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ABSTRACT

We present Multipole Semantic Attention (MuSe), an efficient approximation of softmax attention
that combines semantic clustering with multipole expansions from computational physics. Our
method addresses the quadratic computational complexity of transformers in the context length by
clustering queries and keys separately in their learned representation spaces, enabling a hierarchical
two-stage attention mechanism. Unlike prior clustering approaches that group only keys or use
unified clustering, we maintain separate clusterings that respect attention’s asymmetric treatment
of these spaces. We augment centroid-based (monopole) approximations with dipole corrections
that capture directional variance within clusters, preserving richer information during training. The
method operates as a drop-in replacement for standard attention, requiring only hyperparameter
specification without architectural modifications. Our approach achieves O(NCD) complexity for
acausal attention with C clusters and O(NCD logN) for causal attention. On isolated attention
layers, we demonstrate 3× speedup over CUDNN Flash Attention at 8k context length, with relative
squared errors below 20%. For causal attention, we develop a hierarchical block decomposition that
combines exact local computation with efficient long-range approximation. In end-to-end pretraining
of a 30M parameter model on book-length texts with 16k context, we achieve 12.2% runtime reduction
with only 0.36% loss degradation, establishing the viability of multipole approximations for efficient
transformer pretraining.

1 Introduction

The quadratic computational complexity of softmax attention remains the primary bottleneck limiting context length in
transformers. While this O(N2D) scaling enables the rich token interactions that underpin transformer capabilities,
it renders long-context pretraining prohibitively expensive. Modern pretraining increasingly benefits from extended
context—whether processing entire books, collections of related scientific papers, or complete code repositories—yet
computational constraints force most models to train on artificially truncated sequences. Modern transformers partially
mitigate these issues through the use of flash attention [Dao et al., 2022], which reduces memory complexity to linear but
retains quadratic computational complexity. Hybrid architectures using sliding window attention for local interactions
must still interleave quadratic-complexity global attention layers to maintain full-context understanding. Efficient
approximations to global attention, which maintain training quality at these scales, become essential for next-generation
models.

In this context, we present Multipole Semantic Attention (MuSe), combining semantic clustering with multipole
expansions from computational physics to approximate softmax attention. Our goal is to establish the viability of
this approach by demonstrating that (1) the approximation preserves sufficient quality for training convergence, (2)
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practical speedups are achievable with current hardware at context lengths of 16k and beyond, and (3) the method
integrates into existing training pipelines without architectural changes. We focus on validating the core algorithm at a
scale where rapid iteration is feasible, leaving systematic exploration of scaling behavior and optimal hyperparameter
selection to future work. More specifically, MuSe introduces three key elements: First, we cluster queries and keys
separately in their learned representation spaces, enabling a two-stage mechanism where coarse query clusters attend to
fine key clusters, then fine queries refine through cluster summaries. Second, we augment centroid-based (monopole)
approximations with dipole terms that capture directional variance within clusters. Third, the method operates as
a drop-in replacement for standard attention, requiring only hyperparameter specification (cluster counts, K-means
iterations) without architectural modifications.

This distinction between the key and query latent spaces, whereby we cluster keys and queries independently is
motivated as follows. Firstly, softmax attention is invariant under translation of the keys (as this change is absorbed
by the normalizing constant), but not of the queries. More importantly, the queries live in the dual vector space to the
keys, that is, softmax attention is further invariant to an arbitrary change of basis of the keys, so long as the queries
are transformed inversely. The consequence of this is that, unless one has some way to choose a preferred basis, it is
unclear what it would mean to say that some particular key and query occupied the same point in latent space.

We validate MuSe empirically through several microbenchmarks and end-to-end pretraining on book-length texts from
Project Gutenberg. On isolated attention layers, we achieve 3× speedup over CUDNN Flash Attention at 8k context,
reaching 20-30× at 64k tokens, with approximation errors below 20%. For causal attention, we develop a hierarchical
block decomposition combining exact local computation with approximate long-range dependencies. In pretraining a
30M parameter model with 16k context—a scale enabling thorough experimentation—we demonstrate 12.2% runtime
reduction with 0.36% loss degradation, suggesting that multipole approximations merit further investigation for efficient
long-context pretraining.

To summarize, this paper makes the following contributions:

• A bidirectional semantic clustering approach that partitions queries and keys separately in their native
representation space, enabling a hierarchical two-stage attention mechanism: coarse query clusters first attend
to all fine key clusters to produce query-dependent summaries, then fine queries refine these summaries
using their residual components—fundamentally different from methods that cluster only keys or use unified
clustering

• Integration of dipole corrections that preserve directional variance within semantic clusters, extending beyond
centroid-based approximations to maintain richer output information during training

• Empirical demonstration that the method can achieve meaningful speedups while maintaining acceptable
approximation quality for pretraining

To this end, we proceed as follows. We start off by reviewing related efficient attention methods. Sections 3-4 develop
the monopole and multipole formulations. Section 5 then presents the MuSe approach, which we extend to causal
attention in Section 6. Before concluding, Section 7 presents the empirical evaluation.

2 Related Work

We organize existing efficient attention methods into two broad categories, those which restrict attention to only occur
within certain subsets of tokens but do so exactly, and those which aim to approximate attention globally. We fall into
the latter category, and together with Hooper et al. [2025a] are the only works using clustering therein.

2.1 Restricted Attention

Restricted attention methods reduce the complexity of attention by only computing attention between subsets of queries
and keys.

