al additionally advocates
for more efficient Al research, in order to democratise research
for smaller-scale and publicly funded institutions.

One way to mitigate high computational requirements for
participation in research is through the use of more efficient
benchmarking techniques. Surrogate-based benchmarks, such
as NAS-Bench-201 [15], replace expensive function evalua-
tions (i.e., fully training a candidate neural network architec-
ture) by proxy evaluations at almost negligible cost. Here,
instead of a full training cycle, we only need to query the
(pre-trained) surrogate model to retrieve (an estimate of) the
performance associated with the given candidate architecture.

Even though only querying the surrogate helps decrease the
overall cost of benchmarking new NAS approaches, we are ul-
timately interested in finding architectures that are themselves
energy-efficient during training and inference. Hardware-
aware NAS (HW-NAS) promises to identify architectures at
the Pareto front of energy efficiency and accuracy [16]. This
has important applications in the context of energy-constrained
devices, such as battery-powered cars or low-power devices in
the Internet of Things (IoT) [[17]], [18]].

To facilitate the multi-objective search for architectures,
HW-NAS benchmarks provide additional surrogates for spe-
cific hardware [19] and may resort to reusing performance
metrics [15]]. The Energy-aware Hyperparameter and Archi-
tecture Search Benchmark (EA-HAS-Bench) aims to construct
a hardware-agnostic search space based on energy measured
using Nvidia SMI [20]]. As shown in|[Figure 1} this may lead to
inaccurate measurements. For these hardware-agnostic energy-
aware NAS benchmarks to work in complementarity with
other hardware-aware NAS benchmarks, we define three key
design principles:
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Conduct reliable power measurements. Most modern
NAS methods employ some form of multi-fidelity optimisation
based on partial information (i.e., based on training for a small
number of epochs or on a subset of data). For these methods to
work, we need energy measurements that are already reliable
at low fidelity.

Allow for a wide range of GPU usage. The search
space or the proposed datasets need to be diverse enough
to include high- and low-power ML models on a single
GPU. The benchmark should produce meaningful results for
multiple different use cases. A search that only uses 100W on
a 800W Nvidia H100 wastes expensive hardware resources,
while architectures resulting from a 800W-search will be
meaningless for smaller IoT devices.

Report holistic model cost. Energy costs of using the final
model should include the cost for the complete training device,
i.e., not only processors, accelerators and memory, during
training and inference. This is especially important for battery-
constrained IoT devices, where reliable cost information is
crucial for the battery life estimation of the device.

Main contributions

Our main contribution is a large-scale study of the EA-
HAS-Bench data collection scheme, which we introduce in
Based on the previously introduced design prin-
ciples and using different power measurement strategies, we
show that:

1) Nvidia SMI produces poor correlation to external
power meter measurements on a per-epoch basis. This
often results in a mix of high- and low-power states as
shown in

2) Measurements using SMI produce insufficient samples
in the low-power epochs to correctly estimate the
energy consumption during those epochs. In contrast to
their published code, in their original work, Dou et al.
used pyNVML to measure the GPU energy consumption
[21]. With the pyNVML-based setup, we were able to
reproduce the data collection without error.

3) EA-HAS-Bench has a low GPU usage range, but high
correlation with the power meter at full fidelity.

4) Holistic energy measurements tools such as Code Car-
bon [22] underestimate the energy consumption during
training, and we propose a method for an offline cali-
bration of the non-measured consumption.

II. RELATED WORK

With the remarkable success of deep learning techniques
across a wide range of applications, the problem of finding
optimal architectures for the task at hand has rapidly become
important to solve. Pioneering approaches in NAS include
the utilisation of Bayesian optimisation [23]], reinforcement
learning (RL) [[12f], [24]] and evolutionary algorithms (EA)
[25]], [26], as well as the introduction of differentiable neural
architectures that enable the optimisation of architectures using
stochastic gradient descent (SGD) [27]-[31]. While RL and
EA-based NAS methods often cover a more flexible macro

design space, they come with high resource consumption.
In contrast, gradient-based approaches focus on micro-level
architecture decisions but are significantly more efficient; this
is a consequence of treating the search space as continuous
instead of discrete, thereby training only one super-network
with continuous decisions on components. Thus, the problem
of finding an optimal architecture can be decomposed into
two distinct levels, where in the inner optimisation, network
weights are trained with current architecture components, and
in the outer optimisation, the architecture components are
updated based on network performance. Overall efficacy is
then further enhanced by approximations of the first-order
solution of this bi-level optimisation problem. To improve the
efficiency of NAS algorithms, recent approaches make use of
training-free evaluation scores to guide the search through the
space of architectures [32]-[34].

