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Abstract—In games like chess, strategy evolves dramatically
across distinct phases — the opening, middlegame, and endgame
each demand different forms of reasoning and decision-making.
Yet, many modern chess engines rely on a single neural network
to play the entire game uniformly, often missing opportunities
to specialize. In this work, we introduce M2CTS, a modular
framework that combines Mixture of Experts with Monte Carlo
Tree Search to adapt strategy dynamically based on game
phase. We explore three different methods for training the
neural networks: Separated Learning, Staged Learning and
Weighted Learning. By routing decisions through specialized
neural networks trained for each phase, M2CTS improves both
computational efficiency and playing strength. In experiments
on chess, M2CTS achieves up to +122 Elo over standard single-
model baselines and shows promising generalization to multi-
agent domains such as Pommerman. These results highlight
how modular, phase-aware systems can better align with the
structured nature of games and move us closer to human-like
behavior in dividing a problem into many smaller units.

Index Terms—Mixture of Experts, Game Phases, Chess,
Monte-Carlo Tree Search, AlphaZero

I. INTRODUCTION

Chess has long stood as a benchmark for artificial in-
telligence — not just because of its complexity but also

*These authors contributed equally.

because of its potential to reveal the limits and capabilities of
reasoning systems. Its rich structure, long-term dependencies,
and diverse tactical and strategic demands make it a valuable
testbed for learning and planning algorithms. Systems like
AlphaZero [Silver et all [2018] have achieved remarkable
success by combining deep reinforcement learning with Monte
Carlo Tree Search (MCTS), reaching superhuman performance
through self-play alone.

However, these systems treat the game as a single, uniform
problem, relying on one neural network to make decisions
across all stages — from the structured precision of the
opening, to the tactical depth of the middlegame, to the
calculation-heavy endgame. While this simplifies architecture
and training, it may overlook the reality that each phase poses
fundamentally different challenges. In contrast to the early
game’s reliance on well-established theory and position de-
velopment, the endgame often requires fine-grained calculation
under constrained material.

One concrete issue that arises from this design is data
imbalance. Because most training positions come from the
middlegame, models tend to overfit to this phase, often
underperforming in openings and endgames, where data is
scarcer and strategic demands differ [Mcllroy-Young et al.|
2020, 2022, Palsson and Bjornssonl [2023]]. This bias not
only affects evaluation accuracy but can also limit the agent’s
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ability to discover effective play in underrepresented regions
of the game tree.

Despite clear structural differences between the opening,
middlegame, and endgame, state-of-the-art engines such as
AlphaZero [Silver et al.l 2018|], MuZero [Schrittwieser et al.,
2020]], and Stockfish NNUE [Nasu, 2018] continue to rely
on monolithic architectures trained uniformly across all game
phases. This uniform treatment simplifies training but raises
an important question: Can we build phase-aware architectures
— models that adapt their internal reasoning to match the
shifting demands of the task [Agarwala et al. 2021} [Dobre
and Lascarides| |2017b]]?

To explore this direction, we propose M2CTS, a modular
framework that integrates Mixture of Experts (MoE) [Jacobs
et al), [1991] into an AlphaZero-style MCTS engine. As
illustrated in Fig. [IL M2CTS dynamically selects between
specialized neural networks — each trained for a specific
phase — to evaluate game states during search. By
explicitly modeling the temporal structure of the game,
M2CTS improves both computational efficiency and strategic
accuracy. In chess, it achieves up to +122 Elo compared to
standard single-model baselines, and demonstrates promising
generalization to multi-agent domains such as Pommerman.
These results suggest that even coarse-grained phase
segmentation can provide meaningful gains, supporting the
case for modular architectures in long-horizon, structured
decision-making tasks.

To summarize, our contributions are as follows:
(i) We propose M2CTS, integrating MoE into MCTS frame-
works like AlphaZero.

(i1) We show that a simple separated learning strategy is
as effective, or even more so, than complex alternatives
when sufficient data is available.

(iii)) Our modular architecture can outperform comparable
monolithic approaches in practice.

We first describe M2CTS, covering phase-specific MoE
design and four training strategies. Next, we evaluate its
performance against traditional single-network models. Lastly,
we discuss related work, implications, and limitations.

II. M2CTS: MODULAR SEARCH WITH PHASE-SPECIFIC
NEURAL EXPERTS

M2CTS integrates the MoE model into MCTS to optimize
strategic decision-making in chess engines. By leveraging
phase-specific expert models, M2CTS dynamically adapts its
strategy as the game progresses. In this work, we will use
chess as an example for explaining the methodology and as
an environment for our experimental section. This section
explains the gating mechanism that categorizes game states
and activates the appropriate expert model and give insight in
the training strategies for our experts.

A. Game Phase Definitions as Gating Mechanism

The MoE framework consists of multiple specialized neural
networks, or “expert networks,” each designed to handle a

specific game phase, cf. m1,...m,, in Fig.[I]

These experts are guided by a “gating mechanism” that
evaluates the current game state and selects the appropriate
expert based on predefined phase criteria, as illustrated in
Fig. [1 where it is displayed as G. In this work, coming
from chess, we define these game phases as the opening,
middlegame, and endgame, each with its own unique strategic
demands.

To classify the game phase, we utilize the well-defined
phase definitions from Lichess{ﬂ a widely-used open-source
chess platform. These definitions consider factors such as
piece count, board complexity, and back-rank vulnerability
to determine the phase of the game. The gating mechanism
analyzes the board state in real-time and activates the expert
model that best suits the current phase, ensuring that the chess
engine adapts its strategy dynamically. This approach provides
a holistic perspective on the game’s progression, enabling us
to determine the phase of any given game state independently
while maintaining the Markov property, crucial for accurate
decision-making without historical dependencies. Addition-
ally, this intuitive method accommodates transitions between
phases based on the current board state, ensuring strategic
adaptability throughout the game. For a detailed exploration of
the Lichess phase definitions, please refer to the appendix. The
distribution of game phases using these criteria is visualized
in Fig. [2| There exist several combination strategies for MoE
models, with averaging and the max operator being the most
common [Yang and Browne, [2004]:

y= g}i?;g(mi(x)) (1)

y= Z Gi(x)m;(z) or

For this work, we adopt the max operator for its clarity
in selecting a single, relevant phase, thus eliminating the
possibility of ambiguous phase assignments. This method
of pre-defined input segmentation streamlines the learning
process by ensuring each expert focuses solely on its desig-
nated phase. Additionally, it brings significant computational
efficiencies, as it requires inference from only one expert
model m; at a time. However, this approach assumes accurate
and classifiable game phases. While training a gating network
could potentially improve adaptability by learning from the
data, we have chosen not to pursue this due to the added
complexity and the risk of overfitting. Instead, we prioritize a
straightforward, rule-based gating mechanism that effectively
leverages established phase definitions to enhance performance
without the uncertainties associated with training.