Bucketed Attention Reformers [Kitaev et al., 2020] bucket queries and keys according to random directions in
key-query space and restrict attention to occur within buckets, on the principle that large magnitude queries and keys
effectively perform a nearest neighbour lookup operation. If multiple bucketings are used, then this lookup operation
can be simulated cheaply with high reliability, though in order to do so they force queries and keys to be the same for
the same token, and lose the global aggregation behaviour of attention for smaller magnitude keys and queries.

Routing Transformers [Roy et al., 2021] learn a k-means clustering of the queries and keys during training rather than
using random directions, and similarly restrict attention to only occur within buckets.
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K-Means at Inference Time Since late 2024 there has been significant work on the use of K-means clustering in
key-space for the acceleration of long context inference in language models. Hooper et al. [2025b] use context-specific
kmeans clustering on keys to perform exact attention on those keys most likely to be relevant to a given query. He et al.
[2025] similarly use kmeans clustering in A2ATS to formulate inference attention as a lookup problem, and further use
knowledge of the expected query distribution and position encodings to improve this representation, though they rely
on a static offline clustering of keys. Tactic [Zhu et al., 2025] also uses a context-specific clustering of keys, but focus
on adapting the number of tokens on which exact attention is performed to the temperature of the relevant attention
patterns.

2.2 Approximate Attention

These methods allow all tokens to contribute to the output of attention, and instead look for ways to approximate the
output of full softmax attention without the quadratic complexity.

Position Based Wang et al. [2020] use random projections in the spatial domain to approximate the attention matrix
in Linformer, exploiting the low rank structure of this matrix. Nyströmformer [Xiong et al., 2021] also constructs a low
rank representation of the attention matrix, but this time in terms of “landmark” keys and queries, which they obtain by
taking segment-wise means of spatially proximate keys and queries.

Fast Multipole Attention [Kang et al., 2023] and H-Transformer [Zhu and Soricut, 2021] instead rely on a recursive
decomposition of the sequence dimension in the spirit of the Barnes-Hut approximation for N-body simulation [Barnes,
1986]. While H-Transformer uses a fixed spatial averaging of these subsets, Kang et al. [2023] allow the model to learn
multiple convolutional summaries of each segment, somewhat like the Fast Multipole Method [Rokhlin, 1985] retaining
multiple terms of the multipole expansion.

Learned Bottlenecks Jaegle et al. [2021] observed that while self-attention for the full context is quadratic in context
length, attention from a fixed latent sequence to the full context is linear. In applications such as image classification,
the output domain has no need to retain the spatial structure of the input domain, so the self-attention complexity can be
massively reduced by having all self attention occur between latent representations at artificial, latent positions, only
using the original tokens for the source of cross-attention.

Ma et al. [2021] contemporaneously construct Luna for cases where the output spatial structure must be maintained, by
adding a further step where the original token positions attend to the latent ones. They introduce a new architecture
designed to allow the model to learn suitable latent representations at these latent tokens, and allow long-context
language modeling by forcing all information to flow through this latent bottleneck.

Kernel Approximations Performer [Choromanski et al., 2021] uses random features to approximate the exponential
kernel, effectively routing attention through stochastic latent vectors in key-query space and thereby deriving an
unbiased estimator of softmax attention. Their method has impressive provably small mean squared error in cases
where both the queries and keys have low magnitude.

Semantic Clustering Our work, MuSe, falls in the approximate attention category, specifically using semantic
clustering of key-query representation space. While Hooper et al. [2025a] recently introduced the use of monopole
(centroid) summaries of “far field” clusters at inference time as an augmentation of lookup-based approaches, we
present the first training-time method with three key innovations:

1. Separate query and key clustering. While Routing Transformers uses unified clustering and all inference
methods cluster only keys, we partition queries and keys independently in their respective representation spaces
enabling a hierarchical two-stage attention mechanism where coarse query clusters attend to fine key clusters
to produce query-dependent summaries, then fine queries refine these summaries using residual components.

2. True Multipole approximations beyond monopoles. Unlike Hooper et al. [2025a] and all other clustering
methods that use only centroid (monopole) representations, we incorporate covariance-based dipole terms that
capture directional variance within clusters, reducing approximation error while maintaining linear complexity.

3. Training-time application with global aggregation. In contrast to inference-only methods that restrict
attention to top-k keys and training methods like Reformer that limit attention to within-bucket computation,
our method approximates contributions from all keys during training, preserving gradient flow and global
information aggregation critical for model learning.
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These innovations work synergistically: separate clustering enables query-specific refinement in our two-stage mecha-
nism, while dipole corrections recover information lost through clustering, together achieving practical speedups with
acceptable training-time approximation quality.

3 Semantic Monopole Attention

Softmax attention is quadratic in the context length because every query must attend to every key.2 The core idea of
MuSe is to cluster the keys and queries such that substituting certain summary statistics of each cluster into the softmax
attention algorithm may be taken as an approximation of using its full contents directly.

3.1 Clustering both queries and keys

Supposing that we have N target locations, or queries, and N source locations, or keys, naive attention has a cost of
O(NND) where D is the head dimension, e.g., 64. The first thing one notices is that, if we partition our keys into Ck

clusters, we can attend from our fine original queries to our coarse summarized clusters with O(NCkD) cost, saving a
factor of N/Ck. Interestingly, one could also attend from coarse summarized queries to fine original keys at O(CqND)
cost, saving a factor of N/Cq, supposing that we partitioned our queries into Cq clusters. (In practice we will use
Ck = Cq and refer instead to simply C where the distinction is unimportant.) The first core idea of our approach can be
seen as finding a way to combine these two possibilities.

