
Credibility-Aware Multi-Modal Fusion Using Probabilistic Circuits

Sahil Sidheekh*1 Pranuthi Tenali*1 Saurabh Mathur*1 Erik Blasch2 Kristian Kersting3 Sriraam Natarajan1

1Erik Jonsson School of Engineering & Computer Science, The University of Texas at Dallas
2Air Force Research Laboratory, Rome, NY, USA

3Department of Computer Science , TU Darmstadt

Abstract

We consider the problem of late multi-modal fu-
sion for discriminative learning. Motivated by
noisy, multi-source domains that require under-
standing the reliability of each data source, we
explore the notion of credibility in the context of
multi-modal fusion. We propose a combination
function that uses probabilistic circuits (PCs) to
combine predictive distributions over individual
modalities. We also define a probabilistic measure
to evaluate the credibility of each modality via
inference queries over the PC. Our experimental
evaluation demonstrates that our fusion method can
reliably infer credibility while maintaining com-
petitive performance with the state-of-the-art.

1 INTRODUCTION

Real-world decision-making in high-profile tasks such as
healthcare requires learning and reasoning reliably by utiliz-
ing the diverse modalities of available data sources. While
such multi-modal data offer rich representations and po-
tentially multiple views of the underlying phenomena (for
example, images vs blood tests in a clinical setting), they
also make learning and inference quite challenging. Raw
data from different sources is often noisy, incomplete, and
inconsistent. This heterogeneity poses a significant obstacle
to effective data fusion and analysis.

Multi-modal fusion techniques [Baltrušaitis et al., 2018]
have emerged as a promising approach to combine infor-
mation from multiple sources to enhance performance on
discriminative learning tasks. These techniques aim to ex-
tract and integrate complementary information from differ-
ent modalities, leading to more robust and reliable results.
However, a crucial aspect that often remains overlooked
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in multimodal fusion is the explicit modeling of the cred-
ibility of the information sources. In many applications,
such as sensor fusion Khaleghi et al. [2013], medical diag-
nosis Kline et al. [2022], and financial analysis Sawhney
et al. [2020], the quality and reliability of the information
sources vary significantly. Distinguishing reliable sources
from non-reliable sources is essential for making accurate
and informed decisions. Multimodal fusion methods often
assume that all sources are equally credible, which can lead
to suboptimal performance or even erroneous conclusions.

Credibility-aware methods in the context of late multimodal
fusion have previously used weighted average Rogova and
Nimier [2004], discounting factors Elouedi et al. [2004b]
and Bayesian networks Wright and Laskey [2006]. This
results in models of credibility that are either too simple
(as in the case of weighted averages and discounting fac-
tors) to model complex dependencies or too complex to
perform tractable inference/reasoning (as in the case of gen-
eral Bayesian networks or more recent deep models). We
focus on multi-modal discriminative learning and pro-
pose a late fusion method that uses Probabilistic Circuits
(PCs) Choi et al. [2020], to effectively combine the predic-
tive distributions over individual modalities. PCs are a class
of generative models that are expressive enough to model
complex distributions while tractable for exact inference.
Using the tractability of PCs, we define a probabilistic mea-
sure for assessing the credibility. Some salient features of
our approach are that the use of PCs (1) allows for modeling
uncertainty over unimodal predictive distributions effec-
tively; (2) makes the model robust to noise and outliers; (3)
enables effective handling of missing data; (4) is grounded
in a robust theoretical framework; and (4) finally, makes it
possible to obtain faithful estimates of credibility.

Our paper makes the following key contributions: (1) To our
knowledge, we introduce the first theoretically grounded
multimodal fusion with strong probabilistic semantics based
on PCs; Specifically, we identify the class of PCs that are
amenable to this task of credibility-aware multi-modal fu-
sion and define their characteristics; (2) We present two
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versions of our late fusion algorithm with different charac-
teristics; (3) We derive a theoretically grounded measure of
credibility and illustrate its connection to the conditional
entropy over unimodal predictive distributions, allowing for
reliable late fusion; (4) Finally, we experimentally validate
the efficacy of PCs in modeling complex interactions be-
tween modalities and faithfully estimating their credibility.

The rest of the paper is organized as follows: we begin with
a concise overview of essential background and relevant
work. Following this, we formulate the problem at hand and
our PC-based fusion method, along with the architectural
details and methodology for assessing credibility. We then
experimentally evaluate the effectiveness of our method and
finally conclude by summarizing our findings, contributions,
and future work.

2 BACKGROUND

2.1 MULTI-MODAL FUSION

Multi-modal fusion [Baltrušaitis et al., 2018] involves the
integration of information from diverse sources or modali-
ties. This field harnesses the potential of combining data of
various types, such as text, images, and audio, to improve
decision-making, pattern recognition, and predictive model-
ing. There are three broad approaches to multi-modal fusion
in the discriminative learning setting, namely, early fusion,
intermediate fusion, and late fusion.

Early fusion approaches fuse information from multiple
sources at the input level, typically ahead of feature extrac-
tion. A simple way to achieve this would be to combine
raw modality features via concatenation or pooling via op-
erations such as average, min, max, etc. [Baltrušaitis et al.,
2018]. In more complex deep learning models, early fusion
is typically achieved by learning joint feature spaces [Gadz-
icki et al., 2020]. Apart from the curse of dimensional-
ity, feature aggregation results in the loss of information
about source-specific distributions [Schulte and Routley,
2014]. This makes it difficult to infer the credibility of input
sources.