To foster the development, reproducibility, and fair compar-
ison of NAS algorithms, a number of different benchmarks
have been proposed. These NAS benchmarks define a search
space over the architectures and train all (or a large subset
of) candidate architectures to yield performance metrics such
as validation and test accuracy. Popular examples of such
benchmarks include NAS-Bench-101/201/301 [15]], [35]], [36]
and JAHS Bench [37]. Since solving NAS problems comes
with significant consumption of compute resources (and thus
electric power), energy-aware NAS benchmarks have been
proposed to obtain similar benefits as from existing NAS
benchmarks in the more challenging setting of developing
energy-efficient multi-fidelity NAS methods. Popular bench-
marks include the Energy-aware Hyperparameter and Archi-
tecture Search Benchmark (EA-HAS-Bench) [20] and the
Energy Consumption-aware NAS benchmark (EC-NAS) [38]].
EA-HAS-Bench and EC-NAS aim to be hardware-agnostic.
However, there are benchmarks that do consider hardware
properties to foster the development of NAS algorithms that
search for architectures tailored to certain hardware configu-
rations [19]], [39].

III. POWER MEASUREMENT TOOLS

In this section, we describe the different power measurement
tools we used for our experiments.

A. External power meter

To validate the node-internal power measurements, a cali-
brated ZES ZIMMER LMG45 power meter was connected
to the four power supply units (PSUs) of the compute node.
Experiments were performed on the same node running Rocky
Linux 9.3 using two Intel(R) Xeon(R) Platinum 8480 pro-
cessors with 112 cores in total, 2000 GB of memory, and
four H100 GPUs attached to the node. The LMG450 has a
measurement accuracy of 0.07 % + 0.04 % of the measuring
range. We record the continuously integrated active power of
all four channels as measured by the internal shunt current
sensors. The sampling frequency was configured to 100 ms,

Uhttps://www.zes.com/en/Products/Precision- Power- Analyzers/LMG450
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Fig. 1: Switching of low- and high-power states measured by SMI queries during training of a neural architecture on one GPU.
The red line is the power measured by the external power meter. The blue line is the power measured by SMI and the green

line is the difference between the two.

while the current and voltage ranges were set to 16 A and
250V, respectively.

B. Nvidia SMI

The Nvidia SMI is a command-line utility providing man-
agement and monitoring functionality for GPU statistics.
Power is measured through the <power.draw> call, which
by default outputs the average power draw over 1s estimated
by the GPU itself [40]], [41]. This can lead to significantly
under-reported consumption, especially during short kernel
executions [40]]. Steady power loads have a margin of error
of 5% on the H100 [40]. The NVIDIA Management Library
(NVML) is the library underlying SMI [21]]. It also provides a
Python binding through pip (called pyNVML) and is used
for the tools such as Code Carbon; For more details, see

isubsection [II-D

C. RAPL

Intel’s Running Average Power Limit (RAPL) technology
manages the power consumption of the underlying processor
[42]. As such, it estimates the energy consumption of certain
so-called power domains. On most modern Intel processors,
starting from the Sandybridge architecture, (at least) the PKG
and DRAM domains are available, which manage the entire
CPU socket and the memory, respectively. For ease of under-
standing, we will call them CPU and memory consumption
going forward.

These domains are accessible through model-specific reg-
isters (MSRs), typically exposed in the power cap interface
of the Linux kernel. We use the PyRAPL library [43] to
import the estimations into the benchmark directly through
the provided Python APIL Other tools, such as PAPI [44]
and LIKWID [45]], are popular alternatives to obtain high-
level access to the power cap interface. RAPL is generally
considered to be accurate on server architectures developed
after Sandybridge; the main reason for this is the switch
from power modeling [42] using performance counters to

a measurement-based approach [46]. Note that to reproduce
results from our study, elevated access or ownership of the
power cap interface may be required.

