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Abstract

Utilising causal knowledge in machine learning (ML) systems yields more robust models
with the capability of performing certain extrapolations. However, much of current causal-
ity research focuses on deriving causal models in isolation, hence current systems are not
capable of updating and improving causal knowledge when new observations arrive. Draw-
ing inspiration from human learning, Continual Learning (CL) aims at updating models
given a sequential stream of evidence. Leveraging common patterns and past experiences
to gradually improve causal knowledge in ML models is a crucial step towards more robust
CL systems. In this work, we propose to learn and update causal models in a lifelong learn-
ing setting where causal knowledge explaining newly arriving observations is inferred from
similar previously seen observations. We call this framework evidence matching. Further,
an analysis of real world data supporting our motivation is provided.
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1. Motivation

The world provides humans with sequences of new observations continuously. In response,
humans repeatedly adapt and extend their world model based on these evidences, enabling
them to perform accurate predictions. At the same time, a pivotal component of human
intelligence is the incorporation of causal knowledge enhancing the robustness and accuracy
of predictions across environments. Frequently, human cognition elucidates novel obser-
vations through the adaptation of pre-existing causal explanations derived from analogous
past experiences. For example, upon achieving a satisfactory explanation for the motion
of a car, humans effortlessly formulate a subtly adjusted rationale for the movement of
an airplane. Hence, two key ingredients required for a robust, flexible and accurate learn-
ing system are the capability of continuously updating a model and the usage of causal
knowledge. Continual Learning (CL) aims to adapt the capability of continuously updat-
ing models to Machine Learning (ML) (Mundt et al., 2020; Parisi et al., 2019; McCloskey
and Cohen, 1989). Nonetheless, the predominant focus in CL revolves around traditional
Machine Learning (ML) models known for their reliance on correlational information ex-
clusively. It is widely accepted that incorporating causal capabilities (Pearl, 2009) into ML
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Figure 1: Infer Causal Structure using former Evidence. If the causal structure of
evidence obtained formerly (e1 in this case) matches the current evidence e2, then
previous causal knowledge for e1 can help infer the causal structure of e2.

models is helpful in constructing more robust ML systems and progressing towards systems
with certain extrapolation capabilities. To this end, the ML community has begun explor-
ing how causal knowledge can be incorporated into ML models, enabling them to perform
inference for causal questions (Xia et al., 2021; Zečević et al., 2021). However, as of now,
this exploration has been predominantly limited to classical supervised environments which
lack continuous streams of evidence. We believe that one key component still missing in the
design of CL systems incorporating causal knowledge in their predictions is the ability to
guide the adaptation process of causal models by leveraging patterns manifested in observed
evidences – termed evidence matching. The following example gives an intuition:

Example. Examine the renowned Lotka-Volterra rule (Lotka, 1920), asserting that prey
and predator population sizes exhibit a cyclical pattern with a slight phase shift. Initially,
prey populations peak, followed by a decline as predator populations rise and eventually
reach their peak. Subsequently, with a decrease in the predator population due to a scarcity
of prey, the prey population gradually recovers.

A similar dependency can be observed on financial markets: During economic growth,
stock prices are rising as well as the volume of stocks being held by shareholders. At some
point, the volume peaks and due to certain (often unmeasured) factors, shareholders start
selling their shares, letting stock prices fall. When economy recovers, shareholders start to
buy shares again, initiating a new cycle.

Fig. 1 visualizes our idea by highlighting how similar causal structures can render similar
patterns in observations. By exploiting previous evidence e1 for which the causal structure
was already identified, one can infer the causal relations explaining current evidence e2
efficiently by making use of the similarity of the evidences.

We suspect that exploiting such patterns can make adaptation faster, more efficient and
more robust. Consequently, in this work we make the following contributions:

1. We present a meta-learning inspired framework exploiting patterns in the evidences
observed to guide the adaptation of causal models.

