
ar
X

iv
:2

40
2.

12
92

1v
5

 [
cs

.L
G

]
 1

3
Ju

n
20

25

Right on Time: Revising Time Series Models by
Constraining their Explanations

Maurice Kraus1 ∗(�), David Steinmann1,2 ∗, Antonia Wüst1, Andre
Kokozinski5, and Kristian Kersting1,2,3,4

1 Artificial Intelligence and Machine Learning Group, TU Darmstadt
{maurice.kraus,david.steinmann}@cs.tu-darmstadt.de

2 Hessian Center for Artificial Intelligence (hessian.AI), Darmstadt
3 Centre for Cognitive Science, TU Darmstadt

4 German Center for Artificial Intelligence (DFKI)
5 Institute for Production Engineering and Forming Machines, TU Darmstadt

Abstract. Deep time series models often suffer from reliability issues
due to their tendency to rely on spurious correlations, leading to incor-
rect predictions. To mitigate such shortcuts and prevent "Clever-Hans"
moments in time series models, we introduce Right on Time (RioT), a
novel method that enables interacting with model explanations across
both the time and frequency domains. By incorporating feedback on
explanations in both domains, RioT constrains the model, steering it
away from annotated spurious correlations. This dual-domain interac-
tion strategy is crucial for effectively addressing shortcuts in time series
datasets. We empirically demonstrate the effectiveness of RioT in guid-
ing models toward more reliable decision-making across popular time se-
ries classification and forecasting datasets, as well as our newly recorded
dataset with naturally occuring shortcuts, P2S, collected from a real
mechanical production line.

1 Introduction

Time series data is ubiquitous in today’s world. Everything that is measured
over time generates some form of time series, for example, energy load [15], sen-
sor measurements in industrial machinery [21] or recordings of traffic data [18].
Complex time series data is often analyzed using various neural models [3,28].
However, as in other domains, these can be subject to spurious factors ranging
from simple noise or artifacts to complex shortcuts [16]. Intuitively, a shortcut,
also called “Clever-Hans” moment, is a spurious pattern in the data that corre-
lates with the target task during training but lacks true relevance. If a model
learns to rely on such patterns rather than meaningful features, its generalizabil-
ity suffers, performing well on data with the shortcut but failing on data without

∗These authors share equal contribution.

Accepted for publication at ECML PKDD 2025

https://arxiv.org/abs/2402.12921v5

2 Kraus et al.

S
pa

tia
l

F
re

qu
ne

cy

Decomposition

Input

Explain

Obtain

Explanation

S
pa

tia
l

F
re

qu
ne

cy

Feedback

Model

I

II
Revised Explanation

ReviseRioT

Explain

Attributions

Right Reason Region

Wrong Reason Region!

Fig. 1. Explanations reveal that the model relies on spurious factors in the
input (red region) instead of relevant features (blue region). With RioT, the
model can be guided away from these misleading patterns, whether they appear in the
spatial or frequency domain. For this, RioT leverages feedback on incorrect explanations
to steer the model toward more meaningful and reliable reasoning.

it, which poses a significant challenge in real-world deployment [11]. While model
explanations can help uncover these shortcuts, they do not resolve the issue on
their own (cf. Fig. 1 I). Despite extensive research in other domains [36], short-
cuts in time series models remain underexplored. Existing studies often have
specific assumptions about settings and data [4], leaving a gap in understanding
and mitigating shortcut learning in broader time series applications. To address
this, we introduce Right on Time (RioT), a new method grounded in the prin-
ciples of explanatory interactive learning (XIL) [38], which leverages feedback
on explanations to mitigate shortcuts (cf. Fig. 1 II). RioT uses traditional ex-
planation methods, such as Integrated Gradients (IG) [37], to assess whether
the model attends to the correct time steps. It then incorporates feedback on
shortcut areas to refine the model, improving robustness and generalization.

However, spurious factors in time series data extend beyond the time domain.
For example, a consistent noise frequency in an audio signal can act as a short-
cut without being tied to a specific point in time. RioT can handle these types
of shortcuts by incorporating feedback in the frequency domain. To highlight
the importance of shortcuts in time series data, we introduce a new real-world
dataset with naturally occurring shortcuts, called Production Press Sen-
sor Data (P2S). The dataset includes sensor measurements from an industrial
high-speed press, essential to many manufacturing processes in the sheet metal
working industry. The sensor data for detecting faulty production contains short-
cuts and thus provokes incorrect predictions after training. Next to its industrial
relevance, P2S is the first time series dataset that contains explicitly annotated
shortcuts, enabling the evaluation of mitigation strategies on real data.

Altogether, we make the following contributions: (1) We show both on our
newly introduced real-world dataset P2S and on several other datasets with
manual shortcuts that SOTA neural networks on time series classification and

Revising Time Series Models by Constraining their Explanations 3

forecasting are affected by these shortcuts. (2) We introduce RioT to mitigate
shortcuts for time series data. The method can incorporate feedback on the time
domain and the frequency domain. (3) By incorporating explanations and feed-
back in the frequency domain, we enable a new perspective on XIL, overcoming
the important limitation that shortcuts must be spatially separable.

The paper is structured as follows: Sec. 2 provides a brief overview of related
work on explaining time series and correcting model mistakes. Sec. 3 introduces
our approach, while Sec. 4 describes our decoy methods and P2S. We then present
a detailed evaluation and discussion in Sec. 5. Finally, Sec. 6 concludes the paper
and outlines directions for future research.

2 Related Work

Explanations for Time Series. Explainable artificial intelligence offers vari-
ous techniques to interpret machine learning models, many of which originated
in image or text data before being adapted for time series [26]. Attribution meth-
ods explain models directly in the input space, while approaches like symbolic
aggregation [17] and shapelets [42] provide higher-level insights (cf. [26,29] for a
broader discussion on time series explanations). While explanation methods help
identify shortcuts, they alone do not enable model revision. Thus, our approach
begins with explanations to detect shortcuts and integrates feedback to miti-
gate them. Specifically, we use Integrated Gradients (IG) [37], which computes
attributions via model gradients and is widely used for time series data [22,39].

Explanatory Interactive Learning (XIL). Research on shortcuts and
their mitigation is growing, though it primarily focuses on visual data [36]. One
direction is explanatory interactive learning (XIL), which entails methods that
revise a model’s decision-making based on human feedback [30,38]. A core aspect
of XIL is using model explanations to correct mistakes, particularly to prevent
Clever-Hans-like behavior, where models rely on spurious shortcuts [9,35]. Sev-
eral XIL methods have been applied to image data. Right for the Right Reasons
(RRR) [27] and Right for Better Reasons [32] penalize incorrect attributions,
while HINT [31] rewards correct focus and [10] explore using multiple explainers.
Despite their success in vision tasks, XIL approaches remain largely unexplored
for time series. To address this, we introduce RioT, adapting XIL principles to
the unique challenges of time series data.

Unconfounding Time Series. Apart from interactive learning approaches,
some methods address confounding in time series models through causal infer-
ence [8]. Techniques like the Time Series Deconfounder [4], SqeDec [13], and
LipCDE [5] estimate data while mitigating confounders in covariates of the tar-
get variable. They rely on causal analysis and specific assumptions about data
generation. In contrast, our method focuses on shortcuts within the target vari-
able itself, requiring no assumptions beyond the shortcut being detectable in
model explanations - an area where existing causal methods are less applicable.

4 Kraus et al.

Explain Obtain Revise

Fig. 2. RioT’s explanation-based revision process. Input data x passes through
the model f(x) to generate explanations e(x), receives annotated feedback a(x), and is
then fed back into the model. Integrated Gradients (IG) provides spatial explanations,
while Fourier Transform (FFT) converts them into frequency-based explanations. An-
notations can be applied in either or both domains and are leveraged by the right-reason
loss (Lsp

RR and Lfreq
RR) to steer the model away from shortcuts in time or frequency.

3 Right on Time (RioT)

The core idea of Right on Time (RioT) is to use feedback on model expla-
nations to guide the model away from incorrect reasoning. Following the XIL
paradigm, RioT is designed for seamless integration with other XIL methods.
To ensure compatibility, we structure RioT around the four key steps identified
by [9]: Select, Explain, Obtain and Revise. In Select, samples for feedback and
model revision are selected. Following previous methods, we select all samples
by default but also explore using subsets of the data. Afterwards, Explain covers
model explanations before feedback is provided in Obtain. Lastly, in Revise, the
feedback is integrated into the model to overcome the shortcuts. We introduce
RioT along these steps in the following (as illustrated in Fig. 2).

Given a dataset (X ,Y) and a model f(·) for time series classification or
forecasting. The dataset consists of D many pairs of x and y. Thereby, x ∈ X
is a time series of length T , i.e., x ∈ RT . For K class classification, the ground-
truth output is y ∈ {1, . . . ,K} and for forecasting, the ground-truth output is
the forecasting window y ∈ RW of length W . The ground-truth output of the full
dataset is described as Y in both cases. For a datapoint x, the model generates
the output ŷ = f(x), where the dimensions of ŷ are the same as of y.