B. Phase Definitions and Working in Batches.

The ideal scenario involves querying always the appropriate
network, aligned with the current phase of the MCTS position.
However, this approach becomes impractical for MCTS with
batch sizes larger than one, which are commonly used to im-
prove GPU utilization. Larger batch sizes necessitate buffering
multiple positions before neural network inference, leading
to reduced node statistics updates and can end in querying

Uhttps://lichess.org/, accessed 2024-05-22
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Fig. 1: M2CTS incorporates MoE-enhanced MCTS through phase-based model selection. M2CTS splits the original simulation
phase into two distinct phases. First, we need to categorizing game states into phases using a gating mechanism in the
Assignment phase, then selecting models for evaluation and backpropagation (Evaluation phase).
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Fig. 2: Splitting the test data into 3 phases: opening, mid-
dlegame and endgame. A detailed distribution of positions
across the three game phases based on the Lichess phase
definition, aggregated by move number. The average starting
moves of the middlegame (11.89 &+ 2.97) and the endgame
(29.15 £ 7.44) are marked by vertical lines.

multiple networks since the batch has not one isolated phase
anymore.

To tackle this issue, we devised a strategic approach for
handling larger batches to reduce the computational load again.
When faced with a batch size greater than one, we analyze all
positions within the batch to determine the dominant game
phase. The network of experts aligned with this dominant
phase is then applied to the entire batch. While this adap-
tation may sometimes process instances with a less-than-ideal
expert network, such instances are expected mainly during
phase transitions. In such scenarios, even if positions are
incorrectly processed, they remain close to their appropriate
phase, minimizing any compromise in prediction accuracy.
This modification is crucial for optimizing GPU efficiency and
effectively managing larger batch sizes, important aspects in
computation chess.

C. Training Phase-Specific Experts

Training an expert for a specific game phase can be as easy
as classifying the data in a first step and splitting the training
set into n parts. However, ensuring that each expert captures
the nuances and transitions between phases could require more
than just isolated training, like a comprehensive understanding
of how the phases interact and evolve throughout the game.

For this, we considered three distinct training methodologies
T1-T3.

T1 - Separated Learning. This approach focuses on training
each of the three expert networks exclusively on posi-
tions relevant to their corresponding game phases. By
restricting the input space to specific phases, we facilitate
focused expertise development, which in turn bolsters pa-
rameter counts without sacrificing inference speed. This
method’s simplicity allows parallelized training across
experts, leading to significant reductions in training time.
Although it ensures in-depth phase-specific knowledge,
its drawback lies in potential challenges with transition
nuances between phases. However, the method’s effi-
ciency and specificity maintain training times comparable
to single-network approaches.

T2 - Staged Learning. In this setup, knowledge is progres-
sively transferred between phases, allowing earlier-stage
learning to inform later-phase behavior. This can be done
either by training sequentially on phase-specific data or
by fine-tuning from a model trained on the full game.
While this promotes broader understanding and aligns
with transfer learning principles, it can also introduce
challenges such as increased training time and the risk
of forgetting earlier phase-specific patterns.

T3 — Weighted Learning. This strategy emphasizes different
sample weights in the loss function based on their game
phase during training. For balancing, we employ

B
Lweighled = % nz:l wnL(xn) (2)
where, B is the batch size, w,, the weight of a specific
sample, and L(z,,) the regular sample loss. To prioritize
the samples from the actual phase, we introduce the
parameter ¢ > 1.0, which balances the weights of the
actual phase (wWman) and the ones of all other samples
(Wother): Wmain = @ * Wother- This approach ensures a con-
sistent magnitude of loss across training and evaluation
by normalizing the sample weights to maintain an average
sample weight close to 1.0. Notably, the test set remains
unweighted for fair performance comparison.
Each of these approaches is designed to enhance the MoE
model’s performance in MCTS. The detailed configurations
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Fig. 3: MCTS in combination with MoE can be used for batch sizes greater than 1. Each sample is assigned to its phase while
allocating a new mini-batch during the MCTS search. When a mini-batch is complete, majority vote selection is used to select
the model that contains the most samples of its associated phase. This model is then used to evaluate all samples from this

mini-batch ensuring efficient and phase-focused processing.

and outcomes of these training strategies are further elaborated
in the experimental section.

III. EXPERIMENTAL EVALUATION

We empirically evaluate M2CTS across a range of settings
to assess its effectiveness. Our experiments are guided by the
following research questions:

(Q1) Does M2CTS improve in performance over classical
MCTS?

(Q2) How do training strategies, expert composition, and
gating mechanisms affect the performance and efficiency
of M2CTS?

(Q3) Can M2CTS generalize beyond chess?

A. Experimental Setup.

We evaluate M2CTS under a range of controlled settings.
During training, the model is evaluated every 500 iterations
on both a dedicated validation set and all four test subsets
(opening, middlegame, endgame, and no-phase). We save
checkpoints whenever the current evaluation loss improves
over the best previously recorded value. The final model is
selected from the last such checkpoint, representing the best
validation performance.

The backbone of our neural network architecture is RI-
SEv3.3, a mobile convolutional network adapted from RI-
SEv2 [Czech et al. 2020]. It incorporates residual blocks
and dual output heads for value and policy prediction, and
is further enhanced with 5 x 5 convolutions and Efficient
Channel Attention (ECA) modules [Wang et al.l 2020]. A
detailed architecture diagram and explanation are provided in
the appendix.

We adopt the input and output encoding from (Czech et al.
[2024]). The input consists of a stack of spatial planes encoding
piece positions, the previous eight moves, castling rights, ma-
terial balance, and auxiliary metadata. Our framework builds
on the ClassicAra variant of CrazyAra, designed specifically
for classical chess.

We use training and test data derived from the KingBase
Lite 2019 databas which contains over one million games

Zhttps://archive.org/details/KingBaseLite2019, accessed 2024-05-22

played by players rated 2200 Elo or higher. Games with fewer
than five moves are excluded to filter out pre-arranged draws
or corrupted records.

To improve training stability, we implement a loss spike
recovery mechanism. If the validation loss increases sharply
(by a factor of s = 1.5 or more), the model reverts to
the previous best checkpoint. This helps prevent catastrophic
performance drops and promotes steady convergence.

Our main evaluation consists of a 1000-game match using
AlphaZero-style MCTS. We report Elo ratings for each con-
figuration and compute 95% confidence intervals using the
method from the Cutechess frameworkf]

Hyperparameters and train/test splits follow those used in
ClassicAra, which has demonstrated competitive results in
tournament settings. Full configuration details are available in
the appendix. Training was conducted on 1-2 NVIDIA A100
GPUs; full runtime and resource usage details are reported in
the appendix.

B. Performance Evaluation (Q1I).

M2CTS outperforms classical MCTS. Elo is a widely
used metric for measuring relative playing strength in chess,
with top engines like Stockfish, Leela, and ClassicAra reaching
ratings above 3300 in competitive settings.

In our experiments, we trained phase-specific expert models
using several learning strategies, introduced in Section [[Ij and
evaluated their combined performance within the M2CTS
framework. As shown in Table [l, Table [[T, and Fig. 4 M2CTS
consistently improves over the single-model MCTS baseline.
On average, our modular approach yields gains between 55
and 122 FElo points, depending on the training setup, with
separated and staged learning performing best.

