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ABSTRACT

Text-to-image diffusion models (DMs) have achieved remarkable success in image
generation. However, concerns about data privacy and intellectual property remain
due to their potential to inadvertently memorize and replicate training data. Recent
mitigation efforts have focused on identifying and pruning weights responsible
for triggering verbatim training data replication, based on the assumption that
memorization can be localized. We challenge this assumption and demonstrate that,
even after such pruning, small perturbations to the text embeddings of previously
mitigated prompts can re-trigger data replication, revealing the fragility of such
defenses. Our further analysis then provides multiple indications that memorization
is indeed not inherently local: (1) replication triggers for memorized images are
distributed throughout text embedding space; (2) embeddings yielding the same
replicated image produce divergent model activations; and (3) different pruning
methods identify inconsistent sets of memorization-related weights for the same
image. Finally, we show that bypassing the locality assumption enables more robust
mitigation through adversarial fine-tuning. These findings provide new insights
into the nature of memorization in text-to-image DMs and inform the development
of more reliable mitigations against DM memorization.

1 INTRODUCTION

Generating high-quality images with diffusion models (DMs) enjoys great popularity. However,
undesired memorization and verbatim replication of training data in text-to-image DMs (Somepalli
et al., 2023; Carlini et al., 2023) poses significant risks to privacy and intellectual property, as it can
favor the unintended replication of sensitive or copyrighted data points during inference. In response,
various detection and mitigation strategies have been proposed (Somepalli et al., 2023; Webster,
2023; Wen et al., 2024; Ren et al., 2024). Most existing mitigation techniques either aim to identify
and filter out highly memorized samples during training (Somepalli et al., 2023; Ren et al., 2024) or
modify inputs at inference time (Somepalli et al., 2023; Wen et al., 2024; Ren et al., 2024) to reduce
memorization-induced data replication. While the training-based methods require computationally
expensive retraining, the inference-time methods are limited to models behind APIs, as users of
open-source models can easily disable these mechanisms by altering the source code.

To overcome both limitations, recent approaches (Hintersdorf et al., 2024; Chavhan et al., 2024)
observe that the text prompts of memorized images elicit distinct activation patterns in the DMs.
Based on these activations, the methods prune a small set of weights, effectively reducing the
risk of verbatim data replication, while preserving overall image quality. However, since these
methods work with a single prompt per memorized image, it remains an open question whether
they prevent the replication of memorized images through different inputs. We search for Diffusion

Contact: antoni.kowalczuk@cispa.de, dominik.hintersdorf@dfki.de, lukas.struppek@dfki.de

1

ar
X

iv
:2

50
7.

16
88

0v
2 

 [
cs

.C
V

] 
 1

4 
O

ct
 2

02
5

https://arxiv.org/abs/2507.16880v2


Finding Dori : Memorization in Text-to-Image Diffusion Models Is Not Local

Adversarial Embeddings

Memorized Embedding

Memorized EmbeddingAfter Mitigation

Data
Replication

Mitigated
Replication

Initial
Noise

Training
Image

1

No
Mitigation

2 3

NeMo NeMo

Wanda Wanda

Mitigation Mitigation +
Adv. Embedding

Figure 1: Left: 1 Without mitigation, the DM closely replicates the training sample. 2 Miti-
gation strategies, such as pruning memorization neurons with NeMo (Hintersdorf et al., 2024) or
Wanda (Chavhan et al., 2024), prevent replication for the memorized prompt, thereby suggesting
successful removal. Yet, 3 adversarial embeddings still trigger replication. Right: While pruning
alters the generation trajectory for the original memorized prompt (blue), adversarial embeddings
steer denoising along alternative paths (red) that still lead to the memorized content, unaffected by
the pruning-based mitigation.

Memorization (Dori ) beyond the prompt space by crafting adversarial embeddings, i.e., text
embeddings different from the memorized prompts, that trigger generation of memorized images.
Such adversarial embeddings allow us to recover supposedly removed memorized data after pruning
(see Fig. 1, left), revealing that pruning merely conceals verbatim memorization. Rather than being
limited to a subset of individual weights, memorization appears to be distributed throughout the
model. For a single memorized data point, multiple adversarial embeddings can trigger its replication,
with the DM following different generation paths, see Fig. 1 (right). Similarly, the different activation
patterns and memorization weights identified for the same memorized image vary across different
inputs that trigger its replication, further undermining the notion of locality.

Abandoning the locality assumption, we develop the first memorization removal method effective
against adversarial embeddings. We employ adversarial training (Szegedy et al., 2014; Goodfellow
et al., 2014; Madry et al., 2018), which iteratively searches for adversarial embeddings that trigger
replication, and pair it with full fine-tuning rather than pruning a subset of weights to achieve reliable
removal of memorized data points.

In summary, we make the following contributions:

1. We reveal that existing weight-pruning methods merely conceal memorization in text-to-image
DMs rather than truly erase memorized individual data points from a model.

2. We challenge the assumption that memorization is local, demonstrating that locality fails to hold
across (1) the text embedding space, (2) a model’s activations, and (3) its trained weights.

3. Finally, we introduce fine-tuning with adversarial text embeddings as a strong memorization
removal method, demonstrating that memorization can be permanently mitigated in already
trained DMs without relying on locality, paving the way for more refined methods.

2 BACKGROUND AND RELATED WORK

In this section, we present the core principles of text-to-image generation using DMs and introduce
research focused on unintended memorization of individual training data points. We also discuss the
fundamental differences between mitigating memorization and concept unlearning.

2.1 TEXT-TO-IMAGE GENERATION WITH DIFFUSION MODELS

Diffusion models (Song & Ermon, 2020; Ho et al., 2020) (DMs) are a class of generative models
trained by gradually corrupting training images by adding Gaussian noise and training a model ϵθ
to predict the noise that has been added. Once trained, DMs generate new images by starting from
pure noise xT ∼ N (0, I) and progressively denoising it. At each time step t = T, . . . , 1, the model
ϵθ predicts the noise ϵθ(xt, t,y) needed for the denoising step. In the domain of text-to-image
generation, the denoising process is guided by a text prompt p, which is transformed into a text
embedding y by a text encoder. We discuss more technical details on their training in Appx. E.1.
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2.2 MEMORIZATION IN DIFFUSION MODELS

Definition. In the context of generative models, memorization (Feldman & Zhang, 2020; Feldman,
2020) can manifest as the model reproducing portions of its training data, such as closely replicating
a particular individual training sample. Specifically, verbatim memorization (VM) describes cases
when a training image is reliably generated by the model with almost a pixel-perfect match. Template
memorization (TM) is a more relaxed notion, in which only parts of the image are closely replicated,
such as the background of an image or a specific object (Webster, 2023). Especially, verbatim
generation of individual training data points has a detrimental effect on the trustworthy deployment
of DMs, as it can lead to privacy leaks and copyright violations if sensitive and copyrighted data is
included in the models’ training set.

Memorization in DMs. Recent work has demonstrated that DMs, especially text-to-image mod-
els (Rombach et al., 2022; Saharia et al., 2022), are prone to unintended data point memoriza-
tion (Somepalli et al., 2023; Carlini et al., 2023; Kadkhodaie et al., 2024; Gu et al., 2023; Chen
et al., 2024b; Ma et al., 2024; Dar et al., 2023; Zhang et al., 2024a), raising concerns around pri-
vacy and intellectual property. Since then, multiple methods have been developed to detect data
replication (Webster, 2023; Wen et al., 2024; Ren et al., 2024; Kriplani et al.). While many of
these techniques rely on the availability of training prompts to identify memorized content, another
line of research detects memorization even in the absence of training prompts, focusing instead on
identifying specific memorized images (Ma et al., 2024; Jiang et al., 2025).

Mitigation. Memorization in DMs can either be prevented during training or by intervening in the
generation process at inference time. Existing training-time mitigation techniques either adjust the
training data by removing duplicates (Carlini et al., 2023; Somepalli et al., 2023) or reject training
samples for which the model indicates signs of memorization (Wen et al., 2024; Ren et al., 2024; Chen
et al., 2025). However, since re-training large DMs is expensive, inference-time mitigation strategies
are crucial for already trained models. These mitigation strategies adjust the input tokens (Somepalli
et al., 2023), update the text embeddings (Wen et al., 2024), change the cross-attention scores (Ren
et al., 2024), or guide the noise prediction away from memorized content (Chen et al., 2024a).
However, all these methods offer no permanent mitigation, increase the inference time, and can easily
be turned off for locally deployed models.

Local Pruning-Based Mitigation. More permanent solutions have focused on identifying and
removing the weights responsible for triggering data replication. Hintersdorf et al. (2024) developed
NeMo, a localization algorithm to detect memorization neurons within the cross-attention value layers
of DMs, of which all weights are pruned. More specifically, NeMo first conducts an out-of-distribution
detection to identify neurons with high absolute activations under memorized prompts and reduces
the set of identified neurons by checking their influence on data replication individually. Similarly,
Chavhan et al. (2024) applied Wanda (Sun et al., 2024), a pruning technique originally developed
for large language models, to locate and prune individual weights in the output fully-connected
layers of transformer blocks responsible for memorization. Wanda identifies weights by their weight
importance, computed as the product between the weights and the activation norm. The method then
prunes the top k% of weights with the highest importance scores compared to scores computed on a
null string. While both methods successfully avoid data replication triggered by memorized prompts,
it remains open whether the memorized data points are successfully erased from the model.

Memorization Mitigation vs. Concept Unlearning in DMs. Apart from the localization-based
memorization mitigation techniques, one of the few approaches that try to remove information from
DMs’ weights are concept unlearning methods (Gandikota et al., 2023; Kumari et al., 2023; Zhang
et al., 2024b) that are used for content moderation. Although these methods bear some methodological
similarity, they pursue fundamentally different objectives. Concept unlearning targets the suppression
of broad, high-level concepts, such as nudity or specific objects (e.g., cars), across all generations.
In contrast, memorization mitigation (this work) seeks to remove the model’s ability to reproduce
specific, individual memorized training data points. For example, mitigating verbatim generation of a
particular memorized image of a car to protect copyright prevents the model from generating that
exact image, but does not affect its capacity to generate cars in general. Concept unlearning, on the
other hand, eliminates the model’s ability to generate any car, which is undesirable when we want to
mitigate memorization of a specific data point but leave the model unchanged otherwise. Therefore,
mitigating memorization, i.e., (verbatim) training data replication, although deceptively similar to
concept removal, needs a different approach. In the next sections, we validate this empirically by
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showing that concept removal methods are indeed not suitable for mitigating the memorization of
individual data points, which calls for stronger, tailored tools.

3 BREAKING PRUNING-BASED MITIGATION METHODS

In this section, we highlight that pruning-based memorization mitigations only conceal memorization
but fail to truly remove memorized images from DMs. Specifically, we show that even after applying
these mitigations, we can still trigger the generation of memorized images through carefully crafted
adversarial text embedding. This reveals that, despite the apparent mitigation of memorization under
standard textual prompts, the underlying memorized images persist in the model weights.

3.1 FINDING DORI WITH ADVERSARIAL TEXT EMBEDDINGS

To demonstrate that pruning-based memorization mitigation strategies (NeMo and Wanda) fail to truly
remove memorized images from DMs, we develop a novel approach for generating adversarial text
embeddings that can still trigger the verbatim reproduction of supposedly removed memorized data
points. Instead of relying on natural-language prompts, we use unconstrained continuous optimization
in the text embedding space to uncover triggers capable of reconstructing memorized images, even
after a mitigation has been applied. The existence of such adversarial triggers reveals that memorized
content is still encoded in the model weights and can be verbatim extracted, which poses a significant
privacy and copyright risk, especially for open-weight models.

Formally, let xmem be a known memorized image and ymem the text embedding for its prompt. After
weight pruning using NeMo or Wanda, the model no longer replicates xmem when conditioned on
ymem , giving the impression that memorization has been successfully removed. To verify removal,
we optimize an adversarial embedding yadv initialized with ymem , using gradients of the standard
diffusion loss LDM (see Eq. (3)), with learning rate η over multiple steps i as:

y
(i+1)
adv = y

(i)
adv − η∇

y
(i)
adv

LDM (xmem , ϵ,y
(i)
adv , t,θNeMo/Wanda), (1)

where θNeMo/Wanda are parameters of the DM after applying NeMo or Wanda to mitigate replication
of xmem . Our goal is to find a final adversarial embedding yadv that consistently triggers xmem ,
regardless of the initial noise, so we re-sample the noise ϵ ∼ N (0, I) at each optimization step.
Similarly, we re-sample the timesteps t ∼ U(1, T ) to ensure that yadv reliably triggers xmem during
the iterative denoising generation process of the DM. A detailed formulation of the optimization
procedure is provided in Alg. 1 in Appx. F.

For comparison, we also evaluate UnlearnDiffAtk (Zhang et al., 2024c), a state-of-the-art attack
designed to re-trigger forgotten concepts in the context of concept unlearning. As established above,
concept unlearning fundamentally differs from the challenge of removing individual memorized
training examples, yet UnlearnDiffAtk represents the closest available baseline and is therefore
included for completeness. Our results (see Appx. G.1) show that UnlearnDiffAtk fails to re-generate
memorized images following pruning-based mitigations. This highlights both the particular challenge
of showing the limits of pruning-based memorization techniques and the necessity of our adversarial
optimization strategy, which enables analysis beyond what was possible with prior methods.

3.2 EXPERIMENTAL SETUP

We begin by defining the experimental setup used in this and the subsequent sections.

Models and Datasets: We focus our investigation on Stable Diffusion v1.4 (Rombach et al., 2022) and
a set of 500 memorized prompts (Wen et al., 2024; Webster, 2023) from the LAION-5B (Schuhmann
et al., 2022) training dataset, in line with previous research on memorization in text-to-image
DMs (Wen et al., 2024; Ren et al., 2024; Hintersdorf et al., 2024; Chavhan et al., 2024). More recent
DMs are trained on more carefully curated and deduplicated datasets, which reduces the amount of
memorization, as discussed in previous work (Somepalli et al., 2023; Webster et al., 2023). Therefore,
Stable Diffusion v1.4 is the only existing model for which a known set of memorized prompts is
publicly available. As a result, it is currently not possible to conduct comparable memorization
studies on other models. In the main paper, we focus on VM prompts as they represent the most
critical form of memorization, but we additionally include results for TM prompts in Appx. H.
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Table 1: Pruning-based mitigation of memorization is vulnerable to adversarial embeddings.
Without any mitigation technique applied (1st row), the generated images clearly indicate data
replication. Searching for adversarial embeddings on non-memorized prompts (2nd row) does not
lead to clear replication. After localizing and pruning weights with NeMo (3rd row) or Wanda (4th
row), data replication appears effectively prevented. However, identifying adversarial embeddings
with Dori (indicated by ) reveals that embeddings capable of triggering data replication may
persist, even after pruning.