3.1 Explain

Given a pair of input x and model output ŷ for time series classification, the
explainer generates an explanation ef (x) ∈ RT in the form of attributions to
explain ŷ w.r.t. x, where a large attribution value means a large influence on the
output. In the remainder of the paper, explanations refer to the model f , but
we drop f from the notation to declutter it, resulting in e(x). We use IG [37]
(Eq. 1) as an explainer, an established gradient-based attribution method. This
method integrates the gradient along the path (using the integration variable

Revising Time Series Models by Constraining their Explanations 5

α) from a baseline x̄ to the input x. It multiplies the result with the difference
between baseline and input. However, we make some adjustments to the base
method to make it more suitable for time series and model revision, namely
taking the absolute value of the difference between x and x̄ (further details in
Appx. A.1). In the following, we introduce the modifications to use attributions
for forecasting and to obtain explanations in the frequency domain.

e(x) = |x− x̄| ·
∫ 1

0

∂f(x̃)

∂x̃

∣∣∣∣∣
x̃=x̄+α(x−x̄)

dα (1) e(x) =
1

W

W∑
i=1

e′i(x) (2)

Attributions for Forecasting. In a classification setting, attributions are
generated by propagating gradients back from the model output (of its highest
activated class) to the model inputs. However, there is often no single model
output in time series forecasting. Instead, the model simultaneously generates
one output for each timestep of the forecasting window. Naively, one could use
these W outputs and generate as many explanations e′1(x), . . . e′W (x), where each
e′i(x) is the IG explanation using the i-th time step from the forecasting window
as a target instead of a classification label. This number of explanations would,
however, make it even harder for humans to interpret the results, as the size of
the explanation increases with W [23]. Therefore, we propose aggregating the
individual explanations by averaging in Eq. 2. Averaging attributions over the
forecasting window provides a simple yet robust aggregation of the explanations.
Other means of combining them, potentially even weighted based on distance of
the forecast in the future are also imaginable. Overall, this allows attributions
for time series classification and forecasting to be generated similarly.

Attributions in the Frequency Domain. Time series data is often given
in the frequency representation, and this format can sometimes be more intu-
itive for humans to understand than the typical spatial representation. Thus,
providing explanations in this domain is essential. [40] showed how to obtain
frequency attributions of the method Layerwise Relevance Propagation [1], even
if the model does not operate directly on the frequency domain. We adapt this
idea to IG: for an input sample x, we generate attributions with IG, resulting
in e(x) ∈ RT (Eq. 1 for classification or Eq. 2 for forecasting). We then inter-
pret the explanation as a time series, with the attribution scores as values. To
obtain the frequency explanation, we perform a Fourier transformation of e(x),
resulting in the frequency explanation ê(x) ∈ CT with Ê for the entire set.

3.2 Obtain

The next step of RioT is to obtain feedback on shortcuts. For an input x, feed-
back marks input parts via a binary mask a(x) ∈ {0, 1}T , where a 1 signals a
potential shortcut at this time step. Thereby, masks a(x) = (0, . . . , 0)T corre-
sponds to no feedback for a sample. Similarly, feedback can also be given on
the frequency explanation, marking which elements in the frequency domain are
potential shortcuts. The resulting feedback mask â(x) = (â(x)re, â(x)im) can be

6 Kraus et al.

different for the real â(x)re ∈ {0, 1}T and imaginary part â(x)im ∈ {0, 1}T . For
the whole dataset, we then have spatial annotations A and frequency annota-
tions Â. Obtaining annotated feedback masks can become costly, particularly if
the feedback comes from human experts. However, as shortcuts often occur sys-
tematically, it can be possible to apply annotations to many samples, drastically
reducing the number of annotations required in practice.

3.3 Revise

The last step of RioT is integrating the feedback into the model. We apply the
general idea of using a loss-based model revision [27,30,35] based on the ex-
planations and the annotation mask. Given the input data (X ,Y), we define
the original task (or right-answer) loss as LRA(X ,Y). This loss measures the
model performance and is the primary learning objective. To incorporate the
feedback, we further use the right-reason loss LRR(A,E). This loss aligns model
explanations E = {e(x)|x ∈ X} and user feedback A by penalizing the model
for explanations in the annotated areas. To achieve model revision and a good
task performance, both losses are combined, where λ is a hyperparameter to bal-
ance both parts of the combined loss L(X ,Y, A,E) = LRA(X ,Y) + λLRR(A,E).
Together, the combined loss simultaneously optimizes the primary training ob-
jective (e.g. accuracy) and feedback alignment.

Time Domain Feedback. Masking parts of the time domain is an easy way
to mitigate spatially locatable shortcuts (Fig. 1, left). We use the explanations
E and annotations A in the spatial version of the right-reason loss:

Lsp
RR(A,E) =

1

D

∑
x∈X

(e(x) ∗ a(x))2 (3)

As the explanations and the feedback masks are element-wise multiplied, this loss
minimizes the explanation values in marked parts of the input. This effectively
trains the model to disregard the marked parts for its computation. Thus, using
the loss in Eq. 3 as right-reason component for the combined loss allows to
effectively steer the model away from points or intervals in time.

Frequency Domain Feedback. However, feedback in the time domain is
insufficient to handle every type of shortcut. If the shortcut is not locatable
in time, giving spatial feedback cannot be used to revise the models’ behav-
ior. Therefore, we utilize explanations and feedback in the frequency domain to
tackle shortcuts like in Fig. 1, (right). Given the frequency explanations Ê and
annotations Â, the right-reason loss for the frequency domain is:

Lfr
RR(Â, Ê) =

1

D

∑
x∈X

(
(Re(ê(x)) ∗ âre(x))2 + (Im(ê(x)) ∗ âim(x))2

)
(4)

The Fourier transformation is invertible and differentiable, so we can backprop-
agate gradients to parameters directly from this loss. Intuitively, the frequency
right-reason loss causes the masked frequency explanations of the model to be
small while not affecting any specific point in time.

Revising Time Series Models by Constraining their Explanations 7

Depending on the problem, it is possible to use RioT either in the spatial
or frequency domain. Moreover, it is also possible to combine feedback in both
domains, including two right-reason terms in the final loss. This results in two
parameters λ1 and λ2 to balance the right-answer and both right-reason losses.

L(X ,Y, A,E) = LRA(X ,Y) + λ1Lsp
RR(A,E) + λ2Lfr

RR(Â, Ê) (5)

It is important to note that giving feedback in the frequency domain allows a
new form of model revision through XIL. Even if we effectively still apply mask-
ing in the frequency domain, the effect in the original input domain is entirely
different. Masking out a single frequency affects all time points without pre-
venting the model from looking at any of them. In general, having an invertible
transformation from the input domain to a different representation allows to give
feedback more flexible than before. The Fourier transformation is a prominent
example but not the only possible choice for this. Using other transformations
like wavelets [12], is also possible.

Computational Costs. Including RioT in the training of a model increases
the computational cost. Computing the right reason loss term requires the com-
putation of a mixed partial derivative: ∂2fθ(x)

∂θ∂x . Even though this is a second-
order derivative, it does not result in any substantial cost increases, as the
second-order component of our loss can be formalized as a Hessian-vector prod-
uct (cf. Appx. A.3), which is known to be fast to compute [20]. We also observed
this in our experimental evaluation, as even the naive implementation of our loss
in PyTorch scales to large models.

Source of Feedback. A key aspect of RioT is the feedback incorporated
in the Obtain step, which can come from various sources, including automated
methods, rule-based systems, foundation models, or human annotations. Auto-
mated approaches, such as rule-based heuristics or pre-trained foundation mod-
els, provide scalable and consistent feedback, reducing the reliance on manual
labeling. However, human annotations remain valuable for ensuring accuracy, es-
pecially in complex cases where automated methods may introduce biases or fail
to capture nuanced patterns. RioT is agnostic to the feedback source, allowing
flexibility in its application.

4 Shortcuts in Time Series

Shortcuts, like those in images, naturally occur in time series data but are often
less apparent. Developing effective mitigation methods requires datasets where
shortcuts are explicitly annotated, yet no existing datasets provide such anno-
tations, despite known biases in popular datasets [2]. To address this gap, we
introduce several time series dataset decoy variants inspired by prior work on de-
coy data [27], allowing for controlled evaluation of shortcut mitigation strategies.
To further evaluate shortcut mitigation under real-world conditions, we present
P2S, a real-world dataset where shortcuts arise from sensor recording processes.

8 Kraus et al.

4.1 Decoy Shortcuts

Classification. For both spatial and frequency cases, we introduce the shortcut
as a class-specific pattern embedded in each training sample. The spatial pattern
replaces m time steps with a sine wave defined as s := sin(t · (2 + j)π) ·A where
t ∈ {0, 1, . . . ,m} are the respective time steps, j represents the class index and
A is the amplitude. In contrast, the frequency pattern is a similar sine wave,
but it is additively applied to the full sequence (m = T).

Forecasting. For forecasting datasets, spatial decoys are more challenging
due to window-based sampling and the complexity of the target. To address
this, we design the shortcut as a "back-copy" of the forecast, where the decoy is
equivalent to the actual solution. Due to the windowed sampling, the shortcut
appears in every second sample. Given a sample of lookback window x ∈ RT and
the forecast horizon y ∈ RW . In the shortcut samples, we overwrite the first W
entries of the lookback window with the future horizon values, yielding:

xs =
(
y1, . . . , yW︸ ︷︷ ︸
future horizon

, xW+1, . . . , xT︸ ︷︷ ︸
remaining lookback

)
.

while y remains unchanged. While this setting may seem constructed, similar
patterns can emerge in real-world scenarios. For instance, in data transmission,
glitches such as packet losses or duplications can subtly introduce irregularities
into time series data, inadvertently creating forecasting shortcuts.

We model the forecasting frequency decoy as a recurring Dirac impulse with
a specific frequency, added every k time steps: i ∈ {n · k|n ∈ N∧ n · k ≤ T +W}
with a strength of A: interference := A ·∆i. The impulse is present within the
lookback and forecasting window during training, representing an effective decoy
distracting the model from the actual forecast.

4.2 Real-World Shortcuts: Production Press Sensor Data (P2S)

RioT aims to mitigate shortcuts in time series data. While the decoys above
provide a controlled evaluation setting, they do not capture the complexity of
real-world shortcuts. To rectify this, we introduce Production Press Sensor
Data (P2S)6, a dataset of sensor recordings with naturally occurring shortcuts.

