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Abstract

Structural Causal Explanations (SCEs) can be used to automatically generate
explanations in natural language to questions about given data that are grounded
in a (possibly learned) causal model. Unfortunately they work for small data
only. In turn they are not attractive to offer reasons for events, e.g., tracking
causal changes over multiple time steps, or a behavioral component that involves
feedback loops through actions of an agent. To this end, we generalize SCEs to a
(recursive) formulation of explanation trees to capture the temporal interactions
between reasons. We show the benefits of this more general SCE algorithm on
synthetic time-series data and a 2D grid game, and further compare it to the base
SCE and other existing methods for causal explanations.

1 Introduction

The progress in neural network (NN) research has led to a shift in research away from purely logic-
based systems, resulting in significant changes in interpretability, capacity, and application areas.
While logically formulated expressions provided interpretable results in the past, the focus now lies
in incomprehensibly massive NNs. Despite notable advances in areas such as image processing
[KWRL17], text-to-image generation [RPG+21], and pure text synthesis [BMR+20], it is essential
to recognize the potential drawbacks associated with these models. One limitation of large models
is their typical requirement for extensive training time and data. Moreover, there is an ongoing
discussion in the literature about the interpretability of deep NNs, their degree of explainability, and
how these factors influence users’ trust in AI systems.

Potential starting points for enhancing Artificial Intelligence (AI) towards better transparency and
robustness include incorporating causality (refer to the textbook by [PJS17] for an overview of Causal
AI) or continual learning (where [MLDK22] provides a comprehensive overview of this particular
sub-field of AI). In this work, we aim to focus on causality, for which we provide an introduction
to key ideas in section 2. In the area of Explanainable AI (XAI), several new methods have been
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Mario consistently targets the enemy from 
actions 23 to 28 due to factors like prior 
targeting, no player-enemy collision, powerup 
unavailability, and previous powerup collection 
in the last time step.

Luigi is targeting the enemy, persistently during 
actions 10 to 15, mainly because the enemy 
was targeted, [...] even though the player 
had not collected the powerup in the prior 
time step.

Q: Why is Luigi targeting the Goomba? Q: Why is Mario targeting the Goomba?

Figure 1: “Why Was That Happening?” Causal explanation for the behavior of two agents (referred
to as Luigi and Mario) from the same player type in different game situations of the 2D CoinRunner
game using the generalized T-SCE framework. (Best viewed in color)

developed for explaining predictions for different scenarios involving causality. For instance, methods
such as Causal Shapley Values [HSBC20], causality-based counterfactuals [GPS21] or CXPlain
[SK19] have been developed, which can provide some notion of causality-based explanations.

Yet another approach in the AI landscape, Explanatory Interactive Learning (XIL) [TK19a], offer
means to enhances user trust and model performance by interacting with users and allowing specific
feedback. Furthering this, a causal variant was developed with the aim of interactively adapting a
technical causal model (using the notation of Structural Causal Models, SCMs for short)) to match
that of an expert’s, serving as a foundation for additional systems [ZDRK23]. In this process, a
structural explanation algorithm, Structural Causal Explanation (SCE), was developed, which by
design can provide truly causal explanations. This explanation algorithm generates human-readable
and comprehensible responses to valid “Why-Questions"1 within the causal model. Unfortunately
the algorithm currently only supports static systems with a small amount of variables.

While a time-independent observation is sufficient for most statistical methods, in most real-world
scenarios, we will have to work with data being changed (and influenced) over time. For example,
the question “Why is the temperature at Matterhorn low?”2 is being answered by SCE with “The
temperature at the Matterhorn is low because of the high altitude.” In the so-called ‘Clever Hans’
example, an SCM consisting of the variables ‘Age’, ‘Nutrition’, ‘Health’, and ‘Mobility’ is used
to answer the question “Why is Hans’s Mobility below average?”. The answer generated by the
algorithm for the in-detail discussed example is “Hans’s Mobility is bad because of his bad Health,
which is mostly due to his high Age, although his Nutrition is good.” While the first of these two
examples provides a causal answer to a physical question that appears mostly time-independent, the
second case addresses a question where the near or even distant time history could greatly influence
the answer. It is conceivable that mobility is not only causally dependent on a person’s current health
but also on mobility at a previous time step. Similarly, current nutrition habits might depend not only
on current age but also on past health. In other words, we live in a temporally measured environment
and should consider this for causal explanations. It is precisely this algorithm extension that we want
to address in this work. Thus, we aim to better answer the question “Why is Hans’s Mobility below
average?” and take a step further in explaining overall dynamical systems that involve not only time
but even data-altering agent behavior. Figure 1 highlights this by giving an example of two agents,
whose differences in behavior become apparent through the generated explanations.

1The term ‘why’ is often linked to counterfactuals in causality literature. However, in the context of SCE,
‘why’ is not directly tied to counterfactuals but is named after the framing of the questions.

2Matterhorn is the name of a 4500 meters tall mountain in Italy.
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Overall, we make the following contributions: We extend the existing SCE approach to accommodate
time-dependent systems, enabling better causal explanations for such systems. This extension
involves introducing modifications to the underlying logic of SCE to address its shortcomings when
applied to non-static data regimes and agent behaviors. Moreover, we develop a method for handling
temporal dependencies within the explanation generation process. In addition to these theoretical
advancements, we also evaluate our extended SCE approach on synthetic time-series data and a 2D
grid game, demonstrating its effectiveness in providing more accurate and informative explanations.
Finally, we compare our method with the base SCE and other existing causal explanation methods,
illustrating the improvements and advantages of our proposed approach.

Our code is publically accessible at: Why-Was-That-Happening_Offering-Reasons-For-Events-0C4E

2 Background on Causality, Time-Series and Explainable AI

Structural Causal Models: To employ causality, choosing a formalism is necessary. In this article,
we use the Pearlian notation [Pea09]. Structural Causal Models (SCM) are defined as 4-tuples
M := (U,V,F , P (U)). The model consists of a set of endogenous variables V (all variables
that have names) and a set of exogenous variables U, which introduce stochasticity into the system
through the probability function P (U). F is a set of structural assignments. In typical3 SCM, each
endogenous variable Vi is determined by its causal parents Pai and an associated Ui, which can be
formally expressed by the structural equation Vi = fi(Pai, Ui). The mathematical definition of a
causal model, along with the so-called Do-operator, offers the possibility to generate three different
types of distributions, which are called associational, interventional, and counterfactual, allowing one
to answer various questions like “What does a symptom reveal about the disease?", “What happens
if I take aspirin, will my headache disappear?" or “Was it the aspirin that relieved the headache?".
These different distributions, also referred to as levels, are visualized by the well-known ladder of
causality, also known as Pearl’s causal hierarchy [PM18].