Setting Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↑↑↑ ACLIP ↓↓↓MR ↓↓↓ FID
No Mitigation Verbatim 0.90± 0.04 N/A 0.33± 0.01 0.98 14.44

Non-Memorized Prompts None 0.17± 0.05 N/A 0.35± 0.02 0.00
14.44Non-Memorized Prompts + None 0.48± 0.06 N/A 0.32± 0.02 0.00

NeMo (Hintersdorf et al., 2024) Verbatim 0.33± 0.18 0.40± 0.21 0.34± 0.02 0.20
15.16NeMo + Verbatim 0.91± 0.03 0.97± 0.02 0.33± 0.02 0.99

Wanda (Chavhan et al., 2024) Verbatim 0.20± 0.08 0.21± 0.09 0.34± 0.02 0.00
16.86Wanda + Verbatim 0.76± 0.05 0.82± 0.05 0.32± 0.01 0.72

Metrics: Following prior work (Wen et al., 2024; Hintersdorf et al., 2024), we employ SSCD (Pizzi
et al., 2022), a feature extractor commonly employed to detect and quantify copying behavior in
DMs. To measure similarity between two images, we compute the cosine similarity between their
SSCD feature embeddings. Higher values indicate a higher degree of content replication. All metrics
are computed as the median of the maximum scores across ten generated images per memorized
prompt or adversarial embedding. We vary the seeds for image generation and adversarial embedding
optimization to avoid overfitting.

To evaluate replication, we define SSCDOrig as the cosine similarity between generated images and
their associated training image. Values above 0.7 indicate that the memorized image is successfully
generated (Wen et al., 2024). Additionally, we use the similarity between images generated before
and after mitigation techniques are applied, denoted by SSCDGen, to assess the effects of mitigation.
We expect lower SSCDGen scores when mitigation is successful.

While SSCD-based metrics capture the overall trend of replication, we also quantify the number of
images that remain memorized even after mitigation. To this end, we define the Memorization Rate
(MR) as the ratio of memorized images that the model can still replicate, i.e., those achieving an
SSCD score above 0.7 for at least one of the ten generations, sampled from different random seeds.

To assess image quality, we measure prompt alignment using CLIP (Radford et al., 2021) similarity
ACLIP, comparing each generated image with its corresponding textual prompt. Higher ACLIP scores
indicate a stronger semantic alignment with the input prompt. We also compute the Fréchet Inception
Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance (KID (Binkowski et al., 2018),
reported in the Appendix). Both these image quality metrics are evaluated on 30k prompts of the
COCO dataset (Lin et al., 2014), a standard benchmark for image generation (Pavlov et al., 2023).
Lower scores indicate improved image quality.

Adversarial Embedding Optimization: We initialize the adversarial embeddings with the original
text embeddings of the prompts for the memorized images. We then optimize each embedding for 50
steps with a learning rate of 0.1 using Adam (Kingma & Ba, 2015) and a batch size of 8.

3.3 PRUNING-BASED MITIGATION CONCEALS BUT DOES NOT ERASE MEMORIZATION

Our analysis in Table 1 highlights that NeMo and Wanda prevent training data replication only in the
text space, i.e., breaking the mapping from the prompt to the corresponding memorized image, but
do not remove the memorized images from the DM. As shown in the first row of Table 1, verbatim
memorized prompts trigger the replication of the memorized training images in the original DM (No
Mitigation). In contrast, image generations for non-memorized training prompts (2nd row) show no
signs of memorization under the SSCD score. Even when applying Dori, our adversarial embedding
optimization, indicated by in the table, the resulting metrics suggest no close data replication for
non-memorized prompts. This finding is particularly important for the validity of our investigations,
as it confirms that our adversarial embedding optimization method specifically targets memorized
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content and does not falsely report memorization for non-memorized data. We explore adversarial
embeddings in the context of non-memorized data points more closely in Appx. F.1.

Applying NeMo (third row) or Wanda (fourth row), respectively, substantially reduces training data
replication as reflected by lowered SSCD scores in contrast to the original DM. At first glance, both
methods appear effective at mitigating the replication of memorized data points, as also visualized
in Fig. 1 ( 2 ). However, blocking replication from the original prompts does not imply that the
memorized individual images have been removed from the model, as shown in rows marked with
and Fig. 1 ( 3 ). These results suggest that pruning-based methods like NeMo and Wanda primarily
conceal memorization rather than eliminate it. Also for TM results, reported in Appx. H.2, we observe
increased replication of memorized training data, yet SSCD-based metrics fail to correctly quantify
this type of replication due to their non-semantic variations in generated images. Overall, these results
suggest that pruning-based memorization mitigations prevent the replication of memorized images
via the text space but leave the memorized images intact internally in the DM.

Ablations. We also conduct a sensitivity analysis (Appx. H.2) on the number of steps required
to yield adversarial embeddings, finding that in most cases, significantly fewer than 50 steps are
already sufficient to identify embeddings that circumvent the mitigation methods. We also experiment
with increasing the strength of NeMo and Wanda to test if they become resilient to Dori. For the
former, we iteratively increase the set of pruned weights based on new adversarial embeddings
(see Appx. H.6), and for the latter, we simply prune 10% of weights, instead of 1% (see Appx. H.5).
In these settings, Wanda successfully removes memorization but at substantial damage to the DM’s
generative capabilities (see Appx. H.7), while NeMo remains non-robust to Dori.

4 THE ILLUSION OF MEMORIZATION LOCALITY

Our analysis in the previous section revealed that pruning-based memorization mitigation methods
fail to remove memorized images from DMs, at least without compromising overall generation
quality. This suggests that their underlying assumption of localized memorization is flawed. In this
section, we provide multiple lines of evidence that memorization in DMs is indeed not inherently
local. Specifically, in Section 4.1, we show that replication triggers for memorized images are widely
distributed in the text embedding space, in Section 4.2, we demonstrate that distinct embeddings
producing the same memorized training image can induce divergent model activations, and in
Section 4.3, we find that different pruning methods identify inconsistent sets of memorization-related
weights for the same image. Finally, in Section 4.4 we demonstrate that abandoning the locality
assumption enables more robust mitigation through adversarial fine-tuning, paving the way towards
novel methods that truly mitigate memorization of individual data points in DMs.

4.1 DATA REPLICATION TRIGGERS ARE NOT LOCALIZED IN TEXT EMBEDDING SPACE

Embedding Type
Initial Embedding
Optimized Adversarial Embedding

Figure 2: Data replication triggers are
widely and uniformly scattered in the
text embedding space.

In the previous section, we demonstrated that pruning-based
memorization mitigations (NeMo and Wanda) can be bro-
ken by optimizing adversarial embeddings initialized near
the original training prompt. Here, we show that triggers
in the embedding space do not need to lie close to a mem-
orized image’s prompt: even adversarial embeddings ini-
tialized at random, distant positions in the text embedding
space can still reliably trigger replication of memorized
images.

To illustrate this, we construct a set of 100 adversarial em-
beddings, Yadv , for a single memorized image, where each
embedding is randomly initialized: y(0)

adv ∼ N (0, I). After
optimizing each embedding for 50 steps in accordance with
the procedure described in Section 3.1, we show that every
run produces a generated image highly similar to the mem-
orized sample (all with SSCDOrig scores clearly exceeding
0.7). Despite their consistent success at replication, the op-
timized adversarial embeddings remain widely dispersed in
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the embedding space and retain a distribution similar to their random initializations, as visualized by
the t-SNE (van der Maaten & Hinton, 2008) plot in Fig. 2. This result further refutes the assumption
of input space locality.

We repeat the experiment by initializing y(0)
adv with embeddings of 100 randomly selected, non-

memorized prompts. Results from this experiment, presented in Fig. 8 (see Appx. J.1), draw a similar
picture of evenly distributed replication triggers. Both results clearly demonstrate that replication of
memorized images can be triggered virtually from all over the embedding space, taking away the
illusion of local memorization triggers.

To quantify our observations further, we compute the pairwise distances both among all the initial
random embeddings and among all the optimized adversarial embeddings. As shown in Fig. 9
(Appx. J.1), the optimized embeddings are in fact even more dispersed than their initializations,
confirming that successful replication triggers are widely scattered rather than localized. These results
demonstrate that the assumption of input locality, implicit in the pruning-based mitigation methods,
is unfounded. Effective memorization mitigation must therefore address potential triggers distributed
throughout the embedding space, not just those near the training prompt.

4.2 DIFFERENT TRIGGERS, DIFFERENT ACTIVATIONS, THE SAME IMAGE

Next, we examine internal model activations to assess whether replication triggers for memorized
images are also dispersed at the level of network activity. For fixed input noise, we expect that
activations should vary depending on the guiding text embedding. This analysis is essential, as
pruning methods like Wanda and NeMo select candidate weights for removal based on activation
patterns, treating these as per-weight importance metrics. If different adversarial embeddings that
trigger the same image yield distinct activations, these methods may prune inconsistent sets of
weights, undermining the assumption of locality in memorization further.

To quantify activation variability, we introduce a discrepancy metric, defined as the mean pairwise
ℓ2-distance between activations in a given layer across different input embeddings during the initial
denoising step. To ensure a fair comparison, the input noise is fixed while only the guiding adversarial
embedding is varied. The exact formulation is provided in Eq. (6) (see Appx. J.2). We compute
discrepancies for two embedding sets: Yadv, comprising 100 adversarial embeddings for a single
memorized image (from Section 4.1), and Ymem , containing 100 text embeddings of randomly
selected prompts associated with different memorized images. Since replicating different images
should produce more varied activations, we expect higher discrepancies for Ymem and lower, more
consistent values for Yadv .
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Figure 3: Diverse activations refute locality. Al-
though adversarial embeddings trigger the same
image, their activations exhibit high discrepancy.

We analyze activations from the layers where
NeMo and Wanda operate, specifically, the value
layers of cross-attention modules for NeMo
and the second linear layers of the transformer
blocks’ two-layer feed-forward networks for
Wanda. In total, we compute activations for
seven cross-attention modules, indexed from 1
to 7, spanning the three Down blocks (indices 1
to 6, each block has two modules) and the Mid
block of the DM’s U-Net (Ronneberger et al.,
2015), following the setup of NeMo.

Surprisingly, as shown in Fig. 3, the discrepancy
among activations for adversarial embeddings in
Yadv is comparable to that for randomly selected
memorized prompts in Ymem . This finding indi-
cates that different adversarial embeddings, even
when generating the same image, cause distinct
activation pattern, contradicting the expectation
that a common output implies similar activations. While Wanda shows slightly reduced discrepancy
for Yadv , the variability remains substantial, suggesting each adversarial embedding invokes a unique
activation pattern. Extending this analysis to all U-Net layers (see Fig. 10 in Appx. J.3) yields similar
results, providing further evidence against the locality assumption in memorization.
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4.3 IMAGES ARE NOT MEMORIZED IN A SUBSET OF WEIGHTS

While high discrepancy scores suggest that different subsets of weights contribute to data replication,
we further assess the consistency of pruning-based mitigation methods across adversarial embeddings
for the same image. Since NeMo and Wanda select weights for pruning based on activation patterns,
we expect the identified sets of weights to vary with different adversarial triggers. To quantify this,
we define a weight agreement metric as the intersection over union of weights identified for pruning
by NeMo or Wanda between two adversarial embeddings, averaged across all pairs. Higher values
indicate greater overlap of the identified weights. The metric’s formal definition is given in Eq. (7)
(see Appx. J.2). Weight agreement is set to 1, representing a perfect overlap, if no weights are selected
for either embedding in a given layer.
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Figure 4: Locality fails in the model’s weights.
Large activation discrepancy (Fig. 3) results in low
weight agreement, further undermining the idea
that weights responsible for replicating a memo-
rized image can be pinpointed and pruned.

As shown in Fig. 4, the overlap in identified
weights for adversarial prompts in Yadv is lim-
ited: Wanda ’s agreement remains below 0.6
for most layers, while NeMo exceeds 0.8 ex-
cept in the first layer, where the overlap drops
to about 0.6, similar to results for the set of di-
verse memorized prompts Ymem . Notably, this
high agreement in deeper layers is mainly due
to NeMo attributing most memorization-related
weights to the first layer, as further visualized
in Fig. 11 (left) in Appx. J.2. Despite appear-
ing more stable, iterative pruning experiments
(see Appx. H.6) reveal that NeMo still identi-
fies different weights for different adversarial
embeddings after previous weights are pruned.

Crucially, the weight agreement among adver-
sarial embeddings in Yadv is comparable to that
among distinct memorized prompts in Ymem ,
reinforcing the finding that both pruning-based
approaches struggle to consistently localize the
weights responsible for memorization. This further challenges the locality assumption and under-
scores the limitations of such memorization mitigation strategies.

4.4 ABANDONING THE LOCALITY ASSUMPTION YIELDS ROBUST MITIGATION METHOD

The consistent evidence against memorization locality from the previous sections suggests that
memorization removal in DMs cannot be achieved by targeting just a subset of weights. Instead,
our findings point to the need for mitigation strategies that operate at the level of the entire model.
To verify this, we evaluate a simple but powerful method: adversarial fine-tuning, where all model
parameters are adjusted to remove memorized content.

Approach. We employ Dori (Section 3.1) to generate multiple adversarial embeddings for each
memorized image and fine-tune the DM in an adversarial manner, inspired by adversarial train-
ing (Szegedy et al., 2014; Goodfellow et al., 2014; Madry et al., 2018). During training, adversarial
embeddings should produce images that are semantically close to the memorized samples, but not
exact replicas. To facilitate this, we first craft a set of surrogate images x̃, obtained by prompting the
DM with memorized prompts under a pruning-based mitigation. These surrogate images resemble the
memorized samples in content and style, yet differ in their details, ensuring they are no replications
(see Appx. I.2 for visual examples). In addition, at each fine-tuning step, we iteratively collect a set
of adversarial embeddings yadv that trigger replication of the memorized images. We then fine-tune
the DM on a mix of these surrogate images and adversarial embeddings with a loss defined as:

LAdv(x̃0, ϵ,yadv, t,θ) = ∥ϵ− ϵθ (x̃t, t,yadv) ∥22. (2)

The loss encourages the model to avoid replicating the memorized training image triggered by the
adversarial embedding. Instead, it guides generation toward the surrogate images, which preserve
the semantic content without being exact copies. Using a diverse set of surrogate images ensures
that no new memorized image is inadvertently introduced into the DM. In addition, we use the

8
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standard diffusion loss LDM defined in Eq. (3), to train on non-memorized image-captions pairs
from the LAION (Schuhmann et al., 2022) dataset, to preserve the model’s general utility. The final
optimization loss is L = LDM + LAdv. An algorithmic description of our adversarial fine-tuning
method, as well as the full setup, is provided in Appx. I.