D. Code Carbon

Reliable tools for quantifying and reporting emissions from
machine learning models are essential for both research and
environmental impact assessments [47]], [48]]. Code Carbon is
such an energy reporting tool specifically designed to track
carbon emissions from computational processes by monitoring
energy use and regional energy mix in gCOgzeq, grams of
CO5 equivalents [22]. Grams of COseq quantify the carbon
footprint of ML models by accounting for their energy con-
sumption and grid carbon intensity, using the global warming
potential (GWP) to standardise emissions from different green-
house gases. For electricity consumption during computing,
this measure is simply based on the proportional amount of
CO- emitted on the power grid, given an appropriate regional
energy mix, in our case 43% fossil fuel, resulting in a carbon
intensity of 381 gCO,/kWh. E|

We use Code Carbon as a proxy for for measuring energy
consumption, as it is a widely adopted tool; yet, its reliability
requires further assessment [49]]. Its main routine is split into
two parts. In the first stage, the energy consumption of the
executed code block is modelled as

Ecodecarbon - (ENVML + ECPU + Ememory) : PUEa (1)

where memory consumption Ememory is estimated using 3 W
per 8 GB of memory. Enypr, and Ecpy are the energy
consumptions reported by NVML and for the CPU domain
in RAPL, respectively. The node energy consumption is then
scaled by the power usage effectiveness (PUE). The PUE
represents a factor incorporating the additional energy used
to operate a compute cluster; an industry average PUE of
1.58 has been reported for 2020 [50]. In the second stage,

Zhttps://github.com/bundes API/smard- api


https://github.com/bundesAPI/smard-api

energy consumption is transformed to COseq emissions by
multiplying the average carbon intensity (COqeq per kWh) of
the local power grid with the energy consumption. In our study,
we manually extract the energy consumption prior to scaling
with the PUE, since it is constant across all experiments and
not used by SMI or the external power meter.

IV. FAIR MEASUREMENTS

The main objective of using a power meter in this context
is to empirically evaluate how to perform measurements at
scale and to improve existing measurement tools. The main
complication of using the power meter in our setup is that
it measures the energy consumption of the entire node and
not merely that attributable to the model training on the
GPU. To be able to obtain a fair comparison between SMI
and the power meter, the latter needs to be calibrated to a
base power consumption; everything above this base level
would then be counted towards actual consumption by the
benchmark. In below, we present a naive way
to think about capturable power consumption P, ;,. On a
compute node. We can obtain P,g;. from P, by measuring
an idle run using the power meter and subtracting RAPL
and SMI measurements. During the actual experiments, this
information could then be used to obtain the GPU power
consumption as measured by the power meter.

Praive = Popu + PMemory + Pepu + Pidie (2)

For the idle run, P,y was calculated as 783 W. However,
when running a stress test such as Firestarter [51]] to maximise
load on the CPU and memory, we obtained P;g. = 941'W.
This leads us to conclude that there is an uncaptured energy-
using component on a node during load; this is made explicit
in below. We thus need to determine a Pysy
that approximates the uncaptured power consumption from the
CPU and memory to obtain unbiased GPU consumption during
the experiments; see [Equation 4

Ptotal = Pnaive + Puncaptured (3)
= PCPU + PMemory + PGPU + Pbusy (4)

Thankfully, initial experiments show that calculating large
prime numbers with a Py, of 811 W is a good lower bound
for the busy power consumption.

Our procedure for calculating the GPU power consumption
as measured by the power meter thus looks as follows:

Popu = Piotat — Pocpu — PMemory - Pbusy (5)

When comparing the power meter to the measurements from
SMI, we use this adjusted power consumption.

V. VALIDATION STUDY

The EA-HAS-Bench(mark) provides surrogate models for
a complex RegNet search space. RegNets are a variation
of ResNets, where residual blocks are replaced by recurrent
neural networks, such as LSTMs [52]. The data for the
surrogates is gathered by randomly sampling both traditional
hyperparameters, as well as architectural details, such as the

number of residual blocks from a large search space, and
then training the resulting model while measuring the energy
consumption using SMI. As claimed by Dou et al., these
surrogates show a Pearson correlation coefficient of 0.89 with
the collected data. Validating the surrogates is beyond the
scope of our study; instead, we are interested in the collected
raw energy data. Specifically, we performed a large-scale study
of 500 sampled architectures to understand the accuracy of
the above described data collection scheme underlying the
benchmark.