In intermediate fusion, features extracted from each modal-
ity undergo further processing and transformation into a
combined, higher-level representation [Joze et al., 2019,
Zhang et al., 2019, Pérez-Rúa et al., 2019]. This approach
offers more flexibility compared to early fusion, as the fu-
sion process can take into account the characteristics of each
modality individually. This can benefit learning represen-
tations, which can be used for fusion even when there’s
information missing from certain modalities [Zhang et al.,
2019]. However, inferring the credibility of individual input
modality remains difficult due to the combined nature of
representation used by the classifier.

On the other hand, late fusion approaches combine the in-

formation from multiple sources by making predictions on
each source independently and then combining the predic-
tions. Combining rules [Natarajan et al., 2005, Manhaeve
et al., 2018] like weighted mean [Shutova et al., 2016] and
Noisy-OR [Tian et al., 2020] are commonly used for late
fusion. While these combining rules allow explicit modeling
of the importance of each source, they assume independence
of the influence of each source on the target. Late fusion in
deep learning models is implemented via additional feedfor-
ward layers [Glodek et al., 2011, Ramirez et al., 2011]. This
allows them to model complex correlations and influences
of the sources on the target. However, this also makes it
difficult to model the credibility of each source since neural
network layers are opaque.

2.2 CREDIBILITY

Combining information from multiple, heterogeneous
sources requires information fusion systems to account for
the credibility of each modality’s contribution [De Villiers
et al., 2018]. Credibility, as distinct from reliability, focuses
on the information’s truthfulness, while reliability relates
to the source’s consistency [Blasch et al., 2013]. While hu-
man experts might estimate their information’s credibility
(self-confidence), automated sources require external evalu-
ation [Blasch et al., 2014].

We follow prior works that approach the problem of ac-
counting for source reliability in multimodal fusion from
the perspective of the credibility of the information provided
by the source. These works perform multimodal fusion us-
ing source-reliability coefficients learned using domain and
contextual information [Nimier, 1998, Fabre et al., 2001].
In the absence of such information, an alternate approach in-
volves learning these coefficients from data. This is achieved
by minimizing the distance between a vector of beliefs re-
sulting from fusion and a target vector from the training set
[Rogova and Kasturi, 2001, Elouedi et al., 2004a]. Another
data-driven method for establishing reliability is based on
separability, wherein the average statistical separability of
information classes in each source is considered [Benedik-
tsson et al., 1990]. This category of methods i.e. learning
coefficients from training data, proves useful in establishing
the relative credibility of the predictions of classifiers.

2.3 PROBABILISTIC CIRCUITS (PCs)

Probabilistic circuits [Choi et al., 2020] are a class of gener-
ative models that represent the joint distribution over a set of
random variables (say X) using computational graphs that
comprise three types of nodes - sum and product nodes as in-
ternal nodes, and simple tractable distributions at the leaves.
Formally, a PC is defined as the tuple (G = (V,E), θ)
where the Directed Acyclic Graph G represents the compu-
tational graph structure and θ is the set of learnable parame-
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ters. The output of the root node gives the joint distribution
modeled by the PC, which can be recursively obtained as:

Pn(X = x) =


∑

c∈ch(n) wcPc(X = x) n ∈ Sum∏
c∈ch(n) Pc(X

sc(c) = xsc(c)) n ∈ Product
ψn(X = x) n ∈ Leaf

where ch(n) gives the children of node n, sc(n) gives the
scope of node n and ψn is the probability density (or mass)
function associated with the leaf node n.

The key advantage of PCs is that they admit tractable and
often linear time inference for a variety of probabilistic
queries under mild assumptions about the structure of G. In
this work, we consider a subclass of PCs that are smooth and
decomposable (typically called sum-product networks Poon
and Domingos [2011]). A PC satisfies smoothness if the
scope of each sum node is identical to the scope of each of
its children. It satisfies decomposability if, for each product
node, all the children have disjoint scopes. Smoothness and
decomposability allow us to tractably infer marginal and
conditional distributions from the learned joint.

The structure of PCs can be learned recursively via greedy
heuristics [Gens and Pedro, 2013, Rooshenas and Lowd,
2014, Dang et al., 2020], or by latent-space decomposition
[Adel et al., 2015]. However, structure learning can be costly
for large-scale data, and recent approaches rely on random
and tensorized structures that resemble deep neural models
[Mauro et al., 2017, Peharz et al., 2020a,b, Sidheekh et al.,
2023] to achieve state-of-the-art performance.

3 MULTIMODAL FUSION VIA PCs

We begin by formalizing the noisy late multi-modal fusion
setting for discriminative learning that we focus on. Given
a dataset in which features predictive of a target concept
are obtained from multiple different modalities, the late
fusion setting involves training an expert over each modality
to estimate the unimodal predictive distribution over the
target and then combining them using a fusion function
(probabilistic combination function in our case) to obtain
the final output. More formally,

Given: A dataset D = {(xi
1,x

i
2 . . .x

i
M , y

i)}Ni=1 with N
data points, each with information from M different modali-
ties, i.e. each xi

j ∈ Rdj where dj denotes the feature dimen-
sion corresponding to modality j for the ith example, and
yi denotes its target class.

To do: Learn a discriminative model M parameterized
by {θ, ϕ = {ϕi}mi=1} that approximates the multimodal

predictive distribution over Y 1 as

P (Y |X1, . . . ,XM ) ≈Mθ,ϕ(X1, . . . ,XM )

=Mθ(Mϕ1
(X1), . . . ,MϕM

(XM ))

whereMθ is the fusion function, andMϕi(orMi) is the
unimodal predictor corresponding to modality i.