While M2CTS does not yet match the performance of
elite engines like Stockfish (cf. Table [[II), it demonstrates
substantial progress over traditional MCTS, highlighting
the benefit of incorporating game-phase specialization.
These results suggest that integrating modular, context-aware
strategies into high-performance engines could be a promising

3https://github.com/cutechess/cutechess, accessed 2024-05-22
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Batch Size

Elo Gain vs. classical MCTS

1 8 16 32 64 Average
Separated Learning 106.89 ¢ 12345 e 12681 ¢ 12436e 129.49e 12220 @
Staged Learning 111.68 e 12081 ¢ 12249e 12500 e 12555e¢ 121.11 @
Weighted Learning (¢ = 4) 25.61 o 2320 2352 e 2228 e 2131 e 23.18
Weighted Learning (a = 10) 5041 e 5242 e 5633 63.55 56.51 55.84 o

TABLE I: M2CTS outperforms (e) our baseline “one-for-all” MCTS approach in direct comparison. This table presents the
relative Elo gains achieved by our different training approaches over our baseline model across different batch sizes. The
rightmost column aggregates the average Elo gain across all 55 experiments conducted for each method. A higher Elo value
correspond to a higher difference in playing strength in favor of M2CTS over MCTS. The highest Elo gain is marked bold.

A more detailed version can be found in the appendix.
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Fig. 4: M2CTS outperforms standard MCTS. Utilizing the
separated learning strategy outlined in Section [[[-C| achieves
up to 150 Elo points more than our ’one-for-all’ baseline.
This increase in performance was consistently observed across
a range of experiments, involving various batch sizes, and
different tree complexities, measured in terms of nodes per
tree. The dashed line serves as a reference point and represents
the relative Elo of Stockfish 16.1 limited to 4000 nodes
compared to the ’one-for-all’ baseline with 3200 nodes.

direction for future work.

MZ2CTS achieves higher Elo than MCTS in reinforce-
ment learning from random initialization. We evaluate
M2CTS in a reinforcement learning (RL) setting where mod-
els start from random initialization and improve through self-
play. We compare three configurations: (1) a classical MCTS
baseline using a single network, (2) M2CTS with separated
learning, and (3) M2CTS with staged learning. All models
are trained for 10 update cycles using a shared replay buffer
and fixed training budget. Each experiment is repeated across
three random seeds. Full training details are provided in the
appendix. As shown in Figure [5] the staged learning variant of
M2CTS achieves the highest Elo, outperforming the MCTS
baseline by over 100 Elo points after training. In contrast,
M2CTS with separated learning underperforms relative to
the baseline. These findings suggest that when learning from
scratch, a staged curriculum — in which a general model is
first trained on the full dataset and subsequently fine-tuned for
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—e— M2CTS Staged Learning
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Fig. 5: M2CTSusing staged learning outperforms MCTS
during selfplay when starting from random weight initializa-
tion by more than 100 Elo points after 10 model updates.
M2CTS with separated learning lacks behind by about 100
Elo after 10 model updates.

each phase — offers a more robust foundation for phase-aware
decision-making.

C. Dissecting Architectural and Expert Design (Q2).

More complex training strategies do not outperform
simple dataset splitting. We compare three expert training
strategies: (i) simple dataset splitting (separated learning),
(i1) staged learning, and (iii) weighted learning across all
phases. In the supervised setting, separated learning — where
each expert is trained only on data from its respective phase
— consistently achieves the highest Elo (see Table [I). This
may stem from reduced task interference and more stable
optimization when training is isolated per phase.

Despite their greater complexity, neither staged nor
weighted learning outperforms this simpler baseline in the
supervised setup. Only in the reinforcement learning setting,
where much less data is available for each model update,
does staged learning provide a clear advantage, outperforming
separated learning by roughly 200 Elo points.

In weighted learning, increasing the specialization factor
(a = 10 vs. a = 4) yields better performance. This suggests
that emphasizing phase-relevant data may help bridge the gap
— but comes at a cost. Weighted learning requires processing
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Fig. 6: Expert models are especially helpful in middle- and
endgame. This figure shows the relative Elo gains achieved by
selectively deploying individual phase experts within Monte-
Carlo Tree Search (MCTS), compared to using a baseline
network for all phases. The experts, derived from our sep-
arated learning approach, exhibit notable strengths in both the
middlegame and endgame phases of chess. The experiments
were conducted using a consistent batch size of 64.

the full dataset for each expert, effectively tripling training
time compared to separated learning , making it less sample-
efficient and more resource-intensive.

Based on our experiments, we find separated learning to be
the most effective and efficient training method in supervised
scenarios with a lot of training data, and do not recommend
weighted learning due to its inferior performance and higher
cost.

Middlegame and endgame experts contribute most to
performance, while the opening expert is limited by data
constraints. To assess the individual impact of each phase-
specific expert in M2CTS, we conducted ablation tournaments
where only one expert model was active for its corresponding
phase, while a baseline model was used for all others. As
shown in Fig. [6] both the middlegame and endgame experts
yielded significant Elo gains, confirming their effectiveness in
capturing the strategic and tactical patterns of their respective
phases over the baseline model. In contrast, the opening expert
offered little to no improvement and occasionally underper-
formed relative to the baseline. This underperformance appears
linked to several data-related factors. The opening dataset
lacked sufficient diversity, which—combined with a mismatch
between training and validation distributions—Ilikely led to
overfitting on specific openings. Additionally, the opening
expert’s limited exposure to downstream consequences during
training may have hindered its ability to accurately evaluate
early-game positions in context.

These results illustrate that not all game phases benefit
equally from specialization and highlight the importance of
phase-specific data quality. In modular systems like M2CTS,
expert utility depends not only on model capacity but also
on having sufficiently diverse and contextually relevant data
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Fig. 7: Game phase definitions strongly influence the MoE
performance. Our analysis shows that simplistic approaches,
such as relying only on move counts, lead to suboptimal
phase categorization and consequently to inferior performance.
In contrast, adopting the Lichess phase definition leads to a
significant performance improvement.

aligned with the task’s structure. This emphasizes the need for
targeted data curation and evaluation design when deploying
modular learning systems in structured domains like chess.

Effective gating requires semantically meaningful phase
definitions informed by domain understanding. We began
with the traditional three-phase division of chess—opening,
middlegame, and endgame—based on long-established con-
cepts from chess theory and practice. This classical structure
reflects intuitive shifts in strategy and board dynamics recog-
nized by both human players and chess literature. However,
we questioned whether such domain-specific knowledge is
necessary for defining effective phases in our framework.
Could phase definitions be simplified, or even derived without
expert insight?

To explore this, we experimented with alternative partitions
based purely on the move number, aiming to test if temporal
cues alone could serve as a proxy for strategic transitions.
Specifically, we divided the dataset into 2, 3, 4, and 5 equal-
sized segments according to move count, creating multiple
versions of phase definitions with similar data volume per
partition. Figure [/| presents the Elo comparisons across these
configurations.

The results show that increasing the number of phases
does not consistently improve performance; instead, alignment
between phase boundaries and meaningful strategic shifts in
the game is essential. Notably, the 3-phase model based on
Lichess metadata outperforms a 3-phase model using only the
move counter, indicating that domain-informed segmentation
is more effective than naive time-based clustering.

These findings suggest that building an effective gating
mechanism requires more than just uniform splits—it benefits
from conceptually grounded phase definitions that reflect
actual shifts in strategic intent. This insight extends beyond
chess, reinforcing a broader principle: when designing
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Fig. 8: M2CTS using sperated learning outperforms standard
MCTS at smaller model sizes. Elo was measured in a round-
robin tournament with a fixed 800 number of nodes per move
using different sizes of the AlphaVile [Czech et al.| [2024]
architecture. All agents were trained on the KingBase Lite
2019 dataset.

modular systems, the quality of task segmentation plays a
critical role in downstream performance.