Suppose we decompose each original query q into the centroid of the coarse cluster to which it is assigned q plus some
diff q̃. We first attend from each of the Cq coarse queries to the full contents of each of the Ck clusters of fine keys,
constructing a query-dependent summary of the results, producing CqCk summaries with O(CqND) cost. For each
fine query, we then take the Ck summaries obtained by the coarse query of the cluster to which it belongs and attend to
them with the residual query q̃ for this target location, with O(NCkD) cost.3

In practice, we construct these clusterings by running K-means for between 1 and 5 iterations at O(NCD) cost.

3.1.1 Why two stages, intuitively?

Suppose we write a particular query q = q + q̃ in terms of its assigned centroid q plus a residual q̃. Let us similarly
decompose a key k = k + k̃ where k̃ is the residual as before, though we will later find that the optimal choice of k is
not always precisely the original centroid assigned to k.

The unnormalized attention weight from q to k is given by exp(q · k). Attending only from coarse queries to fine keys
would yield the approximation exp(q · k) = exp(q · k) exp(q̃ · k) ≈ exp(q · k). Similarly, attending only from fine
queries to coarse keys would correspond to the approximation exp(q · k) ≈ exp(q · k). Our two stage approximation
combines these to instead effectively use

exp(q · k) = exp(q · k + q · k̃ + q̃ · k + q̃ · k̃) ≈ exp(q · k + q · k̃ + q̃ · k) (1)

where the term we neglect includes the dot product of two residuals instead of just one.

3.1.2 Stacking Attention

Take the following definitions of M(q) and V (q):

M(q) :=
∑
k

exp(q.k), V (q) :=

∑
k,v exp(q.k)v

M(q)
(2)

It can be seen that V (q) is equivalent to softmax attention, and M(q) is the normalizing term commonly returned in the
form logM(q) for use in the backward pass.

If we partition our k, v pairs into Ck clusters then the attention computations compose as follows:

MT (q) :=
∑
j∈Ck

Mj(q), VT (q) :=

∑
j∈Ck

Mj(q)Vj(q)∑
j∈Ck

Mj(q)
(3)

2Making the attention causal saves up to a factor of two, but does not change this fundamental quadratic scaling.
3Note that while CqCk total summaries are produced, any particular output location will only attend to the Ck summaries

corresponding to its assigned query cluster in this second step.
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Algorithm: Softmax Attention (attn)
Input: Q ∈ RN×D,K ∈ RN×D,

V ∈ RN×D, b ∈ RN

Output: Y ∈ RCq×U×D, µ ∈ RCq×U

S = matmul(Q,KT ) + 1bT ;
P = softmax(S, axis = −1);
µ← logsumexp(S, axis = −1);
Y ← matmul(P, V );

Algorithm 1: Standard softmax attention with bias
and returning logsumexp values for backward pass.

Algorithm: Semantic Monopole Attention

Input: Q ∈ RCq×D, Q̃ ∈ RCq×U×D,
K ∈ RCk×U×D, V ∈ RCk×U×D

Output: Y ∈ RCq×U×D, µ ∈ RCq×U

V , µ← attn(Q,K, V,0);
K, _← attn(Q,K,K,0);
Y, µ← attn(Q̃,K, V , µ);

Algorithm 2: Semantic Monopole Attention writ-
ten explicitly in terms of softmax attention (attn :
Q,K, V, b→ Y, µ as seen in Algorithm 1).

where MT and VT are the attention results for the whole set of keys and values, and Mj and Vj are the attention results
on each cluster j of keys and values separately.

In this way, clustering based approximations to softmax attention may be constructed by approximating M̂j ≈Mj and
V̂j ≈ Vj for each cluster in a way which does not require looking at their entire contents. A particularly simple class of
approaches, which we shall refer to as "Monopole" approaches, looks like:

M̂j(q) := exp(q · kj), V̂j(q) := vj (4)

for some representative key and value vectors kj and vj for cluster j, e.g. the key and value centroids.

In the two level approach one breaks queries q = q + q̃ into contributions from the cluster centroid q and a residual
q̃. One then constructs approximations M̂ij(q̃) and V̂ij(q̃) for each query cluster i and key-value cluster j. We will
additionally need the definition Kj(q) :=

∑
k exp(q.k)k∑
k exp(q.k) corresponding to replacing the values with the keys in Vj(q).

We then choose the approximations

M̂ij(q̃) := Mj(qi) exp(q̃ ·Kj(qi)), V̂ij(q̃) := Vj(qi) (5)

With Cq query clusters, the Mij , Kij and Vij may be constructed in CqN time, and applying the approximation for
every q̃ can be done in CkN time.

3.1.3 Semantic Monopole Algorithm

Suppose we define an extended softmax attention function attn : Q,K, V, b→ Y, µ as seen in algorithm 1. Here we
make explicit that the attention function returns the logsumexp for each query location, as most efficient implementations
do since it is useful in the backward pass. We further permit a bias b to be added to the attention scores for each
key-value location.

We can then express the Monopole component of MuSeas seen in algorithm 2. Here we have written the algorithm for
C equal clusters of size N/C = U , though in practice one may want to allow flexibility in the cluster size and work
with the resulting ragged tensors.

4 Multipole Semantic Attention (MuSe)

Having desribed the monopole version of our algorithm, i.e., the version where the key-value clusters are represented
by simple centroids, we now turn to more advanced approximations which capture additional structure in the key-value
clusters. In particular we will end up introducing terms dependent upon the covariance between keys and values within
a cluster. Since we are approximating a vector valued function, these covariance matrices constitute the linear, or dipole,
component of the approximation.