Results. We find that our adversarial fine-tuning procedure quickly removes memorized content. Ta-
ble 2 (bottom row) presents the evaluation results after fine-tuning for five epochs. The results
show that adversarial embeddings can no longer trigger data replication (except for a single, highly
duplicated training sample), demonstrating a permanent mitigation relative to pruning-based methods.
At the same time, the model’s utility is preserved: the FID score improves from 14.44 to 13.61 after
fine-tuning, suggesting no harm to the image quality, as extended results in Tab. 3 (see Appx. G) show.
We provide comprehensive analyses of the parameters and performance of the method in Appx. I.
These results indicate that even a single fine-tuning epoch substantially reduces memorization and
can prevent data replication in most cases. We also experimented with fine-tuning the DM with LoRA
adapters (Hu et al., 2021), but found it unsuccessful in mitigating memorization, further underscoring
that effective memorization mitigation requires global model adjustments.

Table 2: Dori against fine-tuning removal.

Method ↓↓↓ SSCDOrig ↓↓↓MR

ESD + 0.90± 0.04 0.98
Concept Ablation + 0.91± 0.04 0.97
SISS + 0.60± 0.22 0.39
Our Mitigation + 0.36± 0.14 0.02

Baseline. We compare our method with the
state-of-the-art fine-tuning approach for data
point unlearning in DMs, namely SISS (Alberti
et al.), which aims to remove a specific (not nec-
essarily memorized) image from the pre-trained
DM. We remove a single image from the U-Net
by performing 35 update steps. For each image,
we start from the original DM, following the
default setting for SISS. We describe SISS and
its setup in Appx. E.2. While our results in Tab. 2 show that it successfully drops SSCDOrig below
the memorization threshold of 0.7, we note that SISS fails to remove 39% of memorized samples,
as indicated by the memorization rate (MR). This highlights that the method is still limited for the
reliable mitigation of memorized images when faced with adversarial embeddings.

Applying Concept Unlearning. Finally, for completeness, we also evaluate ESD (Gandikota et al.,
2023) and Concept Ablation (Kumari et al., 2023), state-of-the-art concept unlearning methods for
DMs. As discussed in Sec. 2, concept unlearning successfully targets the removal of broad, high-level
concepts from generative models, such as style or entire object categories, but it is not designed to
remove specific, individual memorized data points, which is the goal of memorization mitigation.
Nevertheless, as the closest available baselines from concept unlearning, we include these approaches
in our evaluation. As shown in Tab. 2 (top two rows), and Tab. 3 (see Appx. G.2), both methods
fail to reliably prevent the replication of memorized data when confronted with adversarial trigger
embeddings. We hypothesize this is because these methods rely on a single prompt, or its augmented
versions, as a replication trigger, which is insufficient for thorough memorization mitigation, as we
already demonstrated in Section 4.1. We extend the discussion and experimental setup in Appx. G.

Overall, our results highlight that existing concept and data unlearning methods are ill-suited for
mitigating memorization. Although concept unlearning methods can suppress broad categories, they
fail to reliably eliminate memorized content. Similarly, the current state-of-the-art data unlearning
method (SISS), which claims to be effective at removing memorized images, also remains vulnerable
to adversarial embeddings. Moreover, while existing mitigation methods are effective at preventing
data replication when triggered from the prompt space, fully removing memorization requires novel
approaches. Such methods must abandon the locality assumption in input and weight space, and
operate globally, for instance, through adversarial fine-tuning with many triggers, as in our approach.

5 DISCUSSION AND CONCLUSIONS

Our findings reveal that memorization in text-to-image DMs is not inherently a local phenomenon.
While pruning-based methods such as NeMo and Wanda can suppress the generation of memorized
training images when prompted with the original captions, they do not remove the image memorization
from the model. In particular, we show that the memorized images can still be reliably regenerated
using diverse adversarial embeddings. While our results strongly indicate the limitations of targeting
only local weights or activation patterns, we refrain from claiming that any form of locality can be
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definitively ruled out. Rather, our work highlights the significant challenge in reliably identifying
which specific weights drive memorization, especially since current methods based on activation
patterns fail in the presence of adversarial triggers that induce divergent activations. We show that
effective memorization removal requires global model interventions, as realized by our adversarial
fine-tuning approach, which robustly eliminates memorized images while preserving the model’s
generative performance. Overall, our insights underscore the need for novel global, model-wide
memorization mitigation strategies to support the responsible deployment of generative models.

REPRODUCIBILITY STATEMENT

For reproducibility, we describe all settings, models, datasets, and hyperparameters used during our
experiments. Our Appendix further provides detailed descriptions for all steps of our method. All
datasets, models, and methods used in this paper are publicly available.
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A LIMITATIONS

Our analysis of the locality of memorization within model parameters focuses on a selected subset
of layers. While it is possible that signs of locality may also be present in other components—such
as self-attention mechanisms or convolutional layers—we chose to concentrate on the layers where
existing mitigation methods are typically applied and where initial success in suppressing replication
has been observed. This targeted approach allows us to provide concrete and meaningful insights
into the locality hypothesis. Notably, to our knowledge, no current methods explicitly aim to identify
memorization-related weights outside the studied layers. Furthermore, supporting evidence from the
NeMo paper (Appendix C.9) indicates that pruning convolutional layers does not effectively reduce
memorization, suggesting that our chosen focus captures the most relevant regions for intervention.

We focus our research only on one model, Stable Diffusion v1.4, since only for this DM a set
of memorized images is currently known. We acknowledge that such a narrow scope limits the
generalizability of our results. However, we would like to point out that other works successfully
advanced the understanding of memorization by analyzing Stable Diffusion v1.4.

Misuse of Dori is possible. An adversary with full access to the model and a (suspected) memorized
image can perform optimization to trigger replication of the image. We would like to argue that such
a scenario is highly unlikely, since the access assumptions for the adversary are very strong, and
hard to meet in practice. We designed Dori as an assessment tool to evaluate whether (previously)
memorized content remains present in the DM.

Additionally, we recognize that our adversarial fine-tuning method for removing memorized content
involves a higher computational cost compared to pruning-based approaches. This is due to the need
for generating adversarial inputs, creating surrogate samples, and extending the fine-tuning dataset
with non-memorized data to preserve utility. We see this as a valuable trade-off, as our method
offers the first reliable and permanent mitigation that is robust to adversarial embedding attacks.
Nonetheless, we believe there is substantial potential for future work to build on our findings and
develop more efficient mitigation strategies that retain our method’s effectiveness while reducing
computational overhead.

B HARD- AND SOFTWARE DETAILS

We conducted all experiments on NVIDIA DGX systems running NVIDIA DGX Server Version
5.2.0 and Ubuntu 20.04.6 LTS. The machines are equipped with 2 TB of RAM and feature NVIDIA
A100-SXM4-40GB GPUs. The respective CPUs are AMD EPYC 7742 64-core. Our experiments
utilized CUDA 12.2, Python 3.10.13, and PyTorch 2.2.0 with Torchvision 0.17.0 Paszke et al. (2019).
Notably, all experiments are conducted on single GPUs.

All models used in our experiments are publicly available on Hugging Face. We accessed them using
the Hugging Face diffusers library (version 0.27.1).

To facilitate reproducibility, we provide a Dockerfile along with our code. Additionally, all hyperpa-
rameters required to reproduce the results presented in this paper are included.

C MODEL AND DATASET DETAILS

Our experiments primarily use Stable Diffusion v1-4 (Rombach et al., 2022), which is publicly avail-
able at https://huggingface.co/CompVis/stable-diffusion-v1-4. Comprehen-
sive information about the data, training parameters, limitations, and environmental impact can be
found at that URL. The model is released under the CreativeML OpenRAIL M license.

The memorized prompts analyzed in our study originate from the LAION2B-en (Schuhmann et al.,
2022) dataset, which was used to train the DM. We use a set of memorized prompts provided by
Wen et al. (2024)1, who identified them using the extraction tool developed by Webster (2023). The
LAION dataset is licensed under the Creative Commons CC-BY 4.0. As the images in the dataset may
be subject to copyright, we do not include them in our codebase; instead, we provide URLs that allow

1Available at https://github.com/YuxinWenRick/diffusion_memorization.
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users to retrieve the images directly from their original sources. For performing our fine-tuning-based
mitigation method, we furthermore downloaded 100k images from the LAION aesthetics dataset, a
subset of LAION5B.

D DECLARATION ON LARGE LANGUAGE MODELS’ (LLMS’) USAGE

LLMs were only used to assist in writing (grammar check, phrasing), and to implement boilerplate,
repetitive code for data processing and visualizations. No novelty of our work came from an LLM
assistant. All new ideas and methods described in the paper are developed by the authors without the
assistance of any AI system.
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E EXTENDED BACKGROUND

E.1 TEXT-TO-IMAGE DIFFUSION MODELS

We present the technical details of DM training: During training, a time step t ∼ U(1, T ) and a noise
vector ϵ ∼ N (0, I) are randomly sampled to create a noisy image xt =

√
ᾱtx0 +

√
1− ᾱtϵ based

on the training image x0. The amount of noise added is controlled by a noise scheduler ᾱt, for which
there are multiple choices (Song & Ermon, 2020; Nichol & Dhariwal, 2021; Kingma et al., 2021;
Karras et al., 2022). The training objective for the noise predictor ϵθ is then to predict the noise ϵ
that has been added:

LDM (x0, ϵ,y, t,θ) = ∥ϵ− ϵθ (xt, t,y) ∥22. (3)
Training and generating samples with DMs can be computationally expensive. The latent DM
framework (Rombach et al., 2022) reduces this burden by operating in a lower-dimensional latent
space instead of the pixel space. This latent space is learned by a separately trained variational
autoencoder (Kingma et al., 2013; Van Den Oord et al., 2017) that encodes images into compact
representations and decodes generated latents back to the image space.

E.2 SUBTRACTED IMPORTANCE SAMPLED SCORES (SISS)

Alberti et al. propose a novel data unlearning method, which aims to remove arbitrary images from
the DM, while retaining overall generative capabilities. They perform a full fine-tuning on the U-Net,
with minimization objective Ls,λ(θ), defined as:

EpX(x)EpA(a)Eqλ(mt|x,a)

[
n

n− k

q(mt|x)
(1− λ)q(mt|x) + λq(mt|a)

∥∥∥∥mt − γtx

σt
− ϵθ(mt, t)

∥∥∥∥2
2

− (1 + s)
k

n− k

q(mt|a)
(1− λ)q(mt|x) + λq(mt|a)

∥∥∥∥mt − γta

σt
− ϵθ(mt, t)

∥∥∥∥2
2

]
(4)

Here X denotes the subset of the DM’s training data of size n, A ⊂ X a set of images to unlearn of
size k, qλ(mt|x, a) := (1− λ)q(mt|x) + λq(mt|a) is a mixture distribution—a weighted average of
data densities q(mt|x) and q(mt|a) parameterized by λ ∈ [0; 1], and γt and σt are the DDPM (Ho
et al., 2020) forward process parameters at timestep t. Ls,λ(θ) provides a middle ground between
naive deletion, i.e., fine-tuning only on X \A, and NegGrad (Golatkar et al., 2020), which performs
gradient ascent on A, but is known for its instability. Parameter λ, with the default value of 0.5
in their work regulates how much SISS resembles the former and the latter removal methods. To
increase the strength of the method, a superfactor hyperparameter s > 0 is introduced.

For SISS to work we need an access to the subset of the training data X , and images to remove A.

Applying SISS to Memorization Mitigation is straightforward. We use the default setting specified
in the paper for Stable Diffusion v-1.4, i.e., we apply SISS on a single memorized image at a time.
Authors provide sets A and X for a small subset of 33 VM images they attempt to remove from the
DM in their work. We extend them to the remaining VM samples for a fair comparison with other
methods. Specifically, following their approach we add random tokens to the memorized prompt and
generate 128 images from the original DM, where A would consist of replicas of the memorized
image, while X would contain the remaining (non-memorized) images. We note that the method
employed by the authors (originally proposed by Wen et al. (2024)) is unreliable in creating prompts
that can generate both novel and memorized images, and for 9 of the memorized samples we fail to
craft such (partially memorized) prompts even after varying the number of added tokens. Effectively,
9 out of 112 VM images remain in the model, since we are not able to provide the SISS method
with the necessary X and A sets. Notably, the X set is akin to set of surrogate samples used in our
mitigation method, which we obtain reliably with a weak, pruning-based removal method (NeMo).

Once we have access to X and A, we run SISS with the default hyperparameters for 35 update steps,
with learning rate of 10−5, batch size of 1 and gradient accumulation of 16. For each image we start
from the original U-Net, following the setup in the original work. We note that such a setup has a
limited applicability in the real-world use-cases, as some DMs (specifically: SD-v1.4) may memorize
more than one image.
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F ADDITIONAL DETAILS AND EXPERIMENTS ON ADVERSARIAL EMBEDDING
OPTIMIZATION

In the following, we elaborate on the design of the adversarial optimization Eq. (2) used to obtain
yadv to trigger generation of xmem . First, we provide the algorithm in Alg. 1. Then we showcase
that naive unconstrained optimization would yield False Positives (yadv that are capable of forcing
the DM to generate arbitrary images), see Appx. F.1. Motivated by this finding, we experiment with
the varying strength of the optimization, and arrive at the final constraint of 50 optimization steps,
which allows us to successfully craft yadv if the optimization target (image) is memorized, and fail to
provide yadv for all other (non-memorized) targets. We evaluate constraining schemes that work in
the embedding space in Appx. F.3, and show that they are unsuccessful at preventing False Positives.

Algorithm 1 Finding Dori with Adversarial Embeddings
Input:

DM ϵθ ▷ optionally after pruning-based mitigation applied
Memorized training image xmem
Memorized training prompt pmem
Number of optimization steps N
Learning rate η

Output:
Adversarial embedding yadv

y
(0)
adv ← encode_text(pmem) ▷ alternatively, initialize y

(0)
adv ∼ N (0, I)

for i ∈ {1, . . . , N} do
ϵ ∼ N (0, I)
t ∼ Uniform({1, . . . , T}) ▷ sample discrete timestep from noise schedule
x̃t ← add_noise(xmem, ϵ, t) ▷ adding noise using the training noise scheduler
ϵ̂← ϵθ

(
x̃t, t,y

(i−1)
adv

)
y
(i)
adv ← y

(i−1)
adv − η · ∇

y
(i−1)
adv
∥ϵ− ϵ̂∥22 ▷ update adv. embedding with gradient descent

end for
return y

(N)
adv

F.1 CAN WE MAKE A DM TO OUTPUT ANY IMAGE WITH ADVERSARIAL EMBEDDINGS?

To assess whether Dori’s ability to replicate memorized images is truly due to memorization, we
also test whether adversarial text embeddings can be used to generate an arbitrary (non-memorized)
image, as described in Sec. 3.1. Intuitively, we expect that we can force an 800M parameter model
to produce a specific output vector (latent representation of an image) of size 16,384, given we
perform an unconstrained gradient-based optimization of an input vector (text embedding) of size
59,136. In effect, if the model can be forced to produce arbitrary, non-memorized images using these
embeddings, it would suggest that Dori is not exploiting memorization, but rather steering the model
toward designated outputs—regardless of whether the content was memorized.