M2CTS with seperated learning requires sufficient data
to outperform MCTS in separated learning. To understand
how dataset size and model capacity affect M2CTS, we
conducted two scalability experiments. First, we used the
AlphaVile architecture [Czech et al| [2024], which is available
in multiple sizes (tiny, small, normal), and trained both single-
model and MoE variants on our standard dataset. We then
measured relative Elo differences between the monolithic and
modular approaches (see Fig. [8). In the second experiment,
we reduced the dataset to half its original size and repeated
training for all network variants. The results (Table [[V)) show
that while larger models benefit from MoE with sufficient data,
their performance deteriorates rapidly when data is limited.
In contrast, single-network baselines are more robust under
constrained conditions.

These results suggest MoE strategies like separated learning
are effective only when each expert has access to enough data.
With smaller datasets, the per-expert data becomes too sparse
to support reliable learning. As expected, larger networks also
require proportionally more data to reach their full potential.

D. Beyond Chess (Q3).

M2CTS can outperform MCTS in Pommerman. To test
whether the benefits of modular, phase-aware decision-making
generalize beyond turn-based board games like chess, we
evaluate M2CTS in the Pommerman environment
[2018]. Pommerman is a real-time, multi-agent envi-
ronment inspired by the classic game Bomberman. It features
partially observable, dynamic interactions in an 11x11 grid
world where agents must place bombs to destroy boxes, collect
power-ups, and eliminate opponents. This setting provides a
useful testbed for studying search based algorithms under
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Fig. 9: M2CTS improves performance in the Pommer-
man [Resnick et al.| [2018]] environment for small networks.
All networks were trained for five epochs using separated
learning on a dataset generated by a simple agent heuristic.
The win rate is measured in the “free-for-all” game mode,
where our agent plays three simple agents using single player
(SP) M2CTS/MCTS search.
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Fig. 10: Exemplary game position of the Pommerman

[2018]] environment. The goal is to defeat other players
by placing bombs, destroying boxes and collecting power-ups.

complex multiplayer conditions. An example game state is
shown in Fig. [[0] We trained small-scale RISEv3.3 networks
(one base channel, four expanded channels, two residual
blocks) using separated learning for five epochs. Training
data was generated via self-play among simple heuristic-
based agents, simulating a low-resource but diverse gameplay
scenario. The purpose of this setup was to test whether phase-
aware specialization could still offer a benefit when data and
model capacity are highly constrained.

To adapt M2CTS to this setting, we defined three different
heuristics which we used for game-phase separation in Pom-
merman.

1) STEPS: Divides the game based on time progression
(early, mid, late based on number of actions taken).



Testset Loss
Approach  Expert Model Opening  Middlegame  Endgame  No-Phases
MCTS - | 0.9269 1.5043 1.3523 1.2897
M2CTS Opening 0.9169 2.4030 3.2433 2.2587
Middlegame 1.6064 1.4371 1.5494 1.5260
Endgame 2.0097 1.6605 1.2594 1.6293
Mixture 0.9169 1.4371 1.2594 1.2245

TABLE II: M2CTS reduces overall loss in chess using game phase specific experts. This table provides a comprehensive
overview of the loss values for each expert’s final model across different approaches. Performance is evaluated over four
different test sets: opening, middlegame, endgame, and no-phases. In addition to the individual expert losses, we include the
loss for the resulting mixture model that includes all three experts. This mixture model determines the appropriate expert based
on the phase of the current position in the test set. The most effective model within each learning process for each test set is

highlighted in bold.

Evaluations per Turn (Nodes/Time) CA w. M2CTS CA w. MCTS
ClassicAra 1.0.4 (CA)  Stockfish 16.1 vs. Stockfish 16.1

3200 nodes 3200 nodes 90 £ 19.62 e —35 4 18.46
3200 nodes 4000 nodes 194+ 18.40 e —76 + 18.85
3200 nodes 5000 nodes —394+18.30 ¢ —129+19.40
3200 nodes 6400 nodes —108 £18.41 ¢ —214 +20.67
3200 nodes 12800 nodes —253 +£21.65 e —356+ 26.65

500 ms 100 ms —144 +£16.50 ¢  —281 £ 21.00

1000 ms 100 ms —95+15.60 ¢ —175=+ 18.00

TABLE III: M2CTS performs better (o) than MCTS against Stockfish. This table illustrates the outcomes of our M2CTS
framework versus the baseline MCTS in an indirect competition of 1000 games, emphasizing M2CTS’s significant improvement.
Despite not yet surpassing Stockfish, our results demonstrate M2CTS’s consistent superiority over the baseline approach.

Elo Difference between MoE and MCTS Network

Dataset RISEv3.3 AlphaVile-Tiny AlphaVile-Small
KingBase Lite 2019 (full) 1172 £ 208 o 359+ 197 e 451 £ 193 @
KingBase Lite 2019 (half-sized) -109.5 + 20.8 -144.7 + 215 -139.0 £ 21.1

TABLE IV: M2CTS with seperated learning improves with larger dataset size. Models were trained both on the full KingBase
Lite 2019 dataset and a half-sized KingBase Lite 2019 subset. Next, the M2CTS version of each model played against the
standard MCTS version using 800 nodes per move. M2CTS performs better (o) than standard MCTS when the models were

trained on the larger dataset.

2) MIXEDNESS: Measures the manhatten distance to the
next opponent and seperates the game phases depending
on their proximity.

3) LIVING OPPONENT COUNT: Segments the game by
the number of opponents still alive, reflecting strategic
shifts in threat level and exploration focus.

Each variant was evaluated in the “free-for-all” (FFA) mode,
where our M2CTS agent played against three heuristic-based
opponents. As shown in Fig. 0] M2CTS achieved higher win
rates in two out of the three configurations, with improvements
ranging from 5% to 11% over the baseline MCTS agent using
a single network. The best-performing variants were STEPS
and MIXEDNESS, which implicitly captured meaningful strate-
gic transitions. In contrast, the LIVING OPPONENT COUNT
heuristic led to unstable phase transitions and inconsistent
improvements, likely due to its delayed responsiveness and
limited granularity during fast-paced gameplay.

These findings highlight that phase-aware modularity is
not confined to structured games like chess, but can extend

to complex, multi-agent environments—provided that phase
definitions reflect meaningful transitions in game dynamics.
Even with small models and limited data, separating learn-
ing by coarse but meaningful gameplay structures can yield
measurable performance benefits.

IV. RELATED WORK

Our work brings together advances in MoE models, RL
and MCTS, applying them to the structured and well-studied
domain of chess. While MoE has gained significant traction
in large-scale language models [Shazeer et al., 2017, |[Fedus
et al., 2022, |Jiang et al., [2024]], its integration into search-based
decision-making frameworks such as AlphaZero [Silver et al.,
2018 remains underexplored. To our knowledge, this work
is the first to combine MoE with MCTS in a fully modular,
phase-aware framework for strategic games. In the context of
games, MoE has been successfully applied to complex envi-
ronments like Settlers of Catan [[Dobre and Lascarides, [2017al],
where expert models were trained on heterogeneous datasets
to capture different game conditions. In chess, Mcllroy-Young



et al| [2022]] explored personalized MoE models, fine-tuned
to the playing styles of individual human players. These
studies highlight the flexibility of MoE in modeling specialized
behaviors and adapting to diverse strategic contexts.