For this work, it is particularly important that each SCM induces a causal graph G, typically in the
form of a Directed Acyclic Graph (DAG). Causal graphs can be extracted from observed data, a
process known as Causal Discovery [PJS17]. Although various approaches, such as score-based or
independence-based methods, have been used to achieve this, we will not delve into their specifics
since our focus is not on Causal Discovery. Notable algorithms include PC, SGS [SGSH00], IC
[Pea09], and recent ones like NOTEARS [ZARX18] and the continuous constrained optimization
[BLL+20]. As we will see later, an approximation to an SCM, such as causal graphs, is a prerequisite
for the SCE algorithm.

Time-Series: Time series data encompass sequences of observations captured at regular or irregular
intervals. In causal models, time series data contribute to analyzing dynamic relationships between
variables over time. To represent a time series, we utilize a d-dimensional dataset, with each entry
Xt comprising d distinct variables Xj

t , expressed as the vector Xt = (X1
t , ...X

d
t ) for time step t.

The time series is typically assumed to be a strictly stationary stochastic process. In time-dependent
systems, the relationship structure evolves, necessitating a modification to the definition of structural
assignments. Structural assignments now assume the form Xj

t = f j(Pajt , U
j
t ), where Pajt represents

the causal parents of variable j at time t, and U j
t corresponds to the respective exogenous influence.

Analogously, we introduce the abbreviations Chjt , Dejt , and Anjt to denote causal children, causal
descendants, and causal ancestors, respectively. For completeness, it should be mentioned that various
distributions can also be generated for time-based SCMs. The primary difference is that interventions
can be carried out over a period or only at a specific time.

Similar to static Causal Discovery, algorithms for discovering causal relationships in time series
data also exist. One prominent example is Granger causality, which establishes “Granger-causal"
relationships between time series based on the predictability of one series using past values of another
[PJS17]. Other methods for time series causal discovery include, i.e, VARLiNGAM, which extends
the LiNGAM model to time series using vector autoregressive models (VAR) [HZSH10, SHH+06],
or the incorporation of Lasso, which employs regularization and variable selection for datasets with
many variables and few examples [ALA07, SM10].

3Markovian, where the exogenous terms are mutually independent and causal effects are identifiable.
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XAI: Explainable Artificial Intelligence (XAI) research primarily focuses on making the decision-
making process of models understandable and transparent [ADRDS+20]. This is crucial not only to
prevent erroneous decisions and ensure that individual reference points are adequately considered,
but also to address ethical, legal, and societal concerns.

In the literature, a rough classification of XAI methods has been presented based on two characteristics
[AB18]. First, there are methods in which (i) explanations are intrinsically embedded in the model
design (e.g., decision trees) or (ii) obtained post-hoc (e.g., LIME [RSG16]). Second, explanations
can either be (iii) model-dependent or (iv) model-agnostic (e.g., SHAP values [LL17]). Each of these
methods has its own advantages and disadvantages, making it essential to select the most appropriate
method for a specific application or problem.

SHAP values, for instance, map the output to the input and generate feature importance values.
LIME, on the other hand, explains individual predictions by approximating the model locally with an
interpretable model. Furthermore, one can distinguish the level at which explanations are generated.
Local explanations refer to individual predictions, while global explanations apply to an entire
population. A third possibility, proposed by, for example, [GPS21], is context-based explanations,
which generate explanations defined by feature values for individual subpopulations.

One approach to improve explanations is to consider causality, which can provide a more in-depth
understanding of the underlying mechanisms and help generate more reliable and meaningful expla-
nations. The need for causal explanation methods is justified, among other reasons, by the assumption
of feature independence in non-causal approaches. For instance, [HSBC20] argue that non-causal
methods assume feature independence when explaining predictions, which is often an invalid assump-
tion as changing one feature can inevitably influence a correlated feature. As a result, the accuracy
of these explanation methods is compromised, and they are prone to errors. In Ch. 5, we will delve
deeper into causal XAI methods and compare them to our approach for structural explanations.

3 Structural Causal Explanations

The SCE algorithm [ZDRK23], designed to generate human-readable and causal explanations, can
be divided into several sequential components. Most of these components have been generalized
in this work and are detailed in the following section. For the sake of clarity, and to enable readers
to reconstruct the original definitions, we have highlighted modifications in blue and will provide
references to these components. A critical prerequisite for the algorithm is the knowledge of a
(potentially weighted) causal graph, which can be derived from data, provided by a domain expert,
postulated/argued for by the data scientist or induced by an SCM.

Figure 2: Causal Graph for the Causal Hans Exam-
ple. The edge values represent the causal effect from
one variable onto another. (Best viewed in color.)

If real valued weights are used, this rep-
resents some quantitative knowledge on
the causal effect (which for linear SCM
would be the regression coefficients). The
most important aspect of the coefficients is
their sign facilitating a distinction between
adverse and supportive effects of a given
variable onto another. Depending on the
implementation of the explanation ‘pronun-
ciation’ procedure, cyclic graphs may also
be employed. Explanations of single variables, such as self-cycles or cyclic patterns, can be filtered
out during the pronounciation process.

Considering Fig. 2 as our causal graph, we have the variables ‘Age’, ‘Food Habits’, which is used
synonymously with ‘Nutrition’, ‘Health’, and ‘Mobility’, each denoted using their respective initials.
For the SCE algorithm, initially a valid Why-Question is required. A generalized form of the Why-
Question is defined in the following chapter (see Gen. 1). The main difference from the original
definition is the use of time steps, which is not necessary here, and the generalization from the
average µ to the population statistic ϕ. An example patient, Hans, can be represented in the form
Hans = (aH , fH , hH ,mH) = (93.8, 58.8, 2.6, 26.2). The question “Why is Hans’ Mobility poor?"
is considered valid only if mH < µH and R(x, y) := x < y. As noted in the original paper, any
question answered in this manner is always relative to the existing population. For mobility, the terms
‘below average’, ‘poor’, or ‘immobile’ are used interchangeably. For a car’s fuel tank, for example,
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the term ‘low’ would be used. A causal scenario (see Gen. 2) acts as a entry point for the Explanation
Rules (see Gen. 3). Again, the same changes have been made. Additionally, there was an ER3 rule in
the original version. The outcome of the Explanation Rules encapsulates the relationship between a
child node and its corresponding causal parent node within an SCM. Formally, this can be expressed
for each relationship of a valid question as a triplet ERX→Y = (ER1X→Y ,ER2X→Y ,ER3X→Y ).
The ER1 and ER2 rules are referred to as ‘Exhibition’ and ‘Inhibition’ formulations, respectively.
(ER1X→Y ,ER2X→Y ) can be interpreted as “because {high, low} parent" or “although {high, low}
parent" for the corresponding encodings ({−1, 1}, 0) and (0, {−1, 1}). ER3X→Y serves as an
additional indicator. When a node has causal relationships with multiple variables, this rule helps
identify the variable with the most significant causal influence based on scalar values. The final
component is the recursion, which iterates over all variables as defined in Def. 1. Consequently,
given a data set and an SCM approximation, one can pose the question, “Why is Hans’ mobility
poor?". The resulting explanation encodes the causal relationships underlying Hans’ mobility. This
explanation can be translated into human-readable language, i.e, “Hans’ mobility is poor due to his
poor Health, which is primarily attributed to his high Age, despite his good Food Habits."