Polynomial Expansion via Cumulant Generating Functions The keys k of some cluster j can be considered as a
probability distribution of equally weighted point masses at each k. They then have the moment generating function
Mj(q) := Ek∈Cj

exp(q ·k) whose nth derivative at the origin gives the nth moment as an n-index tensor. The cumulant
generating function (CGF) Kj(q) := lnMj(q) is given by the natural logarithm of the moment generating function,
and has as its nth derivative the nth cumulant. For those unfamiliar with cumulants, these are familiar quantities such as
the mean, variance, skewness, excess kurtosis, etc. which describe the shape of the distribution.
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q̄ q̃ k̄ 2k̄ 1k̄ 0

Figure 1: Idealized depiction of MuSe attention. For some particular query centroid q, we exponentially tilt the key
clusters, producing new centroids kj and vj for keys and values for each key-value cluster j. To the extent that these
exponentially tilted clusters are narrow in the direction of a subsequent residual query q̃, the approximation will be
accurate. Note that we therefore require only the product of the intra-cluster variances Cov(q̃, q̃) and Cov(k̃, k̃) to be
small in any given direction, not both separately. (Formally, we require Tr[Cov(q̃, q̃) Cov(k̃, k̃)] to be small). Note
further that we may make no assumption that any key-value clusters may be neglected or approximated with lower
fidelity for any particular query centroid - the exponential tilting itself corresponds to the “select nearby regions to more
accurately approximate” part of Fast Multipole-like methods.

Interestingly for our purposes, attenting to these keys with qi corresponds to an exponential tilt of this distribution
(i.e., a weighting by exp(qi · k) for each point). The CGF Kij(q̃) as a function of q̃ of the resulting distribution after
reweighting cluster j with query centroid qi corresponds to simply evaluating Kj at qi and shifting it so that it is zero at
the origin (i.e., Kij(q̃) = Kj(qi + q̃)−Kj(qi).

In order for this to be actually useful, we need to incorporate the values somehow, so let us define the CGF of the joint
distribution of keys and values Kj(q, t) := lnEk,v∈Cj

exp(q · k+ t · v) for a key-value cluster j. Recalling that the first

derivative of the CGF is the mean, we obtain first that the value centroid of cluster j is given by ∂Kj(q,t)
∂t

∣∣∣
q=0,t=0

. More

interestingly, the output of standard softmax attention on this cluster Vj(q) =
∂Kj(q,t)

∂t

∣∣∣
q=q,t=0

for the query centroid q

is given by the derivative of Kj with respect to t at q = q and t = 0.

This means that if we decompose some particular query q = qi + q̃ in query cluster i into its centroid qi and a residual
q̃, we can approximate Vj(q) by taking a polynomial expansion of Vj around q. Recalling that the derivatives of the
CGF are the mean, variance, skewness etc, we have

Vij(q̃) =
∂Kj(q, t)

∂t

∣∣∣∣
q=q̃+q,t=0

= vij +Covij(v, k)q̃ +
1

2
q̃T Skewij(v, k, k)q̃ + ... (6)

where vij , Covij(v, k) and Skewij(v, k, k)
4 are statistics of the joint key-value distribution of key-value cluster j after

exponentially tilting by the centroid qi of query cluster i. Note that, since we are expanding in q, each successive term
picks up an extra k index and contracts with q̃ an additional time.

In section 3.1.2 we required an approximation for the value Vij(q̃) obtained by attending to key-value cluster j with
a residual query in query cluster i, which we have now derived a polynomial expansion of. We further required an
estimate of the unnormalized attention weight Mij(q̃), which can be obtained similarly to above as follows

Mij(q̃) = Mj(qi) exp(Kj(q̃ + q)−K(q)) = Mj(qi) exp

(
q̃ · kij +

1

2
q̃T Covij(k, k)q̃ + ...

)
(7)

where the values no longer feature, and the required statistics for the expansion are only of the key distribution after
reweighting with qi.

Dipole Truncation We choose to retain terms that are at most linear in q̃. The leading neglected terms are then
quadratic in q̃ and, on inspection of the coefficients, also quadratic in k̃. For small q̃ we therefore have an errorO(q̃2k̃2).
Most clearly, this constitutes dropping the quadratic terms in the expansions of Vij(q̃) and Mij(q̃). Since we are
implicitly going to multiply these values, we can in fact also drop the linear term of Vij(q̃) when multiplying by the

4Note that Skewij(v, k, k) is a three index tensor, where we contract q̃ with each k index, though we treat it as a matrix with the
v index omitted in equation 6 for notational convenience.
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Algorithm: MuSe: Initial Stage
Input: Q ∈ RCq×D,K ∈ RCk×U×D,

V ∈ RCk×U×D

Output: K ∈ RCq×Ck×D, V ∈ RCq×Ck×D,
µ ∈ RCq×Ck , C ∈ RCk×D×D

for k ∈ [0..K) do in parallel
S ← matmul(Q,K[k]T );
µ[:, k]← logsumexp(S, axis = −1);
P ← softmax(S, axis = −1);
K[:, k, :]← matmul(P,K[k]);
V [:, k, :]← matmul(P, V [k]);
C[k]← Cov(V [k],K[k]);

end
Algorithm 3: Note that the loop over k is in prac-
tice parallelised. The covariance is computed over
the U dimension, i.e., across tokens per cluster, and
unweighted by P, and corresponds to Covj(v, k) -
it is partially specialized to Covij(v, k) later. µ is
logMj(qi) from equation 7.