A. Setup of validation experiments

We mimic the procedure by randomly sampling architec-
tures from the RegNet [52]] search space and then sequentially
train the resulting models on Tiny Imagenet. Tiny Imagenet
is a smaller version of the original Imagenet dataset [53]] that
contains 1000000 images of 200 classes with 500 images
per class. Images are downsized to 64 x 64 x 3. This is the
largest dataset used in the EA-HAS-Benchmark. We modified
the training code of the benchmark to obtain the energy
consumption of the entire node from the power meter in
addition to the already contained SMI samples. The benchmark
samples SMI with a rate of 10 Hz (one sample each 100 ms)
from a separate thread. While this is configurable, we used the
default of 10 Hz, as the power meter was also storing samples
at this frequency.

The power meter output was recorded on a separate external
machine, and results were stored after experiments had been
concluded. The measurements started and stopped before and
after each training run. Therefore, additionally measuring
energy with the power meter did not induce any load on the
CPU while the architectures were being trained. To obtain
the adjusted energy consumption in postprocessing, we also
sampled the RAPL values at the end of each epoch using
PyRAPL, as outlined in For this validation study,
we only used one out of four available GPUs.

B. Validation results

Epochs measured in this way exhibit a poor energy cor-
relation with the power meter, with a Pearson correlation
coefficient of 0.64. When aggregating epochs for the full
training of a sampled model, the coefficient improves to
0.99. The comparison between full training and per-epoch
measurements is highlighted in the first row of
Throughout the training of the models in this study, the
per-epoch measurements are split between low- and high-
power states on the GPU, with a plateau of non-measured
power states in the empirical cumulative distribution function
(eCDF); see as an example. In this specific case, the
model had no measured power consumption between 130 W
and 150 W. While the eCDF of the power consumption per
epoch appears to be strictly monotonically increasing across all
training runs, we observed such a split behaviour for almost all
of the individual training runs. The reason for this behaviour is
the low sampling rate in 39% of the sampled epochs. In these
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epochs, there are no more than 10 power samples measured
during an average training time of 11.8s.

The divide between low and high sampling rates is visu-
alised in In fact, we did not observe any high GPU
power epochs with a low number of taken samples in the
total number of 53 850 measured epochs. When leaving these
epochs out of consideration, the Pearson correlation coefficient
increased to 0.95; see the second row of Overall, the
Pearson correlation coefficient between the number of samples
per epoch and reported energy usage per epoch was calculated
as 0.57. Correcting for low number of samples turned the
correlation around to -0.39. Ideally, these values should be un-
correlated. Explaining the reasons for this undesired behaviour
is beyond the scope of our study, although we observed in
subsequent experiments that it is due to the use of SMI on top
of pyNVML.

VI. MAIN STUDY

In this section, we first discuss the setup for three different
experiments we conducted as a follow-up to the initial study,
and then present and discuss results from these three exper-
iments, particularly focusing on the three design principles

introduced in [section 1l

Epoch Full Training
Spearman’  Pearson”  KS® Spearman  Pearson  KS
Single GPU
SMI 0.58 0.64 X 0.99 0.99 X
SMI (corrected) 0.99 0.95 v 0.99 0.99 X
NVML 0.98 0.99 v 0.99 0.99 v
Code Carbon 0.99 0.99 X 0.99 0.99 v
TMuli GPU

SMI 0.88 0.97 X 0.99 0.99 v
Code Carbon 0.93 0.99 X 0.99 0.99 v

* KS: Kolmogorov—Smirnov test, a = 0.05, T correlation coefficients

TABLE I: Correlation of measurements obtained via different
tools with the power meter measurements.

A. Setup of experiments

All three experiments used the same general protocol as the
initial study and were executed on the same hardware. The
follow-up experiments, in which we sampled 20 architectures
per experiment, enrich the data collection by using additional
power measurement tools and training procedures. In all of
the experiments, we measured the energy consumption using
Code Carbon in addition to the power meter to understand the
quality of the energy cost reporting. The custom measuring
interval of 100ms in Code Carbon deviates from the default
of 15 s to match the power meter and the benchmark sampling
speed. In the second small-scale experiment, all four H100s
were used and the model was trained in a distributed fashion.
In the third experiment, we replaced SMI with pyNVML to
analyse the low sampling rates reported in the previous section.
pyNVML was used in a previous version of the EA-HAS-
Bench to perform the data collection, and was, to the best of
our knowledge, the method used in the original paper of Dou
et al. [20]. We performed the third experiment twice, once only
with pyNVML enabled, to confirm the cause of the behaviour
from SMI showcased in the previous section, and a second
time also with the power meter and Code Carbon enabled.