Definition 1 (SCE) Like before let QX ,M be a valid why-question and some proxy SCM. Further,
let D ∈ Rn×|V| denote our data set. We define a recursion

E(QX ,M,D) = (
⊕

Z∈Pa(X) ER(Z → X),
⊕

Z∈Pa(X) E(QZ ,M,D)) (1)

where
⊕n

i=1 vi = (v1, . . . , vn) denotes concatenation and ER checks each rule ERi (Def. 3), and the
recursion’s base case is being evaluated at the roots of the causal path to X , that is, for some Z∈V
with a path Z → · · · → X we have E(QZ ,M,D) = ∅. We call E(QX ,M,D) Structural Causal
Explanation of M.

4 Temporal - Structural Causal Explanations

Figure 3: Trucanated full-time graph for the Causal
Hans Example. Red edges depict a delayed effect
over time. In contrast, black edges represent immediate
effects. Best viewed in color.

Incorporating Temporality: We expand
the Causal Hans example by incorporat-
ing a time dimension into the analysis. As
shown in Fig. 3, our new causal time graph
includes both immediate effects (black) and
delayed self-effects (red). Our synthetic
dataset, consisting of 10,000 records with
50 time steps each, shares a similar struc-
ture with the original dataset. Initially,
the age distribution PA is uniformly dis-
tributed between 30 and 80, with each time
step increasing by 1. PF is defined as
PF = 0.5 · PA, PH is computed using
PH = −0.2 · PA + 0.6 · PF , and PM is established as PM = 0.5 · PH . At each time step, values are
drawn from the distribution, multiplied by 0.4, and combined with the previous time step’s influence,
calculated with 0.6. To maintain consistency, each distribution’s mean is determined, and noise is
introduced during new distributions’ evaluation through +N (0, µP · 0.03).

Generalization 1 (Why Question) For individual i and their instance xi
t ∈ Val(Xt) of any variable

Xt ∈ V in SCM M at time point t, let ϕXt be a population statistic (e.g., mean, 10% percentile). A
why-question QXi

t

def
=R(xi

t, ϕ
Xt), with R ∈ {<,>}, is true if QXi

t
holds.

Generalization 2 (Causal Scenario (CS)) CXY
def
=(αX→Y , xt, yk, ϕ

Xt , ϕYk) is called a CS.

Generalization 3 (Explanation Rules) Let CXY denote a causal scenario. Given a sign function
s(x) ∈ {−1, 1}, a binary ordering relation Ri ∈ {<,>}, we define FOL-based rule functions
ERi(·) ∈ {−1, 0, 1}, indicating how the causal relation X→Y satisfies each rule. ERi(·) evaluates
both Fundamental Rules and situational Complementary Rules, which can be added. Here, t and k
are time steps, where t ≥ k

(ER1) If R1 ̸= R2, then: ((s(αX→Y ) < 0) ∧ δ1) ∨ ((s(αX→Y ) > 0) ∧ δ2)
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(ER2) If R1 ̸= R2, then: ((s(αX→Y ) > 0) ∧ δ1) ∨ ((s(αX→Y ) < 0) ∧ δ2)

with δ1
def
=R2(x, ϕ

Xt) ∧R1(y, ϕ
Yk)) and δ2

def
=R2(x, ϕ

Xt) ∧R2(y, ϕ
Yk))

Definition 2 (Explanation Tree) An Explanation Tree is a directed acyclic graph (DAG) T . The
root node r ∈ N represents the variable of interest (valid Why-Question). Each edge (u, v) ∈ E
is directed from parent node u ∈ N to child node v ∈ N , such that in the retrospective case, the
children of a node in the tree represent the causally explanatory variables of their parent node. In the
anticipative case, the relationship is reversed, with the child nodes being explained by their parent
node in the tree.

As before, we focus on the patient Hans. His data can now be represented at each time step t as a
tuple Xt = (XA

t , XN
t , XH

t , XM
t ). Valid questions are defined according to Gen. 1, and the causal

scenario (Gen. 2) aligns with the original concept. The Explanation Rules (Gen. 3) have been
adapted to accommodate time series data while still preserving the underlying idea that these rules
encode causal relationships. Notably, variables X and Y can now originate from two distinct time
steps. While the original algorithm used a linked list as its fundamental data structure and produced
nested sentences for explanations, we have chosen to extend it with a tree data structure (Def. 2). As
the number of explanatory variables increases over time and for larger SCMs, nested explanations
inevitably lead to confusion. Moreover, our switch to the new data structure implies that we aim to
provide one-sentence explanations for each variable to be explained. As we will see later, this also
has advantages for summarizing causal relationships over time or identifying changing relationships.
To construct the Explanation Tree, the SCE recursion must be adjusted accordingly (see Def. 3).

Definition 3 (Temporal SCE) Let QR be the root node of a valid why-question and M a set of proxy
SCMs for distinct contexts. Moreover, let D ∈ Rn×|V| represent our dataset and K ∈ N denote the
maximum recursion depth, with the starting depth being j = 0. In the first iteration, QX = QR. We
define a recursion as follows:

E(QR,QX,M,D, j) =
( ⊕

Z∈Φ1

EI(Z,Xt), ♢
Z∈Φ1\Φ2

{
E(QX, Z,M,D, j + 1), if j < K

∅, else

)
(2)

⊕
attaches new nodes to the given node depending on the used case. Explanation Indicators, EI(·),

resolves all ERi and stores the time step t, variable names and context of the nodes. The iterator ♢
maintains the recursion over included nodes. The Φ1 further select the appropriate approx. SCM from
M based on the dataset, time step, and variable (context’s). The set Φ2 prevents from reattaching
duplications by checking for existing time t and variable name combinations.

Definition 4 (Retrospective) If Φ1
def
=(PaXt ∪PaXt,θ ∪PaXt,n) and Φ2

def
=DeQR where PaXt,θ

def
={Z ∈

PaXt | |αZ→X | > θ} and PaXt,n
def
={topn(Z ∈ PaXt , |αZ→X |) then we call E retrospective.

Definition 5 (Anticipative) If Φ1
def
=(ChXt ∪ChXt,θ ∪ChXt,n) and Φ2

def
=AnQR where ChXt,θ

def
={Z ∈

ChXt | |αX→Z | > θ} and ChXt,n
def
={topn(Z ∈ ChXt , |αX→Z |) then we call E anticipative.