Algorithm: Semantic Dipole Attention: Final Stage

Input: Q̃ ∈ RCq×U×D,K ∈ RCq×Ck×D,
V ∈ RCq×Ck×D, µ ∈ RCq×Ck ,
C ∈ RCq×D×D

Output: Y : [Q,N, V ]

for q ∈ [0..Q) do in parallel
S ← matmul(Q[q],K[q]T );
Sij ← Sij + µj ;
P ← softmax(S, axis = −1);
Y [q]← matmul(P, V [q])+matmul(Q[q], C[q])

end
Algorithm 4: Note that the loop over q is in practice
parallelised. Adding µ implements the Mj(qi) scal-
ing of equation 7 in log space. matmul(Q[q], C[q])
is Covi j(v, k)q̃ from equation 6.

linear term of Mij(q̃). This corresponds to the very convenient fact that we only need to compute a single dipole
correction for every residual query rather than one for every cluster, since we can pre-merge the covariances matrices
Covij(v, k) for each query cluster i. This reduces the computational complexity of evaluating the dipole corrections
from O(NCkD

2) to O(ND2).

The expected error over all queries can be expressed more precisely as O(Tr(Cov(q̃, q̃) Cov(k̃, k̃)) where these are
intra-cluster variances weighted by cluster size, i.e., exactly the quantity minimized by K-means, motivating our choice
of clustering method. The intuition for this coupled dependency on key and query covariances is given in figure
1. Strictly speaking the queries are ideally clustered in a metric given by the intra-cluster variance of the keys and
vice-versa, but we use the euclidean metric in practice for simplicity. Note that, as we increase the number of clusters C
of queries and keys, these covariances approach zero, so we can drive error arbitrarily small as long as we can afford to
use a large enough number of clusters.

Partially Specialized Dipoles While computing the dipole corrections given the covariance matrices Covij(v, k) is
O(ND2), actually computing the matrices themselves is still O(CqND2). In practice, to reduce the computational
expense of calculating Covij(v, k), we only calculate this term per cluster j but do not include the exponential tilt by
qi (though we use this tilt for the vij terms. We instead calculate a single Covj(v, k) term for each key-value cluster.
This reduces the accuracy of the approximation from O(q̃2k̃2) to O(qq̃k̃2), but allows us to balance memory and
compute expenses across the monopole and dipole terms. For the cluster counts we use in practice (32-128), q is not
typically much larger than q̃, so this degradation is acceptable to us. In particular, this reduces the cost of computing
the covariances from O(CqND2) to O(ND2), preventing it from dominating the cost (O(CqND)) of computing the
monopoles.

5 MuSe Algorithm

We now explicitly describe the resulting algorithms for the two stages of MuSe. It will be seen that the actual
computations to be performed are in fact deceptively simple.

Clustering We first cluster the queries and keys separately with a fixed number of iterations of K-means (e.g., 1 or 5)
obtaining Cq and Ck clusters respectively, though in practice we choose Cq = Ck = C for simplicity.5 We initialize by
sampling points proportional to their squared norm, as this is fast and equivalent to the first sample of K-means++ for
zero mean vectors. It is convenient to enforce a maximum cluster size of, e.g., 1.5 times the average cluster size, to
simplify handling of ragged tensors later on.

5We found Cq = Ck = D = 64 to be a sweet spot from an implementation perspective, since this results in square matrix-matrix
multiplies and makes C and D interchangeable in complexities.
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Initial Stage The output of the first stage of MuSe consists of monopole and dipole terms. The monopole terms
consist of Cq × Ck key and value centroids, i.e., each of the Q coarse query clusters gets its own specialized monopole
approximation to the Ck coarse key-value clusters. The dipole term consists of Ck intra-cluster covariances between
keys and values for each coarse key-value cluster, with no specialization per coarse query cluster. See algorithm 3.

Dipole Aggregation Stage 1 gives us Cq × Ck monopole terms, with specialization for each of the Cq query clusters,
together with Ck dipole terms but without specialization with respect to query clusters. We now produce a single,
partially specialized, dipole term for each query cluster by aggregating the Ck dipole terms according to the Cq × Ck

logsumexp values returned by stage 1, producing an array of dipole terms of shape [Cq, D,D]. This corresponds to a
simple matrix multiplication with softmax(µ, axis = −1), and is shown in algorithm 5. Note that this operation is very
cheap because the attention scores are precomputed and the resulting attention matrix has small size (Cq × Ck) and is
independent of the context length.

Final Stage In the final stage of the algorithm we refine the outputs of each cluster of queries by attending from
the residual queries to the Ck key and value centroids with bias given by µ. We further apply a dipole correction by
contracting each residual query with the value-key covariance matrix specialized to the relevant query cluster.

Algorithm: Dipole Aggregation
Input: Q ∈ RCq×D,K ∈ RCk×D,

C ∈ RCk×D×D, µ ∈ RCk

Output: C ′ ∈ RCq×D×D

S ← matmul(Q,K
T
);

Sij ← Sij + µj ;
P ← softmax(S, axis = −1);
C ′ ← matmul(P,C);
Algorithm 5: Note that the final matmul contracts P
with only the first index of C.
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Figure 2: Hierarchical block decomposition for
causal attention. Diagonal blocks (green) use
Flash attention for exact computation, while
below-diagonal blocks (blue) use MuSeapproxi-
mation.