The sensor data stems from a high-speed press production line for metal
parts, one of the sheet metal working industry’s most economically significant
processes. Based on the sensor data, the task is to predict whether a run is de-
fective. The recordings include different production speeds, which, although not
affecting part quality, influence process friction, and applied forces. Fig. 3 shows
samples recorded at different speeds from normal and defect runs, highlighting
variations even within the same class. A domain expert identified regions in the
time series that vary with production speed, potentially distracting models from
relevant features, especially when no defect and normal runs of the same speed
6 https://huggingface.co/datasets/AIML-TUDA/P2S

https://huggingface.co/datasets/AIML-TUDA/P2S

Revising Time Series Models by Constraining their Explanations 9

0 1000 2000 3000 4000
1

0

1 normal - 80
normal - 225

0 1000 2000 3000 4000
1

0

1 defect - 80
defect - 225

Fig. 3. Samples of P2S from normal (left) and defect (right) class at 80 and
225 strokes per minute. Areas of the time series that are especially sensitive to the
stroke rate are considered a shortcut and marked red.

are in the training data. In these cases, the run’s speed is a shortcut and makes
it difficult to generalize to other speeds than those present in training. P2S also
includes a specifically curated setup that matches run speeds during training to
avoid the shortcut. Further details on the dataset are available in Sec. B.

5 Experimental Evaluations

In this section, we investigate the effectiveness of RioT7to mitigate shortcuts in
time series classification and forecasting, including revision in the spatial domain
(RioTsp) and the frequency domain (RioTfreq), as well as both jointly.

5.1 Experimental Setup

Data. For classification, we use datasets from the UCR/UEA repository [7]. We
select available datasets of a minimal size (cf. Appx. A.2), which results in Fault
Detection A, Ford A, Ford B, and Sleep. For time series forecasting, we
evaluate on three popular datasets from the Darts repository [14]: ETTM1, En-
ergy, and Weather. We split the data into training and test sets using a 70/30
ratio and 20% of the training set are used for validation. We apply the previ-
ously described decoys to the training sets and simulate feedback based on the
shortcuts to generate annotation masks. In the real-world experiment, we utilize
our newly introduced dataset P2S. The mask is applied to all samples except in
our feedback scaling experiment. For the real-world test case, we consider our
newly introduced dataset P2S. We standardize all datasets as suggested by [41],
i.e., rescaling the distribution to zero mean and a standard deviation of one.

Models. For time series classification, we use the FCN model of [19], with
a slightly modified architecture for Sleep to achieve better performance (cf.
Appx. A.1). Additionally, we use the OFA model [43]. For forecasting, we use
TiDE [6], PatchTST [24] and NBEATS [25] to highlight the applicability of our
method to a variety of model classes.

Metrics. In our evaluations, we compare model performance on datasets
with and without shortcuts, as well as with and without RioT. For classification,
7 https://github.com/ml-research/RioT

https://github.com/ml-research/RioT

10 Kraus et al.

Table 1. Applying RioT mitigates shortcuts in time series classification. Per-
formance before and after applying RioT for spatial (Basesp) and frequency (Basefreq)
shortcuts. High training and low test accuracies indicate overfitting to the shortcut,
which RioT successfully mitigates. No Shortcut represents the ideal scenario where the
model is not affected by any shortcut.

Model Config Fault Detection A FordA FordB Sleep
(ACC ↑) Train Test Train Test Train Test Train Test

FCN No Shortcut 0.99 ±0.00 0.99 ±0.00 0.92 ±0.01 0.91 ±0.00 0.93 ±0.00 0.76 ±0.01 0.68 ±0.00 0.62 ±0.00

Basesp 1.00 ±0.00 0.74 ±0.06 1.00 ±0.00 0.71 ±0.08 1.00 ±0.00 0.63 ±0.03 1.00 ±0.00 0.10 ±0.03
+ RioTsp 0.98 ±0.01 0.93 ±0.03 0.99 ±0.01 0.84 ±0.02 0.99 ±0.00 0.68 ±0.02 0.60 ±0.06 0.54 ±0.05

Basefreq 0.98 ±0.01 0.87 ±0.03 0.98 ±0.00 0.73 ±0.01 0.99 ±0.01 0.60 ±0.01 0.98 ±0.00 0.27 ±0.02
+ RioTfreq 0.94 ±0.00 0.90 ±0.03 0.83 ±0.02 0.83 ±0.02 0.94 ±0.00 0.65 ±0.01 0.67 ±0.05 0.45 ±0.07

OFA No Shortcut 1.00 ±0.00 0.98 ±0.02 0.92 ±0.01 0.87 ±0.04 0.95 ±0.01 0.70 ±0.04 0.69 ±0.00 0.64 ±0.01

Basesp 1.00 ±0.00 0.53 ±0.02 1.00 ±0.00 0.50 ±0.00 1.00 ±0.00 0.52 ±0.01 1.00 ±0.00 0.21 ±0.05
+ RioTsp 0.96 ±0.08 0.98 ±0.01 0.92 ±0.03 0.85 ±0.02 0.94 ±0.01 0.65 ±0.04 0.52 ±0.22 0.58 ±0.05

Basefreq 1.00 ±0.00 0.72 ±0.02 1.00 ±0.00 0.65 ±0.01 1.00 ±0.00 0.56 ±0.02 0.99 ±0.00 0.24 ±0.03
+ RioTfreq 0.96 ±0.02 0.98 ±0.02 0.78 ±0.04 0.85 ±0.04 1.00 ±0.00 0.64 ±0.03 0.50 ±0.16 0.49 ±0.04

we report balanced (multiclass) accuracy (ACC), and mean squared error (MSE)
for forecasting. The respective mean absolute error (MAE) results can be found
in Appx. A.5. We report average and standard deviation over 5 runs.

5.2 Evaluations

Removing Shortcuts for Time Series Classification. We evaluate the ef-
fectiveness of RioT (spatial: RioTsp, frequency: RioTfreq) in addressing shortcuts
in classification tasks by comparing balanced accuracy with and without RioT.
As shown in Tab. 1, without RioT, both FCN and OFA overfit to shortcuts,
achieving ≈100% training accuracy, while having poor test performance. Ap-
plying RioT significantly improves test performance for both models across all
datasets. In some cases, RioT even reaches the performance of the ideal refer-
ence (no shortcut) scenario as if there would be no shortcut in the data. Even on
FordB, where the drop in training-to-test performance highlights the distribution
shift of that dataset [2], RioTsp is still beneficial. Similarly, RioTfreq enhances
performance on data with frequency shortcuts, though the improvement is less
pronounced for FCN on Ford B, suggesting essential frequency information is
sometimes obscured by RioTfreq. In summary, RioT successfully mitigates short-
cuts in both domains, enhancing test generalization for FCN and OFA models.

Removing Shortcuts for Time Series Forecasting. Shortcuts are not
exclusive to time series classification and can significantly impact other tasks,
such as forecasting. In Tab. 2, we outline that spatial shortcuts cause models to
overfit, but applying RioTsp reduces MSE across datasets, especially for Energy,
where MSE drops by up to 56%. In the frequency-shortcut setting, the training
data includes a recurring Dirac impulse as a decoy (cf. Appx. A.4 for details).
RioTfreq alleviates this distraction and improves the test performance signifi-
cantly. For example, TiDE’s test MSE on ETTM1 decreases by 14% compared
to the decoy setting.

Revising Time Series Models by Constraining their Explanations 11

Table 2. RioT can successfully overcome shortcuts in time series forecasting.
MSE values (MAE values cf. Tab. 7) on the training set with and test set without
shortcuts. No Shortcut is the ideal scenario where the model is not affected by shortcuts.

Model Config (MSE ↓) ETTM1 Energy Weather
Train Test Train Test Train Test

NBEATS No Shortcut 0.30 ±0.02 0.47 ±0.02 0.34 ±0.03 0.26 ±0.02 0.08 ±0.01 0.03 ±0.01

Basesp 0.24 ±0.01 0.55 ±0.01 0.33 ±0.03 0.94 ±0.02 0.09 ±0.01 0.16 ±0.04
+ RioTsp 0.30 ±0.01 0.50 ±0.01 0.45 ±0.03 0.58 ±0.01 0.11 ±0.01 0.09 ±0.02

Basefreq 0.30 ±0.02 0.46 ±0.01 0.33 ±0.04 0.36 ±0.04 0.11 ±0.02 0.32 ±0.09
+ RioTfreq 0.31 ±0.02 0.45 ±0.01 0.33 ±0.04 0.34 ±0.04 0.81 ±0.48 0.17 ±0.01

PatchTST No Shortcut 0.46 ±0.03 0.47 ±0.01 0.26 ±0.01 0.23 ±0.00 0.26 ±0.03 0.08 ±0.01

Basesp 0.40 ±0.02 0.55 ±0.01 0.29 ±0.01 0.96 ±0.03 0.20 ±0.03 0.19 ±0.01
+ RioTsp 0.40 ±0.03 0.53 ±0.01 0.44 ±0.00 0.45 ±0.01 0.55 ±0.20 0.14 ±0.01

Basefreq 0.45 ±0.03 0.91 ±0.16 0.04 ±0.00 0.53 ±0.05 0.63 ±0.09 0.24 ±0.04
+ RioTfreq 0.91 ±0.07 0.66 ±0.04 0.71 ±0.10 0.38 ±0.06 0.96 ±0.02 0.17 ±0.00

TiDE No Shortcut 0.27 ±0.01 0.47 ±0.01 0.27 ±0.01 0.26 ±0.02 0.25 ±0.02 0.03 ±0.00

Basesp 0.22 ±0.01 0.54 ±0.03 0.28 ±0.01 1.19 ±0.03 0.22 ±0.03 0.15 ±0.01
+ RioTsp 0.23 ±0.01 0.48 ±0.01 0.53 ±0.02 0.52 ±0.02 0.25 ±0.03 0.11 ±0.01

Basefreq 0.06 ±0.01 0.69 ±0.08 0.07 ±0.01 0.34 ±0.08 0.79 ±0.09 0.31 ±0.09
+ RioTfreq 0.07 ±0.01 0.49 ±0.07 0.07 ±0.01 0.21 ±0.02 1.12 ±0.36 0.22 ±0.01

Fig. 4. Applying RioT lets the model ignore shortcut areas. While FCN primar-
ily focuses on shortcuts, applying RioT with partial feedback (middle) or full feedback
(bottom) causes the model to ignore the shortcut and focus on the remaining input.