Def. 3 is used to construct an Explanation Tree T for a valid question. Additionally, a distinction is
made between the retrospective and anticipatory cases. Given time series and a causal graph, we can
provide explanations for the emergence of our variable of interest at a specific point (retrospective
reasons, see Def. 4). Additionally we can include causal effects as explanatory factors, e.g., when we
aim to explain behavior (anticipative effects, see Def. 5). Furthermore, these case differentiations are
designed to narrow down the possible number of explanatory variables and select the appropriate
SCM among different options for a given point in time. For our time series Causal Hans example,
we currently focus on one context (SCM) and retrospective explanation. The data structure now
allows for further indicators or manipulations to be performed directly on the tree. A sequence
indicator, which helps to mark sequences of consistent causal relationships, is of crucial importance
for summarization and identification of changing relationships. Masking variables (e.g., Age, as the
causal explanation is generally given) or trimming down the tree to individual path explanations are
also possible. To implement the retrospective sequence indicator, we need to define a function f(T )
that iterates separately over all endogenous variables of the SCMs in T in descending temporal order.
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If direct child nodes have the same Explanation Rule indicators and remain stable over time, a unique
ID is assigned to the sequence. Leaves should be excluded, since they are just explanatory and not to
be explained.

Figure 4: Example of Explanation Tree. Sub-tree
regarding the question, “Why is Hans’ Health below
average?”. Sequences are color-coded.

In the following, we provide an example
illustrating human-readable causal explana-
tions in response to the question “Why is
Hans’ Health below average?” with the re-
cursion depth set to 2. The varying explana-
tions for Hans’ nutrition and the perfectly
summarizable explanation for his health
are highlighted in color. It should be noted
once more that effects from the past are al-
ways positive, and as in the original causal
Hans graph, the effect of age on nutrition
is also positive, whereas age has a negative
impact on health. The corresponding Ex-
planation Tree is shown in Fig. 4. A more
detailed example can be found in the appendix.

Hans’ Health has consistently been below average over the last two years, mostly because his low
Health persistently one year prior and because of his high Age in the referenced year, despite his
high Nutrition in the referenced year.
His Nutrition was above average this year, due to his high Nutrition one year before and his high
Age in the same year.
Last year, his Nutrition was above average, because of his high Age in the same year, despite his
low Nutrition one year before.

Dynamic Time Series: It is entirely conceivable that our time-series Causal Hans example does not
accurately reflect reality and that we can depict this more precisely. Theoretically, it could be that
the relationship between Age and Nutrition during adolescence (Age ≤ 25) is primarily negative,
which could be due to the consumption of alcohol or junk food, and subsequently (Age > 25) turns
positive again. In this scenario, two SCMs could be deemed valid based on a specific variable,
thereby allowing for a seamless transition between the SCMs and the variables used within them.
The intuition behind Gens. 1, 2 3, and Def. 3 would still be applicable in this case. It is crucial to
employ the accurate causal graph and the appropriate data, as outlined in Def. 3 (see ϕ1 and M). The
Explanation Tree and the resulting explanations would continue to operate effectively, allowing for
the Age variable to be accurately summarized in each instance. However, the explanation may evolve
over time for some examples due to varying causal relationships.

We now turn our attention to agent behavior in a 2D grid-based game called CoinRunner (see Fig. 1),
inspired by CoinRun [CKH+19]. The game comprises various sprites, including Goldcoin, Powerup,
Enemy (referred to as Goomba), Player (Mario or Luigi), and Goal. The player starts with 20 points
and loses one point per second until they reach the Goal. Collecting Goldcoins grants 5 bonus points
(BP), while colliding with the Enemy yields 9 BP if the Powerup has been collected beforehand,
and results in a game over with a score of -20 if no Powerup was obtained. The initialization and
positioning of the sprites are independently randomized. Each game rollout R is represented by a
sequence of frames f , each described by mostly binary variables.

The main difference from the Causal Hans example is that the focus is now on explaining an agent’s
behavior within a rollout rather than examining population statistics. Interestingly, it is intuitive that
explaining behavior involves not only retrospective considerations but also anticipatory reasons and
consequences of specific actions. To this end, Def. 3 has an anticipatory case added (Def. 5), which
can be used to encode effects in the future within the current context when the future is still uncertain,
or across contexts when the future has already occurred (e.g., “Colliding with the Enemy positively
impacts defeating the Enemy at the time step."). The abstraction of the T-SCE defs. to the binary case
is rather direct and does not require much elaboration. Further details are provided in the appendix.

For this game, we can define several deterministic agent behaviors, such as Coincollector, Killer, or
Optimal. For the purpose of demonstration, we will highlight the Killer agent behavior. This behavior
primarily focuses on collecting the Powerup and colliding with the Enemy when both Powerup and En-
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Figure 5: SotA methods are not designed to offer structural explanations. Suf. Score and Shapley
Values for 100 random patients with below avg. mobility prediction. Same Score/Value sequences
are grouped together (group size n). Small groups are again combined.

emy are present, before proceeding to the Goal. Similar to the dynamic Causal Hans example, various
stationary processes can be identified from this. These primarily depend on the game’s state (variables
of a frame). For our Killer agent, processes can be most easily described based on the existence of
sprites. We call C a context, which brings us to the currently valid SCM and thus to a stationary
subprocess. Specifically, for the Killer agent, we have defined the following three subprocesses:
(i) CK,1 = powerup and opponent exist’, (ii) CK,2 = powerup does not exist and opponent exists’,
and (iii) CK,3 = ‘neither exists’. For this purpose, we have implemented an imperfect Killer agent
and recorded 500 rollouts frame by frame. By imperfect, we mean that, with very low probability, it
can also exhibit other behavior. Together with a bit more noise, we then used Lasso, VARLiNGAM
[HZSH10], and Granger on conditioned frame sections, depending on our contexts C, to generate
graphs that we want to assume as causal for the moment. The learned graphs, a description of the
methods used, and further T-SCE parameters are not essential for the main part and the demonstration
of the application of this work and have also been moved to the appendix.

As a result, we can already causally explain questions like “Why did Mario jump on the Goomba?",
“Why is Mario targeting the Goomba?" or “Why does Mario run into the Goal?", if the question is
valid in the specific time step and, as in our case, at runtime. For this purpose, the current frame is
used to identify the currently valid SCM, and the rest of the recorded dataset serves as the explanation
basis. Fig. 1 shows a scenario in which Mario is running towards the opponent with the retrospective
explanation on Fig. 1 (right). The corresponding anticipatory explanation is:

Targeting the enemy has a positive effect on targeting the enemy, the existence of the enemy,
colliding with the enemy and a negative effect on the score, targeting the goal and killing the
enemy in the next time step.

5 Contexting T-SCE with Existing Causal XAI Paradigms

In this section, we aim to compare T-SCE with other state-of-the-art (SotA) causal explanation
methods and, of course, base SCE. Since no method is available that generates both structural and
causal explanations over time, we must limit ourselves to a very asymmetric comparison. Furthermore,
each method is based on different assumptions and is designed for different purposes. Our method
relies on explaining through the structural effect direction (and possibly strength), rather than the
combination of feature value and structural influence of individual attributes. For evaluation purposes,
we are interested in the question “Why is Hans’ Mobility below average?".