To generate non-memorized images with Dori, we sample 100 images from the COCO2014 training
set and run the optimization for 1000 steps for each sampled image. Using the resulting adversarial
embeddings, we generate 5 images per embedding with SD-v1.4 and compute the SSCD scores be-
tween the generated and original images. The SSCD scores for all examples exceed the memorization
threshold of 0.7, and qualitatively, Fig. 5 shows that the images are replicated almost perfectly.

While this initially might seem as if Dori is not only replicating memorized samples, we demonstrate
in Appx. F.2 that there is, in fact, a difference between triggering generation of memorized versus
non-memorized content.
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Figure 5: Arbitrary image replication. We find that when pushed to the extreme, Dori search yields
generations (columns from two to six from the left) of non-memorized data (first from the left).
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F.2 COMPARING BEHAVIORAL DIFFERENCES BETWEEN SETS

Our findings from Appx. F.1 undermine our adversarial-based memorization identification. In effect,
it may seem that our results regarding NeMo and Wanda (Sec. 3.3) locality in the embedding space
(Sec. 4.1). and locality in the model’s activations (Sec. 4.2) and weights (Sec. 4.3) become invalid.
Indeed, if we are able to trigger generation of any image, then we should not claim that NeMo
and Wanda only conceal the memorization instead of fully removing it, and the findings regarding
localization would be false, as the obtained adversarial embeddings yadv yield little information
about how the model (and the embedding space) behaves when faced with memorized data.

To ensure correctness of our methodology, and—in effect—the findings, we investigate if there is any
difference between the optimization process for memorized and other (non-memorized) images. We
compare how the L2 norm of text embeddings progress during optimization, as well as how early
we cross the 0.7 SSCD threshold. We analyze two sets of memorized images (100 VM samples
and 100 TM samples), and a set of 100 images from COCO2014 train. Moreover, we analyze
two sets of generated images from SD-v1.4: generated using 100 captions from COCO2014 train,
and using 100 prompts of images that have been a subject of template memorization. The latter
generated set addresses limitations of our detection metric—SSCDOrig—which relies on all semantic
and compositional parts of two compared images to match closely to cross the memorization threshold
of 0.7. In case of template memorization, the model replicates only a part of a training image, e.g., the
background, specific objects, or replicates the semantic contents of the image, while varying features
of low importance, like textures. We note that generated images and memorized template images will
differ when it comes to the low importance features, effectively lowering SSCD score, however, the
semantic composition of the generated images will match the one of memorized. We add generated
images from 100 non-training prompts (COCO2014) to test the worst-case False Positive scenario of
our method. If the model is already able to generate an image from some input, the optimization
should converge the fastest for these images, even though they are neither part of the training data,
nor memorized.

In Fig. 6 (right) we show how the SSCD score progresses with the optimization. We note that
for verbatim memorization (and generated template memorization) we need only a handful of
optimization steps to obtain yadv that reliably triggers generation of the images. For non-memorized
data we reach SSCD above 0.7 after approximately 500 steps. Notably, we require as much as 200
steps to craft yadv that reliably produces generated (non-memorized) images.

These results show that the optimization process is indeed different for memorized images than for
other images. Building on these findings we allow the optimization procedure to only perform 50
update steps—a value that guarantees generation of memorized images (if present in the model),
while preventing False Positives, i.e., generation of non-memorized images. This constraint ensures
methodological correctness of our adversarial-based approach, and proves our results in Secs. 3.3
and 4 are valid.
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Figure 6: Finding Dori with more optimization steps. We note that our method starts producing
False Positives, i.e., replicating non-memorized data, only after 500 optimization steps (left). Notably,
to achieve non-training data replication, the norm of the optimized embedding raises drastically
(right).
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F.3 CAN THE EMBEDDINGS THEMSELVES BE CONSTRAINED?

The findings in Appx. F.2 show that unconstrained optimization can lead to "replication" of an
arbitrary image. In our work we default to restricting the number of optimization steps to prevent that
false replication. We validate the soundness of that limit empirically, showing in Tab. 1 (second row)
that we alleviate the problem. An alternative approach to prevent triggering arbitrary data would be to
investigate the embedding space itself, and based on its characteristics, define meaningful constraints
on the optimization.

We focus on L2 norms of the embeddings, as in Fig. 6 (right) we observe that the norms stay low for
memorized content, while to replicate non-memorized content, the embeddings have to have their
norm significantly increased. To get a glimpse at the embedding space, we embed 400k prompts from
COCO 2014 train dataset, and note that the distribution of the norms is centered around 250, with
standard deviation of around 2. Additionally, we perform gradient optimization of tokens to obtain
minimal and maximal possible L2 norm of a text embedding. We find discrete inputs that lower L2
norm down to 220, and inputs that are able to increase the norm to 280.

With the limits of the embedding space established, we constrain our optimization to craft adversarial
embeddings with L2 norm below the maximum possible value: 280. To this end, at each optimization
step i, if ||y(i)

adv ||22 > 280, we project it back to norm ball of 280 by y
(i)
adv ← y

(i)
adv ·

280

||y(i)
adv ||

2
2

, an

approach inspired by Projected Gradient Descent (Madry et al., 2018). Interestingly, even with such
constraint, we are able obtain adversarial embeddings that trigger generation of non-memorized
content, however, it requires more optimization steps, 2000 instead of 500. Next, we constrain
the optimization even further, and expect embeddings to have norms smaller than 220—the lower
boundary. Notably, memorized data is still replicated after merely 50 optimization steps even after
pruning, while to replicate non-memorized data we need 10,000 steps.

We conclude that constraining adversarial embeddings might be a futile strategy to prevent non-
memorized data replication, as even under heavy constraints, we are able to find embeddings that
trigger generation of arbitrary images. Thus, we suggest limiting the number of update steps, and
initializing optimization at a fixed point in text embedding space, to alleviate the issue with False
Positives.

F.4 HOW DO ADVERSARIAL EMBEDDINGS RELATE TO NATURAL PROMPTS?

In our experiments (Section 4.1 and Appx. J.1), we initialize the Dori optimization from either
randomly sampled embeddings (Fig. 2), or text embeddings obtained from real, non-memorized text
prompts (Fig. 8). In both cases, we observe that a memorized image can be successfully triggered
from any place in the embedding space. Importantly, almost every adversarial embedding stays
close to its initialization, be it a random vector or a real text embedding. This finding suggests that
adversarial embeddings that cause replication of memorized images do not relate to any semantically
meaningful text embeddings, and are instead uniformly scattered in the text embedding space.
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G CONCEPT UNLEARNING IS NOT SUITABLE FOR MEMORIZATION
MITIGATION RESEARCH

Concept unlearning techniques aim to permanently suppress the generation of high-level concepts,
such as nudity. Although related to the problem of undesired data memorization and replication, we
show in this section that existing concept unlearning methods are failing to detect and prevent data
replication.

G.1 UNLEARNDIFFATK IS NOT CAPABLE OF FINDING DATA REPLICATION TRIGGERS

In Section 3, we introduce our method for searching adversarial embeddings that trigger data replica-
tion, even after pruning-based mitigation strategies are applied. While similar strategies have been
proposed to critically evaluate concept unlearning techniques, we show that UnlearnDiffAtk (Zhang
et al., 2024c), the state-of-the-art adversarial evaluation method for concept unlearning, is not suitable
for identifying data replication triggers.

A naive approach to breaking memorization mitigation is to use UnlearnDiffAtk to find a prompt p′

that induces the generation of the memorized image x. We employ UnlearnDiffAtk in combination
with GCG (Zou et al., 2023), an adversarial optimization strategy specifically designed for discrete
prompt optimization. In particular, we apply GCG to solve minp′ Et, ϵ, ||ϵ − ϵθ(xt, t,p

′)||22 after
NeMo or Wanda pruning, aiming to identify a prompt p′ that triggers replication of x. This
optimization objective corresponds to the one used by UnlearnDiffAtk.

UnlearnDiffAtk is unsuccessful in breaking pruning-based mitigation methods, i.e., no memorized
images are generated from prompt p′ after a mitigation is applied. Its failure highlights a core problem
with concept removal methods: they focus on discrete text space, instead of exploring the full risk
surface, like continuous text embeddings. While for content moderation, such a scope is sufficient,
memorization is a privacy risk, which should be evaluated under the worst-case, unconstrained
scenario.

G.2 CONCEPT REMOVAL METHODS FAIL TO ROBUSTLY MITIGATE MEMORIZATION AGAINST
DORI

Beyond using concept unlearning techniques to detect memorization in DMs, which we find to
be ineffective in practice, a natural question is whether methods from concept unlearning can be
leveraged to address data replication. However, we show that even state-of-the-art approaches
are unsuitable for mitigating memorization, underscoring the need for novel methods specifically
designed for preventing data replication.

We compare the mitigation capabilities of ESD (Gandikota et al., 2023) and Concept Ablation (Kumari
et al., 2023) against our adversarial fine-tuning–based mitigation strategy, with results reported
in Tab. 3. Both concept unlearning methods reduce the extent of data replication, as reflected by
the SSCD scores. However, compared to our approach, a larger portion of memorization remains.
Moreover, Concept Ablation degrades model utility, as evidenced by the higher FID score.

While these two methods seem to fail to fully remove memorization, they are also quite computational
expensive. While ESD could be applied directly, guiding the model away from memorized samples,
Concept Ablation requires paraphrasing memorized prompts via ChatGPT to generate a set of anchor
prompts. For 7 highly memorized prompts, no valid paraphrase could be generated that did not
trigger the memorized image, so these memorized images remained in the model—highlighting a
limitation for using Concept Ablation to remove verbatim memorization compared to our method,
which directly targets such cases. Since we did not observe strong success in removing memorization
when running the methods for their original runtimes, we ran both of them significantly longer until
we observed a plateau in their success: ESD was fine-tuned for 10k steps (10 times longer than in
their paper) and Concept Ablation for 12k steps (15 times longer than in their paper). ESD completed
in 1 hour and 7 minutes while Concept Ablation required 17 hours 45 minutes due to generating 1000
paraphrased images per prompt (roughly 8 minutes per prompt).

The most striking difference emerges when evaluating the methods with adversarial embeddings,
denoted by the symbol. While our mitigation method remains robust, both ESD and Concept
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Table 3: Full adversarial fine-tuning is a robust memorization mitigation technique. Contrary to
naive application of methods derived from concept removal area, we show that a tailored approach
can successfully address memorization in a DM. By resigning from a faulty locality idea, and
incorporating diverse set of triggers alongside full weight update we show that robust mitigation is
possible.

Setting Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↑↑↑ ACLIP ↓↓↓MR ↓↓↓FID
ESD (Gandikota et al., 2023) Verbatim 0.24± 0.09 0.27± 0.11 0.34± 0.02 0.11

13.45ESD + Verbatim 0.90± 0.04 0.97± 0.02 0.33± 0.01 0.98

Concept Ablation (Kumari et al., 2023) Verbatim 0.39± 0.18 0.49± 0.25 0.34± 0.02 0.29
16.03Concept Ablation + Verbatim 0.91± 0.04 0.96± 0.02 0.32± 0.02 0.97

Our Mitigation Verbatim 0.15± 0.07 0.15± 0.07 0.33± 0.01 0.00
13.61Our Mitigation + Verbatim 0.36± 0.14 0.54± 0.10 0.30± 0.02 0.02

Ablation expose memorized content under adversarial embeddings, suggesting that these methods
conceal rather than truly mitigate memorization.

H ADDITIONAL EXPERIMENTS ON PRUNING-BASED MITIGATION

We find that close data replication is primarily triggered by VM prompts, while TM prompts lead to
lower apparent replication. However, because TM prompts tend to produce partial replications that
differ in non-semantic aspects of image composition, like the pattern on a phone case, SSCD-based
metrics are less informative in this case than for VM prompts.

We extend our evaluation by diversity, since typically, memorized images are consistently replicated,
regardless of the choice of the initial noise ϵ. Conversely, for any other input, images generated by
a DM are diverse under varying initial noise. We quantify diversity as the average pairwise cosine
similarity DSSCD between SSCD embeddings of images generated from the same input but different
initial noise. Images generated after mitigation should exhibit greater diversity, indicated by lower
DSSCD values.

H.1 HYPERPARAMETERS

We followed the default hyperparameters for NeMo and Wanda reported in the respective publications.

NeMo: We set the memorization score threshold to τmem = 0.428, corresponding to the mean SSIM
score plus one standard deviation, as measured on a holdout set of 50,000 LAION prompts. For the
stronger variant of NeMo, reported in Table 4, we lowered the threshold to τmem = 0.288, which
corresponds to the mean SSIM score minus one standard deviation. While we follow the original
evaluation procedure by individually identifying and disabling neurons for each memorized prompt,
we compute the FID and KID metrics by simultaneously deactivating all neurons identified for VM
and TM prompts, respectively. This approach provides a more consistent estimate of the pruning’s
overall impact on model utility.

Wanda: For Wanda, we follow the experimental setup of Chavhan et al. (2024). Specifically, we
use all 500 memorized prompts to identify weights in the second fully connected layer of the cross-
attention mechanism. As in Chavhan et al. (2024), we select the top 1% of weights with the highest
Wanda scores. These weights are then aggregated across the first 10 time steps and pruned to mitigate
memorization. Additional results for identifying weights using Wanda per memorized prompt, for
10 and for all 500 memorized prompts, can be seen in Table 6. Results for different number of time
steps and different values of sparsity can be found in Table 7 and Table 8, respectively.

H.2 SENSITIVITY ANALYSIS OF ADVERSARIAL EMBEDDING OPTIMIZATION

In Table 4, we compare the results of NeMo and Wanda with and without adversarial embedding
optimization. Application of adversarial embeddings is denoted by . Additionally, we repeat the
experiments using different numbers of adversarial optimization steps, denoted by Adv. Steps in the
table. All optimizations are initialized from the memorized training embedding. Notably, a single

22



Finding Dori : Memorization in Text-to-Image Diffusion Models Is Not Local

optimization step is already sufficient to circumvent the mitigation introduced by NeMo. In the case
of Wanda, approximately 25 optimization steps are required before clear replication is triggered.

In addition to the main paper, we also report results for TM prompts. While the SSCD scores are
substantially lower than those for VM prompts, we note that replication of memorized content is still
possible. However, the SSCD score fails to adequately capture TM memorization due to the semantic
variations in the generated images.

At the bottom of the table, we also report results for adversarial embedding optimization applied to
non-memorized training images, to evaluate whether replication can be triggered for non-memorized
content. However, even after 150 optimization steps, SSCD scores remain below the memorization
threshold of 0.7.

Table 4: Comparison of different numbers of adversarial embedding optimization steps. Embeddings
are initialized with their corresponding training prompt embeddings. denotes the application of
adversarial embeddings.