B. Reliable power measurements

We now discuss the results from measuring energy con-
sumption using different tools during the training of RegNets
as part of the data collection phase of an energy-aware bench-
mark. In [Table I} we present the main aggregated statistics
from all experiments. The table includes the Spearman and
Pearson correlation coefficients between the energy measured
by the tested tool and the power meter, as well as the result
of Kolmogorov-Smirnov (KS) test with o = 0.05. Our null
hypothesis was that the measurements obtained via a given
tool follow the same distribution as the ground truth from the
power meter.

We tested SMI and Code Carbon for both single-GPU and
multi-GPU training, and we present aggregated results for both
single epochs and the full training cycle. This includes the
results from the preliminary study. Additionally, the results for
the single-GPU measurements from SMI corrected for suffi-
ciently sampled epochs and NVML are depicted. For the Code
Carbon measurements, we observe an overall high correlation
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Fig. 4. Top: eCDF of the aggregated single-GPU training
for SMI and power meter measurements. Bottom: eCDF of
the aggregated multi-GPU training for SMI and power meter
measurements.

with the power meter measurements for single epochs, both
during the single- and multi-GPU run. This is very similar
to the results obtained via NVML. With Code Carbon using
the pyNVML API, this further provides evidence towards
SMI being the cause for the previously described low sample
rate. The measurement quality for SMI improved significantly
compared to the preliminary results, when sampling during a
multi-GPU run. The Pearson correlation coefficient jumps to
0.97 for single epochs. Only the NVML and corrected SMI
distributions pass the Kolmogorov-Smirnov test and are thus
statistically indifferent from those obtained from the power
meter. The measurements on full training runs all correlate
well with the power meter measurements.

The Kolmogorov-Smirnov tests for full training show that
all measurements but “SMI on a single GPU” are not signif-
icantly differently distributed from the power meter measure-
ment. We note that there are many more full training cycles
for the single-GPU-SMI setting, since the large-scale study
was performed exclusively using this setting. The similarity
between the SMI measurements on single- and on multi-GPU
is also highlighted in Here, we visualise the eCDFs
over the full training energy costs for the single- and multi-
GPU scenarios, respectively. According to both distribution
functions, SMI reports consistently less energy than the power
meter. The median training cost doubles from 67 Wh to
132 Wh, while the median inaccuracy from SMI increases
from 8.3 Wh to 12.2 Wh.

C. Range of GPU usage

The range of different power draws on the GPU is relatively
narrow, with 146 W to 305 W compared to the base consump-
tion of the GPU of 75 W and the maximum consumption of
800 W. The GPU was never fully used, with maximum usage
around 40%. This is a sign that the RegNet search space is not
ideal for the H100 GPU. Testing on additional hardware is out
of scope of this study, but would be worthwhile investigating

in future work. shows the linear correlation between
the energy and usage reported by SMI for all epochs measured
during the single-GPU measurements. Brighter colours and
larger circles indicate higher standard deviations during mea-
surements. We observe that the higher variance also increases
almost linearly with the measured power consumption. The
multi-GPU measurements on the righthand side of
demonstrate different behaviour. The power draw of all four
GPUs is uncorrelated to the GPU usage, with a Pearson
correlation coefficient of -0.03. The power consumption in this
setting is only correlated with the memory usage of the GPUs.

D. Reporting of holistic energy costs

Dou et al. [20] «claim that EA-HAS-Bench is
“aware of the overall search energy cost’. The statistical
indifference between the distributions of (corrected)
SMI/NVML measurements and the power meter was
shown in We briefly bring attention back to the
calculations we had to perform to extract only the GPU
power from the power meter, as described in
in While GPU measurements are accurate, the
associated consumption does not comprise the majority of the
energy cost during training, even during multi-GPU training.
Therefore, we analysed whether the accurate measurements
could be supplemented by publicly available cost reporting
tools, such as Code Carbon, to make the benchmark aware
of the overall energy cost. In we described
the calculation procedure for Code Carbon. To summarise,
Code Carbon uses NVML, RAPL and an estimate of the
memory power consumption, in our case 750 W. With the
real memory power consumption of our node being 12'W,
the overestimation of memory consumption by RAPL helps
compensate for the lack of off-socket power consumption
on the node. In [Table 1] we see that the measurements from
Code Carbon are linearly correlated with those obtained from
the power meter. In we visualise for one example
model training the constant power difference between Code
Carbon and the power meter. This is again highlighted in
this time aggregated across the entirety of the
second experiment. Compared to the SMI data, we observe a
relatively constant underestimation of the power consumption
by Code Carbon.