For the comparison, we have adapted the synthetic Causal Hans time series dataset so that the
causality-based counterfactuals [GPS21] and Causal Shapley Values [HSBC20] can be used similarly.
The new dataset is designed as a classification problem and contains the categorization ‘below
average’ (0) or ‘above average’ (1) for all variables across all patients and time steps. In line with our
causal graph 3, we have added delayed variables and immediate variables as ‘lagged’ (prefix ‘Lag_’)
and ‘non-lagged’ respectively in each sample.
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The causality-based counterfactual explanation method LEWIS enables the calculation of Sufficiency-
(Suf), Necessity- (Ne), and NeSuf-Score(s) to provide explanations at various levels (local, contextual,
global) for a binary classification (e.g., credit approval). Depending on the feedback (0 or 1), a
different value (Suf or Ne) is important for reversing the feedback with a certain probability (calculated
score). In terms of our classification problem, this signifies that a prediction of 0 (below average) is
depicted by the Sufficiency Score of each variable, illustrating how each could potentially contribute
to a shift in mobility. As we are interested in the extent to which the current value is used for
explanation, we choose the alternative category as the starting point and calculate a transition to the
current category. Contrary to our method, we obtained diverse explanatory variables (and values) for
the local explanations here. Fig. 5 (left side) presents the Suf Scores for 100 patients with prediction
below average mobility. For our dataset, Suf Scores in the range of 0 were often calculated across
all variables for several patients. In isolated cases, variables received differing Suf Scores, with the
most variation in ’Lag_Mobility’. Ultimately, the method is not designed to distinguish direct from
indirect effects or to generate consistent explanation variables across different patients. Moreover, the
evaluation of whether a category of a feature has a positive or negative effect is only possible through
trial and error, insofar as there is no prior knowledge about the categories.

To compare with the Causal Shapley Values, we used a similar setup. The Causal Shapley Values differ
significantly from other Shapley Values ([AJL20, JMB19, FRF21] ), as they are able to quantify the
influence of direct and indirect variables differently. The inclusion of a partial order of the real causal
structure underlying the data limits the permutation possibilities for calculation. The authors have
introduced both symmetric and asymmetric Causal Shapley Values. Since asymmetric values tend to
place more weight on the root element (‘Lag_Age’ in our case) in chain graphs, and we are more
interested in direct and indirect effects, we used symmetric values for our experiment, which include
both influences in the calculations and distribute the effect. For testing purposes, we provided a partial
order corresponding to the temporal sequence of our causal graph ([{‘Lag_Age’, ‘Lag_Nutrition’,
‘Lag_Health’, Lag_Mobility’},{Age, Nutrition},{Health}]) and plotted the Causal Shapley Values
for 100 patients with below average mobility in Fig. 5. It is evident that ’Lag_Mobility’ exerts a
significant influence. The direct effect of ’Health’ is likely diminished in this partial order due to
its involvement in many indirect effects. Notably, within this order, ’Lag_Health’ assumes greater
importance than ’Health’ in the predictions. Whether a (truly direct) variable generally has a positive
or negative effect on the target variable in this case can be straightforwardly determined by comparing
it with the complementary group ’above average.’ For our case, this roughly corresponds to a
reflection along the x-axis and an inversion of colors. The resulting values can be used to explain
individual predictions, but it requires considerable additional effort in the analysis to focus exclusively
on direct effects. Causal Shapley Values do incorporate causal structure but are also not directly
designed to give structural causal explanations.

T-SCE is an extension of the original SCE algorithm. In our work, we have generalized the definitions
of SCE and made them suitable for explaining time series. T-SCE has gained the ability to summarize
explanations for stationary time series models and to limit the number of explanatory variables in
a situation-specific manner. During the development of T-SCE, care was taken to ensure that the
definitions remain backward compatible, so that both temporal and more static explanation encodings
can be generated. T-SCE inherits some weaknesses of the SCE algorithm in terms of applicability
to linear models, as well as the strengths of intuitive and simple structural explanations, which
are suitable, e.g., for the causal XIL paradigm. T-SCE would answer our question of interest, i.e.,
primarily like followed (apart from the individual explanations of the explanatory variables):

Hans’ Mobility has been conistently below average for the past three years due to his poor Mobility
one year prior and his weak Health in the current year.

6 Concluding Remarks

We have improved upon the original SCE algorithm by expanding its capability from providing causal
and structural explanations to include temporal explanations as well. This progression also allows for a
nuanced differentiation between anticipatory and retrospective aspects. This refined T-SCE algorithm
now enables a flexible limitation of explanatory variables, proving to be especially beneficial in
situations involving learned causal graphs with numerous minimally influential variables. For the
first time, T-SCE has been illustrated to provide causal explanations to agent behavior in a 2D game,
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corroborating its wide applicability. To enhance user trust, a domain expert can either provide a causal
graph or use a learned one to then interact with the provided explanations, incrementally refining the
given model before its application [ZDRK23]. These incrementally improved SCMs can potentially
be integrated into other systems, for example, as a regularization term, further demonstrating the
adaptability and versatility of T-SCE. While T-SCE inherits the linearity assumption of SCE, this
comes with the benefit of providing uniquely structured explanations.

We have explored the state-of-the-art methods for causal explanations, namely LEWIS and Causal
Shapley Values, each demonstrating unique merits under varying circumstances. LEWIS is engineered
to interact with feedback from classification models, while Causal Shapley Values adeptly contrast the
significance of individual features, computing their influence on the target variable given partial causal
knowledge. Standing apart, T-SCE presents a unique capacity for delivering structural explanations,
applicable in both static and temporal contexts, thus proving itself to be a useful tool in the realm of
causal reasoning.
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Supplementary Material to
“Why Was That Happening?” Offering Reasons For Events

Our code is publicly accessible through anonymous.4open.science at the following link: Why-Was-
That-Happening_Offering-Reasons-For-Events-0C4E

The code was executed on a Windows 11 Pro computer with an AMD Ryzen 9 3900X (12-Core,
3800 MHz) processor and 32GB of RAM. The computer is equipped with an NVIDIA GeForce GTX
1070 graphics card.

A Towards Temporal SCE - Causal Hans

The main body of the work primarily discusses the theoretical background of the T-SCE algo-
rithm. Here, we aim to present a more practical perspective, illustrating the entire process of causal
explanation generation.

Figure 6: Explanation Tree for the Causal Hans Example with changing explanations over time.
Visualized are the individual nodes together with their indicators (ind) for the Fundamental Rules,
Complementary Rule and the time (t). Color-coded are sequences tags indicating that the explanatory
tree child nodes have continuously the same indicators for the parent node. Note ‘Nutrition’ changes
color over time. Leaf nodes are not further individually explained.