Setting Adv. Steps Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR ↓↓↓FID ↓↓↓KID

No Mitigation – Verbatim 0.90± 0.04 N/A 1.00± 0.00 0.33± 0.01 1.00 14.44 0.0061– Template 0.17± 0.09 N/A 0.90± 0.08 0.33± 0.02 1.00

NeMo (Hintersdorf et al., 2024) – Verbatim 0.33± 0.18 0.40± 0.21 0.46± 0.13 0.34± 0.02 0.20 15.16 0.0061
– Template 0.23± 0.08 0.54± 0.28 0.55± 0.10 0.34± 0.03 0.15 18.97 0.0048

Wanda (Chavhan et al., 2024) – Verbatim 0.20± 0.08 0.21± 0.09 0.37± 0.07 0.34± 0.02 0.00 16.86 0.0065
– Template 0.17± 0.05 0.18± 0.08 0.38± 0.09 0.34± 0.03 0.00 17.51 0.0070

NeMo + 1
Verbatim 0.86± 0.07 0.94± 0.04 1.00± 0.00 0.32± 0.01 0.73 15.16 0.0061
Template 0.28± 0.11 0.51± 0.28 0.62± 0.21 0.33± 0.02 0.21 18.97 0.0048

NeMo + 10
Verbatim 0.81± 0.06 0.88± 0.05 0.99± 0.01 0.32± 0.01 0.79 15.16 0.0061
Template 0.42± 0.13 0.21± 0.15 0.72± 0.13 0.32± 0.02 0.14 18.97 0.0048

NeMo + 25
Verbatim 0.88± 0.04 0.95± 0.03 1.00± 0.00 0.32± 0.01 0.94 15.16 0.0061
Template 0.50± 0.12 0.20± 0.15 0.75± 0.10 0.32± 0.02 0.13 18.97 0.0048

NeMo + 50
Verbatim 0.91± 0.03 0.97± 0.02 1.00± 0.00 0.33± 0.02 0.99 15.16 0.0061
Template 0.55± 0.12 0.17± 0.12 0.79± 0.11 0.32± 0.02 0.12 18.97 0.0048

NeMo + 100
Verbatim 0.93± 0.02 0.96± 0.02 1.00± 0.00 0.32± 0.02 1.00 15.16 0.0061
Template 0.60± 0.14 0.17± 0.12 0.86± 0.09 0.32± 0.02 0.10 18.97 0.0048

NeMo + 150
Verbatim 0.92± 0.02 0.96± 0.02 1.00± 0.00 0.32± 0.02 0.99 15.16 0.0061
Template 0.65± 0.16 0.17± 0.12 0.93± 0.06 0.32± 0.02 0.08 18.97 0.0048

NeMo (strong, τmem = 0.288) + 50
Verbatim 0.91± 0.03 0.96± 0.02 1.00± 0.00 0.33± 0.02 0.88 14.92 0.0064
Template 0.55± 0.12 0.19± 0.12 0.79± 0.10 0.32± 0.02 0.15 18.85 0.0042

Wanda + 1
Verbatim 0.11± 0.05 0.11± 0.06 0.58± 0.08 0.24± 0.04 0.02 16.86 0.0065
Template 0.19± 0.07 0.16± 0.07 0.51± 0.11 0.32± 0.03 0.00 17.51 0.0070

Wanda + 10
Verbatim 0.58± 0.11 0.64± 0.11 0.76± 0.14 0.31± 0.02 0.18 16.86 0.0065
Template 0.37± 0.10 0.17± 0.09 0.61± 0.12 0.32± 0.03 0.02 17.51 0.0070

Wanda + 25
Verbatim 0.69± 0.07 0.77± 0.05 0.90± 0.07 0.32± 0.02 0.49 16.86 0.0065
Template 0.45± 0.11 0.17± 0.10 0.70± 0.09 0.32± 0.03 0.07 17.51 0.0070

Wanda + 50
Verbatim 0.76± 0.05 0.82± 0.05 0.96± 0.02 0.32± 0.01 0.73 16.86 0.0065
Template 0.51± 0.11 0.16± 0.09 0.75± 0.08 0.32± 0.02 0.16 17.51 0.0070

Wanda + 100
Verbatim 0.80± 0.05 0.85± 0.04 0.98± 0.01 0.32± 0.02 0.86 16.86 0.0065
Template 0.53± 0.12 0.15± 0.08 0.78± 0.08 0.32± 0.02 0.26 17.51 0.0070

Wanda + 150
Verbatim 0.81± 0.04 0.85± 0.04 0.99± 0.01 0.32± 0.02 0.91 16.86 0.0065
Template 0.54± 0.14 0.15± 0.09 0.82± 0.08 0.32± 0.02 0.32 17.51 0.0070

Non-Memorized Images – None 0.17± 0.05 N/A 0.35± 0.06 0.35± 0.02 0.00 14.44 0.0061

Non-Memorized Images + 1 None 0.17± 0.04 N/A 0.34± 0.06 0.34± 0.02 0.00 14.44 0.0061

Non-Memorized Images + 10 None 0.28± 0.05 N/A 0.48± 0.06 0.32± 0.02 0.00 14.44 0.0061

Non-Memorized Images + 25 None 0.39± 0.06 N/A 0.58± 0.06 0.32± 0.02 0.00 14.44 0.0061

Non-Memorized Images + 50 None 0.48± 0.06 N/A 0.67± 0.07 0.32± 0.02 0.02 14.44 0.0061

Non-Memorized Images + 100 None 0.58± 0.06 N/A 0.79± 0.07 0.32± 0.02 0.08 14.44 0.0061

Non-Memorized Images + 150 None 0.65± 0.06 N/A 0.88± 0.06 0.32± 0.02 0.25 14.44 0.0061
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H.3 STARTING EMBEDDING OPTIMIZATION FROM RANDOM EMBEDDINGS

We repeat the experiments on adversarial embedding optimization, but instead of initializing from
the memorized training prompt embedding, we start each optimization from random Gaussian noise.
Remarkably, the results closely match those obtained when initializing from the memorized prompt,
indicating that data replication can be triggered from various positions in the embedding space.

Table 5: Comparison of different numbers of adversarial embedding optimization steps. Embeddings
are initialized randomly. denotes the application of adversarial embeddings.

Setting Adv. Steps Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR

NeMo + 1
Verbatim 0.07± 0.02 0.06± 0.02 0.31± 0.06 0.21± 0.02 0.00
Template 0.10± 0.03 0.10± 0.03 0.26± 0.05 0.28± 0.02 0.00

NeMo + 10
Verbatim 0.81± 0.06 0.89± 0.05 0.99± 0.01 0.32± 0.01 0.79
Template 0.42± 0.13 0.21± 0.15 0.72± 0.14 0.32± 0.02 0.14

NeMo + 25
Verbatim 0.88± 0.04 0.95± 0.03 1.00± 0.00 0.32± 0.01 0.94
Template 0.50± 0.13 0.20± 0.15 0.75± 0.11 0.32± 0.02 0.13

NeMo + 50
Verbatim 0.91± 0.03 0.97± 0.02 1.00± 0.00 0.33± 0.02 0.99
Template 0.55± 0.12 0.18± 0.12 0.79± 0.10 0.32± 0.02 0.12

NeMo + 100
Verbatim 0.93± 0.02 0.96± 0.02 1.00± 0.00 0.33± 0.02 1.00
Template 0.60± 0.14 0.17± 0.12 0.87± 0.10 0.32± 0.02 0.10

NeMo + 150
Verbatim 0.92± 0.02 0.96± 0.02 1.00± 0.00 0.32± 0.02 1.00
Template 0.64± 0.15 0.16± 0.12 0.93± 0.06 0.32± 0.02 0.07

Wanda + 1
Verbatim 0.07± 0.02 0.07± 0.02 0.38± 0.10 0.21± 0.02 0.00
Template 0.07± 0.02 0.07± 0.02 0.43± 0.12 0.22± 0.02 0.00

Wanda + 10
Verbatim 0.28± 0.10 0.28± 0.13 0.42± 0.07 0.29± 0.03 0.02
Template 0.27± 0.09 0.12± 0.05 0.47± 0.16 0.29± 0.02 0.00

Wanda + 25
Verbatim 0.68± 0.10 0.70± 0.10 0.84± 0.13 0.31± 0.02 0.37
Template 0.46± 0.11 0.15± 0.08 0.68± 0.09 0.31± 0.02 0.10

Wanda + 50
Verbatim 0.80± 0.06 0.84± 0.06 0.97± 0.02 0.32± 0.02 0.78
Template 0.54± 0.12 0.14± 0.08 0.76± 0.10 0.31± 0.02 0.26

Wanda + 100
Verbatim 0.85± 0.05 0.87± 0.05 0.99± 0.01 0.32± 0.02 0.89
Template 0.60± 0.15 0.15± 0.10 0.84± 0.10 0.32± 0.02 0.37

Wanda + 150
Verbatim 0.86± 0.04 0.87± 0.04 0.99± 0.00 0.32± 0.01 0.92
Template 0.64± 0.16 0.16± 0.10 0.90± 0.08 0.31± 0.03 0.44
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H.4 ADDITIONAL HYPERPARAMETER EVALUATION FOR WANDA

Table 6: As shown, applying Wanda across all prompts is less effective at mitigating memorization
compared to applying it individually per prompt. However, as discussed in Appx. H.7, applying
Wanda per prompt and aggregating the found neurons over all 500 prompts comes at the high cost
of reduced overall performance because of so many weights being pruned. In the setting with 10
prompts, we randomly sample 10 prompts across 5 different seeds and report the average results.
This setup proves less effective at mitigating memorization than using the full set of 500 prompts.

Setting Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR

Wanda (Chavhan et al., 2024) per Prompt Verbatim 0.11± 0.03 0.12± 0.03 0.27± 0.06 0.32± 0.02 0.00
Template 0.14± 0.04 0.13± 0.04 0.35± 0.10 0.32± 0.03 0.00

Wanda (Chavhan et al., 2024) 10 Prompts Verbatim 0.22± 0.10 0.24± 0.11 0.41± 0.09 0.34± 0.02 0.01
Template 0.19± 0.06 0.24± 0.13 0.42± 0.10 0.34± 0.03 0.01

Wanda (Chavhan et al., 2024) all Prompts Verbatim 0.20± 0.08 0.21± 0.09 0.37± 0.07 0.34± 0.02 0.00
Template 0.17± 0.05 0.18± 0.08 0.38± 0.09 0.34± 0.03 0.00

Wanda per Prompt + Verbatim 0.69± 0.07 0.76± 0.06 0.91± 0.05 0.32± 0.02 0.46
Template 0.52± 0.10 0.17± 0.10 0.75± 0.07 0.32± 0.02 0.15

Wanda 10 Prompts + Verbatim 0.75± 0.06 0.81± 0.05 0.97± 0.02 0.32± 0.01 0.71
Template 0.50± 0.11 0.16± 0.09 0.74± 0.09 0.32± 0.02 0.15

Wanda all Prompts + Verbatim 0.76± 0.05 0.82± 0.05 0.96± 0.02 0.32± 0.01 0.73
Template 0.51± 0.11 0.16± 0.09 0.75± 0.08 0.32± 0.02 0.16

Table 7: Even when applying Wanda Chavhan et al. (2024) with a higher number of time steps it is
still possible to break it using Dori.

Setting Number of Timesteps Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR

Wanda

1 Verbatim 0.22± 0.08 0.24± 0.09 0.38± 0.08 0.34± 0.02 0.01
Template 0.18± 0.05 0.20± 0.08 0.39± 0.09 0.33± 0.02 0.00

10 Verbatim 0.20± 0.08 0.21± 0.09 0.37± 0.07 0.34± 0.02 0.00
Template 0.17± 0.05 0.18± 0.08 0.38± 0.09 0.34± 0.03 0.00

20 Verbatim 0.20± 0.08 0.21± 0.07 0.39± 0.08 0.34± 0.03 0.00
Template 0.17± 0.04 0.17± 0.06 0.39± 0.09 0.33± 0.03 0.00

30 Verbatim 0.20± 0.08 0.20± 0.07 0.37± 0.07 0.34± 0.02 0.00
Template 0.18± 0.05 0.17± 0.06 0.39± 0.10 0.33± 0.03 0.00

40 Verbatim 0.20± 0.08 0.21± 0.07 0.38± 0.07 0.34± 0.02 0.00
Template 0.18± 0.05 0.17± 0.07 0.39± 0.10 0.33± 0.03 0.00

50 Verbatim 0.20± 0.07 0.20± 0.07 0.38± 0.07 0.34± 0.02 0.00
Template 0.17± 0.04 0.17± 0.06 0.41± 0.11 0.33± 0.03 0.00

Wanda +

1 Verbatim 0.77± 0.05 0.82± 0.05 0.97± 0.01 0.32± 0.01 0.79
Template 0.51± 0.11 0.16± 0.09 0.75± 0.09 0.32± 0.02 0.18

10 Verbatim 0.76± 0.05 0.82± 0.05 0.96± 0.02 0.32± 0.01 0.73
Template 0.52± 0.11 0.16± 0.09 0.75± 0.09 0.32± 0.02 0.15

20 Verbatim 0.76± 0.05 0.82± 0.05 0.96± 0.02 0.32± 0.01 0.72
Template 0.52± 0.11 0.16± 0.09 0.75± 0.09 0.32± 0.02 0.17

30 Verbatim 0.74± 0.05 0.80± 0.05 0.96± 0.02 0.32± 0.02 0.68
Template 0.51± 0.11 0.16± 0.09 0.75± 0.09 0.32± 0.02 0.14

40 Verbatim 0.74± 0.05 0.81± 0.05 0.96± 0.02 0.32± 0.01 0.69
Template 0.50± 0.12 0.16± 0.09 0.74± 0.09 0.32± 0.02 0.18

50 Verbatim 0.73± 0.06 0.79± 0.05 0.96± 0.02 0.32± 0.02 0.59
Template 0.49± 0.12 0.16± 0.09 0.74± 0.09 0.32± 0.02 0.14
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H.5 INCREASING SPARSITY FOR WANDA

Table 8: Applying Wanda Chavhan et al. (2024) with higher sparsity does not change the fact that
the method seems to only conceal memorization instead of completely removing it from the model.
Increasing the sparsity also comes at the cost of reduced image quality, as the FID and the KID values
suggest.