In several applications, data inherently comes with a degree
of noise which can affect the reliability of the information
provided by each modality. Different modalities often offer
complementary insights into the target Y ; however in the
presence of noise, they can potentially present conflicting
information (an image might potentially present a conflict-
ing finding to that of a blood test). This necessitates a fu-
sion method that not only leverages the unique information
within each modality to make accurate predictions but is
also capable of evaluating the reliability of these predictions,
providing a measure of each modality’s credibility.

Thus, as a key contribution, we develop a principled no-
tion of credibility by taking a probabilistic view of the late
multimodal fusion setting. Let us denote by Fϕj

the true
predictive distribution over target Y given modality j, i.e
Fϕj = P (Y |Xj). We consider the joint distribution over
the unimodal predictors and the target Y and define credi-
bility as the relative amount of information contributed by a
modality to the multi-modal predictive distribution over the
target Y , as follows:

Definition 1. The credibility of a modality j in predicting
the target Y is defined as the divergence between the con-
ditional distributions over Y given all unimodal predictive
distributions {Fϕi}Mi=1 including and excluding Fϕj . i.e.

Cj = δ(P (Y | {Fϕi
}Mi=1) || P (Y | {Fϕi

}Mi=1 \ {Fϕj
}))

where δ is a divergence measure, such as the KL-Divergence.
It follows that Cj ≥ 0 ∀j, but can be unbounded. Thus, to
facilitate easy comparison across modalities, we define the
relative credibility score C̃ as

C̃j =
Cj∑
j Cj

.

Note that 0 ≤ C̃j ≤ 1∀j and
∑

j C̃j = 1, and is therefore
a normalized and probabilistic measure for assessing the
credibility of modality j.

We now outline more formally how the defined notion of
credibility is related to the uncertainty over the unimodal
predictive distribution. A well-established method for quan-
tifying the uncertainty and information content within a ran-
dom variable is through the concept of entropy. We present
a theorem that correlates the credibility of a modality with
the entropy of its predictive distribution, under mild assump-
tions, as defined below.

1We use uppercase to denote random variables and lowercase
to denote their corresponding values.
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Figure 1: Model Diagram for our proposed PC-based fusion method. Each input modality Xi is processed by a unimodal
predictorMϕi

to get the corresponding predictive distribution pi over the target Y . A probabilistic circuit θ is used to
model the joint distribution over the unimodal predictive distributions and Y , and the final prediction is obtained by running
an inference routine over it, governed by the form of fusion function employed (Mθ).

Definition 2. A modelM representing a probability dis-
tribution (PM) over n random variables X is said to be
Marginal Dominant if its marginals are lower bounded by
the joint everywhere. i.e.,

PM(X−j = x−j) ≥ PM(X−j = x−j ,Xj = xj)

∀ (xj ,x−j) ∈ Dom.(Xj ,X−j)

where j ⊆ {1, . . . , n} and we use the notation X−j to
denote {Xi}ni=1 \ {Xk}k∈j and Dom.(X) to denote the
domain set of the variables in X.

Theorem 3.1. The expected credibility Cj of a modality
j in predicting the target Y, under a Marginal Dominant
distribution is lower bounded by the negative of the condi-
tional entropy (H) of the unimodal predictive distribution
of modality j over Y, given the predictive distributions of
all other modalities, i.e.

E[Cj ] ≥ −H(Fϕj |{Fϕi}Mi=1 \ {Fϕj})

Proof. Deferred to the appendix.

Intuitively, a modality less corrupted by noise and more
informative of the target than others can be expected to
have a lower predictive entropy. Thus, by the above theo-
rem, we can conclude that such a modality would always
have a higher assigned credibility than others. Conversely,
when a modality gets corrupted by noise, its credibility score
decreases. Thus the defined measure of credibility is the-
oretically grounded. Its utility becomes evident in critical
domains such as healthcare, where the stakes of decision-
making are high. In such contexts, credibility assessments
can guide the reliance on specific expert systems or enable
the discounting of modalities that are deemed unreliable.

3.1 PCs AS COMBINATION FUNCTIONS

We now present the details of late fusion modelsM capa-
ble of incorporating the above-defined notion of credibility.
It is clear that estimating credibility requires access to a
generative model that estimates the joint distribution over
Y and the unimodal predictors {Fj}Mj=1. Additionally, the
generative model should support efficient and exact eval-
uation of both joint and conditional probability densities.
Probabilistic Circuits (PCs) are one such class of gener-
ative models that can model complex distributions while
supporting tractable and linear time inference of conditional
and marginal distributions. Further, as we show below, the
distribution modeled by a PC is Marginal Dominant un-
der certain structural properties, making it well-suited for
credibility-aware fusion.

Theorem 3.2. A Probabilistic Circuit is Marginal Dominant
if it is smooth, decomposable, and has leaf distributions with
unimodal densities upper-bounded by unity.

Proof. Deferred to the appendix.

Thus, we define the fusion function using a PC θ that mod-
els the joint distribution over the unimodal predictors and
the target Y . More formally, given unimodal experts {pj =
Mϕj

(Xj)}Mj=1 typically parameterized as deep neural net-
works, the PC models the distribution Pθ(Y,p1, . . . ,pM ).
The PC can be viewed as a computational graph that recur-
sively builds a complex joint distribution by taking sums
and products of simpler distributions. We use categorical
leaf distributions to model the target Y and Dirichlet leaf
distributions to model the unimodal predictive distributions
p1, . . . ,pM .