We continuously refer back to the Time Series Causal Hans dataset and causal graph (Fig. 3) and
evaluate the well-known retrospective question “Why is Hans’ Mobility below average?" (For this
example, we assume the question is valid for t = 87). In this case, we have limited the analysis to a
recursion depth of 3 and included the complementary rule ER3 (Mostly-Rule). The question also
reveals that our Why-Question (Gen. 1) refers to the ϕ corresponding to the ’average.’ Furthermore,
since there is a manageable number of variables, we use all causal parents. Fig. 6 shows the
corresponding Explanation Tree for our scenario, which we will now go through step by step. We can
pass the valid question (Root Node) to our T-SCE recursion (Def. 3). The direct causal parents of the
Mobility variable from t = 87 are added as new child nodes in the explanation tree. The evaluation of
the EI(·) (Explanation Rules Gen. 3) and the time step t of the corresponding variable are recorded.
The structural causal parents are “Mobility" from time step t = 86 and Health from t = 87. Each
tree child node also contains, in our case, the triplet ERX→Y = (ER1X→Y ,ER2X→Y ,ER3X→Y ),
which encodes the relationship to the parent node. The process is continued recursively across the
tree children until the last recursion encounters the empty set. Post-hoc, we can search for consistent
relation encoded sequences using a sequence indicator function. Since causal time series models
assume a stationary process, which means that the data generation process (in our case, given by
the structural equations of the SCMs) do not change, we do not have to think further about different
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time jumps of causal parents and or changing causal parents within a context. Instead, we are only
interested in the encoded causal relationships over time and whether they change. In Fig. 6, sequences
are indicated by color markings. For example, Mobility is continuously explained by Mobility from
the previous time step and Health from the same time step, with the same relationship encoding over
time. Nutrition, on the other hand, contains a changing explanation, which is not due to the structural
equations but to the noise described in the system. Consequently, we can decode the relationships
and information encoded in the Explanation Tree into the following human-readable language, for
example:

Hans’ Mobility has been consistently below average over the past three years mostly due to his low
Mobility continuously one year before and his low Health in the current year.

His Health has been consistently below average over the past three years due to his high Age in
the current year and mostly because his low Health continuously one year before, although his
Nutrition was good in the current year.

His Nutrition has been consistently above average for the past two years due to his good Nutrition
in the previous year and his high Age in the current year.

Two years ago, his Nutrition was above average because of his high Age in the same year, despite
his low Nutrition the year before.

His Age has been consistently above average for the past three years due to his high Age in the
previous year.

Depending on the situation, it may be that not the entire tree should be used for the explanation,
and changes other than limiting the width or depth of the tree should be made. We present three
informal operation options that (i) trim the tree to a path of a certain width to understand the structural
influence of another variable on the target variable, (ii) mask intermediate nodes for linear graphs if
they do not require an explanation, and (iii) manipulate short sequence jumps within an otherwise
consistent long sequence for particularly noisy data using the sequence indicator (e.g., for explaining
only marco changes).

Sketch 1 (Path-based Explanations with Channel Width) Given an Explanation Tree T =
(N , E) with root node r ∈ N and a unique directed path P from the root to a non-leaf node,
a Path-based Explanation with Channel Width w is a subgraph T ′ = (N ′, E ′) of T , where N ′ is the
set of nodes in the path P and their children up to a depth of w, and E ′ ⊆ E is the set of directed
edges connecting nodes in N ′. The Path-based Explanation with Channel Width w focuses only on
the variables in the unique path P and their children up to a depth of w for providing explanations.

Sketch 2 (Masking Operation) Given an Explanation Tree T = (N , E) and a subset of nodes to
be masked M ⊆ N , the Masking Operation produces a new Explanation Tree T ′ = (N ′, E ′) as
follows:

N ′ = N \M,

E ′ = eij ∈ E | ni /∈ M∧ nj /∈ M
∪ eik | ni, nk /∈ M∧ ∃Pik ⊆ N \M,

where Pik is a minimal path from ni to nk in T that does not contain any other nodes in M. The
weight wik of each new edge eik is set to the product of the weights of the original edges in the path
Pik. For each new edge eik, evaluate it against the given Fundamental/Complementary Rules to
update the corresponding child node nk. The Masking Operation only applies to intermediate nodes
and not to leaf nodes, as leaf nodes do not have any further causal relationships to be preserved.

Sketch 3 (Leave-N-Out Method) Given an Explanation Tree T = (N , E), a set of interrupted
sequences I ⊆ N , and a function f that updates the sequence ID and meta information for the
Fundamental/Complementary Rules, the Leave-N-Out Method modifies the Explanation Tree to merge
interrupted sequences and update the related nodes’ meta information. The updated Explanation
Tree T ′ = (N ′, E ′) is defined as follows:

1. For each node ni ∈ I with an interrupted sequence:

(a) Identify the node nj ∈ N that precedes ni in the original sequence, and the node
nk ∈ N that follows ni in the resumed sequence.
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(b) Update the sequence ID of ni to match the sequence ID of nj .
(c) Optional: Update the meta information of nk using the function f , ensuring that the

updated node nk includes the updated Fundamental/Complementary Rules information,
so that ni gets explained according to the original sequence.

2. Define the updated Explanation Tree T ′ = (N ′, E ′), where N ′ = N and E ′ = E , with the
nodes in N ′ containing the updated object-oriented class instances and meta information.

B Towards Temporal SCE - CoinRunner

The CoinRunner example has contributed only a relatively small proportion to the main body of
this work. We intend to use this appendix to provide more detailed information about the game, the
learned causal graphs, and additional explanatory examples, as well as to discuss the minor definition
modifications required for the implementation of causal explanations.

Figure 7: Basic CoinRunner game board including information board on the right side. Agent,
gold coin and powerup have been initialized and are placed at random positions in the environment.
The target sprite is placed at one of the four corners. Best viewed in colors.

Fig. 7 displays the scope of the implemented game as described in the main body of this work. On
the left side is the playing field with all possible individual sprites. The agent is currently (still)
represented as a blue avatar. The yellow version of the avatar indicates that the power-up has been
collected. On the right side is an information board, which is not of further interest to us in the
context of this work.

To provide valid questions and meaningful encoding of causal relationships, we will first adapt the
definitions of the T-SCE for our use case. Key differences include that we are no longer interested in
population statistics, but rather in the agent’s behavior during a rollout. Anticipatory explanations
were already discussed in the main body, and a definition was provided. At runtime of a rollout as in
our case this is limited to a pronounciation like ’has a positive’ or ’has a negative effect’, affecting
the EI function in Def. 3 to exclude ER and solely rely on s(αX→Y ). In the general case, when the
entire time series is available, further explanations can also be generated in the future direction. For
the retrospective case the definition remains unchanged. Further, we have to modify the valid Why
Question, the Causal Scenario, and the Fundamental Rules, which were introduced for the Causal
Hans example. It should also be mentioned that we need to adjust the rules here partly because our
game randomizes the sprites independently on the playing field. For this reason, individual rollouts
vary in length regardless of the agent’s behavior. In cases where rollouts are more comparable,
population statistics can also be used.