2. We introduce evidence matching along with theoretical assumptions and describe how
it relates to the independent mechanisms principle.
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3. Based on the Tübingen cause-effect pairs dataset (Mooij et al., 2016), we show em-
pirical evidence that patterns in observed data exist and can be used to reason about
the underlying causal structure.1

2. Related Work

Causal Discovery. Structural Causal Models (SCMs) define a principled framework to
model complex joint distributions, predict the effects of interventions and perform counter-
factual reasoning (Pearl, 2009). The causal graph induced by an SCM dictates the causal
directions between variables. Recovering this graph from data is a fundamental task in
various disciplines which has been tackled by various approaches, termed causal discov-
ery (Sprites et al., 2000; Chickering, 2003; Shimizu et al., 2006; Zanga and Stella, 2023).
Ke et al. (2022) recently proposed a supervised learning task to identify relations between
synthetic datasets and the structure of Causal Bayesian Networks (CBNs) leveraging ob-
servational and interventional data. Lopez-Paz et al. (2015) predict causal directions from
data leveraging a model trained on a set of causal discovery tasks. However, they only con-
sider the standard setting (no CL) and thus lack capabilities to deal with continual updates
and changes. The Tübingen causal-pairs dataset (Mooij et al., 2016) comprises real-world
datasets featuring pairs of variables, each accompanied by a ground truth causal direction.

Continual Learning. Continual learning (CL) in general and lifelong learning (Chen and
Liu, 2018) in particular are concerned with learning problems where new information is made
available over time. Typically, CL methods rely on regularization (Kirkpatrick et al., 2017),
(pseudo-)rehearsal (Shin et al., 2017), or architecture modifications (Rusu et al., 2022) to
address this challenge. Mundt et al. (2020) highlight the connections between open-world
learning, active learning and continual learning, emphasizing the limitations of the closed
world assumption. This aligns with our motivation of leveraging evidence across different
domains. Javed and White (2019) propose to meta-learn an expressive representation for
all tasks in a sequence of tasks and train specialized neural network heads to solve a certain
task. Meta-learning the representation helps exploiting similarities among tasks, hence
allowing for quick adaptation of classification heads.

3. Guiding Causal Model Adaptation via Evidence Matching

Evidence matching aims to compare representations of former evidence for which causal
knowledge is available to infer causal knowledge of new evidence by exploiting similarities
among observations. To that end, we consider the set of all possible evidences E and assume
that causal knowledge is represented as a graph structure.

3.1. Evidence Matching and Independent Mechanisms

We start by revisiting Structural Causal Models (SCMs).

Definition 1 (Structural Causal Model) A Structural Causal Model (SCM) is a tuple
ξ = (U,V,F , p) where U is a set of exogenous (i.e. unmodelled) noise variables, V is the

1. Our code is available at https://github.com/J0nasSeng/causal-structure-meta-learning.git.
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set of endogenous (i.e. observed) variables, and p is a joint probability distribution over U
s.t. all Ui, Uj ∈ U are independent and F is a set of functions describing relations between
variables in V

Vj = fj(Pa(Vj), Uj) (1)

where Vj ∈ V is an endogenous variable, Pa(Vj) describes the set of parents of Vj, and Uj

is exogenous noise.

Each SCM induces a a Directed Acyclic Graph (DAG) G. Assume dataset D =
{(X1, G1), . . . , (Xn, Gn)} where Xi = (xi

1, . . .x
i
k) ∈ E is a set of k i.i.d. observations with

dimension d, where each observation is sampled from distribution pi induced by the causal
graph Gi. Considering D as a set of tasks, learning a function gθ : E → G can be viewed as
a meta-learning problem where each (Xi, Gi) corresponds to a task. Each task comes with
observations Xi and a model Gi explaining Xi. Hence, learning gθ can be seen as learning
to learn a model Gi given observations Xi. Inspired by this meta-learning perspective, we
propose to minimize a loss L of the following form:

θ∗ = argmin
θ

E(Xi,Gi)∼D[L(gθ(Xi), Gi)] (2)

It is well known that recovering the full causal structure from purely observational data
is impossible in general (Pearl, 2009), hence Eq. 2 cannot be solved optimally using standard
ML methods. However, it is possible to recover the causal structure up to Markov Equiv-
alence, i.e. to identify the correct independence structure among variables. We introduce
the following assumptions to allow for evidence matching:

Assumption 1 (Availability of Evidence) For each incoming (X, G) there exist (X′, G′) ∈
D s.t. G ≡M G′ where ≡M means Markov equivalent.

Assumption 2 (Clusters of Markov Equivalent Graphs) For D′ ⊂ D s.t. Gi ≡M
Gj ∀Gi, Gj ∈ D′, i ̸= j and D′′

= D \ D′, assume

σ <
maxGi,Gj∈D′ DKL(p(V (Gi))||p(V (Gj)))

minGi∈D′,Gj∈D′′ DKL(p(V (Gi))||p(V (Gj)))

where DKL is the KL-divergence, σ is a constant and p(V (Gi)) denotes the distribution
over random variables V (Gi) the graph Gi is defined over.

Assumption 2 ensures that Markov equivalent graphs can be clustered w.r.t. their induced
distributions and thus w.r.t. samples we observe which allows matching of observations.
The ultimate goal is to learn a function gθ∗ inferring a graph close to the true causal DAG
G that induced the distribution p(V (G)) from which the observed samples Xi come, by
matching Xi to former observations. This leads to the following conjecture.

Conjecture 1 Recovering graphs beyond the MEC via evidence matching is impossible
without a relaxation of the independent mechanisms principle.
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Algorithm 1: Evidence Matching Framework. Our framework relies on an en-
coding function computing representations of observations and a function to match
observations and retrieve the closest graph.

Data: Representation storage R, observations Xi

r← encode observations(Xi) ;
if R is not empty then

Glocal ← match and infer(r, R) ;
Glocal ← refine local graph(Glocal, Xi);

end
else

Glocal ← identify causal graph(Xi);
end
store (r, Glocal) in R ;
return Glocal ;

The motivation of this paper is based on the observation that similar mechanisms can
co-occur more frequently with similar graph structures (see Fig. 1). To identify a causal
structures beyond the MEC via evidence matching, we believe that – given a shared causal
structure – the probability of a set of functions explaining a formerly seen evidence must
influence the probability of the set of functions explaining observations seen later. Hence,
mechanisms might not be independent of each other. We argue that this aligns with the
observation that humans tend to quickly infer causal relationships from evidences without
explicitly testing the causality of these relationships. This strategy allows for quick identi-
fication of causal structures in various scenarios. Adopting such a strategy to adjust causal
models in CL systems can, therefore, be highly beneficial.

In Alg. 1 we propose a possible framework to update causal knowledge in a CL set-
ting using matching of sequentially obtained evidence. Note that we assume that causal
knowledge is represented by a graph structure, however our framework is not limited to this
representation. Other, similar algorithms for evidence matching are also conceivable.