The PC θ can be used to define the fusion functionMθ in
different ways. Since a PC supports exact conditional den-
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sity evaluation, a straightforward way would be to define:

Mθ(p1,p2, . . . ,pM ) = Pθ(Y |p1,p2, . . . ,pM )

We will refer to this as the Direct-PC (DPC) combination
function. It can explicitly model complex correlations be-
tween the influence of each source on the target while still
being able to reason about their credibility. The resulting
late fusion method allows both predictive inference and
credibility assessment as elaborated below.

Predictive Inference. Given a multi-modal example,
(x1, . . . ,xM ), we can perform predictive inference over
target Y as follows:

(1) compute pj =Mϕj
(xj) for each modality j by evalu-

ating the unimodal predictorsMi, . . . ,Mm. (2) Infer the
multimodal predictive distribution over Y given the uni-
modal distributions p1, . . . ,pM by performing conditional
inference:

Pθ(Y | p1, . . . ,pM ) =
Pθ(Y,p1, . . . ,pM )

Pθ(p1, . . . ,pM )

=
Pθ(Y,p1, . . . ,pM )∑

y Pθ(Y = y,p1, . . . ,pM )

Credibility Assessment. The credibility of a modality j can
then be estimated using the PC θ as

Cθj = δ(Pθ(Y |p1, . . .pM )||Pθ(Y |p1, . . .pj−1,pj+1 . . .pM ))

As smooth and decomposable PCs support linear time eval-
uation of joint, marginal, and conditional distributions, both
predictive and credibility inference can thus be achieved in
linear time.

An alternative to the Direct-PC combination function, which
explicitly utilizes the credibility scores would be to de-
fine the final predictive distribution as a convex sum of
credibility-weighted unimodal predictive distributions. i.e:

Mθ(p1, . . . ,pM ) =
∑M

j=1

(
Cθj∑M
i=1 Cθi

)
pj

We refer to this combination function as the Credibility-
Weighted Mean (CWM). This approach allows us to weigh
the predictive distributions according to the trustworthiness
of the source, and is useful in ensuring that the final pre-
diction reflects the most reliable and pertinent information
available. Figure 1 illustrates the overall architecture of our
credibility-aware late-fusion approach.

Since PCs are differentiable computational graphs, they can
be easily integrated with neural unimodal predictors and
learned in an end-to-end manner using backpropagation
and gradient descent. We optimize the unimodal predictors
to minimize the classification loss over both the unimodal

Algorithm 1: Credibility Aware Late Fusion - Learning

input : Multimodal Dataset D = {(xi
j , y

i)Mj=1}Ni=1,
Unimodal Predictors {Mϕi}Mi=1

Probabilistic Circuit θ,
Loss function l, Divergence Measure δ
Learning rates η1, η2, #Iterations tmax

output :Optimal parameters: θ̃, {ϕ̃j}Mj=1

initialize: θ̃ = θ, {ϕ̃j = ϕj}Mj=1, t = 1

while t ≤ tmax do
{(xi

j , y
i)Mj=1}Bi=1 ∼ D ▷ Sample a mini-batch

For each modality j and data point i
▷ Compute unimodal predictive distributions pi

j

pi
j ←Mϕ̃j

(xi
j)

▷ Obtain credibility scores
Cij ← δ(Pθ̃(Y |{pi

k}Mk=1)||Pθ̃(Y |{pi
k}Mk=1 \ pi

j))

C̃ij ← Cij/(
∑M

j=1 Cij)
▷ Compute the final predictive distribution
pi ←

∑M
j=1 C̃ijpi

j if CWM else Pθ̃(Y |{pi
k}Mk=1)

▷ Compute the empirical loss
Lj ← 1

B

∑B
i=1 l(p

i
j , y

i)

L← 1
B

∑B
i=1 l(p

i, yi) +
∑M

j=1 Lj

▷ Update the unimodal predictors and PC
{ϕ̃j}Mj=1 ← {ϕ̃j}Mj=1 − η1∇{ϕ̃j}M

j=1
L

θ̃ ← θ̃ − η2∇θ̃L+ η2∇θ̃

∑B
i=1 Pθ̃(y

i, {pi
j}Mj=1)

t = t+ 1
end
return θ̃, {ϕ̃j}Mj=1

predictions as well as the joint multimodal prediction. Fur-
ther, we optimize the PC parameters to maximize the joint
likelihood Pθ(Y,p1, . . . ,pM ) as well as the classification
loss over the joint multimodal prediction. Algorithm 1 sum-
marizes the overall training methodology for our proposed
credibility-aware late multimodal fusion using PCs.

The adoption of PCs in our approach is primarily motivated
by their tractability for probabilistic inference, which is
instrumental in computing the probabilistic measures es-
sential for assessing the credibility of each modality. This
tractability contrasts with the capabilities of more complex
combination functions, such as neural networks, which, de-
spite their potential for higher expressiveness and the ability
to learn more intricate functions, do not inherently support
the derivation of credibility measures. PCs on the other
hand offer a balance between expressiveness and tractability.
Moreover, through the process of marginalization, PCs can
naturally accommodate and adjust to the absence of data
from one or more modalities, preserving the integrity of the
inference process without requiring imputation or other pre-
processing steps. This also enhances the robustness of the
fusion method, ensuring reliable performance even when
faced with incomplete data.
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Fusion Model Accuracy Precision Recall F1Score AUROC

MLP 72.43± 0.15 72.20± 0.31 71.97± 0.18 71.93± 0.23 96.29± 0.07
Weighted Mean 66.00± 1.03 65.45± 1.28 65.48± 1.12 65.23± 0.98 95.25± 0.05
Noisy-OR 68.62± 0.17 68.06± 0.46 68.08± 0.18 67.76± 0.21 94.50± 0.16
TMC 69.95± 0.11 69.70± 0.21 69.45± 0.15 69.18± 0.14 94.99± 0.11

Credibility-Weighted Mean (Ours) 70.41± 0.15 70.32± 0.31 69.46± 0.27 68.09± 0.21 94.82± 0.16
Direct-PC (Ours) 72.18± 0.43 71.70± 0.35 71.76± 0.40 71.63± 0.36 96.48± 0.07

Table 1: Mean test performance of late fusion methods on the AV-MNIST dataset, ± standard deviation across 3 trials.