Setting Sparsity Memorization Type ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR FID KID

Wanda

1% Verbatim 0.20± 0.08 0.21± 0.09 0.37± 0.07 0.34± 0.02 0.00 16.86 0.0067
Template 0.17± 0.05 0.18± 0.08 0.38± 0.09 0.34± 0.03 0.00 17.51 0.0068

2% Verbatim 0.19± 0.07 0.20± 0.07 0.36± 0.07 0.33± 0.02 0.00 18.17 0.0066
Template 0.17± 0.05 0.16± 0.07 0.38± 0.08 0.33± 0.03 0.00 19.55 0.0073

3% Verbatim 0.17± 0.07 0.17± 0.06 0.34± 0.06 0.33± 0.02 0.00 20.37 0.0075
Template 0.16± 0.05 0.15± 0.06 0.38± 0.09 0.32± 0.03 0.00 22.40 0.0086

4% Verbatim 0.17± 0.06 0.17± 0.05 0.34± 0.06 0.33± 0.02 0.00 23.07 0.0088
Template 0.14± 0.05 0.14± 0.06 0.37± 0.09 0.32± 0.03 0.00 24.69 0.0097

5% Verbatim 0.15± 0.05 0.16± 0.05 0.32± 0.05 0.32± 0.02 0.00 25.53 0.0102
Template 0.13± 0.05 0.14± 0.05 0.39± 0.10 0.32± 0.03 0.00 26.61 0.0106

10% Verbatim 0.12± 0.03 0.13± 0.04 0.33± 0.06 0.31± 0.02 0.00 37.34 0.0168
Template 0.11± 0.04 0.13± 0.04 0.39± 0.10 0.30± 0.03 0.00 36.69 0.0166

Wanda +

1% Verbatim 0.76± 0.06 0.82± 0.05 0.96± 0.02 0.32± 0.01 0.73 16.86 0.0067
Template 0.51± 0.12 0.16± 0.09 0.75± 0.09 0.32± 0.02 0.16 17.51 0.0068

2% Verbatim 0.71± 0.07 0.76± 0.06 0.90± 0.05 0.32± 0.02 0.54 18.17 0.0066
Template 0.45± 0.11 0.15± 0.08 0.71± 0.08 0.31± 0.03 0.09 19.55 0.0073

3% Verbatim 0.65± 0.08 0.73± 0.06 0.87± 0.06 0.31± 0.02 0.32 20.37 0.0075
Template 0.39± 0.10 0.13± 0.07 0.70± 0.08 0.31± 0.03 0.04 22.40 0.0086

4% Verbatim 0.62± 0.08 0.66± 0.08 0.81± 0.08 0.31± 0.02 0.17 23.07 0.0088
Template 0.35± 0.12 0.14± 0.07 0.68± 0.08 0.31± 0.03 0.03 24.69 0.0097

5% Verbatim 0.56± 0.10 0.62± 0.09 0.77± 0.10 0.31± 0.02 0.08 25.53 0.0102
Template 0.29± 0.10 0.13± 0.07 0.68± 0.09 0.30± 0.04 0.02 26.61 0.0106

10% Verbatim 0.40± 0.13 0.45± 0.14 0.67± 0.10 0.30± 0.02 0.01 37.34 0.0168
Template 0.22± 0.08 0.12± 0.06 0.63± 0.10 0.28± 0.04 0.01 36.69 0.0166
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H.6 ITERATIVE APPLICATION OF NEMO

Table 9: We apply NeMo Hintersdorf et al. (2024) iteratively such that after each round of pruning, we
search for new adversarial embeddings that can still trigger memorization, and then apply NeMo again
to prune the newly identified weights. Despite multiple iterations, this process does not completely
eliminate memorization, as adversarial embeddings can still uncover residual memorized content.
Due to the high computational cost of repeated NeMo applications and searching for adversarial
embeddings, we focus our analysis on prompts known to be verbatim memorized. In some cases,
after several iterations, NeMo no longer detects any memorization. When this happens, we analyze
the outputs generated from the adversarial embeddings that NeMo failed to flag.

Method Iterations ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR

NeMo Hintersdorf et al. (2024) Adv. Images

1 0.92± 0.03 0.94± 0.03 1.00± 0.00 0.33± 0.02 0.99
2 0.92± 0.03 0.94± 0.03 1.00± 0.00 0.32± 0.02 1.00
3 0.92± 0.03 0.95± 0.03 1.00± 0.00 0.33± 0.01 0.99
4 0.92± 0.03 0.95± 0.03 1.00± 0.00 0.33± 0.02 0.99
5 0.92± 0.03 0.95± 0.03 1.00± 0.00 0.32± 0.02 0.99

NeMo Hintersdorf et al. (2024) Mitigated Images

1 0.35± 0.19 0.34± 0.22 0.48± 0.14 0.34± 0.02 0.18
2 0.23± 0.09 0.23± 0.11 0.41± 0.09 0.35± 0.02 0.04
3 0.21± 0.09 0.20± 0.09 0.39± 0.08 0.35± 0.02 0.01
4 0.20± 0.07 0.19± 0.08 0.39± 0.08 0.34± 0.02 0.00
5 0.20± 0.07 0.19± 0.08 0.37± 0.08 0.34± 0.02 0.00
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H.7 COST OF SUCCESSFUL MEMORIZATION REMOVAL WITH WANDA

The results in Table 8 indicate that Wanda might be successful in removing memorized content from
the model (low SSCDOrig at sparsity 10%) with limited harm to the alignment between the prompt
and the generated images for benign input (high ACLIP). However, FID scores appear to increase
significantly with pruning (increase from 16.68 to 37.34 for VM samples). We investigate the harm
that Wanda with 10% weights pruned causes to the model. The weights pruned by Wanda not only
correspond to the memorized image, but also partially encode concepts present in the memorized
content. For example, the memorized image in Fig. 1 ( 1 ) consists also of a concept of woman.
We show that in order to fully remove the image from the model, weights responsible for benign
concepts, present in memorized data, are negatively affected.

We verify that idea by generating 100 images from a set of 10 prompts, which are paraphrases
of the memorized prompts. Then, we compute CLIP similarity between the paraphrases
and generated images, AConcepts), to capture how the alignment changes with high pruning.
The paraphrases are obtained by prompting LLama-3.1-8B-Instruct (Grattafiori et al., 2024),
with the system prompt "You are a paraphrasing engine. Preserve every
tag and keyword.", and the user prompt "Write 10 alternative phrasings
of:”’CAPTION”’. Return only the paraphrasings, no other text. The
format should be [’prompt1’, ’prompt2’, ...]". For example, for the prompt
"Living in the Light with Ann Graham Lotz" we obtain "Embracing Life
in the Radiance of God with Ann Graham Lotz", "A Life of Radiant
Faith with Ann Graham Lotz", "Living Life in the Illumination
of God with Ann Graham Lotz", "In the Presence of God’s Radiant
Light with Ann Graham Lotz", "Faith in the Light of God with Ann
Graham Lotz", "Radiant Living with Ann Graham Lotz", "In God’s
Illuminating Light with Ann Graham Lotz", "Ann Graham Lotz on
Living in God’s Radiant Presence", "Radiant Faith Living with Ann
Graham Lotz", "Living Life in God’s Illuminating Light with Ann
Graham Lotz". Additionally, we quantify image quality of the concepts by computing FID score
(denoted FIDConcept) between 10,000 images generated from the prompts before and after pruning for
VM and TM samples.

The results in Table 10 show that the concepts associated with the memorized images suffer after
mitigation with Wanda. We observe a significant drop from ACLIP of around 0.37 to 0.33 for VM,
which suggests that the generated images no longer follow the prompt. Moreover, the quality of the
generated images degrades. FIDConcepts above 80 for VM and above 90 for TM samples indicates
significant harm to the model, corroborated by the last row of Table 8. Additionally, we provide
qualitative results of damage to concepts in Appx. K.4.

Table 10: Successful memorization removal with Wanda requires significant damage to the
model. While 10% sparsity ratio for Wanda mitigates memorization even under Dori, we observe a
sharp drop in the generation quality (FIDConcept) and alignment between the prompt and generated
images (AConcept) for paraphrases of prompts used to remove memorization.

Setting Memorization SSCDOrig AConcepts FIDConcepts ↓↓↓MR

No Mitigation Verbatim 0.90± 0.04 0.37± 0.02 N/A 1.00
Template 0.17± 0.09 0.36± 0.02 N/A 1.00

Wanda + 10% pruned + Verbatim 0.40± 0.13 0.33± 0.02 80.70 0.01
Template 0.22± 0.08 0.33± 0.02 92.46 0.01
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I ADDITIONAL DETAILS AND EXPERIMENTS ON ADVERSARIAL FINE-TUNING

I.1 ALGORITHMIC DESCRIPTION

Alg. 2 provides an algorithmic overview of our adversarial fine-tuning mitigation method. As
described in the main paper, we begin by generating images from memorized prompts using a
mitigation technique that preserves alignment with the prompt while avoiding replication of training
data. Alternatively, these images can be generated using a separate DM that has not been trained on
the corresponding samples. To preserve the model’s general utility, a second set of non-memorized
samples is incorporated during fine-tuning.

In the algorithmic description, surrogate and non-memorized samples are processed in separate
batches to clearly illustrate the fine-tuning steps. However, in practice, embeddings and samples
from both batches are concatenated to avoid redundant forward passes and to accelerate optimization.
For each surrogate sample, a fixed adversarial embedding is used throughout an epoch. These
embeddings are either initialized from the memorized prompt embedding or from random Gaussian
noise. The adversarial fine-tuning loss, Ladv, is computed exclusively on surrogate samples and their
corresponding adversarial embeddings to reduce memorization.

In parallel, model utility is preserved through a utility loss, Lnon-mem, which is computed solely on
the non-memorized samples. In our experiments, surrogate and non-memorized batches are of equal
size by default; however, increasing the size of the non-memorized batch places greater emphasis on
utility preservation.
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Algorithm 2 Fine-Tuning DM to Mitigate Memorization
Input:

DM ϵθ
Non-memorized images and corresponding prompts Dnon-mem
Memorized images and corresponding prompts Dmem
Surrogate images Dsurrogate ▷ Images generated with active mitigation
Learning rate η, epochs E, steps per image S

Output:
Fine-tuned model ϵθ

for epoch ∈ {1, . . . , E} do
for (xmem,pmem) ∈ Dmem do

if epoch mod 2 == 1 then
yadv ← find_adv_embedding(xmem,pmem) ▷ Start from text embedding

else
yadv ← find_adv_embedding(xmem, random) ▷ Start from random embedding

end if

for s ∈ {1, . . . , S} do
Sample surrogate image xsurr ∈ Dsurrogate
Sample non-memorized (xnon-mem,pnon-mem) ∈ Dnon-mem

ϵsurr ∼ N (0, I) ▷ Update with surrogate/adversarial sample
t ∼ Uniform(1, T )

x̃
(t)
surr ← add_noise(xsurr, ϵsurr, t)

ϵ̂surr ← ϵθ(x̃
(t)
surr, t,yadv)

Ladv ← ∥ϵsurr − ϵ̂surr∥22

ynon-mem ← encode_text(pnon-mem)
ϵnon-mem ∼ N (0, I) ▷ Update with non-memorized sample
t ∼ Uniform(1, T )

x̃
(t)
non-mem ← add_noise(xnon-mem, ϵnon-mem, t)

ϵ̂non-mem ← ϵθ(x̃
(t)
non-mem, t,ynon-mem)

Lnon-mem ← ∥ϵnon-mem − ϵ̂non-mem∥22

Ltotal ← Ladv + Lnon-mem ▷ Aggregate both losses
θ ← θ − η · ∇θLtotal

end for
end for

end for
return ϵθ
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I.2 QUALITATIVE EXAMPLES OF SURROGATE IMAGES

Figure 7: Examples of surrogate images used for adversarial fine-tuning. Multiple surrogate
samples were generated for the memorized image (top left), preserving its semantic content without
replicating the original. The images were created using NeMo to prevent exact replication.
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I.3 SENSITIVITY ANALYSIS

We extensively analyze the different components and hyperparameters used in our adversarial fine-
tuning procedure. In all settings, we report intermediate training results after 1 to 50 training epochs.

Table 11 presents results for using 25, 50, and 100 adversarial embedding optimization steps during
training to craft the adversarial embeddings used in the mitigation loss LAdv . The number of steps
used during training is indicated in the Setting column. We further evaluate the mitigation effect
using the unchanged embeddings of the memorized training prompts (denoted by 0 in the Adv. Steps
column), as well as the same embeddings optimized with 50 steps. Results are reported only for VM
prompts, which the model has been fine-tuned on.

Table 12 repeats the previous analysis, but explores the impact of starting the adversarial optimization
from random embeddings instead of training prompt embeddings. We additionally compare the
mitigation effect of adversarial embeddings crafted with 50 and 100 optimization steps, respectively.

Table 11: Comparison of performing adversarial fine-tuning with different numbers of adversarial
embedding optimization steps during training. Embeddings are initialized with their corresponding
training prompt embeddings. Results are reported for VM prompts only.

Setting Adv. Steps Epochs ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR ↓↓↓ FID ↓↓↓ KID

No Mitigation 0 – 0.88± 0.06 1.0± 0.0 0.99± 0.01 0.32± 0.02 0.98 14.44 0.0060

Training with 25 adv. steps 0

1 0.16± 0.05 0.17± 0.06 0.35± 0.09 0.33± 0.02 0.00 15.26 0.0058
5 0.15± 0.06 0.16± 0.07 0.40± 0.09 0.33± 0.02 0.00 14.33 0.0052
10 0.14± 0.07 0.15± 0.07 0.43± 0.09 0.33± 0.02 0.00 14.86 0.0052
20 0.14± 0.06 0.16± 0.06 0.49± 0.10 0.32± 0.02 0.00 15.03 0.0047
30 0.12± 0.06 0.14± 0.05 0.52± 0.10 0.33± 0.01 0.00 15.46 0.0049
40 0.13± 0.05 0.14± 0.05 0.54± 0.10 0.32± 0.02 0.00 15.56 0.0047
50 0.12± 0.07 0.14± 0.07 0.54± 0.11 0.32± 0.02 0.00 15.52 0.0047

Training with 25 adv. steps 50

1 0.57± 0.24 0.59± 0.23 0.64± 0.26 0.32± 0.01 0.37 15.26 0.0058
5 0.38± 0.18 0.39± 0.18 0.51± 0.12 0.32± 0.01 0.12 14.33 0.0052
10 0.38± 0.16 0.39± 0.19 0.56± 0.15 0.32± 0.02 0.11 14.86 0.0052
20 0.39± 0.18 0.40± 0.18 0.56± 0.13 0.32± 0.02 0.24 15.03 0.0047
30 0.32± 0.13 0.36± 0.16 0.51± 0.12 0.32± 0.02 0.15 15.46 0.0049
40 0.27± 0.11 0.29± 0.13 0.53± 0.10 0.32± 0.02 0.07 15.56 0.0047
50 0.32± 0.15 0.34± 0.14 0.52± 0.09 0.33± 0.02 0.12 15.52 0.0047

Training with 50 adv. steps 0

1 0.14± 0.05 0.15± 0.05 0.33± 0.08 0.33± 0.02 0.00 15.66 0.0062
5 0.15± 0.07 0.15± 0.07 0.35± 0.08 0.33± 0.01 0.00 13.61 0.0047
10 0.13± 0.05 0.14± 0.06 0.37± 0.09 0.33± 0.02 0.00 15.16 0.0049
20 0.12± 0.05 0.13± 0.05 0.44± 0.08 0.32± 0.02 0.00 15.56 0.0051
30 0.14± 0.05 0.14± 0.05 0.45± 0.09 0.32± 0.02 0.00 15.47 0.0053
40 0.12± 0.05 0.14± 0.06 0.50± 0.08 0.32± 0.01 0.00 16.65 0.0055
50 0.12± 0.05 0.14± 0.06 0.52± 0.09 0.32± 0.01 0.00 16.02 0.0055