6 From Acausal to Causal

We extend our acausal approximation to causal attention by decomposing the lower-triangular attention matrix into
blocks as shown in figure 2. The block-diagonal uses Flash attention for exact local computation, while below-diagonal
blocks use our MuSe approximation for efficient long-range dependencies.

The block structure forms a binary tree: at each level, blocks double in size, creating O(logN) levels total. All blocks
at each level are processed in parallel through vectorized operations. For a given query position, outputs from multiple
blocks (one from Flash attention on the diagonal, up to logN from MuSeapproximations) are merged by weighting
with their respective logsumexp values:

out =
∑

i exp(µi)Yi∑
i exp(µi)

(8)

where µi is the logsumexp value and Yi the output of the ith block to be merged for this output position. Each level of
MuSeprocesses N/2 tokens in O(NCD) time while the flash attention portion runs in O(NBD) time where B is the
block size. This achieves O(NCD logN) complexity for causal attention while preserving exact computation for local
dependencies where attention is typically strongest.

7 Empirical Evaluation

In this section we empirically evaluate MuSe, focusing on establishing the viability of multipole approximations for
transformer pretraining. We address four key questions:
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Table 1: Runtime for a combined forward and backward
pass, and error of MuSe as clustering quality and number
of clusters varies. Here we consider a batch size of 16,
a context length of 8192, a head count of 8 and a head
size of 64. For this problem size the runtime of our flash
attention implementation in Pallas is 67.91ms, and that
of Nvidia’s cudnn flash attention is 51.74ms. The data
used consists of queries, keys and values recorded from
the long context attention layer at the end of pretraining
for our small gpt model.

Cap Iters C Runtime (ms) Rel. Sq. Error

1.5 1 32 12.37 0.2475
2.0 3 32 19.37 0.2148
4.0 5 32 29.35 0.2060

1.5 1 64 16.49 0.1946
2.0 3 64 23.05 0.1642
4.0 5 64 34.79 0.1571

1.5 1 128 36.12 0.1435
2.0 3 128 45.82 0.1179
4.0 5 128 72.88 0.1123

Table 2: Runtime in milliseconds for a combined forward
and backward pass of MuSe, CUDNN Flash Attention,
and our Pallas implementation of Flash Attention as con-
text length N varies holding total batch size (inclusive of
head count) fixed at 1M tokens. We emphasize that, since
total batch size is constant, linear time algorithms will be
constant in this table, and quadratic time algorithms will
be linear.

N MuSe CUDNN Pallas

1024 30.03 8.313 10.43
2048 24.46 14.15 18.65
4096 18.73 26.63 35.09
8192 16.53 51.77 67.96
16384 16.29 102.72 134.62
32768 16.41 204.40 267.22
65536 19.28 405.72 534.28

1. How the runtime of MuSe compares with that of flash attention.

2. How the quality of clustering, e.g., number of clusters, affects runtime and approximation error.

3. To what extent the various components of our algorithm, such as having two stages and including dipole
corrections, contribute to error reduction.

4. Whether the resulting approximation errors in both forward and backward passes are sufficiently small for us
to obtain significant wall-clock speedups in long-context pretraining with acceptable loss of accuracy.

We conduct our microbenchmarks (sections 7.1 and 7.2) on isolated attention layers using queries, keys, and values
recorded from a trained model, allowing us to thoroughly analyze the approximation quality and runtime characteristics
with realistic attention patterns. For end-to-end validation (section 7.3), we demonstrate full pretraining of a 30M
parameter model, where we can complete many training runs to 2B to facilitate rapid iteration and comparisons, in
order to verify that approximation errors remain acceptable throughout training. Note that all runtimes reported include
all overheads, e.g., clustering and merging of acausal blocks, not just the attention computation itself.

7.1 Microbenchmarks

We now benchmark MuSe on a single batch of queries, keys and values recorded after training on 2B tokens. In the
main body we consider a context length of 8k tokens, though results for 4k tokens may be found in table 6. We consider
a batch size of 16 and a head count of 8, for a combined effective batch size of 128. All benchmarks were performed on
a single A100 GPU.

Our key metric of output error here is relative squared error, given by the ratio between the squared 2-norm of the
difference between the reference output and the approximate output and the squared 2-norm of the reference output
itself. This roughly corresponds to the fraction of variance in the output which is error as opposed to signal.

Referring to table 1, it can be seen that, as expected, both runtime and accuracy increase with cluster count. Runtime
costs are roughly linear in cluster count, though we emphasise that our implementation is designed for a cluster count
of 64, and performance with either 32 or 128 clusters could likely be improved by changing the kernel design.6 For this
range of cluster counts on this data, the error may be approximately halved by quadrupling the number of clusters. The
relative squared error ranges between 0.1123 and 0.2475 for the configurations shown.

6We tuned block sizes for each cluster count separately, but did not consider changing the iteration pattern or fusing or splitting
out kernels.
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We opt for the fastest cluster count 64 configuration in our later experiments, with an error of 0.1946. We emphasize
that we are using such a low iteration count (1) in order to keep clustering costs similar to attention costs - improved
clustering implementations would allow us to use more iterations and significantly reduce error.

It can further be seen that clustering quality has a significant effect on error. One obvious contributor to the clustering
quality is number of K-means iterations, which we vary between 1 and 5 (we have found error reduction past 5 iterations
to be small, likely because K-means converges quickly in these high dimensional problems). As noted in section 4,
we enforce a static cap on cluster size of between 1.5 and 4 times the mean cluster size. A lower cap reduces the
compute and storage cost of working with the resulting ragged tensors but reduces clustering quality. Here we vary
these hyperparameters jointly, though they can be seen varied individually in tables 5 and 6. The difference between our
highest (cap ratio of 4, 5 iterations) and lowest (cap ratio of 1.5, 1 iteration) quality configurations corresponds to a
roughly 20% improvement in error, though it more than doubles runtime.