Fusion Model Accuracy Precision Recall F1Score AUROC

MLP 89.66± 1.39 90.38± 1.32 89.66± 1.39 89.56± 1.38 99.47± 0.27
Weighted Mean 91.33± 2.25 91.97± 1.73 91.33± 2.25 91.38± 2.12 99.39± 0.33
Noisy-OR 90.83± 2.63 91.39± 2.39 90.83± 2.63 90.86± 2.56 99.41± 0.28
TMC 91.50± 3.24 92.14± 3.03 91.50± 3.24 91.47± 3.12 99.45± 0.29

Credibility-Weighted Mean (Ours) 92.49± 1.41 94.03± 1.57 92.50± 1.42 92.49± 1.02 99.42± 0.29
Direct-PC (Ours) 91.67± 1.02 92.42± 1.15 91.67± 1.02 91.58± 0.94 99.28± 0.40

Table 2: Mean test performance of late fusion methods on the CUB dataset, ± standard deviation across 3 trials.

4 EMPIRICAL EVALUATION

To experimentally validate the utility of the proposed ap-
proach, we conducted experiments on four different multi-
modal datasets: Caltech UCSD Birds (CUB), NYU Depth
(NYUD), SUN RGB-D, and AV-MNIST, focusing on the
task of multi-class classification. Overall, we designed ex-
periments to answer the following research questions:

(Q1) Can a PC-based combining rule efficiently capture
intricate dependencies between modalities to achieve
performance at par with existing methods?

(Q2) Can the tractability of PCs be used to reliably infer
credibility scores for each source modality?

(Q3) Is the proposed credibility-aware fusion robust to
noise?

Baselines We implemented 4 baseline fusion functions as
elaborated below for comparison:

1. Weighted Mean combination function that de-
fines the multimodal predictive distribution as:
P (Y |X1,X2, . . . ,XM ) =

∑M
i=1 wiP (Y |Xi) where

wi are learnable weights such that 0 ≤ wi ≤ 1 and∑m
i=1 wi = 1. The constraints on the weights ensure that

the combination function outputs a valid distribution.

2. Noisy-Or combination function that defines the multi-
modal predictive distribution as:
P (Y |X1,X2, . . . ,XM ) = 1−

∏M
i=1(1− P (Y |Xi))

3. Multi Layer Perceptron (MLP) combination func-
tion that maps the vector of unimodal predictions
[P (Y |Xi)]

M
i=1 to the multimodal predictive distribution

P (Y |X1,X2, . . . ,XM ) using a feedforward neural net-
work having 2 hidden layers with 64 neurons.

4. Dempster’s combination function, used in TMC ( Han
et al. [2021]) allows evidence from different sources to be
combined by fusing belief masses and uncertainty masses.
This rule ensures that the confidence of the final prediction
is high when the input modalities are less uncertain and low
when the input modalities are highly uncertain. When faced
with different modalities that has conflicting beliefs, this
combination rule only fuses the shared parts, making the
final prediction dependent only on the confident modalities
when some of the modalities are more uncertain.

For each of these fusion methods, we use the same backbone
architecture to obtain the unimodal predictions. We train all
models end to end via gradient descent and backpropagation
to minimize the cross-entropy loss between the targets and
predictions, using an Adam optimizer with a learning rate
of 0.001 and batch size of 128.

Datasets. The CUB (Wah et al. [2011]) dataset comprises
of 11,788 images of birds, each annotated with attribute
descriptions across 200 bird categories. Following Han et al.
(2021), we used a subset of the original dataset consisting
of the first 10 bird categories and 336 train images, 144
validation, and 120 test images for our experiments. Deep
visual features obtained from using GoogLeNet on images,
and the text features extracted using doc2vec are used as
two modalities.

The NYUD (Silberman et al. [2012]) is a widely used RGB-
D scene recognition benchmark, containing RGB and Depth
image pairs. Following previous work by Zhang et al. [2023],

6



Fusion Model Accuracy Precision Recall F1Score AUROC

MLP 63.55± 0.23 64.65± 2.24 49.32± 0.95 52.35± 0.68 86.01± 0.31
Weighted Mean (WM) 64.06± 4.30 64.70± 1.38 57.2± 3.96 59.17± 3.22 90.99± 0.78
Noisy-OR 66.71± 1.42 68.85± 1.38 59.06± 1.21 61.71± 1.31 91.23± 0.31
TMC 66.97± 0.26 68.88± 1.98 56.89± 1.09 59.94± 0.42 91.47± 0.39

Credibility-Weighted Mean (Ours) 68.50± 0.72 67.25± 1.11 60.17± 0.85 62.03± 0.91 91.52± 0.41
Direct-PC (Ours) 57.64± 2.01 48.80± 1.12 49.84± 1.46 47.96± 0.79 79.70± 0.62

Table 3: Mean test performance of late fusion methods on the NYUD dataset, ± standard deviation across 3 trials.