In general, RioT effectively addresses spatial and frequency shortcuts in fore-
casting tasks. Interestingly, for TiDE on the Energy dataset, the performance
with RioTfreq even surpasses the no shortcut model. Here, the added frequency
acts as a form of data augmentation, enhancing model robustness. A similar
behavior can be observed for NBEATS and ETTM1, where the decoy setting
actually improves the model slightly, and RioT even improves upon that.

Removing Shortcuts in the Real-World. So far, our experiments have
demonstrated RioT’s ability to counteract shortcuts within controlled environ-
ments. However, real-world shortcuts, as in our new dataset P2S, often have
more complex structures. The model explanations in Fig. 4 (top) reveal a focus
on distinct regions of the sensor curve, specifically the two middle regions. With
domain knowledge, it is clear that these regions should not affect the model’s
output. By applying RioT, we can redirect the model’s attention away from these
regions. New model explanations highlight that the model still focuses on (other)
incorrect regions, which can be mitigated by extending the annotated area. In
Tab. 3, the model performance (exemplarly with FCN) in these settings is pre-

12 Kraus et al.

Table 3. Applying RioT over-
comes shortcuts in P2S. Perfor-
mance on the train set with and test
set without shortcuts. FCN learns the
train shortcut, resulting in lower test
performance. Applying RioT with
partial feedback (2) already yields
good improvements, while adding
feedback on the full shortcut area (4)
is even better. No Shortcut is the
ideal scenario, specifically curated so
that there is no shortcut.

P2S (ACC ↑) Train Test

FCNNo Shortcut 0.97 ±0.01 0.95 ±0.01

FCNsp 0.99 ±0.01 0.66 ±0.14
FCNsp + RioTsp (2) 0.96 ±0.01 0.78 ±0.05
FCNsp + RioTsp (4) 0.95 ±0.01 0.82 ±0.06

Table 4. RioT can combine spatial and
frequency feedback. If the data contains time
and frequency shortcuts, RioT can combine
feedback on both domains to mitigate them,
superior to feedback on only one domain. No
Shortcut represents the ideal scenario when the
model is not affected by any shortcuts.

Sleep (Classification ACC ↑) Train Test

FCNNo Shortcut 0.68 ±0.00 0.62 ±0.00

FCNfreq,sp 1.00 ±0.00 0.10 ±0.04
FCNfreq,sp + RioTsp 0.94 ±0.00 0.24 ±0.02
FCNfreq,sp + RioTfreq 1.00 ±0.00 0.04 ±0.00
FCNfreq,sp + RioTfreq,sp 0.47 ±0.00 0.48 ±0.03

Energy (Forecasting MSE ↓) Train Test

TiDENo Shortcut 0.28 ±0.01 0.26 ±0.02

TiDEfreq,sp 0.16 ±0.01 0.74 ±0.02
TiDEfreq,sp + RioTsp 0.20 ±0.01 0.61 ±0.02
TiDEfreq,sp + RioTfreq 0.22 ±0.01 0.55 ±0.02
TiDEfreq,sp + RioTfreq,sp 0.25 ±0.01 0.47 ±0.01

sented. Without RioT, the model overfits to the shortcut. the test performance
improves already with partial feedback (2) and even more with full feedback (4).
These results highlight the effectiveness of RioT in real-world scenarios where
not all shortcuts are initially known.

Removing Multiple Shortcuts at Once. In the previous experiments,
we illustrated that RioT is suitable for addressing individual shortcuts, whether
spatial or frequency-based. However, real-world time series data often presents
a blend of multiple shortcuts that simultaneously influence model performance.
Thus, we investigate the impact of applying RioT to both spatial and frequency
shortcuts simultaneously (cf. Tab. 4), exemplarily using FCN and TiDE. When
Sleep contains shortcuts in both domains, FCN without RioT overfits and fails
to generalize. Addressing only one shortcut does not mitigate the effects, as the
model adapts to the other. However, combining the respective feedback from
both domains (RioTfreq,sp) significantly improves test performance, matching
the frequency-shortcut scenario (cf. Tab. 1). Tab. 4 (bottom) shows the impact
of multiple shortcuts on the Energy dataset, where the lower training MSE indi-
cates overfitting. While applying either spatial or frequency feedback individually
shows some effect, utilizing both types of feedback simultaneously (RioTfreq,sp)
results in the largest improvements, as both decoys are addressed. The perfor-
mance gap between RioTfreq,sp and the no shortcut setting is more pronounced
than in single shortcut cases (cf. Tab. 2). This highlights again the known chal-
lenge of removing multiple shortcuts at once, which is generally more complex
than individual shortcuts [36].

Handling Feedback. As the annotations are a crucial component of RioT,
we conduct two different ablation studies to evaluate its impact using the classi-
fication data set Fault Detection A and the forecasting data set Energy. The first
experiment examines the required amount of feedback, while the second assesses

Revising Time Series Models by Constraining their Explanations 13

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

.

Fault Detection A

Spatial Frequency
0.00

0.25

0.50

0.75

1.00

1.25

Te
st

 M
SE

Energy
No Feedback
5%
10%
25%
50%
75%
100%

Fig. 5. RioT uses feedback effi-
ciently. Even with feedback on only a
small percentage of the data, RioT can
overcome shortcuts.

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

.

Fault Detection A

Spatial Frequency
0.00

0.25

0.50

0.75

1.00

1.25

Te
st

 M
SE

Energy
No Feedback
50%
25%
10%
5%
1%
No Noise

Fig. 6. RioT is robust against invalid
feedback. Even with some percentage
of random feedback, RioT overcomes the
shortcuts.

robustness to noisy feedback. In particular if the feedback stems from domain
experts, making excessive feedback requests is impractical. Thus our first ex-
periment evaluates the performance of RioT when feedback is provided on only
a portion of the dataset (Fig. 5). The findings reveal that full annotations are
unnecessary. Even with minimal feedback, such as annotating just 5% of the sam-
ples, RioT significantly outperforms scenarios with no feedback. While previous
experiments assumed entirely accurate feedback, real-world applications often
involve some degree of error. Therefore, we test the resilience of RioT to increas-
ing levels of incorrect feedback (Fig. 6). Instead of accurately marking shortcut
areas, random time steps or frequency components are incorrectly labeled as
shortcuts. The results show that RioT maintains strong performance even with
up to 10% invalid feedback, presenting only slight performance declines. In cer-
tain cases, like forecasting with spatial shortcuts, RioT can still achieve notable
improvements despite high levels of feedback noise. To further evaluate whether
annotations in different settings can also be incorporated via RioT, we conduct
an additional ablation where the feedback is based on shaplets instead of the
input domain directly (cf. Tab. 11 in the appendix). The results show that RioT
can be effective in this setup as well, and is not limited to the specific explanation
method and annotation modality shown in the other experiments (more details
in Appx. A.5). In summary, RioT effectively generalizes from small subsets of
feedback and remains robust against a moderate amount of annotation noise.
Additionally, RioT can incorporate feedback in other settings with other types
of explanations as well. These qualities demonstrate that RioT is well-equipped
to manage the practical challenges associated with incorporating feedback.

Qualitative Insights into Model Encodings. Lastly, we examine the
inner workings of a model by analyzing its latent representations under various
configurations. In Fig. 7, t-SNE plots show OFA’s feature encodings on Fault

14 Kraus et al.

40 30 20 10 0 10 20 30
30

20

10

0

10

20
Co

m
po

ne
nt

 2

OFA trained on Confounded Data

40 30 20 10 0 10 20 30
Component 1

20

10

0

10

20

OFA trained on Confounded Data with RioT

30 20 10 0 10 20 30

40

20

0

20

40

OFA trained on Original Data
Class

0
1
2

Fig. 7. t-SNE plots of OFA encodings for Fault Detection A. The left plot shows
that a model trained with shortcuts shows minimal class separation. The middle plot
shows the same setup but after RioT regularization, while the far right plot shows an
model without shortcuts with clear class separation. Both RioT-regularized and model
without shortcuts exhibit similar structures, highlighting the effectiveness of RioT.

Detection A in three settings: trained on shortcut data (left) with poor class
separation; after RioT regularization (center), where structure and separation
improve; and trained on clean data (right), yielding clear clusters. This reflects
the scores of the models (Tab. 1): the shortcut model reaches ≈50% accuracy,
whereas RioT boosts it to nearly 100%, matching the reference scenario with
clean data. This further demonstrates RioT’s ability to mitigate shortcuts and
restore robust performance.

Limitations. A key aspect of RioT is the incorporation of feedback. While
this is a major advantage of RioT, obtaining feedback can also present some
challenges. Although we demonstrate that only a small fraction of annotated
samples is needed, annotations remain essential. Moreover, like many interactive
learning approaches, RioT assumes accurate feedback, making it important to
consider potential issues from inaccuracies in practical applications. To reduce
the need of manual feedback, one could explore automated feedback strategies in-
stead or alongside manual feedback [34] (e.g., using an LLM to provide feedback
or automated clustering of explanations to identify outliers). Such approaches
may alleviate annotation costs but inevitably trade off some precision and can
introduce new failure modes if the surrogate feedback is misaligned with task
requirements. Another drawback of RioT is the increased training cost. Opti-
mizing model explanations with gradient-based attributions requires comput-
ing a mixed-partial derivative. However, this can be efficiently handled using a
Hessian-vector product, keeping the additional overhead manageable.