Training with 50 adv. steps 50

1 0.64± 0.16 0.69± 0.16 0.75± 0.20 0.32± 0.01 0.17 15.66 0.0062
5 0.36± 0.14 0.38± 0.14 0.54± 0.10 0.30± 0.02 0.02 13.61 0.0047
10 0.26± 0.15 0.27± 0.16 0.46± 0.10 0.30± 0.02 0.01 15.16 0.0049
20 0.29± 0.13 0.30± 0.13 0.46± 0.07 0.30± 0.02 0.00 15.56 0.0051
30 0.23± 0.11 0.28± 0.12 0.46± 0.10 0.30± 0.02 0.00 15.47 0.0053
40 0.22± 0.12 0.25± 0.13 0.48± 0.09 0.31± 0.02 0.00 16.65 0.0055
50 0.19± 0.10 0.21± 0.11 0.46± 0.06 0.31± 0.02 0.00 16.02 0.0055

Training with 100 adv. steps 0

1 0.13± 0.04 0.14± 0.05 0.29± 0.07 0.32± 0.02 0.00 15.32 0.0051
5 0.13± 0.05 0.14± 0.05 0.30± 0.06 0.32± 0.02 0.00 14.36 0.0049
10 0.13± 0.05 0.14± 0.06 0.34± 0.09 0.32± 0.02 0.00 15.56 0.0051
20 0.13± 0.05 0.13± 0.05 0.38± 0.08 0.32± 0.02 0.00 15.47 0.0053
30 0.12± 0.05 0.14± 0.05 0.42± 0.07 0.32± 0.02 0.00 15.34 0.0053
40 0.12± 0.04 0.13± 0.04 0.43± 0.09 0.32± 0.02 0.00 16.23 0.0052
50 0.12± 0.04 0.13± 0.04 0.46± 0.09 0.32± 0.02 0.00 17.52 0.0056

Training with 100 adv. steps 50

1 0.58± 0.13 0.61± 0.11 0.73± 0.13 0.31± 0.01 0.05 15.32 0.0051
5 0.31± 0.10 0.32± 0.12 0.44± 0.07 0.30± 0.02 0.01 14.36 0.0049
10 0.29± 0.11 0.30± 0.12 0.42± 0.08 0.29± 0.02 0.00 15.56 0.0051
20 0.25± 0.11 0.27± 0.11 0.40± 0.07 0.29± 0.02 0.00 15.47 0.0053
30 0.19± 0.09 0.20± 0.11 0.41± 0.08 0.30± 0.02 0.00 15.34 0.0053
40 0.22± 0.10 0.24± 0.10 0.41± 0.06 0.30± 0.02 0.00 16.23 0.0052
50 0.19± 0.10 0.20± 0.09 0.42± 0.07 0.30± 0.02 0.00 17.52 0.0056
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Table 12: Comparison of performing adversarial fine-tuning with different numbers of adversarial
embedding optimization steps during training. Embeddings are initialized randomly. Results are
reported for VM prompts only.

Setting Adv. Steps Epochs ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR ↓↓↓ FID ↓↓↓ KID

No Mitigation 0 – 0.88± 0.06 1.0± 0.0 0.99± 0.01 0.32± 0.02 1.00 14.44 0.0060

Training with 25 adv. steps 50

1 0.55± 0.23 0.58± 0.22 0.62± 0.24 0.32± 0.02 0.51 15.26 0.0058
5 0.49± 0.20 0.49± 0.22 0.53± 0.16 0.31± 0.02 0.27 14.33 0.0052
10 0.42± 0.18 0.45± 0.19 0.54± 0.14 0.31± 0.02 0.21 14.86 0.0052
20 0.45± 0.18 0.45± 0.20 0.57± 0.16 0.31± 0.02 0.24 15.03 0.0047
30 0.35± 0.16 0.39± 0.17 0.51± 0.15 0.31± 0.02 0.17 15.46 0.0049
40 0.28± 0.14 0.29± 0.15 0.52± 0.12 0.31± 0.02 0.10 15.56 0.0047
50 0.37± 0.17 0.39± 0.17 0.52± 0.11 0.32± 0.02 0.19 15.52 0.0047

Training with 25 adv. steps 100

1 0.89± 0.05 0.88± 0.07 0.99± 0.01 0.32± 0.02 0.88 15.26 0.0058
5 0.82± 0.10 0.81± 0.12 0.89± 0.11 0.32± 0.02 0.67 14.33 0.0052
10 0.74± 0.15 0.77± 0.16 0.85± 0.14 0.32± 0.01 0.55 14.86 0.0052
20 0.76± 0.14 0.79± 0.14 0.86± 0.13 0.32± 0.02 0.55 15.03 0.0047
30 0.76± 0.12 0.77± 0.12 0.92± 0.08 0.32± 0.02 0.60 15.46 0.0049
40 0.68± 0.20 0.70± 0.23 0.63± 0.24 0.32± 0.02 0.49 15.56 0.0047
50 0.76± 0.12 0.80± 0.13 0.83± 0.16 0.32± 0.01 0.60 15.52 0.0047

Training with 50 adv. steps 50

1 0.64± 0.17 0.68± 0.16 0.72± 0.20 0.32± 0.01 0.44 15.66 0.0062
5 0.37± 0.12 0.39± 0.14 0.54± 0.11 0.30± 0.02 0.04 13.61 0.0047
10 0.26± 0.15 0.27± 0.16 0.46± 0.11 0.30± 0.02 0.01 15.16 0.0049
20 0.29± 0.12 0.30± 0.13 0.46± 0.07 0.30± 0.02 0.02 15.56 0.0051
30 0.23± 0.11 0.28± 0.13 0.46± 0.10 0.30± 0.02 0.02 15.47 0.0053
40 0.22± 0.12 0.25± 0.12 0.48± 0.09 0.31± 0.02 0.02 16.65 0.0055
50 0.19± 0.10 0.21± 0.11 0.46± 0.06 0.31± 0.02 0.01 16.02 0.0055

Training with 50 adv. steps 100

1 0.83± 0.08 0.85± 0.07 0.94± 0.06 0.32± 0.01 0.73 15.66 0.0062
5 0.54± 0.18 0.56± 0.17 0.67± 0.20 0.31± 0.01 0.29 13.61 0.0047
10 0.47± 0.20 0.45± 0.20 0.52± 0.17 0.31± 0.02 0.21 15.16 0.0049
20 0.46± 0.20 0.47± 0.20 0.61± 0.18 0.31± 0.02 0.20 15.56 0.0051
30 0.37± 0.19 0.38± 0.19 0.53± 0.15 0.31± 0.02 0.16 15.47 0.0053
40 0.40± 0.19 0.40± 0.21 0.55± 0.13 0.32± 0.02 0.18 16.65 0.0055
50 0.34± 0.17 0.34± 0.18 0.52± 0.10 0.32± 0.01 0.13 16.02 0.0055

Training with 100 adv. steps 50

1 0.59± 0.13 0.61± 0.10 0.72± 0.13 0.32± 0.01 0.31 15.32 0.0051
5 0.32± 0.11 0.33± 0.12 0.44± 0.07 0.30± 0.02 0.02 14.36 0.0049
10 0.30± 0.11 0.30± 0.12 0.42± 0.08 0.29± 0.02 0.01 15.56 0.0051
20 0.25± 0.11 0.27± 0.12 0.40± 0.07 0.29± 0.02 0.00 15.47 0.0053
30 0.19± 0.09 0.20± 0.11 0.41± 0.08 0.30± 0.02 0.02 15.34 0.0053
40 0.22± 0.10 0.24± 0.11 0.41± 0.06 0.30± 0.02 0.00 16.23 0.0052
50 0.19± 0.10 0.20± 0.09 0.42± 0.07 0.30± 0.02 0.00 17.52 0.0056

Training with 100 adv. steps 100

1 0.77± 0.11 0.79± 0.10 0.86± 0.13 0.32± 0.01 0.64 15.32 0.0051
5 0.38± 0.11 0.37± 0.13 0.48± 0.10 0.30± 0.02 0.05 14.36 0.0049
10 0.34± 0.13 0.36± 0.13 0.48± 0.07 0.30± 0.02 0.04 15.56 0.0051
20 0.26± 0.13 0.29± 0.14 0.48± 0.10 0.29± 0.02 0.04 15.47 0.0053
30 0.22± 0.11 0.23± 0.12 0.43± 0.08 0.30± 0.02 0.04 15.34 0.0053
40 0.22± 0.12 0.24± 0.13 0.48± 0.09 0.30± 0.02 0.04 16.23 0.0052
50 0.19± 0.10 0.22± 0.12 0.48± 0.09 0.31± 0.02 0.04 17.52 0.0056
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I.4 ABLATION STUDY

We perform an ablation study to evaluate the impact of each individual component of the adversarial
fine-tuning procedure. Specifically, we compare the default setting, where adversarial embeddings
optimized for 50 steps are used over three consecutive fine-tuning steps, with alternative configura-
tions. In one variant, only a single update is performed per embedding (One Step). In another, the
model is fine-tuned exclusively on samples from the surrogate set (No Utility Loss). We also assess a
setting where only non-memorized samples are used during fine-tuning (No Mitigation Loss). All
configurations are evaluated across different training epochs, both when using the original training
prompts without any adversarial optimization, and when using adversarial embeddings optimized for
50 steps.

The results in Table 13 show that fine-tuning the model for only a single step per adversarial
embedding per epoch already achieves effective mitigation. This suggests that the fine-tuning process
can be accelerated by reducing the number of updates per embedding. When the model is trained
exclusively on surrogate samples—aiming to mitigate memorization without including any non-
memorized samples to preserve utility—we observe strong mitigation, but at the cost of significantly
degraded image quality, as reflected in the high FID and KID scores. Conversely, fine-tuning only on
non-memorized samples while excluding surrogate samples helps maintain image quality but fails to
provide sufficient mitigation against data replication.
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Table 13: Comparison of adversarial fine-tuning performance with individual components ablated.
Embeddings are initialized using training prompts. Results are reported for VM prompts only.

Setting Adv. Steps Epochs ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓MR ↓↓↓ FID ↓↓↓ KID

No Mitigation 0 – 0.88± 0.06 1.0± 0.0 0.99± 0.01 0.32± 0.02 14.44 0.0060

Default 0

1 0.14± 0.05 0.15± 0.05 0.33± 0.08 0.33± 0.02 0.00 15.66 0.0062
5 0.15± 0.07 0.15± 0.07 0.35± 0.08 0.33± 0.01 0.00 13.61 0.0047
10 0.13± 0.05 0.14± 0.06 0.37± 0.09 0.33± 0.02 0.00 15.16 0.0049
20 0.12± 0.05 0.13± 0.05 0.44± 0.08 0.32± 0.02 0.00 15.56 0.0051
30 0.14± 0.05 0.14± 0.05 0.45± 0.09 0.32± 0.02 0.00 15.47 0.0053
40 0.12± 0.05 0.14± 0.06 0.50± 0.08 0.32± 0.01 0.00 16.65 0.0055
50 0.12± 0.05 0.14± 0.06 0.52± 0.09 0.32± 0.01 0.00 16.02 0.0055

Default 50

1 0.64± 0.16 0.69± 0.16 0.75± 0.20 0.32± 0.01 0.17 15.66 0.0062
5 0.36± 0.14 0.38± 0.14 0.54± 0.10 0.30± 0.02 0.02 13.61 0.0047
10 0.26± 0.15 0.27± 0.16 0.46± 0.10 0.30± 0.02 0.01 15.16 0.0049
20 0.29± 0.13 0.30± 0.13 0.46± 0.07 0.30± 0.02 0.00 15.56 0.0051
30 0.23± 0.11 0.28± 0.12 0.46± 0.10 0.30± 0.02 0.00 15.47 0.0053
40 0.22± 0.12 0.25± 0.13 0.48± 0.09 0.31± 0.02 0.00 16.65 0.0055
50 0.19± 0.10 0.21± 0.11 0.46± 0.06 0.31± 0.02 0.00 16.02 0.0055

One Step 0

1 0.19± 0.05 0.18± 0.06 0.34± 0.08 0.33± 0.02 0.00 14.68 0.0056
5 0.13± 0.05 0.14± 0.05 0.33± 0.08 0.33± 0.02 0.00 15.07 0.0057
10 0.13± 0.05 0.14± 0.04 0.32± 0.07 0.33± 0.01 0.00 14.80 0.0056
20 0.14± 0.06 0.14± 0.05 0.37± 0.08 0.33± 0.02 0.00 14.92 0.0054
30 0.14± 0.05 0.15± 0.06 0.39± 0.08 0.33± 0.02 0.00 14.47 0.0045
40 0.12± 0.06 0.15± 0.06 0.44± 0.09 0.32± 0.02 0.00 15.75 0.0057
50 0.14± 0.06 0.14± 0.06 0.42± 0.07 0.33± 0.02 0.00 15.51 0.0051

One Step 50

1 0.69± 0.20 0.77± 0.16 0.73± 0.26 0.32± 0.02 0.49 14.68 0.0056
5 0.40± 0.14 0.43± 0.14 0.51± 0.13 0.32± 0.02 0.10 15.07 0.0057
10 0.31± 0.10 0.33± 0.11 0.47± 0.09 0.32± 0.02 0.03 14.80 0.0056
20 0.27± 0.10 0.29± 0.11 0.43± 0.08 0.32± 0.02 0.02 14.92 0.0054
30 0.26± 0.11 0.28± 0.12 0.47± 0.08 0.32± 0.02 0.01 14.47 0.0045
40 0.22± 0.09 0.23± 0.10 0.48± 0.09 0.32± 0.02 0.02 15.75 0.0057
50 0.22± 0.10 0.25± 0.12 0.49± 0.07 0.32± 0.02 0.00 15.51 0.0051

No Utility Loss 0

1 0.11± 0.04 0.13± 0.04 0.25± 0.08 0.31± 0.02 0.00 18.74 0.0057
5 0.12± 0.04 0.13± 0.04 0.28± 0.08 0.30± 0.01 0.00 30.96 0.0123
10 0.12± 0.04 0.13± 0.04 0.28± 0.06 0.30± 0.02 0.00 35.05 0.0156
20 0.11± 0.04 0.13± 0.04 0.38± 0.10 0.31± 0.02 0.00 63.03 0.0212
30 0.12± 0.05 0.13± 0.05 0.41± 0.11 0.30± 0.02 0.00 66.82 0.0237
40 0.10± 0.04 0.13± 0.04 0.48± 0.13 0.31± 0.01 0.00 82.38 0.0245
50 0.10± 0.05 0.12± 0.05 0.48± 0.10 0.31± 0.02 0.00 81.72 0.0262