Our work is also informed by the long-term evolution
of chess engines. The transition from handcrafted heuristics
to deep neural networks—exemplified by AlphaZero [Sil-
ver et al) 2018] and NNUE-augmented Stockfish [Nasu,
2018]—has yielded strong performance gains, though often at
the cost of transparency and alignment with traditional human
strategies [[Palsson and Bjornssonl, 2023, McGrath et al., 2022].
Integrating game-phase definitions, a long-standing concept in
human chess understanding, has been explored in earlier RL-
based engines as well [Block et al., |2008|].

Our staged learning strategy is inspired by the principles
from curriculum learning [Bengio et al.l [2009]] and task de-
composition [Andreas et al.|, 2017]], where complex behaviors
are learned through progressive specialization and structured
modularity.

V. DISCUSSION

This work demonstrates that aligning model structure with
domain-specific temporal progression—through phase-aware
experts and modular search—can improve the performance in
strategic environments like chess. The success of separated
learning in supervised settings underscores the value of archi-
tectural simplicity when data is plentiful and task boundaries
are well-defined. Conversely, staged learning offers benefits
in reinforcement learning, where early generalization supports
more stable exploration. Our results also highlight that not
all forms of decomposition are equally beneficial. Expert
effectiveness varies by phase, and naive gating strategies based
solely on time steps fall short of domain-informed alternatives.
This suggests that modular designs are most effective when
they respect underlying task structure, rather than assum-
ing uniform segmentation. While M2CTS is designed for
chess, our Pommerman results suggest broader applicability
to multi-agent, partially observable domains—provided that
phase transitions reflect meaningful shifts in strategy or game
dynamics. The framework offers a path toward integrating
learned specialization with planning and suggests that mod-
ularity can complement search even under tight capacity and
data constraints.

Overall, M2CTS contributes to a growing line of work
exploring how modular learning can bring structure and
adaptability into decision-making systems—bridging the gap
between end-to-end learning and classical notions of phase-
aware, human-aligned reasoning.

Limitations

While M2CTS improves performance, it has practical lim-
itations. MoE models can overfit when data is limited, es-
pecially as each expert sees only a subset. Our method also
increases memory usage since all experts are loaded during
search—manageable at our scale but potentially costly with
larger models. Though our majority-voting mechanism scales
well up to batch sizes of 64, its performance beyond that is

untested. Finally, our hand-crafted gating relies on domain-
specific phase definitions, limiting generalization to domains
without similar structures.

VI. CONCLUSION AND FUTURE WORK

This work introduces M2CTS, a modular framework that
integrates Mixture-of-Experts into MCTS, guided by phase-
specific expert models. In chess, M2CTS achieves up to +122
Elo over baseline MCTS, with consistent gains in the mid-
dlegame and endgame. The framework is robust across batch
sizes and generalizes to other domains, such as Pommerman.
While performance in the opening phase was less pronounced,
this points to opportunities for improvement in early-game
modeling and data representation. M2CTS, based on models
trained on human expert data, does not yet surpass state-of-
the-art engines like Stockfish, but it provides a compelling step
towards modular and phase-aware decision systems. Future
work includes developing a learnable gating network to replace
static phase definitions, enabling adaptive expert selection
without manual tuning. Additionally, evaluating transfer to
other games like Go could further test the framework’s gen-
erality. Our results suggest that when strategic substructures
can be meaningfully segmented, modular MoE models offer a
promising approach to combining search with specialization.

Broader Impact.

This research demonstrates the value of modular architec-
tures in decision-making systems, particularly where domain
structure can guide specialization. By combining MoE and
MCTS in a principled way, we show how learned specializa-
tion can improve performance in complex environments. The
ideas explored here may influence the design of efficient Al
systems in other strategic domains beyond games.

VII. ETHICS STATEMENT

Throughout the study, ethical guidelines were strictly ad-
hered, ensuring the respectful use of data of any entities
involved, like the usage of the KingBase Lite 2019 chess
dataset, a collection of chess games played by human players,
for the purpose of training and evaluating artificial intelli-
gence models. We acknowledge the potential for biases in
the dataset, such as variations in time periods, regions, or
player demographics, however were not able to discover any
in our research. We provide algorithm and models to make our
results reproducible and transparent. We also encourage other
researchers to use our framework in their work.
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VIII. DATA AVAILABILITY STATEMENT

All data and code, needed to reproduce our supervised learn-
ing chess experiments, can be found online. The KingBase
Lite 2019 dataset can be downloaded from https://archive.org/
details/KingBaseLite2019. To recreate our dataset split, use
the code provided by us in https://anonymous.4open.science/
r/CrazyAra-3F10, following the instructions in the ReadMe
file. To test our approach, we provide some models used in
this paper anonymize These models will be published after
acceptance.

IX. LICHESS GAME PHASE DEFINITIONS

Lichess is an open-source chess server for online play,
study, and analysis. State-of-the-art chess engines power
their analysis section, which is why players of all skill
levels, from beginner to master, use them on a daily basis.
Submitting a game for engine analysis results in getting a
report of the game development, including a separation of
the game in the three typical phases to teach people where
they went wrong and how they could improve. The site uses
a more sophisticated system to determine game phases by
incorporating several transition criteria.

Endgame definition. According to the Lichess
implementation, a position belongs to the endgame if
the total count of major and minor pieces (queens, rooks,
bishops, and knights) is less than or equal to 6. Note that
while this resembles a material count criterion, it does not
use different relative values for the pieces and instead values
them all equally as 1. A potential reason for this approach
could be that the complexity of a position is not tied to the
relative value of its pieces but rather to their total amount.
Furthermore, the pawn count is irrelevant to the decision.

Middlegame definition. A position counts towards the
middlegame if it does not qualify as an endgame position
and if one of the following three criteria is fulfilled. The
number of major and minor pieces is less than or equal to
10, the backrank of at least one player is sparse, or the total
mixedness score of the position is bigger than 150. Here,
backrank sparseness is defined as having less than four total
pieces on rank 1 (for white) or 8 (for black), including the
king. The mixedness score describes how close black and
white pieces are to each other. It is calculated by going
through all two by two squares of the chess board, starting
from the square al, bl, a2, b2 and ending at the square g7,
h7, g8, h8. For each of those two by two squares, we count
the number of black and white pieces inside it and assign a
score based on the result and the square’s location. We then
sum up all square scores to get the final mixedness score of
a position. The exact implementation can be found in the
Lichess repositoryf’|

4https://drive.google.com/drive/folders/1d8CoQBieNgeEomhb YfI_
TifZUbCFyS30?usp=sharing, accessed 2024-05-22

“https://github.com/lichess-org/scalachess/blob/master/core/src/main/scala/
Divider.scala, accessed 2024-05-22

Opening definition. All remaining positions are classified
as opening positions.

Using the previously described phase definitions may lead to
transitions to previous phases (e.g., going back to the opening
because the mixedness score has increased again). Therefore,
to do a strict separation into three sections, Lichess forbids
such transitions and only allows transitions to later phases.