6 Conclusion

In this work, we present Right on Time (RioT) a method to mitigate shortcuts
in time series data with the help of feedback. By revising the model, RioT sig-
nificantly diminishes the influence of these factors, steering the model to align

Revising Time Series Models by Constraining their Explanations 15

with the correct reasons. Using popular time series models on several controlled
decoy datasets and the newly introduced, real-world dataset P2S with naturally
occurring shortcuts, showcases that SOTA models are indeed subject to short-
cuts. Our results demonstrate that applying RioT to these models can mitigate
shortcuts in the data. Furthermore, we have unveiled that addressing solely the
time domain is insufficient for fully steering the model toward the correct rea-
sons. To overcome this, we extended our method to incorporate feedback in the
frequency domain, offering an additional mechanism for reducing reliance on
shortcuts. Logical next steps are the extension of RioT to multivariate time se-
ries and the integration of various explainer types. Furthermore, exploring the
usage of adaptive feedback mechanisms could prove to be beneficial, in particular
in the context of multiple simultaneous shortcuts. Beyond time series, the appli-
cation of RioT, especially RioTfreq, can also allow for a more nuanced approach
to shortcut mitigation in other modalities.

Acknowledgments. This work was partly funded by the Federal Ministry of Edu-
cation and Research (BMBF) project “XEI” (FKZ 01IS24079B), received funding by
the EU project EXPLAIN, funded by the Federal Ministry of Education and Research
(grant 01—S22030D). Additionally, it was funded by the project “The Adaptive Mind”
from the Hessian Ministry of Science and the Arts (HMWK), the “ML2MT” project
from the Volkswagen Stiftung, and the Priority Program (SPP) 2422 in the subproject
“Optimization of active surface design of high-speed progressive tools using machine
and deep learning algorithms” funded by the German Research Foundation (DFG). The
latter also contributed the data for the P2S dataset. Furthermore, this work benefited
from the HMWK project “The Third Wave of Artificial Intelligence – 3AI".

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.:
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation. PLOS ONE 10(7), e0130140 (2015)

2. Bagnall, A., Davis, L., Hills, J., Lines, J.: Transformation Based Ensembles for
Time Series Classification. In: Proceedings of the SIAM International Conference
on Data Mining (SDM) (2012)

3. Benidis, K., Rangapuram, S.S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C.,
Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F.X., Callot,
L., Januschowski, T.: Deep Learning for Time Series Forecasting: Tutorial and
Literature Survey. ACM Computing Surveys 55(6), 1–36 (2023)

4. Bica, I., Alaa, A.M., Van Der Schaar, M.: Time series deconfounder: estimating
treatment effects over time in the presence of hidden confounders. In: Proceedings
of the International Conference on Machine Learning (ICML) (2020)

5. Cao, D., Enouen, J., Wang, Y., Song, X., Meng, C., Niu, H., Liu, Y.: Estimating
treatment effects from irregular time series observations with hidden confounders.
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2023)

16 Kraus et al.

6. Das, A., Kong, W., Leach, A., Mathur, S., Sen, R., Yu, R.: Long-term Forecast-
ing with TiDE: Time-series Dense Encoder. Transactions on Machine Learning
Research (TMLR) (2023)

7. Dau, H.A., Bagnall, A.J., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi,
S., Ratanamahatana, C.A., Keogh, E.J.: The UCR time series archive.
ArXiv:1810.07758 (2018)

8. Flanders, W.D., Klein, M., Darrow, L., Strickland, M., Sarnat, S., Sarnat, J.,
Waller, L., Winquist, A., Tolbert, P.: A Method for Detection of Residual Con-
founding in Time-Series and Other Observational Studies. Epidemiology 22(1),
59–67 (2011)

9. Friedrich, F., Stammer, W., Schramowski, P., Kersting, K.: A typology for ex-
ploring the mitigation of shortcut behaviour. Nature Machine Intelligence 5(3),
319–330 (2023)

10. Friedrich, F., Steinmann, D., Kersting, K.: One explanation does not fit XIL.
ArXiv:2304.07136 (2023)

11. Geirhos, R., Jacobsen, J.H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M.,
Wichmann, F.A.: Shortcut learning in deep neural networks. Nature Machine In-
telligence 2(11), 665–673 (2020)

12. Graps, A.: An introduction to wavelets. IEEE Computational Science and Engi-
neering 2(2), 50–61 (1995)

13. Hatt, T., Feuerriegel, S.: Sequential deconfounding for causal inference with un-
observed confounders. In: Proceedings of the Conference on Causal Learning and
Reasoning (CLeaR) (2024)

14. Herzen, J., Lässig, F., Piazzetta, S.G., Neuer, T., Tafti, L., Raille, G., Pottelbergh,
T.V., Pasieka, M., Skrodzki, A., Huguenin, N., Dumonal, M., Kościsz, J., Bader,
D., Gusset, F., Benheddi, M., Williamson, C., Kosinski, M., Petrik, M., Grosch,
G.: Darts: User-Friendly Modern Machine Learning for Time Series. Journal of
Machine Learning Research (JMLR) 23(124), 1–6 (2022)

15. Koprinska, I., Wu, D., Wang, Z.: Convolutional Neural Networks for Energy Time
Series Forecasting. In: Proceedings of the International Joint Conference on Neural
Networks (IJCNN) (2018)

16. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.:
Unmasking Clever Hans predictors and assessing what machines really learn. Na-
ture Communications 10(1), 1096 (2019)

17. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of the ACM SIGMOD
workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD)
(2003)

18. Ma, C., Dai, G., Zhou, J.: Short-Term Traffic Flow Prediction for Urban Road
Sections Based on Time Series Analysis and LSTM_bilstm Method. IEEE Trans-
actions on Intelligent Transportation (T-ITS) 23(6), 5615–5624 (2022)

19. Ma, Q., Liu, Z., Zheng, Z., Huang, Z., Zhu, S., Yu, Z., Kwok, J.T.: A survey on
time-series pre-trained models. ArXiv:2305.10716 (2023)

20. Martens, J.: Deep learning via hessian-free optimization. In: Proceedings of the
International Conference on Machine Learning (ICML) (2010)

21. Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P., Loos, P.: Time Series
Classification using Deep Learning for Process Planning: A Case from the Process
Industry. Procedia Computer Science 114, 242–249 (2017)

22. Mercier, D., Bhatt, J., Dengel, A., Ahmed, S.: Time to Focus: A Comprehensive
Benchmark Using Time Series Attribution Methods. ArXiv:2202.03759 (2022)

Revising Time Series Models by Constraining their Explanations 17

23. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence (AIJ) 267, 1–38 (2019)

24. Nie, Y., H. Nguyen, N., Sinthong, P., Kalagnanam, J.: A time series is worth 64
words: Long-term forecasting with transformers. In: Proceedings of the Interna-
tional Conference on Learning Representations (ICLR) (2023)

25. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting. In: Proceedings of the
International Conference on Learning Representations (ICLR) (2020)

26. Rojat, T., Puget, R., Filliat, D., Del Ser, J., Gelin, R., Díaz-Rodríguez, N.: Explain-
able Artificial Intelligence (XAI) on TimeSeries Data: A Survey. ArXiv:2104.00950
(2021)

27. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: Training
differentiable models by constraining their explanations. In: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI) (2017)

28. Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.: The great mul-
tivariate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Mining and Knowledge Discovery (DMKD)
35(2), 401–449 (2021)

29. Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A.: Towards a Rigorous
Evaluation of XAI Methods on Time Series. ArXiv:1909.07082 (2019)

30. Schramowski, P., Stammer, W., Teso, S., Brugger, A., Herbert, F., Shao, X., Luigs,
H.G., Mahlein, A.K., Kersting, K.: Making deep neural networks right for the
right scientific reasons by interacting with their explanations. Nature Machine
Intelligence 2(8), 476–486 (2020)

31. Selvaraju, R.R., Lee, S., Shen, Y., Jin, H., Ghosh, S., Heck, L., Batra, D., Parikh,
D.: Taking a HINT: Leveraging Explanations to Make Vision and Language Models
More Grounded. In: Proceedings of the International Conference on Computer
Vision (ICCV) (2019)

32. Shao, X., Skryagin, A., Stammer, W., Schramowski, P., Kersting, K.: Right for Bet-
ter Reasons: Training Differentiable Models by Constraining their Influence Func-
tions. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
(2021)

33. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not Just a Black
Box: Learning Important Features Through Propagating Activation Differences.
ArXiv:1605.01713 (2017)

34. Stammer, W., Friedrich, F., Steinmann, D., Brack, M., Shindo, H., Kersting, K.:
Learning by self-explaining. Transactions on Machine Learning Research (TMLR)
(2024)

35. Stammer, W., Schramowski, P., Kersting, K.: Right for the right concept: Revising
neuro-symbolic concepts by interacting with their explanations. In: Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

36. Steinmann, D., Divo, F., Kraus, M., Wüst, A., Struppek, L., Friedrich, F., Kersting,
K.: Navigating Shortcuts, Spurious Correlations, and Confounders: From Origins
via Detection to Mitigation. ArXiv:2412.05152 (2024)

37. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
Proceedings of the International Conference on Machine Learning (ICML) (2017)

38. Teso, S., Kersting, K.: Explanatory Interactive Machine Learning. In: Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society (AIES) (2019)

39. Veerappa, M., Anneken, M., Burkart, N., Huber, M.F.: Validation of XAI expla-
nations for multivariate time series classification in the maritime domain. Journal
of Computational Science 58, 101539 (2022)

18 Kraus et al.

40. Vielhaben, J., Lapuschkin, S., Montavon, G., Samek, W.: Explainable AI for Time
Series via Virtual Inspection Layers. ArXiv:2303.06365 (2023)

41. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: Decomposition transformers with
Auto-Correlation for long-term series forecasting. In: Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS) (2021)

42. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, in-
terpretable and fast classification. Data Mining and Knowledge Discovery (DMKD)
22, 149–182 (2011)

43. Zhou, T., Niu, P., Wang, X., Sun, L., Jin, R.: One fits all: Power general time
series analysis by pretrained LM. In: Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS) (2023)

Revising Time Series Models by Constraining their Explanations 19

A Appendix

A.1 Implementation and Experimental Details

Adaption of Integrated Gradients (IG) A part of IG is a multiplication of
the model gradient with the input itself, improving the explanation’s quality [33].
However, this multiplication makes some implicit assumptions about the input
format. In particular, it assumes that there are no inputs with negative values.
Otherwise, multiplying the attribution score with a negative input would flip the
attribution’s sign, which is not desired. For images, this is unproblematic because
they are always equal to or larger than zero. In time series, negative values can
occur and normalization to make them all positive is not always suitable. To
avoid this problem, we use only the input magnitude and not the input sign to
compute the IG attributions.