4. Exploiting Evidence Matching

Evidence matching holds promise for making identification of causal structures easier and
more efficient. An intriguing approach to leverage former evidence could involve learning
representations of entire datasets and making predictions based on these representations.
While such an approach eliminates the need for hand-crafted features, ideally the learned
representations provide high quality estimates of sufficient statistics of obtained observa-
tions. There are multiple ways to use such a representation for causal discovery. In its most
simple form, the model can directly output a causal graph. But the model output could
also be less specific, instead simply constraining the search space over causal graphs, hence
warm starting subsequent causal discovery algorithms. If available, additional sources of
information, such as details about the datasets’ environments or information about variable
names could further provide beneficial information. Here, the application of large language
models to this additional information (e.g. Kıcıman et al. (2023)) holds promise.
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However, note that we acknowledge that there is no guarantee in general that similar
data implies similar causal structures, as generally two different causal graphs can generate
the same observational data. Hence, providing uncertainty estimates for predictions should
be part of the design of such systems. Also, in cases where certainty in identifying the
correct causal directions is essential, evidence matching can prove valuable for selecting
interventions, ultimately helping to identify causal structures. This is because certain causal
directions are more probable than others, resulting in a minimal set of interventions to be
performed to identify causal structures. Furthermore, the availability of a larger base of
datasets could not only assist in testing assumptions commonly used in causal discovery
algorithms but also facilitate the exploration of new criteria and assumptions, potentially
leading to the development of novel algorithms. It could also serve as a basis of determining
the conditions under which assumptions are applicable.

For evidence matching, the CL setting is of particular importance as the entire concept
is built around continually increasing the accumulated knowledge about causal patterns for
future predictions. Here, models trained on different environments or using different data
might utilize different patterns for evidence matching. For instance, if a model is initially
trained on datasets capturing physical processes and subsequently training is continued with
datasets related to economy, the model could fail to perform well on physical datasets if no
measures are taken to prevent this. But even within a specific setting, unmeasured influences
(variables) can change over time, thus resulting in new kinds of datasets with previously
unseen properties. In such a setting of “Causality in Flux”, i.e. where patterns to detect
causal directions may change over time, avoiding forgetting is desirable. In particular,
learning in a continual manner is important as, in this setting, a single model is trained on
datasets of datasets. Remember, that each dataset is used to output a single causal graph.
In a sense, a full dataset is just a single variable for evidence matching. When training
using this kind and amount of data, storing all data trained on previously requires a lot of
capacity. Even if all previous data is available, training on such a huge amount of data can
be time consuming and computationally expensive. Thus, updating a model in a CL setting
follows naturally. If a model for evidence matching is only applied in a specific environment
such as economy, another difficult task is to decide when new data contradicting current
model behavior is representative for the problem in the future and should be learned. If,
otherwise, this new data is determined to be outliers, it may be better to exclude them
from training or leave open the possibility to revert to previous model behavior.

On the related issue of performing targeted forgetting of information learned, recent
advancements have been made (Wang et al., 2021), (Wang et al., 2023). One primary mo-
tivation for this approach is to balance model capacity with predictive performance. The
goal is to keep as much free model capacity as possible for upcoming tasks, i.e. to remove
information with no or little relevance from the model. In the context of causal models
in CL scenarios, abstractions are a promising alternative to forgetting. Finding abstrac-
tions corresponds to summarizing multiple variables of a causal graph into one variable and
adapting the mechanisms between the summarized variable and its neighbors. This way,
a trade-off between model complexity and predictive performance can be achieved, mirror-
ing the principles proposed in recent works on CL. Evidence matching could help identify
potential abstractions, thus assisting in finding a balance between model complexity and
predictive performance.
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Experiment Results Average

0.83 0.78 0.67 0.78 0.87 0.79 ±0.07

Table 2: Evidence Matching using Random Forests. Given the meta-features, we
trained a RF 5 times on different train-test splits. It can be seen that the RF per-
forms better than random (baseline is 0.5 accuracy due to our data augmentation)
consistently, indicating that there is a dependency between the meta-features and
the true causal model.

5. Evidence Matching in Cause-Effect-Pairs

Successful evidence matching relies on recognizing patterns in the data that are dependent
on the causal structure. To gauge the practical feasibility, we analyse the Tübingen Cause-
Effect-Pairs dataset from Mooij et al. (2016).

5.1. Experimental Setup

The Cause-Effect-Pairs dataset consists of 108 cause-effect pairs consisting of two variables
where a causal connection between these variables is known (i.e. either X → Y or Y →
X). Each dataset contains between 109 and 16k i.i.d. samples from the underlying data
generating process. We excluded all datasets which contained erroneous values (such as
null -values), leaving us with 85 datasets.