A. Resulting Dataset Statistics

After defining the game phases as in Section [[X] we examine
the distributions of input and output in the resulting datasets
for each phase.

Figure [16] shows the distribution of game outcomes in our
training set. Every game contributes to the opening phase data,
with 34.42% games won by White, 40.36% draws, and 25.22%
Black wins. Notably, games extending into the middlegame
and endgame phases have a lower draw rate (38.51% and
36.09%, respectively) and a higher rate of decisive outcomes.

Figure [I5]illustrates the distribution of game phases. While
96.81% of the games reach the middlegame, only 67.85%
reach the endgame. Nevertheless, the number of endgame po-
sitions (31.63%) exceeds that of openings (28.67%), because
endgames tend to last longer.

Table [V gives a comprehensive overview of our datasets,
the full dataset contains 1,112,647 games and 91,413,951 posi-
tions. Table summarizes the number of games contributing
to each phase, highlighting the variance in phase coverage.

X. ELO RATINGS

The Elo rating system, invented by Arpad Elo, is used to
measure relative skill differences between players of a game.
Everyone starts with the same arbitrary starting value, and the
ratings are adjusted from that point on based on the outcome
of finished games. Winning games increases the Elo rating,
while losing decreases it. Using the rating of two players A
and B, it is possible to calculate the expected score of player
A (and player B by replacing Rg — Ry with Ry — Rp):

1
Ex = T 100 —ray/a00-

3)
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Dataset/Phase  No-Phases Opening Midgame Endgame

Train Chess 91,413,951 26,212,273 36,287,651 28,914,027
Val Chess 79,042 24,566 29,333 25,143
Test Chess 85,114 24,938 31,364 28,812

TABLE V: Overview of dataset sizes by phase, showing the number of positions.

Dataset/Phase

Months

Train Chess
Val Chess
Test Chess

2000-01 - 2018-12 (excluding val and test)

2012-09
2017-05

TABLE VI: Overview of dataset sizes by games played in which months.

Dataset/Phase

No-Phases

Opening

Midgame Endgame

Train Chess

1,112,647

1,112,647

1,077,136 754,899

TABLE VII: Number of games contributing to each phase dataset, indicating phase coverage.
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XI. SAMPLE WEIGHTS FOR THE WEIGHTED LEARNING
APPROACH

We carry out experiments for two different a values (a €
{4,10}) to see whether a big weight difference (more expert
specialization) or a small weight difference (more expert
similarity) leads to better overall performance. The values
of the resulting normalized sample weights can be found in
Table

XII. EXTENDED EXPERIMENTAL SETUP
A. Datasets

The KingBase Lite 2019 dataset is a comprehensive col-
lection of chess games, renowned for featuring high-quality
matches played by grandmasters and skilled players. Typically
provided in Portable Game Notation (PGN) format, it en-
compasses detailed information on moves, players, dates, and
tournament specifics. Widely employed in computer chess re-
search, machine learning, and artificial intelligence, the dataset
is valued for studying advanced chess strategies, training and
testing chess engines, and analyzing player performance.

Our chess datasets are built based on the Kingbase Lite
2019 database. This database includes over one million chess
games from players rated at least 2200 Elo. We filter out all
games shorter than five moves in total as these games are either
quickly arranged draws or errors in the database and, therefore,
unreliable sources. In order to create the training and evalua-
tion data for our experiments, we build four datasets. The first
dataset, which we will refer to as “no-phases”, contains all
positions left after filtering the database as described above.
For the remaining three datasets (“opening”, “midgame” and
“endgame”), we strictly split the database into one part for
each of the three phases. This splitting is carried out by
going through every game in the dataset and removing all
board positions that do not belong to the phase for which we
are currently preparing the dataset. This procedure leads to
some games being completely excluded for a specific part if
they contain no position of the particular phase. For example,
about 32 percent of games ended before the endgame began,
therefore contributing no position for the endgame dataset.

B. Neural Network Architecture and Input Representation

Since our approach is based on and compared to the Craz-
yAra approach, by |Czech et al.| [2020], we use the same model
architecture called RISE in its current version (RISEv3.3).
This architecture is in turn an improved ResNet architecture,
how they were used in AlphaZero. More information about
the architecture can be found in Fig. As loss function we
used

= —()z(WDLtT log WDLy) —' logp—l—ﬂ(ply[—plyp)2+c||0\é|§
4)

introduced in the work of |Czech et al.|[2024]. Within the ap-
proach our MCTS implementation follows the work by [Kocsis
and Szepesvari| [2006], |Coulom| [2006]] with the adaptations,
done by [Silver et al| [2018]], e.g., using the PUCT formula
instead of UCT.

Similar to AlphaZero [Silver et al, 2018|] or CrazyAra
[Czech et al.| 2020], we represent the game state in the form
of a stack of so-called levels or planes. The complete stack of
planes can be found in Table [IX]and is taken from Czech et al.
[2024]. Each layer or plane represents a channel describing
one of the input features in the current state. Each plane is
encoded as a map with 8 x 8 bits. We hereby distinguish
between two types of planes, bool and int. In a bool plane each
bit is representing a different field of a chessboard, e.g., if a
pawn is placed on this field. In some cases, like repetitions,
a single information is stored in a plane, in these cases all
bits of the plane show the same information. In Table
this is marked with *. Integer or int planes have the same
functionality but instead of O and 1, they store integer, like
how many pawns are left on the board. The output of our
network, also follows |Silver et al. [2018]] and is described as
the expected utility of the game position, represented by a
numeric value in the range of [—1, 1], often called value, and
a distribution over all possible actions, called policy .

C. Reproducibility and Hyperparameters

The list of hyperparameters can be seen in Table [X] and
the schedules for learning rate and momentum are depicted
in Fig. An exemplary command for running cutechesf]
matches with all used parameters can be found in Figure [19
In order to provide a diversified playing ground, we make use
of an opening suit featuring positions appearing after the first
several moves have already been played. These positions are
intentionally chosen in a way that each position is imbalanced,
with a slight edge for either side to reduce the amount of
resulting draws. For each match, we randomly sample 500
opening positions from this opening suite and let our agents
play against each other starting from there. In order to take the
imbalances of the positions into account, we use each starting
position twice so that each agent is playing once as white
and once as black. Due to the high computational costs of
training, we do not provide any hyperparameter optimization
and instead took the proposed settings by (Czech et al.| [2020].
Ensuring reproducibility is paramount in scientific research, as
it establishes the foundation for the reliability and credibility
of study findings. For this, we provide an anonymous version
of our code, with a short manual how to run the code in the
ReadMe as well as our trained models used in the experimental
section. The experiments were run on a setup, described in
Table [XIII} using the NVIDIA GPU Cloud (NGC) docker
container for pytorc As stated before, all needed data is
openly available.