Computing Explanations To compute explanations with Integrated Gradi-
ents, we followed the common practice of using a baseline of zeros. The standard
approach worked well in our experiments, so we did not explore other base-
line choices in this work. For the implementation, we utilized the widely-used
Captum8 library, with patched captum._utils.gradient.compute_gradients
function to allow for the propagation of the gradient with respect to the input
to be propagated back into the parameters.

Model Training and Hyperparameters To find suitable parameters for
model training, we performed a hyperparameter search over batch size, learning
rate, and the number of training epochs. We then used these parameters for all
model trainings and evaluations, with and without RioT. In addition, we selected
suitable λ values for RioT with a hyperparameter selection on the respective
validation sets. The exact values for the model training parameters and the λ
values can be found in the provided code9.

To avoid model overfitting on the forecasting datasets, we performed shifted
sampling with a window size of half the lookback window.

Code For the experiments, we based our model implementations on the follow-
ing repositories:

– FCN: https://github.com/qianlima-lab/time-series-ptms/blob/master/
model/tsm_model.py

– OFA: https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All/
– NBEATS: https://github.com/unit8co/darts/blob/master/darts/models/

forecasting/nbeats.py
– TiDE: https://github.com/unit8co/darts/blob/master/darts/models/

forecasting/tide_model.py
8 https://github.com/pytorch/captum
9 https://github.com/ml-research/RioT

https://github.com/qianlima-lab/time-series-ptms/blob/master/model/tsm_model.py
https://github.com/qianlima-lab/time-series-ptms/blob/master/model/tsm_model.py
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All/
https://github.com/unit8co/darts/blob/master/darts/models/forecasting/nbeats.py
https://github.com/unit8co/darts/blob/master/darts/models/forecasting/nbeats.py
https://github.com/unit8co/darts/blob/master/darts/models/forecasting/tide_model.py
https://github.com/unit8co/darts/blob/master/darts/models/forecasting/tide_model.py
https://github.com/pytorch/captum
https://github.com/ml-research/RioT

20 Kraus et al.

– PatchTST: https://github.com/awslabs/gluonts/tree/dev/src/gluonts/
torch/model/patch_tst

All experiments were executed using our Python 3.11 and PyTorch, which
is available in the provided code. To ensure reproducibility and consistency, we
utilized Docker. Configurations and Python executables for all experiments are
provided in the repository.

Hardware To conduct our experiments, we utilized single GPUs from Nvidia
DGX2 machines equipped with A100-40G and A100-80G graphics processing
units. By maintaining a consistent hardware setup and a controlled software
environment, we aimed to ensure the reliability and reproducibility of our ex-
perimental results.

A.2 UCR Dataset selection

We focused our evaluation on a subset of UCR datasets with a minimum size. Our
selection process was as follows: First, we discarded all multivariate datasets, as
we only considered univariate data in this paper. Then we removed all datasets
with time series of different length or missing values. We further excluded all
datasets of the category SIMULATED, to avoid datasets which were synthetic
from the beginning. We furthermore considered only datasets with less than 10
classes, as having a per-class shortcuts on more than 10 classes would result in
a very high number of different shortcuts, which would probably rarely happen.
Besides these criteria, we discarded all datasets with less than 1000 training
samples or a per sample length of less than 100, to avoid the small datasets of
UCR, which leads to the resulting four datasets: Fault Detection A, Ford A,
Ford B and Sleep.

A.3 Computational Costs of RioT

Training a model with RioT induces additional computational costs. The right-
reason term requires computations of additional gradients. Given a model fθ(x),
parameterized by θ and input x, then computing the right reason loss with
a gradient-based explanation method requires the computation of the mixed-
partial derivative ∂2fθ(x)

∂θ∂x , as a gradient-based explanation includes the derivative
∂fθ(x)

∂x . While this mixed partial derivative is a second order derivative, this does
not substantially increase the computational costs of our method for two main
reasons. First, we are never explicitly materializing the Hessian matrix. Second,
the second-order component of our loss can be formulated as a Hessian-vector
product:

∂L
∂θ

= g +
λ

2
Hθx(e(x)− a(x)) (6)

where g = ∂LRA

∂θ is the partial derivative of the right answer loss and if H is the
full joint Hessian matrix of the loss with respect to θ and x, then Hθx is the

https://github.com/awslabs/gluonts/tree/dev/src/gluonts/torch/model/patch_tst
https://github.com/awslabs/gluonts/tree/dev/src/gluonts/torch/model/patch_tst

Revising Time Series Models by Constraining their Explanations 21

sub-block of this matrix mapping x into θ (cf. Fig. 8), given by Hθx = ∂2fθ(x)
∂θ∂x .

Hessian-vector products are known to be fast to compute [20], enabling the
right-reason loss computation to scale to large models and inputs.

Hθθ Hθx

Hxθ Hxx

θ x

x

θ

Fig. 8. Illustration of the Hessian matrix with its respective sub-blocks. The mapping
from x into θ is highlighted in blue.

A.4 Details on Shortcuts

In the datasets which are not P2S, we added synthetic shortcuts to evaluate the
effectiveness of shortcuts. Here, we provide some examples and more detailed
descriptions of the decoy shortcuts. In Fig. 9 an example for a spatial decoy for
classification is shown and in Fig. 10 an examples for the frequency decoy for
classification.

Fig. 9. Example of the added spatial shortcut in the Fault Detection dataset.

For forecasting datasets, spatial decoy are shortcuts that act as the actual
solution to the forecasting problem. Periodically, data from the time series is
copied back in time. This “back-copy” is a shortcut for the forecast, as it resem-
bles the time steps of the forecasting window. Due to the windowed sampling
from the time series, this shortcut occurs at every second sample. An exemplary

22 Kraus et al.

Fig. 10. Example of an added frequency shortcut in the Fault Detection dataset.

visualization of this setting is shown in Fig. 11, with an exemplary lookback
length of 9, forecasting horizon of 3 and window stride of 6. This results in a
shortcut in samples 1 and 3 (marked red) and overlapping in sample 2 (marked
orange).

1. Sample Lookback Horizon

No Shortcut: 0 1 2 3 4 5 6 7 8 9 10 11

Shortcut: 9 10 11 3 4 5 6 7 8 9 10 11

Feedback: 1 1 1 0 0 0 0 0 0

2. Sample

No Shortcut: 6 7 8 9 10 11 12 13 14 15 16 17

Shortcut: 6 7 8 9 10 11 21 22 23 15 16 17

Feedback: 0 0 0 0 0 0 0 0 0

3. Sample

No Shortcut: 12 13 14 15 16 17 18 19 20 21 22 23

Shortcut: 21 22 23 15 16 17 18 19 20 21 22 23

Feedback: 1 1 1 0 0 0 0 0 0

Shortcut: Overlapping Shortcut:

Fig. 11. Schematic overview of spatial decoys for the forecasting experiments.

Revising Time Series Models by Constraining their Explanations 23

Table 5. Feedback percentage for forecasting across all datasets, reported for the TiDE
model. Corresponding to (test) results shown in Fig. 5, a higher percentage indicates
more feedback, lower is better.

Metric Feedback ETTM1 Energy Weather
Spatial Freq Spatial Freq Spatial Freq

MAE (↓) 0% 0.54 ±0.01 0.74 ±0.06 0.85 ±0.01 0.53 ±0.07 0.29 ±0.01 0.49 ±0.09
5% 0.52 ±0.00 0.63 ±0.03 0.62 ±0.01 0.40 ±0.02 0.28 ±0.01 0.43 ±0.03
10% 0.52 ±0.00 0.63 ±0.03 0.61 ±0.01 0.40 ±0.02 0.27 ±0.01 0.43 ±0.03
25% 0.52 ±0.00 0.63 ±0.03 0.58 ±0.01 0.41 ±0.01 0.25 ±0.01 0.43 ±0.04
50% 0.52 ±0.00 0.63 ±0.03 0.57 ±0.01 0.41 ±0.01 0.24 ±0.01 0.44 ±0.05
75% 0.52 ±0.01 0.63 ±0.03 0.57 ±0.01 0.41 ±0.01 0.24 ±0.01 0.45 ±0.06
100% 0.51 ±0.01 0.60 ±0.05 0.58 ±0.01 0.40 ±0.03 0.24 ±0.01 0.41 ±0.02

MSE (↓) 0% 0.54 ±0.03 0.69 ±0.08 1.19 ±0.03 0.34 ±0.08 0.15 ±0.01 0.31 ±0.09
5% 0.54 ±0.01 0.52 ±0.03 0.60 ±0.02 0.20 ±0.01 0.14 ±0.01 0.24 ±0.02
10% 0.53 ±0.01 0.52 ±0.03 0.57 ±0.02 0.20 ±0.01 0.14 ±0.01 0.24 ±0.02
25% 0.53 ±0.01 0.52 ±0.03 0.53 ±0.02 0.22 ±0.01 0.11 ±0.01 0.24 ±0.03
50% 0.53 ±0.01 0.52 ±0.03 0.51 ±0.02 0.22 ±0.01 0.11 ±0.01 0.25 ±0.04
75% 0.52 ±0.01 0.51 ±0.03 0.52 ±0.02 0.22 ±0.01 0.11 ±0.01 0.26 ±0.05
100% 0.48 ±0.01 0.49 ±0.07 0.52 ±0.02 0.21 ±0.02 0.11 ±0.01 0.22 ±0.01

Table 6. Feedback (FB) percentage for classification across all datasets, reported for
the FCN model. Corresponding to results shown in Fig. 5, a higher percentage indicates
more feedback, higher is better.