Instead of assuming large amounts of available memory,
we base the calculations on empirically evaluated data. To this
end, we propose to use a sensible range of estimations between
the idle power consumption and the busy power consumption
from Firestarter. The range of estimations should be provided
by system administrators through the baseboard management
controller available on most modern servers. These systems
have relatively low sampling rates, usually once every 5 min-
utes; however, a constant load does not require high sampling
rates. If more precise bounds are needed, calibrating with a
custom load, such as our prime number calculation, would be
required.

We highlight the results of our bounded approach compared
to Code Carbon in The base Code Carbon approach
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Fig. 6: Power measurements across time for Code Carbon and
the power meter for an example model training on one GPU.

is 10.3% off the power meter, while the bounds given are 8.9
to —3.6 %. The load estimation via prime number calculation
already improves the upper bound to 6.6%. Measurements
also do not deviate much from the median. The narrow range
of error implies a constant off-socket load for EA-HAS-
Bench, which could be estimated through small preliminary
experiments. If a non-constant load is encountered, the upper
and lower bound still guarantee a valid estimation. Precisely
defining what load gives the best bounds for this correction
will be explored within future work.
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Fig. 7: eCDF plot for the epoch power measurements aggre-
gated across all training runs for Code Carbon and the power
meter.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we proposed design principles for energy-
aware neural architecture search benchmarks and empirically
evaluated the recently published EA-HAS-Bench based on
them. Such benchmarks should be built upon reliable power
measurements, allow for a wide range of device usage, and
report the holistic energy cost for the model. Our study
encompasses multiple power measurement tools, including
Nvidia SMI, NVML and Code Carbon, which we compared
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Fig. 8: Boxplot with differences in energy measurements between Code Carbon and the power meter for single-GPU training.

to an external power meter during the data collection phase of
EA-HAS-Bench.

For this comparison, we determined the GPU power con-
sumption from the power meter with the help of calibration
experiments and Intel’s RAPL interface. We also identified a
range of off-socket power consumptions caused by different
loads on the CPU and memory. The measurements made by
Nvidia SMI showed poor correlation to the power meter; we
believe that this is caused by the sampling procedure using
SMI itself, producing sparsely sampled epochs. The faulty
behaviour was validated by a complementary study using the
underlying NVML library, in which the power measurements
thus obtained were observed to show high correlation with
those from the power meter.

We observed poor usage of the GPU during single-GPU
training for the RegNet search space sampled in EA-HAS-
Bench, with only up to 40 % of the GPU being used at any
given time. For single-GPU training, power consumption was
found to correlate linearly with GPU usage and GPU memory
usage, while for multi-GPU training, power consumption
appeared to be only correlated to GPU memory usage.

We additionally proposed a method to improve the Code
Carbon holistic energy reporting by compensating for the
overestimation of memory consumption. To this end, we reuse
the bounds we calculated for off-socket power consumption.
This provides a solid foundation for the reported energy
costs based on empirically measured values rather than bi-
ased assumptions about memory consumption. In practice,
these corrections do not require an external power meter, if
the server supports power reporting through the baseboard
management controller. Interested parties should contact their
local system administrator and advocate for better reporting
standards.

There are several limiting factors to our work. We only
evaluate on one type of GPU attached to one specific server.
This inherently introduces some bias towards high-end GPUs,
such as the NVDIA H100 we tested. We sample a relatively
low number of architectures during our main experiments.

While the number of epochs sampled stays statistically rel-
evant, we cannot guarantee the statistical significance for full
training cycles. We argue that the large-scale validation exper-
iment showing high correlation between precisely measured
full-training energy consumption and the readings from the
power meter justifies keeping the budget low for the main
experiments.

In the future, energy-aware NAS benchmarks should sample
from a more device-agnostic search space and provide trans-
ferability towards hardware-constrained devices. Furthermore,
finding the off-socket load on a device a priori for tighter
bounds during energy cost reporting is an interesting direction
for further investigation. We believe that energy-aware neural
architecture search benchmarks should be based on trusted
data. With this study, we hope to have contributed to the
establishment of best practices for measuring energy-aware
benchmarks. More importantly, we enhance the reproducibility
of the analysed EA-HAS-Bench and base holistic energy
cost reporting tools, such as Code Carbon, on evidence-based
foundations rather than assumptions. We are hopeful this will
lead to better energy-aware benchmarks in the future.
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