SFor detailed information about the cutchess-cli https://manpages.ubuntu.
com/manpages/xenial/en/man6/cutechess-cli.6.html, accessed 2024-05-22

"https://raw.githubusercontent.com/ianfab/books/master/chess.epd, accessed
2024-05-22

8https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch,
2024-05-22

accessed
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a Expert Main Phase  wWmain ~ Wother ~ Wopening ~ Wmid w,
opening 2 0.5 2 0.5 0.5

4 midgame 2 0.5 0.5 2 0.5
endgame 2 0.5 0.5 0.5 2
opening 2.5 0.25 2.5 0.25 0.25

10 midgame 2.5 0.25 0.25 2.5 0.25
endgame 2.5 0.25 0.25 0.25 2.5

TABLE VIII: Sample weights for the Weighted Learning Approach

Feature Planes Type Comment

P1 pieces 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
P2 pieces 6 bool  order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
Repetitions” 2 bool  how often the board positions has occurred

En-passant square 1 bool  the square where en-passant capture is possible

P1 castling” 2 bool  binary plane, order: {KING_SIDE, QUEEN_SIDE}

P2 castling” 2 bool  binary plane, order: {KING_SIDE, QUEEN_SIDE}
No-progress count” 1 int sets the no progress counter (FEN halfmove clock)

Last Moves 16 bool  origin and target squares of the last eight moves

is960" 1 bool if the 960 variant is active

P1 pieces 1 bool  grouped mask of all P1 pieces

P2 pieces 1 bool  grouped mask of all P2 pieces

Checkerboard 1 bool  chess board pattern

P1 Material difference” 5 int order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
Opposite color bishops” 1 bool if they are only two bishops of opposite color

Checkers 1 bool  all pieces giving check

P1 material count” 5 int order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
Total 52

TABLE IX: Input representation, taken from (Czech et al.| [2024]]. Features are encoded as binary maps, and specific features
are indicated with * as single values applied across the entire 8 x 8 plane. * represent scalar planes only saving one value
over all 64 bits of the plane. The historical context is captured as a trajectory spanning the last eight moves. Overall the input

representation consists of 52 planes.

Hyperparameter Value Hyperparameter Value
max learning rate 0.14 value loss factor 0.01
min learning rate 0.00001  policy loss factor 0.988
batch size 2048 wdl loss factor 0.01
max momentum 0.95 plys to end loss factor 0.002
min momentum 0.8 stochastic depth probability  0.05
epochs 7 pytorch version 1.12.0
optimizer NAG spike thresh 1.5
weight decay (wd)  0.0001 dropout rate 0.0
seed 9 sparse policy label True

TABLE X: Hyperparameter configuration for experimental settings using supervised learning. This table provides a compre-
hensive overview of the essential hyperparameters utilized in our experimental design.

Hyperparameter Value Hyperparameter Value
max learning rate 0.05 value loss factor 0.499
min learning rate 0.000005  policy loss factor 0.499
batch size 512 wdl loss factor 0.499
max momentum 0.95 plys to end loss factor 0.002
min momentum 0.8 stochastic depth probability  0.05
epochs 1 pytorch version 1.12.0
optimizer NAG spike thresh 1.5
weight decay (wd)  0.0001 dropout rate 0.0
seed 1,2,3 sparse policy label False

TABLE XI: Hyperparameter configuration for the reinforcement learning setup. Changes compared to the supervised learning

setup are marked in bold.



Hyperparameter Value Hyperparameter Value
batch size 8 dirichlet o 0.3
temperature 0.8 dirichlet € 0.25
temperature moves 15 nodes 800
reuse search tree False number neural network updates 10
new training samples before update 819200 replay memory fraction for selection  0.05

number samples from replay memory for update

4096000

TABLE XII: Hyperparameter generation settings for the reinforcement learning setup.

Hardware/Software Description
GPU 8 X NVIDIA® Tesla V100
NGC Container pytorch:22.05
GPU-Driver CUDA 11.4
CPU Dual Intel Xeon Platinum 8168
Operating System Ubuntu 20.04 LTS
CrazyAra Release 1.0.4
Backend TensorRT-8.4.1

TABLE XIII: Hard- and software configuration for our experimental section.
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Fig. 17: RISEv3.3 architecture design. The architecture com-
prises of 15 Mobile Bottleneck Residual Blocks
[2019] of which 5 Blocks are preceeded by an Efficient
Channel Attention Block [Wang et al| [2020]. Finally, the
output of the model is processed using a value and policy
head.




0.141
0.94
0.12 A
0.92
0.10
]
= £ 0.90
‘;o.o& *2
2 QE) 0.88
€ 0.064
= O 0.861
9 =
0.04 0.84 1
0.02 1 0.82
0.00 - 0.80 -
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Iteration Iteration
(a) Learning rate schedule (b) Momentum schedule

Fig. 18: Learning rate and momentum schedules over the course of a training run of a single expert model.

./cutechess—-cli —-variant standard -openings file=chess.epd format=epd order=random
-pgnout /data/cutechess_res.pgn —-resign movecount=5 score=600 —-draw movenumber=30
movecount=4 score=20 -concurrency 1

—-engine name=ClassicAra_correct_phases cmd=./ClassicAradir="/CrazyAra/engine/build
option.Model_Directory=/data/model/ClassicAra/chess/correct_phases proto=uci
—engine name=ClassicAra_no_phases cmd=./ClassicAra dir="/CrazyAra/engine/build
option.Model_Directory=/data/model/ClassicAra/chess/no_phases proto=uci

—each option.First_Device_ID=0 option.Batch_Size=64 option.Fixed_Movetime=0
tc=0/6000+0.1 option.Nodes=100 option.Simulations=200 option.Search_Type=mcts
—games 2 -rounds 500 -repeat

Fig. 19: Exemplary command for running a cutechess match between two approaches. The Barch_Size is set to 1, 8, 16, 32,
and 64. The Nodes parameter (values of 0, 100, 200, 400, 800, 1600, 3200) limits the number of nodes that the MCTS can visit
per move during its search. The Simulations parameter describes the number of simulations per move and is set to double the
Nodes value. When the Nodes parameter is 0, we instead limit the extent of the search by a fixed move time in milliseconds
(Fixed_Movetime values of 100, 200, 400, 800, 1600).



XIII. ADDITIONAL RESULTS

In this section, we present supplementary findings and
extended analyses that complement and enrich the core re-
sults discussed in the paper, providing a more comprehensive
understanding of the investigated approach.

a) Training Process.: From Figure 20| until Figure [29]
we show the training process of our three learning approaches
for all three experts on all four test sets (opening, midgame,
endgame and no phases). It can be seen that the experts
outperform other models in their designated phase.

b) Elo Development over Training.: Figures[d] [31]and [32]
show the result of test matches between the model in training
and a baseline model for different restricting factors in the
search and evaluation of game states. On the left we used
the number of iterations, i.e., the number of explored nodes
within MCTS as restricting factor. On the right, instead of
restricting the search by the number of iterations, we chose
to restrict it, using a time limit, a common pratice in, e.g.,
computational chess. As baseline model in all these figures
the regular learning approach, i.e., the single model approach,
was taken.

c) Extension to Figure [6]: Since we did all our experi-
ments using two restricting factors, i.e., using the number of
nodes and the move time as restrictions, we also evaluated
Fig. [0] twice. The evaluation, using time as the restricting
factor, can be found in Fig. [33]