Definition 6 (Why Question - Behaviour) Let Ft be a frame of a rollout R, and let xt ∈ Val(Xt)
be an instance of Xt ∈ V of the contextual-dependend SCM M. We define QM,Xt

:= xt as a valid
question if Xt is a binary variable, M is the appropriate contextual SCM for Ft, and Q is true.
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Definition 7 (Causal Scenario - Behaviour) The tuple CXY :=(αX→Y , xt, yk) is referred to as a
behavioral causal scenario.

Definition 8 (Fundamental Rules - Behaviour) Let CXY denote a causal scenario, let s(x) ∈
{−1, 1} be the sign of a scalar. We define FOL-based rule functions as

(ER1) If x ∈ {0, 1}, then: (s(αX→Y ) < 0 ∧ xt ⊕ yk) ∨ (s(αX→Y ) > 0 ∧ xt == yk)

(ER2) If x ∈ R, then: s(αX→Y )

indicating for each rule ERi(·) ∈ {−1, 0, 1} how the causal relation X→Y satisfies that rule.

We previously described the three subprocesses for the Killer agent: (i) CK,1 =
‘powerup and opponent exist’, (ii) CK,2 = ‘powerup does not exist and opponent exists’, and (iii)
CK,3 = ‘neither exists’. In Fig. 7, for example, all sprites are present. The Killer agent would
deterministically move towards the power-up since both the power-up and opponent exist. Afterward,
a new subprocess directs the agent to move towards the opponent.

To obtain causal graphs for each context C, we first conditioned the rollouts from 500 runs of a nearly
deterministic agent tailored to Killer behavior on the respective contexts. Here we also incorporated
Margin Frames and a small amount of noise. For each of the 500 rollouts, we generated causal
graphs using three methods: (i) Granger causality combined with Vector Autoregression (VAR), (ii)
VARLiNGAM, and (iii) Lasso. The resulting Graphs for each method and context were individually
averaged at the end.

For all methods, we considered a time lag of 1 and excluded instantaneous effects. First, we trained a
VAR model for method (i) and conducted a Granger causality test for variables with p-values less
than 0.05. We included the coefficients of the VAR model in the causal graphs when the significance
level of the granger test was also less than 0.05. For method (ii), we ran the VARLiNGAM model
without making significant changes to the default parameters. As for method (iii), we used a LassoCV
implementation with 5-fold cross-validation.

Fig. 8 displays the corresponding results. Rows with the prefix ’-1_’ have a causal effect on columns
with the prefix ’0_’. The variables used in the graphs are mostly self-explanatory and binary to
provide meaningful explanations.

It is important to note that the process of killing or picking up a sprite is divided into several steps in
the time series. First, an object is “targeted," then “collided," and finally, it is no longer present or has
been picked up in the next timestep. Additionally, we employed cosine similarity for target tracking,
which offers an advantage over Manhattan Distance and Euclidean Norm, as it allows targeting only
one sprite at a time.

Using the T-SCE approach, we can ask questions about why an agent performs a specific action in a
given run if we consider the graphs to be causal. For example, in the main section, we answered the
question, “Why is Mario targeting the Goomba?". Fig. 1 also shows what happens when Luigi, with
the same behavior type, mistakenly targets the Goomba. Additionally, we compiled a collection of
different answers from the three models to the questions: “Why is Mario targeting the Goomba?"
(Tab. 1), “Why did Mario jump on the Goomba?" (Tab. 2), and “Why did Mario run into the
goal?" (Tab. 3) in the corresponding tables. We used a uniform expression of encoding to maintain
comparability, and the response width for both the retrospective and anticipatory parts was uniformly
limited. Anticipatory effects are limited to one time step ahead.
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Table 1: Causal Explanation for the question‘Why did Mario target the Goomba?’ during a recorded
rollout.

Why did Mario target the Goomba?
Model Explanation

Lasso
Retrospective: Mario is targeting the enemy, constantly over action(s) 23 to 28,
mostly because the enemy was targeted, because the player did not collide with
the enemy, because the powerup did not exist and because the player had already
collected the powerup continously in the previous time step.

Anticipative: Targeting the enemy now has a positive effect on targeting the
enemy, the existence of the enemy, colliding with the enemy and a negative effect
on the score, targeting the goal and killing the enemy in the next time step.

Varlingam
Retrospective: Mario is targeting the enemy, constantly over action(s) 23 to 28,
because the enemy was targeted, because the player did not collide with the
enemy and because the enemy did exist continously in the previous time step.

Anticipative: Targeting the enemy has a positive effect on targeting the enemy,
colliding with the enemy, collecting the powerup, the existence of the enemy and
a negative effect on the score and targeting the goal in the next time step.

GrangerVAR
Retrospective: Mario is targeting the enemy, constantly over action(s) 23 to 28,
mostly because the enemy was targeted, because the player did not collide with
the enemy, because the player had already collected the powerup and because
the powerup did not exist continously in the previous time step.

Anticipative: Targeting the enemy has a positive effect on targeting the enemy,
the existence of the enemy and a negative effect on the score, targeting the goal,
killing the enemy and targeting the goldcoin in the next time step.

Table 2: Causal Explanation for the question‘Why did Mario jump on the Goomba?’ during a
recorded rollout.

Why did Mario jump on the Goomba?
Model Explanation

Lasso
Retrospective: Mario is colliding with the enemy because the enemy was targeted
(0.056) due to the action before.

Anticipative: Colliding with the enemy has a positive effect on the score (4.338),
killing the enemy (0.483) and a negative effect on the existence of the enemy
(-0.479), targeting the goal (-0.197), targeting the enemy (-0.182) and targeting
the goldcoin (-0.029) in the next time step.

Varlingam
Retrospective: Mario is colliding with the enemy mostly because the enemy
was targeted (0.059), because the player did not collide with the enemy (-0.02),
because the enemy did exist (0.015) and altough the player did not collide with
the goldcoin (0.014) through the action before.

Anticipative: Colliding with the enemy has a positive effect on the score (4.331),
the existence of the powerup (0.23), targeting the powerup (0.15) and a negative
effect on targeting the goal (-0.38), targeting the enemy (-0.235) and collecting
the powerup (-0.219) in the next time step.

GrangerVAR
Retrospective: Mario is colliding with the enemy because the enemy was targeted
(0.04) due to the action before.

Anticipative: Colliding with the enemy has a positive effect on the score (4.458),
killing the enemy (0.486) and a negative effect on the existence of the enemy
(-0.486), targeting the goal (-0.24), targeting the enemy (-0.201) and targeting
the goldcoin (-0.04) in the next time step.
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Table 3: Causal Explanation for the question‘Why did Mario run into the Goal?’ during a recorded
rollout.