Fusion Model Accuracy Precision Recall F1Score AUROC

MLP 54.55± 1.04 46.40± 0.15 45.59± 1.03 43.78± 0.87 87.19± 0.38
Weighted Mean 51.80± 2.29 45.72± 1.98 42.94± 0.73 41.59± 0.31 90.21± 0.78
Noisy-OR 54.30± 1.55 46.76± 1.34 44.26± 1.11 43.60± 0.95 90.57± 0.40
TMC 50.92± 1.66 45.21± 2.25 42.94± 0.57 40.84± 0.76 89.84± 0.32

Credibility-Weighted Mean (Ours) 57.97± 1.05 48.88± 0.70 46.04± 0.67 45.71± 0.71 91.25± 0.35
Direct-PC (Ours) 53.46± 1.31 41.97± 0.68 42.60± 0.83 40.73± 0.76 84.34± 0.53

Table 4: Mean test performance of late fusion methods on the SUNRGBD dataset, ± standard deviation across 3 trials.

we use a reorganized dataset with 1863 image pairs (795
train, 414 validation, and 654 test) corresponding to 10
classes (9 usual scenes and one "others" category). The
SUNRGBD (Song et al. [2015]) is a relatively larger scene
classification dataset with 10,335 RGB-depth image pairs.
Following Zhang et al. [2023], we use a subset of the origi-
nal dataset which contains the 19 major scene categories and
3876 train, 969 validation, and 4,659 test examples. In both
the NYUD and SUNRGBD datasets, we utilized resnet18
He et al. [2015] pre-trained on ImageNet as an encoder for
each modality.

AV-MNIST is a benchmark dataset designed for multimodal
fusion. With 55,000 training, 5,000 validation, and 10,000
testing examples, it has two modalities: images of dimension
28 × 28 depicting digits from 0 to 9, and their correspond-
ing audio represented as spectrograms of dimension 112 ×
112. Following Vielzeuf et al. [2018], we used deep neural
models with the LeNet architecture to encode the input data
and make predictions for each modality. Specifically, we
processed the image input through a 4-layer convolutional
neural network with filter sizes [5, 3, 3, 3]. Similarly, the au-
dio input was encoded using a 6-layer convolutional neural
network with filter sizes [5, 3, 3, 3, 3, 3]. For all the datasets,
the encodings obtained were processed through a feedfor-
ward neural network to obtain the unimodal predictions.

4.1 PERFORMANCE EVALUATION

Table 1 summarizes the test-set performance of the baseline
methods and our PC-based combination functions on the
AV-MNIST dataset in terms of the classification metrics -

Figure 2: Mean Validation Relative Credibility obtained
using a PC for the two modalities of the AV-MNIST dataset
across training epochs. Varying degrees of noise (controlled
by λ) are introduced into the audio modality.

Accuracy, Precision, Recall, F1-Score, and AUC-ROC, af-
ter training for 50 epochs with early stopping. We observe
that our PC-based combination functions not only outper-
form simple probabilistic baselines such as Weighted
Mean, Noisy-Or, and TMC on all performance metrics
but also achieve performance similar to that of an MLP-
based fusion method. Table 2 summarizes the test-set per-
formance of the baseline methods and our PC-based combi-
nation functions on the CUB dataset. We observe that our
Credibility-Weighted Mean combination function achieves
better performance than other models on average. As the
CUB dataset is very small, we observed that complex mod-
els like MLP tend to overfit, impacting the test performance,
while simpler combination functions like weighted mean
and TMC achieved relatively better performance. Similar
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results obtained for the NYUD and SUNRGBD datasets
are summarized in Tables 3 and 4 respectively. Note that
the NYUD dataset is also very small compared to the ca-
pacity of the resnet18-based models used as a backbone to
encode the unimodal inputs. Here, again we can observe
clearly that the relatively complex models like MLP and
Direct-PC overfit, while simpler ones like Noisy-OR and
Credibility-Weighted Mean generalize better. Overall, the
results suggest that the PC-based methods are expressive
enough to capture intricate dependencies between unimodal
predictive distributions and achieve performance at par and
at times even better than more complex fusion approaches.

4.2 CREDIBILITY EVALUATION

Figure 3: Mean Test Relative Credibility outputted by a PC
for the two modalities of the AV-MNIST dataset across varying
degrees of noise (controlled by λ) introduced into each modality.

To empirically validate whether our PC-based late fusion
method can reliably compute the credibility of each modal-
ity, we designed another experiment. We considered the
AV-MNIST dataset and the Direct PC-based fusion model
trained over it for 30 epochs. We introduced varying degrees
of noise into one of the modalities (say i), keeping the others
fixed, and trained the PC to maximize the joint predictive
likelihood. More specifically, we defined

P̃ (Y |Xi) = λP (Y |Xi) + (1− λ)N

where N ∼ Dir(α) is a noisy probability vector sam-
pled from a Dirichlet distribution with parameters α, and
0 ≤ λ ≤ 1. P̃ (Y |Xi) is thus a convex combination of two
probability distributions and is therefore a valid distribution.
λ controls the amount of information retained in P̃ from the
unimodal predictive distribution.
Note that as λ→ 0, P̃ (Y |Xi)→ N , and thus has less pre-
dictive information about modality i. Thus, the credibility
score should ideally decrease for modality i and increase
for the other modalities. Figure 2 shows how the mean rela-
tive credibility outputted by the PC over the validation set
varies as it is trained over the noisy unimodal distributions
with noise introduced into the audio modality, for varying
values of λ. As expected, we can see that the credibility of

the audio modality decreases as training progresses, while
that of the image modality increases. Further, we can also
observe that the decrease in credibility increases as λ→ 0.
To demonstrate this correlation more evidently, we plot the
Mean Relative Credibility outputted by the trained PC for
each modality on the test set, for the two settings where
noise is introduced into one of image/audio modalities in
Figure 3. We can clearly see that in both settings, the credi-
bility score of the noisy modality decreases as λ→ 0, while
that of the non-noisy modality increases. Thus, the credibil-
ity score outputted by the PC is a reliable measure that is
reflective of the information contributed by each modality
to the final predictive distribution.