No Utility Loss 50

1 0.42± 0.15 0.44± 0.16 0.57± 0.15 0.32± 0.02 0.09 18.74 0.0057
5 0.28± 0.11 0.30± 0.12 0.54± 0.08 0.31± 0.02 0.00 30.96 0.0123
10 0.20± 0.09 0.21± 0.10 0.52± 0.08 0.30± 0.02 0.00 35.05 0.0156
20 0.19± 0.08 0.23± 0.10 0.51± 0.08 0.30± 0.02 0.00 63.03 0.0212
30 0.20± 0.07 0.21± 0.08 0.48± 0.07 0.30± 0.02 0.00 66.82 0.0237
40 0.16± 0.05 0.19± 0.06 0.50± 0.08 0.20± 0.02 0.00 82.38 0.0245
50 0.16± 0.06 0.18± 0.06 0.47± 0.07 0.28± 0.03 0.00 81.72 0.0262

No Mitigation Loss 0

1 0.89± 0.06 0.98± 0.01 0.99± 0.01 0.33± 0.02 0.91 14.47 0.0056
5 0.86± 0.06 0.96± 0.01 0.99± 0.01 0.33± 0.02 0.86 14.45 0.0050
10 0.48± 0.10 0.57± 0.10 0.58± 0.13 0.33± 0.02 0.06 15.13 0.0052
20 0.62± 0.15 0.75± 0.13 0.64± 0.28 0.34± 0.02 0.30 14.40 0.0051
30 0.73± 0.11 0.87± 0.06 0.90± 0.10 0.33± 0.02 0.55 15.02 0.0046
40 0.63± 0.18 0.71± 0.19 0.71± 0.23 0.34± 0.02 0.34 16.04 0.0051
50 0.54± 0.17 0.65± 0.18 0.51± 0.11 0.33± 0.02 0.21 15.70 0.0049

No Mitigation Loss 50

1 0.91± 0.03 0.96± 0.02 1.00± 0.00 0.33± 0.02 1.00 14.47 0.0056
5 0.90± 0.03 0.96± 0.02 1.00± 0.00 0.33± 0.02 0.98 14.45 0.0050
10 0.88± 0.03 0.92± 0.04 1.00± 0.00 0.32± 0.02 0.96 15.13 0.0052
20 0.88± 0.04 0.94± 0.03 1.00± 0.00 0.32± 0.02 0.98 14.40 0.0051
30 0.88± 0.04 0.94± 0.03 1.00± 0.00 0.32± 0.01 0.97 15.02 0.0046
40 0.85± 0.04 0.92± 0.03 1.00± 0.00 0.32± 0.01 0.91 16.04 0.0051
50 0.86± 0.05 0.92± 0.04 1.00± 0.00 0.32± 0.02 0.91 15.70 0.0049
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I.5 COST DISCUSSION

Our mitigation method can seem costly at first, given it requires generating a set of surrogate images
from the model, and performing a full fine-tuning of the whole DM. In total, the runtime of our
method on a single A100 GPU can be approximated with the following equation

Time = (N× 20) + (E× N× 10), (5)

where Time is in seconds, N is the number of memorized images to remove, and E is the number
of epochs we run our method. For N=112, E=5, we get about 2.5h of runtime, which we consider
reasonable, given the effectiveness of our method.

An alternative approach would be to apply LoRA (Hu et al., 2021) adaptation on the DM, to lower
the compute cost. We use LoRA with rank 128 on (1) all fully-connected layers, and (2) both
fully-connected and convolutional layers. Unfortunately, in neither of those cases the memorization
is fully mitigated, even after 50 epochs of our mitigation method. We are still able to craft adversarial
embeddings to replicate memorized data. This result is consistent with our earlier findings: memo-
rization is not confined to individual weights or layers, but is distributed across the entire model and
requires updates to additional components.

I.6 OUR MITIGATION IS ROBUST TO OTHER ADVERSARIAL OPTIMIZATION TECHNIQUES

While our adversarial fine-tuning is robust against Dori, we acknowledge that it might not be robust to
other methods of obtaining adversarial embeddings. Since Dori is the first such method for triggering
memorization, we apply UnlearnDiffAtk (Zhang et al., 2024c) against our fine-tuned model. See
Appx. G.1 for details on the implementation. The prompt optimization algorithm is GCG (Zou et al.,
2023), arguably the strongest adversarial optimization method available at the time of writing the
paper. We find that our model is robust against UnlearnDiffAtk, i.e., the adversarial prompts do not
cause replication of memorized content.

I.7 OUR MITIGATION DOES NOT CAUSE UNINTENDED MEMORIZATION OF OTHER SAMPLES

Model updates or interventions can, theoretically, always lead to unexpected side-effects. However,
memorization in DMs mostly originates from training data duplications, and our fine-tuning method
does not add any further duplications (if the dataset is sufficiently large).

To empirically support our claim that our adversarial fine-tuning does not add novel memorization,
we generate 10 images for 1,000 LAION samples used for fine-tuning. We then compute the SSCD
score between the generated images and the original images used for the fine-tuning. Since we do
not find any image with SSCDOrig > 0.7 we argue that none of the images used for fine-tuning is
memorized. The result of our analysis is that the SSCD score between the generated images and the
original images used for the fine-tuning is only 0.16± 0.04, validating that indeed the images used
for fine-tuning are not memorized.
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J ADDITIONAL DETAILS AND EXPERIMENTS ON LOCALITY

In this section, we summarize results from broader experiments regarding locality. In Appx. J.1
we provide t-SNE plots for adversarial embeddings optimized starting from text embeddings of
non-memorized prompts, as well as pairwise L2 distances between embeddings, and in Appx. J.2 we
define two scores used to assess locality in the model: activation discrepancy and weight agreement.

J.1 LOCALITY IN THE TEXT EMBEDDING SPACE

Embedding Type
Initial Embedding
Optimized Adversarial Embedding

Figure 8: T-SNE visualization of 100
non-memorized text embeddings ynonmem

(blue) and adversarially crafted embed-
dings (orange) yadv, generated by per-
turbing the blue ones. We observe iden-
tical behavior for non-random initialization
as in Fig. 2 —adversarial embeddings are
uniformly distributed in the text embedding
space.

We extend the analysis of adversarial embeddings in
the text embedding space. Contrary to Section 4.1, we
now initialize optimization from a randomly sampled
non-memorized prompts—ynonmem—from LAION
dataset, and perform 50 steps of optimization. In line
with the previous results, all embeddings yadv trigger
successful replication of the memorized content, and
are spread out in the text embedding space.

Additionally, we compute pairwise L2 distance in
the embedding space for (1) random initialization
(N (0, I)), (2) adversarial embeddings optimized
from N (0, I), (3) embeddings of non-memorized
prompts (ynonmem), (4) adversarial embeddings op-
timized from ynonmem. To our surprise, the adver-
sarial embeddings that trigger generation of the same
memorized samples appear to be more spread out
than randomly initialized embeddings, and are also
more spread out than embeddings of non-memorized
prompts, as it is visible in Fig. 9 (left).

Interestingly, initialization of optimization from
N (0, I) is more beneficial to finding Dori. We ob-
serve that the embeddings have to be changed less
than when we initialize them from prompts, which
is expressed by lower L2 distance between initializa-
tions and the final embeddings yadv in Fig. 9 (right).

J.2 LOCALITY IN THE MODEL’S WEIGHTS

Discrepancy between activations in a given layer is defined as

Discrepancy(yi,yj) = ||Activations(yi)− Activations(yj)||22,

where Activations(y) outputs a vector of activations of a given layer further used to identify mem-
orization weights by Wanda or NeMo. For NeMo, we obtain activations from passing the text
embedding y through the value layer in cross-attention blocks, and Wanda utilizes activation of the
feed-forward layer after the attention operator in cross-attention blocks. To assess mean pairwise
discrepancy of in set Y = {yi|i = 1, . . . , N} of size N we use

MeanDiscrepancy(Y ) =
1

(N − 1)
2

N∑
i=1

N∑
j=1

1(i ̸= j)Discrepancy(yi,yj). (6)

We define agreement between memorization weights identified in a single layer for two different
input embeddings as

Agreement(yi,yj) =
# (Weights(yi) ∩Weights(yj))

# (Weights(yi) ∪Weights(yj))
,

where yi and yj are two embeddings that trigger replication of some memorized image(s), and
Weights(y) returns a set of weights identified by a pruning-based mitigation method, #Y denotes
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Figure 9: L2 distances of input embeddings. Left: we compute pairwise L2 distances in text embed-
ding space within the set of 100 random embeddings (N (0, I)), set of adversarial embeddings opti-
mized from random embeddings (second box from the left), 100 randomly selected non-memorized
prompts (ynonmem) and adversarial embeddings optimized from non-memorized embeddings (fourth
box from the left). We observe that after optimization, the adversarial embeddings are more spread out
in the text embedding space than their initial points (be it N (0, I) or randomly selected ynonmem).
Right: We compute the L2 distance between the initialization and the final adversarial embeddings.
We note that when initializing the optimization with ynonmem we have to travel farther in the text
embedding space to obtain an adversarial embedding yadv that successfully triggers replication of
the memorized image xmem .

the size of the set. Analogically to MeanDiscrepancy, we define the mean pairwise weight agreement
for a set of embeddings Y as

MeanAgreement(Y ) =
1

(N − 1)
2

N∑
i=1

N∑
j=1

1(i ̸= j)Agreement(yi,yj). (7)

J.3 LOCALITY IS NOT PRESENT IN ANY LAYERS

Our findings from Section 4.3 suggest that locality of memorized data in the specific layers of the
model is an illusion. In this section, we extend the analysis to other layers, specifically Q, K, V, and
MLP layers in self- and cross-attention modules, as well as convolutional layers in ResNet modules of
the U-Net. To evaluate locality, we default to activations, specifically the MeanDiscrepancy, defined
in Appx. J.2, and omit weight agreement, since neither Wanda nor NeMo focuses their mitigation
efforts on these additional layers.

The results in Fig. 10 further undermine the notion of locality. In all layer types, we observe high
discrepancy for various adversarial embeddings yadv associated with the same image. This shows
that trying to localize neurons for pruning memorization mitigation based on activations can not work,
as vastly different activation patterns lead to the same memorized image.

Interestingly, the discrepancy for ymem associated with different images is significantly higher for
layers that interact with the image features directly (like Q matrices in self-attention), and the effect
strengthens deeper in the model. We argue that this is an expected behavior—outputs (and thus
activations) of the model should diverge for different images.

J.4 NEMO AND WANDA IDENTIFY MEMORIZATION WEIGHTS IN DIFFERENT LAYERS

We examine the behavior of pruning-based methods through the lens of their weights selection.
To this end, we compute these weights for all VM samples, separately for each memorized image.
In Fig. 11 we show that NeMo tend to identify memorization weights only in four out of seven layers.
This result explains high weight agreement in layers two, six, and seven in Fig. 4, since when no
weights are identified in a layer, we set agreement to 1. Results for Wanda contrast with the results
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Figure 10: Locality assumption fails in all layers of the U-Net. We observe high activation
discrepancy for adversarial embeddings triggering the same image, regardless of the layer type and
depth.

for NeMo, as it finds more traces of memorized content in deeper layers of the model (five, six, and
seven). Importantly, in these layers also the agreement drops significantly, as can be seen in Fig. 4.
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Figure 11: Number of memorization weights per layer. We observe that for NeMo, no weights
are identified to prune in layers two, six, and seven (left). Conversely, Wanda identifies significantly
more memorization weights in deeper layers. Interestingly, the drop in weight agreement for Wanda
(Fig. 4) happens also in the deeper layers of the model.
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K QUALITATIVE RESULTS

K.1 QUALITATIVE RESULTS FOR WANDA PRUNING

Figure 12: Qualitative results after applying Wanda. The first column shows the original training
images. The next three columns show generations after applying the mitigation technique. The final
three columns show generations from adversarial embeddings, also after applying the mitigation
technique. The adversarial embeddings were initialized with memorized prompt embeddings and
optimized for 50 steps.
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K.2 QUALITATIVE RESULTS FOR NEMO PRUNING

Figure 13: Qualitative results after applying NeMo. The first column shows the original training
images. The next three columns show generations after applying the mitigation technique. The final
three columns show generations from adversarial embeddings, also after applying the mitigation
technique. The adversarial embeddings were initialized with memorized prompt embeddings and
optimized for 50 steps.
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K.3 ADVERSARIAL FINE-TUNING

Figure 14: Qualitative results for memorized content after applying our adversarial fine-tuning.
The first column shows the original training images. The next three columns show generations after
fine-tuning the model for five epochs using the default parameters reported in the main paper. The
final three columns show generations from adversarial embeddings, also after applying the mitigation
technique. The adversarial embeddings were initialized with memorized prompt embeddings and
optimized for 50 steps.
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Figure 15: Qualitative results on COCO after applying our adversarial fine-tuning. The first
three columns show images generated for 30 COCO prompts using the default Stable Diffusion v1.4
model. The last three columns show generations after fine-tuning the model for five epochs using
our adversarial fine-tuning mitigation. The adversarial embeddings were initialized with memorized
prompt embeddings and optimized for 50 steps.
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K.4 WANDA WITH 10% SPARSITY

Figure 16: Qualitative results after applying Wanda with a sparsity of 10%. The first column
shows the original training images. The next three columns show generations after applying the
mitigation technique. The final three columns show generations from adversarial embeddings, also
after applying the mitigation technique. The adversarial embeddings were initialized with memorized
prompt embeddings and optimized for 50 steps.
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Figure 17: Qualitative results for damage to concepts after applying Wanda with a sparsity of
10%. On the left we show the paraphrased prompt for "The No Limits Business Woman Podcast"
memorized prompt (VM). The first three images from the left depict generations from SD-v1.4
without mitigation, and the next three—images generated with Wanda after pruning 10% weights.
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Figure 18: Qualitative results for damage to concepts after applying Wanda with a sparsity of
10%. On the left we show the paraphrased prompt for "Plymouth Curtain Panel featuring Madelyn
- White Botanical Floral Large Scale by heatherdutton" memorized prompt (TM). The first three
images from the left depict generations from SD-v1.4 without mitigation, and the next three—images
generated with Wanda after pruning 10% weights.
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K.5 QUALITATIVE RESULTS FOR ITERATIVE NEMO PRUNING

Figure 19: Qualitative results after applying NeMo iteratively 5 times. The first column shows
the original training images. The next three columns show generations after applying the mitigation
technique. The final three columns show generations from adversarial embeddings, also after
applying the mitigation technique. The adversarial embeddings were initialized with memorized
prompt embeddings and optimized for 50 steps.

48



Finding Dori : Memorization in Text-to-Image Diffusion Models Is Not Local

Figure 20: Qualitative results after applying NeMo iteratively 5 times. The first column shows
the original training images. The next five columns show generations after applying the mitigation
technique iteratively. It can be seen that after five iterations the quality seems to degrade a bit.
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