Why did Mario run into the Goal?
Model Explanation

Lasso
Retrospective: Mario is colliding with the goal because the goal was targeted
(0.044) with the action before.

Anticipative: Colliding with the goal has a positive effect on termination of
the game (0.518), the score (0.029) and a negative effect on targeting the goal
(-0.377) and targeting the goldcoin (-0.041) in the next time step.

Varlingam
Retrospective: Mario is colliding with the goal mostly because the goal was
targeted (0.055), because the player had killed the enemy (0.017), because the
game is not terminated (-0.011) and altough the player had already collected the
powerup (-0.015) the time step before.

Anticipative: Colliding with the goal now has a positive effect on termination of
the game (0.505), killing the enemy (0.012) and a negative effect on targeting
the goal (-0.374), targeting the goldcoin (-0.055), the existence of the enemy
(-0.018) and targeting the enemy (-0.014) in the next time step.

GrangerVAR
Retrospective: Mario is colliding with the goal mostly because the goal was
targeted (0.023) and because the goldcoin did exist (0.01) the time step before.

Anticipative: Colliding with the goal now has a positive effect on termination of
the game (0.577), the score (0.026) and a negative effect on targeting the goal
(-0.434) and targeting the goldcoin (-0.054) in the next time step.
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Figure 8: Comparative Causal Diagrams for Behaviour Type Killer Using Granger, Lasso,
and VARLiNGAM for CK,1, CK,2, CK,3. Red indicates positive influences, while blue represents
negative effects.
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Figure 9: Necessity Scores for all features of 100 patients from the ‘above average’ Mobility group.

C Towards Contexting T-SCE with Existing Causal XAI Paradigms

We compared our method with two other markedly distinct methods. Additional information pertain-
ing to the derivation of the results is consolidated and presented herein.

The authors of the Causal Shapley Values have published an R implementation, which we used for
our test. Based on the classification dataset, we trained an XGBoost model with about 500,000
samples for the Causal Shapley Values. Of these, 85% were used for training, 10% for validation,
and the remaining samples for creating graphs and as a basis for distinguishing between the predicted
groups ‘below average’ and ‘above average’ mobility. An XGBoost classifier was trained using 5-fold
cross-validation (early stopping at 50, 5000 rounds, maximum depth 10, eta 0.3).

In addition to the symmetrical Causal Shapley Values for the ’below average’ group, we also produced
a plot for the ’above average’ group. Fig. 9 displays the nearly perfectly symmetrical Causal Shapley
Values for the ’above average’ group.

The authors of the LEWIS method were kind enough to provide us with a part of their code for the
causality-based counterfactual method. Similar to the Shapley method, a classification model was
initially trained. This time a Random Forest approach was used, with 15 estimators and a maximum
depth of five, and max_features set to ‘sqrt’. For the ‘above average’ group, we have compiled the
corresponding importance of the patients’ features also in Fig. 9. In this case, these are the Necessity
Scores from local explanations, where the change from the current category to the alternative category
was considered.

D Towards XIL and Causal XIL

According to the article on the Explanatory Interactive Machine Learning (XIL) paradigm [TK19b],
it aims to bridge the gap between interactive learning and explainability in order to foster trust in
machine learning models. This is achieved by focusing on the interactions between the learner and the
user. During these interactions, the user is able to verify, correct, and provide feedback on the model’s
predictions and explanations. This direct involvement of the user enables a better understanding of the
model’s decisions and promotes more effective learning by adapting the learning process to the needs
and expectations of the user. The article points out that existing approaches, such as passive learning
or interactive learning, usually do not address the aspect of ’trust,’ and do not employ explanation
algorithms, resulting in the model being a black box for the user. In these cases, the user cannot
directly verify why a prediction was made based on a query. Consequently, the user can never be sure
whether correct predictions were made, or if they were merely coincidental.

The proposed approach is as follows: The learner selects a sample and classifies it. Along with a
local explanation (i.e., LIME), the sample is presented to the user. The user can see both and validate
whether the correct decision was made for the right reasons or not. At the same time, the user can
provide feedback on erroneous behavior to the learner. This would be the case, for example, if the
learner makes the correct decision for the wrong reasons or makes the wrong decision for the right
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Figure 10: Causal XIL Paradigm in action. A practical example featuring a developer and a
doctor collaboratively working on optimizing a causal model. The feedback loop enables iterative
improvement of the model, drawing on the expert knowledge of the doctor and the adjustments made
by the developer [ZDRK23].

reasons. If the prediction is incorrect for the wrong reasons, the user provides the correct label to
the learner. The case of being correct for the wrong reasons is more interesting; here, the user must
improve the explanation and provide it back to the model. As a result, the user can specifically guide
the model and have a direct influence on its behavior. CAIPI, a model-independent instance of the
paradigm, was introduced by the authors in the paper.

[ZDRK23] take their work a step further in their article, describing a causal variant of the XIL
paradigm. They argue that the need for a causal variant lies in avoiding deceptive correlations and
fallacies, also referred to as “spurious fallacies," in explanation methods that are not truly causal.
A causal approach enables more effective collaboration between humans and AI by providing ex-
planations that better align with human logic and causality. Since humans often establish causal
relationships in their thinking, a causal variant of the XIL paradigm allows for a better translation
between human thought and AI models. Anchoring the model’s explanations in a causal model, com-
bined with a feedback loop, would both increase trust through understanding and transparency, as well
as improve the robustness of the models by uncovering and correcting weaknesses simultaneously.

Fig. 10 shows a structural diagram of the causal XIL paradigm using a practical example. On the
left side, two actors are depicted in the diagram: a developer and a doctor (expert). Both individuals
have access to a dataset of patient records in this example. The developer can generate an initial
causal model from the data using a Causal Discovery method. Since the doctor already has a mental
representation of the causal model underlying the dataset, he serves as a verifier in this case.

Assume that the doctor examines a dataset for the patient, Hans, who has lower mobility than average.
The doctor asks, “Why is Hans’ mobility so poor?". Based on the already learned causal model, a
causal answer to this question can be generated. According to the XIL paradigm, the explanation can
be either correct or incorrect. If the explanation is incorrect, the doctor informs the developer, who
then retrains the model considering the modified dataset.

The doctor can now ask the question again and receive an improved answer through the feedback
loop. The learned causal model is now closer to the true latent Structural Causal Model (SCM). It is
essential to note that although the answer in this example with four variables seems manageable, a
direct translation of the doctor’s mental model may not be straightforward with a larger number of
variables.

[ZDRK23] not only introduced the causal variant of the XIL paradigm but also proposed an approach
to generate causal explanations from a causal diagram for initial application areas, the Structural
Causal Explanation algorithm.
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