By averaging the credibility of each modality over all data
points, we have so far looked at a global measure, and the
image modality seems to have higher global credibility than
audio for AV-MNIST (see λ = 1). However, the credibil-
ity of each modality may differ locally for individual data
points, which can also be evaluated efficiently using the PC.

4.3 ROBUSTNESS TO NOISE

Figure 4: Robustness to Noise. Mean test performance of late
fusion methods across varying degrees of noise.

We also evaluated the robustness of our proposed credibility-
aware late fusion methodology to noisy unimodal predictive
distributions. Figure 4 depicts the decline in test perfor-
mance for the different fusion methods over the CUB dataset
when varying degrees of noise λ are introduced in one of the
unimodal predictive distributions. We can observe that our
approach suffers the lowest decline in terms of both F1 score
and AUROC, validating the robustness of our approach.

5 CONCLUSION

We considered the problem of late multi-modal fusion in the
noisy discriminative learning setting. We derived a theoreti-
cally grounded measure of credibility and proposed proba-
bilistic circuit-based combination functions for late-fusion
that are expressive enough to model complex interactions,
robust to missing modalities, and capable of making reliable
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and credibility-aware predictions. Our experiments demon-
strated that the proposed approach is competitive with the
state-of-the-art while allowing for a principled way to infer
the credibility of each modality. Scaling the approach to
domains with more sources and extending the framework
to allow subgroup-specific credibilities are promising direc-
tions for future research.
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APPENDIX

A THEOREMS AND PROOFS

Theorem A.1. The expected credibility Cj of a modality j in predicting the target Y, under a Marginal Dominant distribution,
is lower bounded by the negative of the conditional entropy (H) of the unimodal predictive distribution of modality j over
Y, given the predictive distributions of all other modalities, i.e.

E[Cj ] ≥ −H(Fϕj
|{Fϕi

}Mi=1 \ {Fϕj
})

Proof. For ease, let us use the notation F = {Fϕi
}Mi=1 and F−j = {Fϕi

}Mi=1 \ {Fϕj
}. We have from the definition of

credibility, using KL divergence as the divergence measure,

Cj = δ(P (Y |F)||P (Y |F−j))

=
∑
y

P (y|F) log P (y|F)
P (y|F−j)

=
1

P (F)

∑
y

P (y,F) log
P (y,F)P (F−j)

P (F)P (y,F−j)

=
1

P (F)

∑
y

P (y,F) log
P (y,F)

P (y,F−j)
+ log

P (F−j)

P (F)

Now, we know that log P (F−j)
P (F) ≥ 0 as P is assumed to be Marginal Dominant. Thus, we have

Cj ≥ 1

P (F)

∑
y

P (y,F) log
P (y,F)

P (y,F−j)

Now, applying the log sum inequality
∑

i ai log
ai

bi
≥ ā log ā

b̄
where, ā =

∑
i ai, b̄ =

∑
i bi, and taking expectations, we get

E[Cj ] ≥ E[
1

P (F)
(
∑
y

P (y,F)) log

∑
y P (y,F)∑

y P (y,F
−j)

]

= E[log
P (F)

P (F−j)
] = E[log

P (F−j ,Fϕj )

P (F−j)
]

Using the definition of conditional entropy H(Y |X) = E[− log P (X,Y )
P (X) ], the above inequality reduces to

Cj ≥ −H(Fϕj
|F−j)

Theorem A.2. A Probabilistic Circuit is Marginal Dominant if it is smooth, decomposable and has leaf distributions with
unimodal densities upper-bounded by unity.

Proof. Consider a PCM representing the distribution over n variables X. Without loss of generality let j denote the index
of the variable being marginalized. Recall thatM is said to be Marginal Dominant if PM(X−j = x−j) ≥ PM(X−j =
x−j ,Xj = xj) ∀ (xj ,x−j) ∈ Dom.(Xj ,X−j).

As PCs are recursively defined as compositions of three types of nodes - sums, products and univariate leaf distributions
in the form of a rooted directed acyclic graph, we can prove by induction on the height of a PC that the introduction of
each type of node preserves marginal dominance under the structural properties of smoothness, decomposability and unity
bounded leaf densitites.

As the base case, consider any univariate leaf node l inM. We have

Pl(X = x) = ψl(X
sc(l) = xsc(l))
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where ψl denotes the leaf density function and sc(l) denotes the scope of l. Now, if sc(l) = j, then

Pl(X
−j = x−j) =

∫
xj

Pl(X
−j = x−j ,Xj = xj)dxj = 1 ≥ Pl(X

−j = x−j ,Xj = xj)

since the leaf densities are upper bounded by unity. On the other hand, if sc(l) ̸= j, then Pl(X
−j) = Pl(X

−j ,Xj) trivially.
Thus under both cases, leaf nodes are Marginal Dominant, hence the base case is satisfied.