FB Fault Detection A (ACC ↑) FordA (ACC ↑) FordB (ACC ↑) Sleep (ACC ↑)
Spatial Freq Spatial Freq Spatial Freq Spatial Freq

0% 0.74 ±0.06 0.87 ±0.03 0.71 ±0.08 0.73 ±0.01 0.63 ±0.03 0.60 ±0.01 0.10 ±0.03 0.27 ±0.02
5% 0.88 ±0.00 0.88 ±0.01 0.81 ±0.03 0.80 ±0.03 0.66 ±0.03 0.66 ±0.02 0.53 ±0.03 0.49 ±0.00
10% 0.89 ±0.02 0.89 ±0.01 0.82 ±0.04 0.79 ±0.02 0.66 ±0.03 0.64 ±0.03 0.48 ±0.09 0.48 ±0.02
25% 0.92 ±0.01 0.89 ±0.01 0.83 ±0.02 0.78 ±0.01 0.67 ±0.02 0.65 ±0.01 0.49 ±0.08 0.42 ±0.08
50% 0.95 ±0.01 0.88 ±0.01 0.82 ±0.03 0.81 ±0.05 0.67 ±0.02 0.65 ±0.00 0.55 ±0.03 0.44 ±0.07
75% 0.95 ±0.01 0.88 ±0.01 0.81 ±0.03 0.80 ±0.04 0.65 ±0.03 0.64 ±0.00 0.54 ±0.04 0.44 ±0.07
100% 0.93 ±0.03 0.90 ±0.03 0.84 ±0.02 0.83 ±0.02 0.68 ±0.02 0.65 ±0.01 0.54 ±0.05 0.45 ±0.07

A.5 Additional Experimental Results

This section provides further insights into our experiments, covering both fore-
casting and classification tasks. Specifically, it showcases performance through
various metrics such as MAE, MSE, and accuracy, qualitative insights about the
influence of shortcuts, and explores different feedback configurations.

Feedback Generalization Tab. 6 and Tab. 5 detail provided feedback per-
centages for forecasting and classification across all datasets, respectively. These
tables report the performance of the TIDE and FCN models, highlighting how
different levels of feedback impact model outcomes on various datasets. Tab. 5
focuses on MAE and MSE for forecasting, while Tab. 6 presents ACC for clas-
sification.

Removing Shortcuts for Time Series Forecasting Tab. 7 reports the MAE
results for our forecasting experiment across different models, datasets and con-
figurations. It emphasizes how well each model performs on both the training

24 Kraus et al.

Table 7. RioT can successfully overcome shortcuts in time series forecasting.
MAE values on the training set with and the test set without shortcuts. No Shortcut
is the ideal scenario where the model is not affected by any shortcut.

Model Config (MAE ↓) ETTM1 Energy Weather
Train Test Train Test Train Test

NBEATS No Shortcut 0.39 ±0.01 0.48 ±0.01 0.44 ±0.02 0.38 ±0.01 0.21 ±0.01 0.12 ±0.01

Basesp 0.34 ±0.01 0.54 ±0.01 0.44 ±0.03 0.77 ±0.01 0.21 ±0.01 0.30 ±0.04
+ RioTsp 0.40 ±0.01 0.52 ±0.01 0.53 ±0.02 0.62 ±0.01 0.23 ±0.01 0.22 ±0.01

Basefreq 0.39 ±0.01 0.47 ±0.01 0.45 ±0.03 0.45 ±0.03 0.21 ±0.03 0.45 ±0.06
+ RioTfreq 0.40 ±0.01 0.47 ±0.01 0.45 ±0.03 0.44 ±0.02 0.59 ±0.22 0.39 ±0.01

PatchTST No Shortcut 0.50 ±0.01 0.49 ±0.01 0.39 ±0.00 0.38 ±0.01 0.38 ±0.03 0.18 ±0.00

Basesp 0.46 ±0.00 0.53 ±0.01 0.41 ±0.00 0.78 ±0.01 0.32 ±0.04 0.33 ±0.00
+ RioTsp 0.46 ±0.01 0.52 ±0.01 0.51 ±0.00 0.53 ±0.01 0.54 ±0.12 0.28 ±0.00

Basefreq 0.53 ±0.01 0.81 ±0.07 0.15 ±0.00 0.64 ±0.03 0.58 ±0.03 0.41 ±0.05
+ RioTfreq 0.92 ±0.05 0.80 ±0.02 0.97 ±0.86 0.57 ±0.02 0.65 ±0.01 0.40 ±0.01

TiDE No Shortcut 0.36 ±0.01 0.48 ±0.01 0.40 ±0.01 0.38 ±0.02 0.36 ±0.02 0.13 ±0.00

Basesp 0.32 ±0.01 0.54 ±0.01 0.40 ±0.01 0.85 ±0.01 0.32 ±0.03 0.29 ±0.01
+ RioTsp 0.34 ±0.01 0.51 ±0.01 0.57 ±0.01 0.58 ±0.01 0.35 ±0.03 0.24 ±0.01

Basefreq 0.18 ±0.01 0.74 ±0.06 0.18 ±0.01 0.53 ±0.07 0.65 ±0.05 0.49 ±0.09
+ RioTfreq 0.19 ±0.01 0.60 ±0.05 0.18 ±0.01 0.40 ±0.03 0.79 ±0.16 0.41 ±0.02

set with and test set without shortcuts. Both setups are shown with and without
applying RioT. The No Shortcut configuration representing the ideal scenario
where the model is unaffected by any shortcuts.

Removing Multiple Shortcuts at Once Tab. 8 reports the MAE values
and illustrates the effectiveness of combining spatial and frequency feedback via
RioT for the TiDE model. The results demonstrate significant improvements in
forecasting accuracy when integrating both feedback domains compared to using
them separately.

Table 8. RioT can combine spatial and frequency feedback. MAE results when
applying feedback in time and frequency with RioT. Combining both feedback domains
is superior to feedback on only one of the domains. No Shortcut values represent the
ideal scenario when the model is not affected by any shortcut (mean and std over 5
runs).

Energy (MAE ↓) Train Test

TiDENo Shortcut 0.40 ±0.01 0.38 ±0.02

TiDEfreq,sp 0.30 ±0.01 0.70 ±0.02
TiDEfreq,sp + RioTsp 0.34 ±0.01 0.64 ±0.01
TiDEfreq,sp + RioTfreq 0.36 ±0.01 0.60 ±0.01
TiDEfreq,sp + RioTfreq,sp 0.39 ±0.01 0.55 ±0.01

Revising Time Series Models by Constraining their Explanations 25

Early Stopping as Shortcut Mitigation Baseline In this experiment, we
compare the performance of a model with RioT to a model regularized via early
stopping (which is decided on an validation set without shortcuts). In that, we
stop model training if there are no improvements in the validation set for several
epochs in the hope that it thus does not overfit to the shortcut. The results
are presented in Tab. 9 for classification and Tab. 10 for forecasting. We can
observe that early stopping can help in some instances to achieve performances
similar to RioT (e.g. PatchTST with a frequency shortcut or FCN with a spatial
shortcut). However, for the majority of cases the performance with early stop-
ping is substantially lower than the performance with RioT, signaling that early
stopping alone is not a sufficient approach to overcome shortcuts.

Table 9. Early stopping on classification datasets.

Config FCN OFA
Train Test Train Test

No Shortcut 0.99 ±0.00 0.99 ±0.00 1.00 ±0.00 0.98 ±0.02

Basesp 1.00 ±0.00 0.74 ±0.06 1.00 ±0.00 0.53 ±0.02
+RioTsp 0.98 ±0.01 0.93 ±0.03 0.96 ±0.08 0.98 ±0.01
+ESsp 0.87 ±0.01 0.91 ±0.03 0.69 ±0.02 0.67 ±0.04

Basefreq 0.98 ±0.01 0.87 ±0.03 1.00 ±0.00 0.72 ±0.02
+RioTfreq 0.94 ±0.00 0.90 ±0.03 0.96 ±0.02 0.98 ±0.02
+ESfreq 0.83 ±0.01 0.86 ±0.02 0.81 ±0.01 0.75 ±0.02

Table 10. Early stopping on forecasting datasets.