Most notably, however, the runtime of our chosen configuration (cap ratio of 1.5, 1 iteration, 64 clusters) is shown in
comparison with the CUDNN implementation of flash attention in table 2 at various context lengths. Also shown is the
runtime of our implementation of flash attention in Pallas, which we will use later on. The significance of the Pallas
implementation is that it is implemented in the same framework as our MuSe kernels, and is an optimized version of the
official example implementation of flash attention in Pallas from Google. This makes it a natural comparison point for
similar levels of engineering effort and abstraction.

It can be seen that MuSe begins to be faster than CUDNN’s flash attention at a context length of 4k, where it is almost
50% faster than CUDNN, and twice as fast as our Pallas flash attention. Since we hold the total token count constant
and scale the batch size inversely with the context length, it can be seen that MuSe has roughly constant runtime as
context length increases, while that of flash attention increases approximately linearly. This results in a speedup of 3x
over CUDNN and 4x over Pallas at 8k, and reaching speedups of 20-30x at context length 64k.

7.2 Ablation

We now demonstrate the importance of the various components of MuSe for maintaining sufficiently low error in
approximating softmax attention. Here we will consider taken both early in training (after 200M tokens) and late (after
2B tokens). It can be seen in table 3 that removing the dipole corrections results in an 80% increase in error early in
training and 15% late. We speculate that the greater contribution of the dipole corrections early in training corresponds
to higher entropy attention patterns and lower magnitude queries, where the linear correction of the dipole is more
significant than the higher order terms we neglect. We also see that removing the two-stage aspect of our algorithm (i.e.,
having a single query cluster) results in dramatic increases in error, with errors roughly doubling both early and late
in training. Finally, as a sanity check we remove the monopole term of the algorithm to verify that we have not, e.g.,
simply linearized attention with the dipole term, and find that, indeed, the magnitude of error increases by 4-40 times
corresponding to the vast majority of the output being error.

Table 3: We show the consequences of removing either the monopole or dipole components of our method or the
two-stage component on relative squared error both early in training (after 200M tokens) and late (after 2B tokens).

Component Removed Early (200M) Late (2B)

Error Change Error Change

None (full MuSe method) 0.025 – 0.195 –
Without Dipole 0.045 +80% 0.224 +15%
Without Two-stage 0.057 +128% 0.380 +95%
Without Monopole 0.960 +3741% 0.922 +373%

7.3 Pretraining

We now demonstrate the use of MuSe to obtain a wall-clock speedup of 12.2% in total runtime over our flash attention
implementation at 16k context with minimal loss degradation of 0.36%, as seen in figure 3 and table 4. This is important
for two reasons. Firstly, we thereby demonstrate that the extension from acausal to causal attention retains significant
speed advantages in practice. Secondly, we demonstrate that the errors measured earlier in the forward pass, and
whatever backward pass errors these come with, are acceptable in practice.

The model used here is a 7-layer 29M parameter GPT-like model using RoPE position embeddings where we have
limited the context length of all layers except the central layer to 256 with a sliding window. The full hyperparameters
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Figure 3: Training negative log-likelihood loss in nats
versus number of training tokens for flash attention with
context window 256 (CUDNN) and 16k (Pallas), and
MuSe with context window 16k. The inset shows conver-
gence behaviour in the range of 1–2 billion tokens, where
it can be seen that the long context window significantly
improves performance (reduction of 3.6% from 3.436 to
3.310 with flash attention) while the difference between
MuSe and flash attention is small (0.36%).

Implementation Window Step (ms) Loss

CUDNN Flash 256 69.7 3.436
Pallas Flash 16k 103.7 3.310
MuSe 16k 90.5 3.322

Table 4: Step time and final loss for the three training
runs of figure 3 as a function of sliding window size
(16k corresponds to full causal attention). Note that this
window size refers to the single, central, global attention
layer. All other layers use a constant window size of 256
and CUDNN Flash Attention.

used for these experiments may be found in appendix A. This allows us to isolate the effects of global attention
by varying the context length of the central layer and swap out attention implementations for this layer to compare
performance. In particular, we compare CUDNN Flash Attention with a sliding window of 256, Pallas Flash Attention
with a global window (i.e., 16384), and MuSe with an overall window of 16k and a block size of 8k. This corresponds
to the smallest configuration of the causal adaption of MuSe described in section 6 where half of the causally masked
attention matrix uses a single large MuSe block and the rest is Pallas Flash Attention. We use the fastest MuSe clustering
hyperparameters of table 1 for 64 clusters, as we consider this to be a reasonable speed/accuracy tradeoff.

It can be seen in table 4 that the reduction in training step time (i.e., a full update on one batch) using MuSe is 12.7%
relative to the baseline of our Pallas flash attention. It can be seen that using long context attention is costing us 33.8
ms with flash attention, which we reduce by 39% to 20.6 ms with MuSe. This is impressive, because only half of the
causally masked attention score matrix is using MuSe, so this corresponds to a roughly 78% reduction in time spent on
that portion, lining up with the 76% reduction expected from our earlier acausal microbenchmarks at 8k context.

8 Conclusion

We have seen that MuSe achieves a complexity linear in context length for acausal attention and log-linear in context
length for causal attention. We have shown that this translates to practical wall-clock speedups in practice with minimal
loss degradation.