20
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Approach Expert Opening Middlegame Endgame No-Phases
Regular Learning - 0.9269 1.5043 1.3523 1.2897
Separated Learning Opening 0.9169
Middlegame = 1.6064 1.5494 1.5260
Endgame 1.6605 1.6293
Mixture
Staged Learning Opening 2.5501 1.8153
Middlegame 1.5293 1.5203
Endgame 1.6748
Mixture
Weighted Learning (a = 4) Opening 1.5125 1.3780 1.2820
Middlegame  0.9661 1.5055 1.4207 1.3248
Endgame 0.9339 1.5041 1.2864 1.2695
Mixture  [JOSG36HI 1.5055 12864 12433
Weighted Learning (a = 10) Opening 0.8887 1.6600 1.5389 1.3995
Middlegame  0.9955 1.4834 1.4470 1.3346
Endgame 1.0334 1.5547 1.3036 1.3241
Mixture 0.8887 1.4834 1.3036 1.2483

TABLE XIV: MoE reduces overall loss in chess using game phase specific experts. This table provides a comprehensive
overview of the loss values for each expert’s final model across different approaches. Performance is evaluated over four
different test sets: opening, middlegame, endgame, and no-phases. In addition to the individual expert losses, we include the
loss for the resulting mixture model that includes all three experts. This mixture model determines the appropriate expert based
on the phase of the current position in the test set. The weighted learning approach was analyzed with different weighting
factors to emphasize the main phase over others. The table uses color coding for each column, ranging from high loss (red)
to low loss (blue). Bold text highlights the most effective model within each learning process for each test set, while the best
performing model in the no-phases test set is underlined, highlighting its overall superiority. This is a more detailed version
of Table @

Batchsize | Separated Learning Staged Learning Weighted Learning  Weighted Learning
a=4 a=10

1 106.89+18.29 111.68+20.50 25.61+8.55 50.41412.33

8 123.45+18.57 120.81+£29.89 23.2048.10 52.42418.07

16 126.81+£20.56 122.49+24.17 23.5248.75 56.33+20.04

32 124.36+19.25 125.001+22.42 22.28417.90 63.55+22.01

64 129.494+31.21 125.554+33.02 21.31+15.45 56.51+25.08
Average 122.20+22.54 121.11£25.68 23.18%+11.95 55.84+19.57

TABLE XV: M2CTS outperform our baseline “one-for-all” MCTS approach in direct comparison. This table presents the
relative Elo gains achieved by our different training approaches over our baseline model across different batch sizes. A higher
Elo value correspond to a higher difference in playing strength in favor of M2CTS over MCTS. The highest Elo gain is marked
bold. This is a more detailed version of Table E
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Fig. 20: The loss (Fig. and policy accuracy (Fig. over the course of the training process for the Regular Learning
approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green) and no-phases (black) test
set. The evaluation on the train set is shown in the background in gray. The values on the x-axis represent iterations, where
one iteration is defined as doing backpropagation on one batch of training data.
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Fig. 21: The opening expert’s loss (Fig. and policy accuracy (Fig. over the course of the training process for the
Separated Learning approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green) and no-
phases (black) test set. The evaluation on the train set is shown in the background in gray. The values on the x-axis represent
iterations, where one iteration is defined as doing backpropagation on one batch of training data. The metric values of the final
model checkpoint of the Regular Learning approach are added as dashed reference lines (same colors represent the same test

set).
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Fig. 22: The midgame expert’s loss (Fig. and policy accuracy (Fig. over the course of the training process for
the Separated Learning approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green)
and no-phases (black) test set. The evaluation on the train set is shown in the background in gray. The values on the x-axis
represent iterations, where one iteration is defined as doing backpropagation on one batch of training data. The metric values
of the final model checkpoint of the Regular Learning approach are added as dashed reference lines (same colors represent
the same test set).

4.0 0.7
—— test opening

3.5 —— test midgame
—— test endgame
—— test no-phases

3.0 1

train endgame 0.5
(9]
O
2 -
o o04
©
Q
0.3
0.2
0.5+ T T T T T T T 0.1 T T T T T T T T
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Iterations Iterations
(a) Loss (b) Policy Accuracy

Fig. 23: The endgame expert’s loss (Fig. and policy accuracy (Fig. over the course of the training process for
the Separated Learning approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green)
and no-phases (black) test set. The evaluation on the train set is shown in the background in gray. The values on the x-axis
represent iterations, where one iteration is defined as doing backpropagation on one batch of training data. The metric values
of the final model checkpoint of the Regular Learning approach are added as dashed reference lines (same colors represent
the same test set).
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Fig. 24: The opening expert’s loss (Fig. and policy accuracy (Fig. over the course of the training process for the
Staged Learning approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green) and no-
phases (black) test set. The evaluation on the train set is shown in the background. The values on the x-axis represent iterations,
where one iteration is defined as doing backpropagation on one batch of training data. The vertical lines indicate the points
at which the training on a new dataset started (initialized with the parameters of the last model checkpoint of the previous
training stage).
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Fig. 25: The opening expert’s loss (Fig. [25a) and policy accuracy (Fig. [25b)) over the course of the training process for the
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Staged Learning approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green) and no-
phases (black) test set. The evaluation on the train set is shown in the background. The values on the x-axis represent iterations,
where one iteration is defined as doing backpropagation on one batch of training data. The vertical lines indicate the points
at which the training on a new dataset started (initialized with the parameters of the last model checkpoint of the previous
training stage).
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Fig. 26: The endgame expert’s loss (Fig. and policy accuracy (Fig. over the course of the training process for
the Staged Learning approach. The metrics were evaluated on the opening (blue), midgame (orange), endgame (green) and
no-phases (black) test set. The evaluation on the train set is shown in the background. The values on the x-axis represent
iterations, where one iteration is defined as doing backpropagation on one batch of training data. The vertical lines indicate
the points at which the training on a new dataset started (initialized with the parameters of the last model checkpoint of the
previous training stage).
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Fig. 27: The opening expert’s loss (Fig. and Fig. and policy accuracy (Fig. and Fig. over the course of the
training process for the Weighted Learning approach with different a values. The metrics were evaluated on the unweighted

opening (blue), midgame (orange), endgame (green) and no-phases (black) test set. The evaluation on the train set (weighted) is
shown in the background. The values on the x-axis represent iterations, where one iteration is defined as doing backpropagation
on one batch of training data. The metric values of the final model checkpoint of the Regular Learning approach are added as
dashed reference lines (same colors represent the same test set).
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Fig. 28: The midgame expert’s loss (Fig. and Fig. and policy accuracy (Fig. and Fig. over the course of the
training process for the Weighted Learning approach with different a values. The metrics were evaluated on the unweighted
opening (blue), midgame (orange), endgame (green) and no-phases (black) test set. The evaluation on the train set (weighted) is
shown in the background. The values on the x-axis represent iterations, where one iteration is defined as doing backpropagation
on one batch of training data. The metric values of the final model checkpoint of the Regular Learning approach are added as
dashed reference lines (same colors represent the same test set).
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Fig. 29: The endgame expert’s loss (Fig. @ and Fig. and policy accuracy (Fig. and over the course of the
training process for the Weighted Learning approach with different a values. The metrics were evaluated on the unweighted

opening (blue), midgame (orange), endgame (green) and no-phases (black) test set. The evaluation on the train set (weighted) is
shown in the background. The values on the x-axis represent iterations, where one iteration is defined as doing backpropagation
on one batch of training data. The metric values of the final model checkpoint of the Regular Learning approach are added as
dashed reference lines (same colors represent the same test set).
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Fig. 31: Relative Elo gain of the Staged Learning approach for different batch sizes. Node values of 100, 200, 400, 800, 1600
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