Now, let us assume that all nodes at height K − 1 in the PC satisfies marginal dominance. We will show that all nodes at
height K also satisfies marginal dominance. Note that as sums and products constitute the internal nodes in a PC any node
at height K is obtained by introducing either a sum node or a product node over nodes at height K − 1. Let us consider the
two cases separately.

Let × ∈M denote a decomposable product node at height K. We have

P×(X = x) =
∏

c∈ch(×)

Pc(X
sc(c) = xsc(c))

where ch(×) denotes the children of ×. Thus, if × is decomposable then Xj can be present in the scope of only one of its
children, say N . Thus we have,

P×(X
−j = x−j ,Xj = xj) =

 ∏
c∈ch(×),j ̸∈sc(c)

Pc(X
sc(c) = xsc(c))

PN (Xsc(N )\j = xsc(N )\j ,Xj = xj)

Now, since N is a node of height atmost K − 1, by the inductive assumption, it is Marginal Dominant. Hence, ∀xj ∈
Dom.(Xj), we have

P×(X
−j = x−j) =

 ∏
c∈ch(×),j ̸∈sc(c)

Pc(X
sc(c) = xsc(c))

PN (Xsc(N )\j = xsc(N )\j)

≥

 ∏
c∈ch(×),j ̸∈sc(c)

Pc(X
sc(c) = xsc(c))

PN (Xsc(N )\j = xsc(N )\j ,Xj = xj)

= P×(X
−j = x−j ,Xj = xj)

Thus, since the product of non-negative terms preserves the direction of the inequality and N is Marginal Dominant , the
product node × is also Marginal Dominant.

Now, let + ∈M denote a smooth sum node at height K. We have

P+(X
−j = x−j ,Xj = xj) =

∑
c∈ch(+)

wcPc(X
−j = x−j ,Xj = xj)

where 0 ≤ wc ≤ 1 ∀wc and
∑

c∈ch(+) wc = 1. Since each c ∈ + is a PC node of height atmost K − 1, it is marginal
dominant by the inductive assumption. Thus we have, ∀xj ∈ Dom.(Xj),

P+(X
−j = x−j) =

∑
c∈ch(+)

wcPc(X
−j = x−j)

≥
∑

c∈ch(+)

wcPc(X
−j = x−j ,Xj = xj)

= P+(X
−j = x−j ,Xj = xj)

i.e., + is Marginal Dominant which follows from the fact that the convex combination preserves the direction of the
inequality.

Thus all nodes at height K are also marginal dominant, and by principle of mathematical induction, we can conclude that
the PC is Marginal Dominant.
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B IMPLEMENTATION DETAILS

Datasets. The CUB (Wah et al. [2011]) dataset comprises of 11,788 images of birds, each annotated with attribute
descriptions across 200 bird categories. Following Han et al. (2021), we used a subset of the original dataset consisting of the
first 10 bird categories and 336 train images, 144 validation, and 120 test images for our experiments. Deep visual features
obtained from using GoogLeNet on images, and the text features extracted using doc2vec are used as two modalities.

The NYUD (Silberman et al. [2012]) is a widely used RGB-D scene recognition benchmark, containing RGB and Depth
image pairs. Following previous work by Zhang et al. [2023], we use a reorganized dataset with 1863 image pairs (795 train,
414 validation, and 654 test) corresponding to 10 classes (9 usual scenes and one "others" category). The SUNRGBD (Song
et al. [2015]) is a relatively larger scene classification dataset with 10,335 RGB-depth image pairs. Following Zhang et al.
[2023], we use a subset of the original dataset which contains the 19 major scene categories and 3876 train, 969 validation,
and 4,659 test examples. In both the NYUD and SUNRGBD datasets, we utilized resnet18 He et al. [2015] pre-trained on
ImageNet as an encoder for each modality.

AV-MNIST is a benchmark dataset designed for multimodal fusion. With 55,000 training, 5,000 validation, and 10,000
testing examples, it has two modalities: images of dimension 28 × 28 depicting digits from 0 to 9, and their corresponding
audio represented as spectrograms of dimension 112 × 112. Following Vielzeuf et al. [2018], we used deep neural models
with the LeNet architecture to encode the input data and make predictions for each modality. Specifically, we processed
the image input through a 4-layer convolutional neural network with filter sizes [5, 3, 3, 3]. Similarly, the audio input was
encoded using a 6-layer convolutional neural network with filter sizes [5, 3, 3, 3, 3, 3]. For all the datasets, the encodings
obtained were processed through a feedforward neural network to obtain the unimodal predictions.

C EXPERIMENTAL SETUP

For the experiments, we utilized Intel Xeon Platinum 8167M CPU with 24 cores along with NVIDIA Tesla V100 GPUs,
each with 16GB memory. Our setup included a total of 2 GPUs, enabling us to distribute the workload efficiently across
CUDA cores. However, our experimental results can be reproduced using a single GPU instance of the V100 with the
aforementioned configuration.

A total of 8 workers were used to load, preprocess and train the model for each of the datasets. The compute time for
the experiment when run on a single GPU instance was approximately an hour for each configuration of the combination
functions for the NYUD and AV-MNIST datasets whereas it took only 6 minutes for CUB dataset due to it’s compact size.
SUN-RGBD, on the other hand, took about 5 hours to run each configuration as it’s huge in size, compared to other datasets.
Memory utilization was closely monitored, and we observed an approximate average usage of 1, 9, 2 and 9 GB for CUB,
NYUD, AVMNIST and SUNRGBD respectively.
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