We believe that it should be possible in future work to push the cross-over point relative to flash attention lower through
greater optimization of the implementation, especially for head dimensions less than 64, which we have not explored in
this work. We are also excited to test MuSe in larger scale settings, since larger models should be able to exploit longer
contexts than we explored here, potentially producing even greater speedups.
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A Hyperparameters

All experiments were performed on a single A100 GPU with 40GB of VRAM. All experiments were performed
using the PG-19 dataset [Rae et al., 2020], consisting of roughly 28k English language books from Project Gutenberg
published before 1919. To avoid wasting too many parameters on token embeddings with tokenizers optimized for
internet text, we trained a specialized tokenizer on PG-19 with a vocabulary size of 16384.

Our architecture is a GPT-style architecture, modified to use RoPE position embeddings with a base inverse frequency of
100k in order to permit long context training without excessive parameter overhead. Our model has 29.4M parameters,
7 layers, hidden size 512, 8 heads of dimension 64 per layer, and an intermediate size in the feedforward layers of 2048.
All layers bar the central layer use a sliding window of size 256 in their attention component, and use the CUDNN
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Flash Attention implementation thereof. We vary the window size of the central layer, either having it be also local at
256, or equal to the full context length (in our experiments 16384). When comparing full context runtimes we use either
our Pallas Flash Attention implementation in this central layer, or MuSe.

We train in mixed precision using bfloat16. We use a batch size of 4 and sequence length of 16384. We construct
sequences by concatenating PG-19 together with end of sequence separators and cutting it into equal 16384 token
chunks, which we then shuffle and batch. We train on a total of 2B tokens of text.

We use AdamW with β1 = 0.9 and β2 = 0.95 and a weight decay of 0.01. We use a cosine decay learning rate schedule
with linear warmup over 1000 steps (batches) followed by decaying from a peak of 1.5× 10−3 to 1.5× 10−4 over the
course of training. We clip gradients by a global norm of 1.0 in order to maintain stability at the very beginning of
training.

B Detailed Tables

This appendix contains extended tables comparing the runtime and accuracy of MuSe with different cluster counts
and K-means hyperparameters. Specifically, Cap refers to the maximum cluster size as a fraction of the (necessarily
predetermined) average cluster size, while Iters refers to the number of K-means iterations which are performed (i.e.,
assignment followed by recomputing centroids), before the final assignment of points to centroids. Note that, since
MuSe itself computes weighted centroids, we are effectively getting an extra K-means iteration for free there. Table 5
shows results for an 8k acausal context, as in the main text, whereas results for a shorter 4k context may be found in
table 6.

The main difference from the main text is that we vary Iters and Cap independently here for cluster count fixed at 64,
and that we also include 4k context, but there are also a few extra datapoints. Specifically, we include Cap 1.25 for
context 8k as a maximally fast setting (this is not practical at 4k since the required kernel block sizes are inefficiently
small), and we include Cap 2.0 Iters 1 in the case of C = 128, since Cap 1.5 forces inefficiently small block sizes with
C = 128 and is therefore pointlessly slow.

Table 5: Runtime for a combined forward and backward pass, and error of MuSe as clustering quality and number of
clusters varies. Here we consider a batch size of 16, a context length of 8192, a head count of 8 and a head size of 64.
For this problem size the runtime of our flash attention implementation in Pallas is 67.91ms, and that of Nvidia’s cudnn
flash attention is 51.74ms. The data used consists of queries, keys and values recorded from the long context attention
layer at the end of pretraining for our small gpt model.

Cap Iters C Runtime (ms) Rel. Sq. Error

1.25 1 32 11.80 0.2650
1.5 1 32 12.37 0.2475
2.0 3 32 19.37 0.2148
4.0 5 32 29.35 0.2060

1.5 1 64 16.49 0.1946
2.0 1 64 18.23 0.1854
4.0 1 64 25.98 0.1807

1.5 3 64 21.33 0.1700
2.0 3 64 23.05 0.1642
4.0 3 64 31.05 0.1622

1.5 5 64 25.18 0.1633
2.0 5 64 27.02 0.1582
4.0 5 64 34.79 0.1571

1.5 1 128 36.12 0.1435
2.0 3 128 45.82 0.1179
4.0 5 128 72.88 0.1123
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Table 6: Runtime for a combined forward and backward pass, and error of MuSe as clustering quality and number of
clusters varies. Here we consider a batch size of 32, a context length of 4096, a head count of 8 and a head size of 64.
For this problem size the runtime of our flash attention implementation in Pallas is 35.10ms, and that of Nvidia’s cudnn
flash attention is 26.65ms. The data used consists of queries, keys and values recorded from the long context attention
layer at the end of pretraining for our small gpt model.

Cap Iters C Runtime (ms) Rel. Sq. Error

1.5 1 32 12.72 0.2568
2.0 3 32 18.80 0.2192
4.0 5 32 27.71 0.2095

1.5 1 64 18.75 0.1944
2.0 1 64 20.49 0.1835
4.0 1 64 28.22 0.1774

1.5 3 64 23.21 0.1673
2.0 3 64 24.91 0.1599
4.0 3 64 32.72 0.1576

1.5 5 64 26.85 0.1596
2.0 5 64 28.44 0.1527
4.0 5 64 36.45 0.1508

1.5 1 128 49.59 0.1373
2.0 1 128 49.09 0.1284
2.0 3 128 53.11 0.1123
4.0 5 128 79.15 0.1064
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