Config PatchTST TiDE
Train Test Train Test

No Shortcut 0.26 ±0.01 0.23 ± 0.00 0.27 ± 0.01 0.26 ± 0.02

Basesp 0.29 ± 0.01 0.96 ± 0.03 0.28 ± 0.01 1.19 ± 0.03
+RioTsp 0.44 ± 0.00 0.45 ± 0.01 0.53 ± 0.02 0.52 ± 0.02
+ESsp 0.48 ± 0.05 0.68 ± 0.03 1.20 ± 0.25 0.81 ± 0.08

Basefreq 0.04 ± 0.00 0.53 ± 0.05 0.07 ± 0.01 0.34 ± 0.08
+RioTfreq 0.71 ± 0.10 0.38 ± 0.06 0.07 ± 0.01 0.21 ± 0.02
+ESfreq 0.48 ± 0.09 0.49 ± 0.08 0.21 ± 0.08 0.36 ± 0.09

Incorporating Alternative Explanations based on Shapelets Attribution-
based methods are commonly used to provide explanations at the individual

26 Kraus et al.

time-step level. However, such explanations can often appear fuzzy or ambigu-
ous, leading to potential misinterpretations and complicating feedback. Humans
naturally perceive and interpret shapes or patterns more intuitively than iso-
lated time steps. To leverage this strength, we explored an alternative approach
by extracting shapelets [42] from one of our benchmark datasets. In doing so,
we demonstrate that our method’s effectiveness is not limited to deep learning
models; it can also address shortcut learning in simpler, interpretable models
based on shapelets.

Specifically, we extracted shapelets (cf. Fig. 12) from the dataset, trained a
classifier based on these shapelets, and analyzed their attributions. Our obser-
vations revealed that the identified shortcut was captured within the activated
shapelets. Crucially, we showed that our method (RioT) successfully mitigates
this shortcut without compromising the activation of shapelets that represent
meaningful features.

Shapelet 0 Shapelet 1

Shapelet 2 Shapelet 3

Shapelet 4 Shapelet 5

Shapelet 6 Shapelet 7

Shapelet 8 Shapelet 9

Shapelet 10 Shapelet 11

Shapelet 12 Shapelet 13

Shapelet 14 Shapelet 15

Shapelet 16 Shapelet 17

Shapelet 18 Shapelet 19

Fig. 12. Computed shapelets of FordA. The purple segments represent the discovered
shapelets overlaid on their corresponding training samples. The red region marks the
included shortcut, and shapelets 0–3 explicitly model this shortcut.

Revising Time Series Models by Constraining their Explanations 27

We observe that in the baseline model, the first four shapelets—which cover
the shortcut (highlighted in red)—are predominantly activated. In contrast, with
RioT, the activation shifts away from the shapelets containing the shortcut. This
observation is further quantitatively outlined in Tab. 11, which summarizes the
accuracy scores and aligns with our previous experimental results.

Table 11. Accuracy on FordA when solving the task based on shapelets.

Config Train Test

No Shortcut 0.90 ±0.00 0.89 ±0.00

Shapelets 0.99 ±0.00 0.72 ±0.02
+RioTsp 0.92 ±0.00 0.82 ±0.00

B Dataset from a High-speed Progressive Tool with
Natural Shortcuts

The presence of shortcuts is a common challenge in practical settings, affecting
models in diverse ways. As the research community strives to identify and mit-
igate these issues, it becomes imperative to test our methodologies on datasets
that mirror the complexities encountered in actual applications. However, for the
time domain, datasets with explicitly labeled shortcuts are not present, highlight-
ing the challenge of assessing model performance against the complex nature of
practical shortcuts.

To bridge this gap, we introduce P2S, a dataset that represents a significant
step forward by featuring explicitly identified shortcuts. This dataset originates
from experimental work on a production line for deep-drawn sheet metal parts,
employing a progressive die on a high-speed press. The sections below detail the
experimental approach and the process of data collection.

B.1 Real-World setting

The production of parts in multiple progressive forming stages using stamping,
deep drawing and bending operations with progressive dies is generally one of
the most economically significant manufacturing processes in the sheet metal
working industry and enables the production of complex parts on short process
routes with consistent quality. For the tests, a four-stage progressive die was
used on a Bruderer BSTA 810-145 high-speed press with varied stroke speed.
The strip material to be processed is fed into the progressive die by a BSV300
servo feed unit, linked to the cycle of the press, in the stroke movement while the
tools are not engaged. The part to be produced remains permanently connected
to the sheet strip throughout the entire production run. The stroke height of

28 Kraus et al.

the tool is 63 mm and the material feed per stroke is 60 mm. The experimental
setup with the progressive die set up on the high-speed press is shown in Fig. 13.

Fig. 13. Experimental setup with high-speed press and tool as well as trigger for stroke-
by-stroke recording of the data

The four stages include a pilot punching stage, a round stamping stage, deep
drawing and a cut-out stage. In the first stage, a 3 mm hole is punched in the
metal strip. This hole is used by guide pins in the subsequent stages to position
the metal strip. During the stroke movement, the pilot pin always engages in
the pilot hole first, thus ensuring the positioning accuracy of the components.
In the subsequent stage, a circular blank is cut into the sheet metal strip. This
is necessary so that the part can be deep-drawn directly from the sheet metal
strip. This is a round geometry that forms small arms in the subsequent deep-
drawing step that hold the component on the metal strip. In the final stage, the
component is then separated from the sheet metal strip and the process cycle
is completed. The respective process steps are performed simultaneously so that
each stage carries out its respective process with each stroke and therefore a
part is produced with each stroke. Fig. 14 shows the upper tool unfolded and
the forming stages associated with the respective steps on the continuous sheet
metal strip.

Revising Time Series Models by Constraining their Explanations 29

Fig. 14. Upper tool unfolded and the forming stages associated with the respective
steps on the passing sheet metal strip as well as the positions of the piezoelectric force
sensors.

B.2 Data collection

An indirect piezoelectric force sensor (Kistler 9240A) was integrated into the
upper mould mounting plate of the deep-drawing stage for data acquisition.
The sensor is located directly above the punch and records not only the indi-
rect process force but also the blank holder forces which are applied by spring
assemblies between the upper mounting plate and the blank holder plate. The
data is recorded at a sampling frequency of 25 kHz. The material used is DC04
with a width of 50 mm and a thickness of 0.5 mm. The voltage signals from
the sensors are digitised using a "CompactRIO" (NI cRIO 9047) with integrated
NI 9215 measuring module (analogue voltage input ± 10 V). Data recording
is started via an inductive proximity switch when the press ram passes below
a defined stroke height during the stroke movement and is stopped again as it
passes the inductive proximity switch during the return stroke movement. Due
to the varying process speed caused by the stroke speeds that have been set,
the recorded time series have a different number of data points. Further, there
are slight variations in the length of the time series withing one experiment. For
this reason, all time series are interpolated to a length of 4096 data points and

30 Kraus et al.

we discard any time series that deviate considerably from the mean length of a
run (i.e., threshold of 3). A total of 12 series of experiments, shown in Tab. 12,
were carried out with production rates from 80 to 225 spm. To simulate a defect,
the spring hardness of the blank holder was manipulated in the test series that
were marked as defect. The manipulated experiments result in the component
bursting and tearing during production. In a real production environment, this
would lead directly to the parts being rejected.

B.3 Data characteristics

Fig. 15 shows the progression of the time series recorded with the indirect force
sensor. The force curve characterises the process cycle during a press stroke.
The measurement is started by the trigger which is activated by the ram moving
downwards. The downholer plates touch down at point A and press the strip
material onto the die. Between point A and point B, the downholder springs
are compressed, causing the applied force to increase linearly. The deep drawing
process begins at point B. At point C, the press reaches its bottom dead centre
and the reverse stroke begins so that the punch moves out of the material again.
At point D, the deep-drawing punch is released from the material and now the
hold-down springs relax linearly up to point E. At point E, the downholder plate
lifts off again and the component is fed to the last process step.

Fig. 15. Force curve for one stroke. A) set down downholder plate B) start of deep
drawing C) bottom dead centre D) deep drawing process completed E) downholder
plates lift off F) measurement stops.

B.4 Shortcuts

In P2S, the operation speed of the progressive tool acts as a shortcut to solve
the task. The higher the stroke rate of the press, the more friction occurs, and
the higher the impact of the downholder plate. The differences can be observed
in Fig. 3. Since we are aware of these physics-based shortcuts, we are able to
annotate them in our dataset. As the process speed increases, the friction that

Revising Time Series Models by Constraining their Explanations 31

Table 12. Overview of conducted runs on the high-speed press with normal and defect
states at different stroke rates.

Experiment # State Stroke Rate Samples

1 Normal 80 193
2 Normal 100 193
3 Normal 150 189
4 Normal 175 198
5 Normal 200 194
6 Normal 225 188
7 Defect 80 149
8 Defect 100 193
9 Defect 150 188
10 Defect 175 196
11 Defect 200 193
12 Defect 225 190

Total 2264

occurs between the die and the material in the deep-drawing stage changes, as the
frictional force is dependent on the frictional speed. This is particularly evident
in the present case, as there are no deep-drawing oils used in the experiments,
which could optimize the friction condition. The areas affected by the punch’s
friction are from 1380 to 1600 (start of deep drawing) and from 2080 to 2500 (end
of deep drawing). In addition, the impulse of the downholder plate affects the die
increases due to increased process dynamics. If the process speed is increased,
the process force also increases in the ranges of the time series from 800 to 950
(downholder plate sets down) and 3250 to 3550 (downholder plate lifts).

In the experiment setting of Tab. 3, the stroke rate in the training data
correlates with the class label, i.e., there are only normal experiments with small
stroke rates and defective ones with high stroke rates: Experiment 1, 2, 3, 10,
11, 12 are the training data and the remaining experiments are the test data.
To obtain a reference setting without shortcuts, normal and defect experiments
are in the same set (training or test). This results in experiments 1, 3, 5, 7, 9,
11 in the training set and the remaining in the test set.

	Right on Time: Revising Time Series Models by Constraining their Explanations