Name Formular Rationale

Skewness E[X−µX ]3

σ3
X

Normality

Kurtosis E[X−µX ]4

σ4
X

Normality

Mutual Information MI(X1, X2) Entropy
Correlation ρX1,X2 Dependency

Table 1: Meta Features. We derive four features
from the the Cause-Effect-Pair datasets
aiming to describe properties of the under-
lying joint distribution and its marginals
s.t. the correct causal graph can be pre-
dicted based on these derived features.

Our analysis aimed to identify
similarities among mechanisms in the
data generating processes yielding
the datasets in the Cause-Effect-
Pairs collection. The mechanisms in-
duce a joint distribution over all ob-
served variables (in this case X and
Y ), hence our analysis focused on
identifying similarities among these
induced joint probabilities across
datasets. To this end, we generated a
set of meta-features that capture cer-
tain distribution-related properties of
the data, see Tab. 1 for details. We

include augmented datasets simulating the case had the columns been swapped2, doubling
the overall size of our data. The meta-features were used to train a classifier predicting
the causal model (i.e. X → Y or Y → X). We applied t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Van der Maaten and Hinton, 2008) on the resulting meta-features to
project the dataset on two dimensions. Tab. 1 shows all features derived from the datasets.

2. If the the original dataset D consists of instances such that D = {(x1, y1), (x2, y2), . . . , (xn, yn)} with
class 0, we also add D′ = {(y1, x1), (y2, x2), . . . , (yn, xn)} with class 1.
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5.2. Results

We now discuss the results of our analysis.

Classification. We trained a Random Forest (RF) on 5 randomly chosen subsets (70%)
and tested it on the respective remaining data (30%). Our results demonstrate that the RF
can distinguish between the causal models more effectively than random chance, indicating
that the meta-features capture properties of the joint and marginal distributions, enabling
the inference of the correct causal model. We show our results in Tab. 2.

Dimensionality Reduction. In Fig. 2, we present the results of the meta-features by
t-SNE. We observe that X → Y and Y → X models form some clusters in the projected
space. While not perfect, this shows that even in a 2-dimensional space, the data does not
follow a completely random distribution. This indicates that the independent mechanism
assumption does not hold in the Cause-Effect-Pairs datasets, providing support for our
hypothesis that exploiting patterns among mechanisms is advantageous for inferring the
underlying causal graph when presented with novel evidence.

Discussion. Considering the theoretical impossibility of discovering causal graphs
solely from observational data, evidence matching can not always predict the correct causal
graphs. As the meta-features here were chosen manually and are too simplistic to cap-
ture all relevant information about the data distributions, these results are not intended to
compete within the causal discovery literature. Instead, they serve as an illustration and
motivation for the idea that features extracted from causal data can be subsequently used to
infer causal relations. While further experimentation and investigation are required to com-
prehensively assess the applicability of evidence matching, we believe it to be a promising
concept with high potential, particularly in combination with other ideas or algorithms.
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Figure 2: Dimensionality Reduction of
Meta Features (t-SNE). We ap-
plied t-SNE on the meta-features
and observe that there are cer-
tain clusters depending on the class
(X → Y or Y → X).

6. Conclusion & Outlook

In this work, we stated assumptions to
allow for inference of causal relations by
matching currently observed evidence with
previous evidence. We also conjectured
that the independent mechanism assump-
tion must be weakened in order to facilitate
such inference. Additionally, we provided
empirical evidence with our analysis of the
Tübingen Cause-Effect-Pairs datasets.

Further work should consider to build
real world datasets where the underlying
causal structure is known as such datasets
are crucial to develop and evaluate meth-
ods following our proposed framework.
This will enable a more detailed investiga-
tion into the capabilities and potential of
evidence matching and the applicability of
the independent mechanisms principle.
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